当前位置:文档之家› 能源系统部署欧洲海洋能源评估技术改进的影响透视

能源系统部署欧洲海洋能源评估技术改进的影响透视

能源系统部署欧洲海洋能源评估技术改进的影响透视
能源系统部署欧洲海洋能源评估技术改进的影响透视

Assessing the impacts of technology improvements on the deployment of marine energy in Europe with an energy system perspective*

Alessandra Sgobbi*,So?a G.Sim~o es1,Davide Magagna,Wouter Nijs

European Commission,Joint Research Centre,Institute for Energy and Transport,Westerduinweg3,1755LE Petten,The Netherlands

a r t i c l e i n f o

Article history:

Received13August2014 Received in revised form

10March2015

Accepted28November2015 Available online xxx

Keywords:

Marine energy

Ocean energy

Low-carbon

Energy system model

TIMES

EU28a b s t r a c t

Marine energy could play a signi?cant role in the long-term energy system in Europe,and substantial resources have been allocated to research and development in this?eld.The main objective of this paper is to assess how technology improvements affect the deployment of marine energy in the EU.To do so the linear optimization,technology-rich model JRC-EU-TIMES is used.A sensitivity analysis is performed, varying technology costs and conversion ef?ciency under two different carbon-emissions paths for Europe:a current policy initiative scenario and a scenario with long-term overall CO2emission re-ductions.We conclude that,within the range of technology improvements explored,wave energy does not become cost-competitive in the modelled horizon.For tidal energy,although costs are important in determining its deployment,conversion ef?ciency also plays a crucial role.Ensuring the cost-effectiveness of tidal power by2030requires ef?ciency improvements by40%above current expecta-tions or cost reductions by50%.High carbon prices are also needed to improve the competitiveness of marine energy.Finally,our results indicate that investing0.1e1.1BEuro2010per year in R&D and inno-vation for the marine power industry could be cost-effective in the EU,if leading to cost reduction or ef?ciency improvements in the range explored.

?2015The Authors.Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND

license(https://www.doczj.com/doc/2416350021.html,/licenses/by-nc-nd/4.0/).

1.Introduction

Climate change and energy policies are strongly interlinked: energy-related greenhouse gases(GHG)emissions in the EU272 accounted for almost80%of the total in2011([1]and[2]).More-over,40%of2010GHG emissions could be attributed to energy industries alone(electricity and re?neries mainly)[3].To address the challenge,the EU is de?ning a new set of energy policies that will provide additional impetus to the decarbonisation of the power system.In Refs.[4],the European Commission addresses energy and climate change policies in concert,with a view to reaching a reduction of GHG emissions of40%in2030with respect to1990levels.It recognises that the rapid development of renew-able energy sources poses new challenges to the energy system, notably the integration of decentralised and variable production in the electricity system.The Communication also highlights the need to ramp up research and development(R&D)and innovation in-vestments beyond2020,while at the same time setting priorities to accelerate cost reduction and market uptake of key low-carbon technologies.

The power sector has a critical role to play in ensuring meeting short and long-term energy and climate objectives in the EU. Marine energy encompasses a group of low-carbon technologies that could play a signi?cant role in the transition of the power sector in Europe,contributing to energy security as well as to the reduction in emissions of greenhouse gases.As indicated in Refs.[5],the sector could also generate40,000jobs by2035.It is thus important to better understand how key parameters affect investment decisions in marine technologies in an energy system perspective.

*The views expressed are purely those of the authors and may not in any cir-cumstances be regarded as stating an of?cial position of the European Commission. *Corresponding author.

E-mail address:alessandra.sgobbi@ec.europa.eu(A.Sgobbi).

1Currently at CENSE e Center for Environmental and Sustainability Research, Departamento de Ci^e ncias e Engenharia do Ambiente,Faculdade de Ci^e ncias e Tecnologia,Universidade NOVA de Lisboa,2829-516Caparica,Portugal

2Austria,Belgium,Bulgaria,Cyprus,Czech Republic,Denmark,Estonia,Finland, France,Germany,Greece,Hungary,Ireland,Italy,Latvia,Lithuania,Luxembourg, Malta,Netherlands,Poland,Portugal,Romania,Slovakia,Slovenia,Spain,Sweden, and United

Kingdom.

Contents lists available at ScienceDirect

Renewable Energy

journal h omepage:w

https://www.doczj.com/doc/2416350021.html,/locate/renene

https://www.doczj.com/doc/2416350021.html,/10.1016/j.renene.2015.11.076

0960-1481/?2015The Authors.Published by Elsevier Ltd.This is an open access article under the CC BY-NC-ND license(https://www.doczj.com/doc/2416350021.html,/licenses/by-nc-nd/4.0/).

Renewable Energy89(2016)515e525

The main objective of this paper is therefore to assess,within a systematic and coherent energy system framework,how technol-ogy cost and conversion ef ?ciency affect the competiveness and deployment of marine energy technologies in the EU.Such analysis is intended to provide insights on priorities for R &D and innovation to accelerate the market readiness of marine technologies.To the best of our knowledge,no comprehensive assessment has yet been carried out exploring the role of marine energy for the medium and long term decarbonisation of the European energy system within an energy system perspective,though country-level studies adopting similar approaches do exist,for instance,for the United Kingdom [6].A similar approach was used to determine the po-tential contribution of wave energy in the US energy system by using the NREL Re-EDS model as shown in Refs.[7],whilst the EIA [8]considered the potential contribution of wave and tidal tech-nologies at global level,albeit showing limited contributions up to 2040.

The remainder of the paper is organised as follows.Section 2brie ?y summarises the state of play of marine energy in the EU28,3and highlights the expected developments in the medium and long term.Section 3outlines the key elements of the JRC-EU-TIMES model,describes the policy assumptions underlying the two decarbonisation pathways explored in the paper,and sum-marises the sensitivity analyses performed.Section 4presents the main results,focussing on the impacts of marine technologies im-provements on its deployment.Section 5concludes the paper.2.Marine energy:state of play

Wave and tidal energy technologies are the two forms of marine energy expected to provide signi ?cant contribution to the EU en-ergy system in the next few decades [9].Several European coun-tries,in particular those located on the Atlantic Arc of the continent,bene ?t from vast resources and have a signi ?cant potential for the development of marine energy technologies.The United Kingdom,for example,has an estimated tidal energy economic potential of 18TWh/year,while 50TWh/year could become economically viable for wave ([10]and [11]).According to Ocean Energy Europe,wave and tidal technologies could reach up to 100GW of installed ca-pacity by 2050,with over 260TWh delivered to the grid [12].However,in the past few years,2020projections have been signi ?cantly reduced from 3GW of expected capacity [13,14]to 240MW [15],with forecasts for the UK alone reducing from 1.95GW [16]to 140MW [17].

Despite reduced targets,Europe maintains a leadership position in the development of the marine energy sector and many Euro-pean countries are at the forefront of innovation [18].The United Kingdom,Ireland,France and Norway present hubs for both tech-nology development and market mechanisms to facilitate the deployment of full-scale prototypes and devices,such as MEAD in the UK,4and the newly launched Offshore Energy Renewable En-ergy plan in Ireland [19].

A number of technologies are moving from prototype demon-stration towards pre-commercial pilot arrays in order to prove reliability,survivability and affordability;however the high costs associated with ocean energy and technological fragmentation are currently hindering both access to ?nance and market uptake.As shown in Fig.1,tidal technologies appear closer to commerciali-sation presenting a greater design convergence,having proved operation generating signi ?cant electricity supplied to the grid and

with a series of array demonstration projects in the pipeline.On the other hand,wave technologies have yet to show the same level of reliability,and the current lack of design consensus is delaying the engagement with the manufacturing and supply chain to provide substantial cost-reduction and favour their market uptake [7].While the performance of marine energy technologies is ex-pected to improve steadily over time,their market-readiness and competitiveness will depend on whether such improvements lead to suf ?cient cost reductions and/or ef ?ciency gains.The currently observed trends show the development of the sector to be below initial expectations.According to a recent report by the Strategic Initiative for Ocean Energy [20],cost of energy predictions for marine energy indicate that tidal technology could be competitive with other renewable energy sources (RES)when a cumulative capacity of 2.5e 5GW is reached,whilst wave requires 5e 10GW to ensure competiveness.There is therefore the need for stepping up efforts in innovation,R &D and demonstration to accelerate learning and cost reduction,thus enabling marine energy to play its role in the medium and long-term decarbonisation of Europe.Consolidating Europe's position as the leading centre for innovation is therefore critical.

3.Methodology and approach 3.1.The JRC-EU-TIMES model

This section brie ?y describes the key characteristics of the JRC-EU-TIMES model,its main inputs and outputs.Special attention is devoted to how the modelling framework addresses marine energy technologies.An extensive description of the model can be found in Ref.[21].

The JRC-EU-TIMES model is a linear optimization,bottom-up,technology-rich model generated with the TIMES model gener-ator from ETSAP (Energy Technology Systems Analysis Program),an implementing agreement of the International Energy Agency ([22],[23]).It represents the energy system of the EU28plus Switzerland,Iceland and Norway (EU28t)from 2005to 2050,with each country constituting one region of the model.Each year is divided in 12time-slices that represent an average of day,night and peak de-mand for every season of the year.

The equilibrium is driven by the maximization (via linear pro-gramming)of welfare,de ?ned as the discounted present value of the sum of producers and consumers surplus.The maximization is subject to several constraints,including:upper limits on the supply of primary resources;constraints governing technology deploy-ment;balance constraints for energy and emissions;and the satisfaction of energy services demands in the modelled sectors of the economy (primary energy supply;electricity generation;in-dustry;residential;commercial;agriculture;and transport).

The most relevant model outputs are:the annual stock and activity of energy supply and demand technologies for each region and period;the associated energy and material ?ows,including emissions to air and fuel consumption for each energy carrier;operation and maintenance costs,investment costs,energy and materials commodities prices.

The main drivers and exogenous inputs are summarised in Fig.2.

3.1.1.Energy services and materials demand

The materials and energy demand projections for each country are differentiated by economic sector and end-use energy service,using as a start point historical 2005data and macroeconomic projections from the GEM-E3model [25]as detailed in Refs.[21],and in line with the values considered in the EU Energy Roadmap 2050reference scenario [26].From 2005till 2050the exogenous

3

As in,2plus Croatia.4

https://https://www.doczj.com/doc/2416350021.html,/innovation-funding-for-low-carbon-technologies-opportunities-for-bidders#the-marine-energy-array-demonstrator-mead-scheme .

A.Sgobbi et al./Renewable Energy 89(2016)515e 525

516

useful energy services demand grows 32%for agriculture,56%for commercial buildings,28%for other industry,24%for passenger mobility and almost doubles (97%)for freight mobility.On the other hand,the exogenous useful energy services demand for residential buildings is 12%lower in 2050than in 2005due to the assumptions on improving the building stock's thermal characteristics.

3.1.2.Energy supply and demand

Country and sector-speci ?c energy balances are derived from energy consumption data from Eurostat,determining the energy technology pro ?les for supply and demand technologies in the base year.Beyond the base year,new energy supply and demand tech-nologies are compiled in an extensive database with detailed technical and economic characteristics.

The electricity production sector is divided in accordance to

producer types and generating plant types.Main Activity Producers generate electricity and/or heat for sale to third parties,through the public grid,as their primary activity.Autoproducers generate electricity and/or heat,wholly or partly for their own use.Both types of producers may be privately or publicly owned.The types of plants are classi ?ed according to fuel input,technology group and whether the plant is electricity only or Combined Heat and Power (CHP).The categories of the plants follow closely the RES2020[27]and Energy 2050Roadmap [26]nomenclature.The most relevant source of the database for electricity generation technologies is [14],and the detailed ?gures,including technology costs,can be found in Ref.[21].The technology-speci ?c discount rates are aligned with the values considered in the PRIMES model as in Ref.[26].The social discount rate is set at 5%.

76%

16%

4%

2%2%

Tidal energy concepts

Horizontal axis turbine (76%)

Other Designs (16%)

Enclosed Tips (4%)

Oscilla ?

ng Hydrofoil (2%)

Ver ?cal axis turbine (2%)

40%

23%

19%

7%

7%

3%1%

Wave energy concepts

Point absorber (40%)

A ?

enuator (23%)

Oscilla ?ng Wave Surge Converter (19%) Oscilla ?

ng water column (7%) Rota ?

ng mass (7%) Other (2%)

Bulge wave (1%)

Fig.1.Technology fragmentation in wave and tidal energy technology (Source:[18]

).

Fig.2.The JRC-EU-TIMES model structure.(Source:[24]).

A.Sgobbi et al./Renewable Energy 89(2016)515e 525517

3.1.3.Primary energy potentials and costs

The JRC-EU-TIMES model considers country-speci?c,current and future potentials and costs of primary energy(renewable and fossils),both imported and endogenous.Fossil primary energy import prices are exogenous,and aligned to the values considered in Ref.[26].The extraction and conversion of primary energy re-sources are modelled explicitly.The prices of these commodities are endogenous,and depend on country-speci?c resource extrac-tion and conversion costs.At this moment unconventional gas in Europe is not considered.

Bioenergy is also modelled explicitly.Moreover,in addition to production in the modelled regions,forestry residues can be im-ported.Bioenergy conversion pathways include?rst,second and third generation biore?neries.The direct use of ligno-cellulosic biomass is also envisaged.

Finally,a number of assumptions and sources are adopted to derive the renewable energy(RES)potentials in the EU28for wind, solar,geothermal,marine and hydro(Table1).

3.2.Marine energy in JRC-EU-TIMES and modelled scenarios

Two,aggregate,marine energy technologies are modelled explicitly:wave and tidal(without differentiating tidal stream and range).Their baseline techno-economic parameters are detailed in Table2and Table3.These values have been elaborated based on a literature review and expert assumptions,and are aligned to the assumptions underlying[14].The maximum electricity production of marine energy technologies in JRC-EU-TIMES is determined by their capacity/ef?ciency(or availability)factor.This aggregate fac-tor represents both the hours of the year in which the renewable resources is available(e.g.waves or tides),and the necessary stops for maintenance[29].For marine plants we consider in JRC-EU-TIMES a generic ef?ciency modelled as a capacity factor appli-cable to each country where marine energy is possible,as in Table3, based on JRC own expert assessment.Fig.3depicts the maximum generated electricity per year at the regional level in2050.

Predicting the evolution of techno-economic parameters for technologies is a challenging task.Learning curves are often pro-posed in the literature,as a means of estimating expected im-provements of techno-economic parameters via learning-by-research and/or learning-by-doing(see,for instance[34],and [35]for energy technologies).Marine energy presents however speci?c challenges:the sector is still in its infancy,there is no active market yet,and the lack of convergence in the design,as well as the limited current installed capacity beyond the pilot level,make it dif?cult to estimate learning curves,either based on research or deployment or both.For this reasons,a learning rate of12%was adopted,in accordance to bottom-up estimates provided by the Carbon Trust and SI Ocean report[36].In addition,we did not model learning curves endogenously for several reasons:i)we perfom a partial study for only one group of energy technologies, whereas endogenous learning would have to apply to all technol-ogies in an energy system model;ii)our model represents only EU, whereas technology learning is a global phenomenon,and iii)our model has perfect foresight and including endogenous learning curves,without additional assumptions on system inertia,could lead to over-investment in the early stages as this would lower their cost signi?cantly in later periods.

Two different climate policy scenarios are considered,as sum-marised in Table4.The Current Policy Initiatives scenario(CPI) includes the20e20e20policy targets([30][31][32],and[33]).The CAP scenario is consistent with the medium and long-term CO2 emissions reduction underlying[4],reaching a CO2reduction of 80%below1990values in2050.

The two scenarios have the following assumptions in common: i)No consideration of the speci?c policy incentives to RES(e.g. feed-in tariffs,green certi?cates);ii)a maximum of50%electricity can be generated from variable solar and wind,to account for concerns related to system adequacy and variable RES.Moreover, wind and solar PV cannot operate during the winter peak time slice;and iii)countries without nuclear power plants will not have these in the future(Austria,Portugal,Greece,Cyprus,Malta,Italy, Denmark and Croatia).Nuclear power plants in Germany and Belgium are not operating after2020and2025respectively.

For each scenario,we vary technology costs and capacity factor in turn.Technology costs are assumed to decrease in5%step in-tervals with respect to the baseline levels from2015onwards (Table2).The original evolution of the ef?ciency for both tidal and wave energy technologies implies an improvement of5%every decade:for the sensitivity analysis,this rate of improvement is

Table1

Overview of the technical RES potential considered in JRC-EU-TIMES.

RES Methods Main data sources Assumed maximum possible technical potential

capacity/activity for EU28

Wind onshore Maximum activity and capacity

restrictions disaggregated for different

types of wind onshore technologies,

considering different wind speed

categories [27]until2020followed by expert-based

own assumptions

205GW in2020and283GW in2050

Wind offshore Maximum activity and capacity

restrictions disaggregated for different

types of wind offshore technologies,

considering different wind speed

categories [27]until2020followed by expert-based

own assumptions

52GW in2020and158GW in2050

PV and CSP Maximum activity and capacity

restrictions disaggregated for different

types of PV and for CSP Adaptation from JRC-IET of[27]115GW and1970TWh in2020and1288GW

in2050for PV;9GW in2020and10GW in

2050for CSP

Geothermal

electricity Maximum capacity restriction in GW,

aggregated for both EGS and

hydrothermal with?ash power plants

[27]until2020followed by expert-based

own assumptions

1.6GW in2020and

2.9GW in2050for hot

dry rock;1.5GW in2020and1.9GW in2050

for dry steam&?ash plants.301TWh generated

in2020and447TWh in2050

Marine Maximum activity restriction in TWh,

aggregated for both tidal and wave [27]until2020followed by JRC-IET expert-based

own assumptions

117TWh in2020and170TWh in2050

Hydro Maximum capacity restriction in GW,

disaggregated for run-of-river and lake

plants

[28]22GW in2020and40GW in2050for run-of-river.

197GW in2020and2050for lake.449TWh

generated in2020and462TWh in2050

A.Sgobbi et al./Renewable Energy89(2016)515e525

518

assumed to increase in 5%steps up to the maximum ef ?ciency indicated in Table 3.

Within each policy scenario,we then compare the changes in the energy system brought about by the variations in either the technological costs or the capacity factor with respect to the baseline results of each of the two policy scenarios in turn.

Before the results we would like to point out that such long-term modelling approaches as of the JRC-EU-TIMES model inher-ently have signi ?cant uncertainties.These are not only depending on expectations on the future development of energy technologies,as well as their respective RES potentials,but also on macroeco-nomic evolution,willingness to invest in RES or CO 2mitigation

policies.Naturally,long-term modelling should not be used to forecast the future,rather to support energy planners and policy makers in envisioning possible alternatives with the best available information.In our model,the detailed assumptions on future techno-economic parameters for energy technologies in Europe are derived from expert opinion and/or available evidence and sectoral studies.These implicit assumptions are important drivers of the results e therefore providing further arguments for the sensitivity analysis approach adopted in this paper.

4.Results and discussion

New marine energy technologies do not become competitive by 2050with the baseline cost and ef ?ciency assumptions,unless a long-term mitigation cap is imposed (CAP scenario).Meeting the long-term CO 2emission target calls in our model for the deploy-ment of the full portfolio of low-carbon power technologies,including marine.In the CAP scenario in the EU28,67.4GW of new tidal energy capacity is installed in 2050,generating 155TWh (Table 5).The total generated electricity is close to the maximum technical potential of 170TWh.

In our model,with current estimates for techno-economic pa-rameters,the CO 2emission cap is met through two decarbonisation paths.Firstly,the electri ?cation of the energy system.The share of electricity in ?nal energy consumption increases from 20%in 2010

Table 2

Economic characteristics of marine energy technologies (EUR2010/kW).Year

Wave energy

Tidal energy

Speci ?c investments costs (overnight)Fixed operation and maintenance costs Speci ?c investments costs (overnight)Fixed operation and maintenance costs Ref.

Min.Ref.Min.Ref.Min Ref.Min 2020407020357638328516436231203033501675673329601480592920403062153157282700135050252050

2200

1100

47

23

2200

1100

47

23

Ref.:cost assumptions in the baseline case.

Min.:cost assumptions in the most optimistic case (50%cost reduction).

Table 3

Technical characteristics of marine energy technologies.Year

Capacity factor Technical lifetime

Wave energy Tidal energy Ref.

Maximum Ref.Maximum 20200.220.350.220.453020300.230.470.230.473020400.240.500.240.47302050

0.25

0.50

0.25

0.50

30

Ref.:capacity factor assumptions in the baseline case.

Min.:capacity factor assumptions in the most optimistic case (50%increase in ca-pacity

factor).

Fig.3.Maximum possible generated electricity from marine energy considering the maximum possible technical potential and generic capacity factor.

A.Sgobbi et al./Renewable Energy 89(2016)515e 525

519

to35%in2050in the capped scenario,as opposed to21%in the CPI scenario.Secondly,the large scale deployment of renewable energy sources electricity(RES-e)(Table6).The share of RES-e increases from25%in2010to49%in2030,and66%in2050.Electricity generated from solar and wind is the main source for the increase. In the CAP scenario,the share of wind and solar generated elec-tricity increases from6%in2010to22%in2030and49%in2050.In comparison,the contribution of electricity generated from marine,

which is considered more predictable than solar and wind,is substantially smaller,with only3%of total generated electricity in 2050.

In the remainder of this section we explore the level of cost reduction of ef?ciency improvements that could bring about a large scale deployment of tidal energy,and assess the implication on the whole energy system.For this purpose,we de?ne large scale deployment as a minimum of half of the maximum achievable potential,i.e.59TWh in2020and85TWh in2050.

4.1.Deployment of marine energy technologies and implications at the EU level

At the outset,it is important to highlight that,in the current analysis,wave energy technologies never become competitive in the range of ef?ciency improvements or cost reductions explored. Tidal and wave technologies are perfect substitutes:they compete for the same marine resource,and provide the same output e low-carbon electricity e in the same countries.As in our scenarios,tidal energy is always cheaper than wave energy(with the exception of 2050,see Table2),the potential for wave energy is not realised.The result is therefore driven by the underlying assumptions:an improved representation of the potentials for wave and tidal,taking into account the fact that the two are not always competing for the same marine energy nor are available in the same countries at the same level,could lead to different results.Baseline assumptions on the evolution over time of techno-economic parameters of other, low-carbon technologies also play a role in the relative competi-tiveness of wave energy,which is always more expensive than the marginal technology(tidal energy).With the modelling assump-tions adopted in this research,wave energy would only become competitive for cost reductions higher than60%of the reference technology costs in2030under a long term decarbonisation cap (CAP scenario),and assuming that the cost of tidal energy tech-nologies does not improve beyond50%.In the CPI scenario,the cost reduction needed to make wave energy competitive in2030are even higher e80%of the reference cost in that year.

The remainder of the paper will focus on tidal energy technol-ogies.Fig.4shows the impact of changes from the baseline in in-vestment and O&M costs and in the capacity factor on tidal energy generated electricity(Fig.4)(a)and deployment(Fig.4)(b)in2030 (top)and2050(bottom)for the two scenarios.

Firstly,tidal energy technologies become cost-effective in the EU28already in2030in the presence of a long termà80%CO2cap (CAP scenario)coupled with technological improvements.In the CAP scenario,tidal energy is deployed in2030starting from15% ef?ciency improvements(CAPEFF)or cost reduction(CAPCOST). The deployment remains however limited:only cost reductions above30%or ef?ciency improvements above25%would lead to a total generated electricity of at least half the maximum potential. On the other hand,bringing forward the deployment of tidal energy to2030in the absence of a long-term CO2cap(CPI scenario)re-quires signi?cant technological improvements(halving of the costs or at least45%ef?ciency improvements)e but in all cases at levels well below50%of the total generating potential.

Secondly,over the long-run(2050),tidal energy technologies would become competitive even in the absence of a long-term CO2 cap for more modest technological improvements:with a mid-term CO2cap,cost reductions and ef?ciency improvements above 25%(CPICOST)and10%(CPIEFF)would be suf?cient.In all of these cases,though,generated electricity is well below half of the maximum potential of tidal energy e0.9TWh in the CPI scenario. Only for cost reductions of at least45%(CPI)and ef?ciency im-provements of15%(CPI)would tidal energy generate more than half of its technical potential.

Thirdly,in the absence of a long-term CO2cap(CPI),improving ef?ciency beyond25%does not have signi?cant additional impacts on the level of deployment in the long-term compared with the baseline with a mid-term CO2target(CPIEFF).

It is important to point out that,as the maximum capacity for Europe is de?ned on the activity rather than on the installed ca-pacity,electricity generation can never exceed170TWh in2050. This level of activity is however achieved with very different installed capacities in the case of capacity factor improvements (Fig.4)(b).

Changes in the deployment of marine energy impact the overall electricity generation mix,and this impact is stronger in2030than it is in2050,in particular in the CAP scenario(Fig.5).This is because

Table4

Policy scenarios modelled in JRC-EU-TIMES.

Scenario name20e20e20

targets a

Long term CO2cap Other assumptions

Current Policies

Initiatives(CPI)Yes,ETS till

2050

No Until2025the only new NPPs to be deployed in EU28are the ones being built in FI and FR and under

discussion in BG,CZ,SK,RO and UK.b After2025all plants under discussion can be deployed but no other.

Current Policies

with CAP(CAP)As CPI80%less CO2emissions in

2050than1990levels c

As in CPI

a The EU ETS target is assumed to continue until2050.The national RES targets are implemented for2020and2030(the target for2030is the same as in2020).There are no such targets after2030.The minimum share of biofuels in transport is implemented from2020and maintained constant until2050.

b This corresponds to the following plants:in Bulgaria(Belene-1,Belene-2);Czech Republic(Temelin-3,Temelin-4),Finland(Olkiluoto-3),France(Flamanville-3,Penly-3), Hungary(Paks-5,Paks-6),Romania(Cernavoda-3,Cernavoda-4),Slovakia(Mochovce-3,Mochovce-4)and UK(Hinkleypoint-C1,Hinkleypoint-C2,Sizewell-C1,Sizewell-C2).

c The80%cap includes CO

2

emissions from international aviation and navigation.

Table5

Tidal energy generated electricity(TWh)considering the baseline ef?ciency and costs.

'2010'2020'2030'2040'2050

CPI0.630.630.630.630.63 CAP0.630.630.630.87155.10Table6

Share of RES-e and solar&wind electricity(shown in brackets)in total electricity generation.

20302050

CPI42%(17%)44%(23%) CAP49%(22%)66%(49%)

A.Sgobbi et al./Renewable Energy89(2016)515e525 520

earlier deployment of tidal energy changes the merit order of electricity generation technologies and,therefore,substitutes both fossils and nuclear generation.In particular,the relative importance of thermal fossils (including coupled with carbon capture and storage)decreases with higher deployment of tidal energy,though the share of thermal fossils in total electricity production does not vary by more than 2%with respect to the baseline.While the deployment of renewable electricity generation (RES-e)technolo-gies increases signi ?cantly,nuclear energy is hardly affected.

These changes in the electricity generation mix have,in turn,implications for the energy import dependency of the EU28,though the impact of the higher deployment of tidal energy re-mains marginal,i.e.a maximum 1%decrease of energy import dependency for EU28.On the other hand,the technological improvement of tidal energy has a signi ?cant effect on the share of solar and wind generated electricity when compared to the base-line,with a decrease in this share by up to 10%at EU level.

Overall,the impact of technological improvements on the cost of the energy system is small,as tidal energy technologies remain marginal even in the face of signi ?cant increases in their deploy-ment.However,the direction of change is in line with expectations,with technological improvements leading to lower total energy system costs.In the long-term (2050),in the presence of the 80%CO 2cap,reductions in the cost of tidal energy lead to an annual undiscounted saving for the whole of EU28of 3e 12BEuro 2010for a 10%and 50%cost reduction respectively.The impact of ef ?ciency

improvements is in the same range.When considering the effect over the whole time-horizon,with an overall discount rate of 5%,the savings in the total discounted system cost translate into an annual saving of 0.1e 1.1BEuro 2010.This amount can provide an indication of what could be invested in R &D leading to cost re-ductions or ef ?ciency improvements of tidal energy technologies,while at the same time not implying additional costs to society,as higher investments in R &D would be compensated by corre-sponding savings in the total energy system costs.

Finally,it is interesting to note that,while investment costs in-crease with higher deployment of tidal stream and range,the additional ?xed and variable costs decrease signi ?cantly,and more than compensate for the higher investment.

4.2.Deployment of tidal energy technologies e highlights of implications at member state level

The trends previously discussed for the EU28are visible at country level.Fig.6depicts the deployment of tidal plants across EU28member states for the years 2030(left)and 2050(right)for the CPI and CAP scenarios.The colours represent the fraction of the maximum technical potential that is deployed for a 50%improve-ment in ef ?ciency.This is the most optimistic case for tidal deployment explored in the assessment:for most of the countries either there is no deployment without improvements of at least 35%in cost or ef ?ciency,or the deployment patterns are very

(a)Generated electricity (TWh)

(b)Installed capacity (GWe)

The black solid line represents the maximum technical potential

for electricity generated from tidal

CAPCOST: CAP scenario, sensitivity analysis of cost CPICOST: CPI scenario, sensitivity analysis of cost

CAPEFF: CAP scenario, sensitivity analysis on capacity factor CPIEFF: CPI scenario, sensitivity analysis on capacity factor

20406080100120140

160180

0%

10%

20%

30%

40%

50%

G e n e r a t e d e l e c t r i c i t y (T W h )

% change in parameters (absolute value)

2030

1020304050607080

900%

10%

20%

30%

40%

50%

I n s t a l l e d c a p a c i t y (G W e )

% change in parameters (absolute value)

2030

20406080100120140160180

0%

10%

20%

30%

40%

50%

G e n e r a t e d e l e c t r i c i t y (T W h )

% change in parameters (absolute value)

2050

1020304050607080

900%

10%

20%

30%

40%

50%

I n s t a l l e d c a p a c i t y (G W e )

% change in parameters (absolute value)

2050

CPICOST

CPIEFF CAPCOST CAPEFF

Fig.4.Deployment of tidal energy for the two scenarios (CPI and CAP)for 2030and 2050.

A.Sgobbi et al./Renewable Energy 89(2016)515e 525521

similar or even identical to those observed in the 50%ef ?ciency improvement case.We have also represented in the ?gure the relevance of tidal electricity,as percentage of national renewable electricity for the 20%,35%and 50%cost reduction or ef ?ciency increase.

Both the electricity generated from tidal energy and the fraction of deployed potential increase from 2030to 2050,as tidal becomes cheaper and,for the case of CAP,as the CO 2cap's stringency in-creases.The combination of years and CO 2mitigation targets for the two mapped variables allows identifying for which countries new tidal plants are more cost-effective.This is the case of Cyprus,Malta,Italy,Denmark and The Netherlands,where the deployment of tidal energy becomes cost-effective (measured looking at the fraction of deployed potential in 2030for CPI).These countries install tidal plants up to 94%of their maximum potential,gener-ating up to 0.1TWh,3.4TWh,0.2TWh,2.4TWh and 0.9TWh respectively.The electricity generated corresponds to 1%,6%,1%,9%and 1%of RES-e in these countries.In 2030tidal electricity becomes cost-effective also in Ireland,with 77%of the maximum potential deployed corresponding to 8TWh (24%of Irish RES electricity).The deployment in UK increases as well,up to 77%of the potential,i.e.49TWh (27%RES electricity).These values are for the 50%ef ?-ciency improvement,as in the medium term ef ?ciency improve-ments have a higher effect than cost reductions.

New tidal plants become cost-effective up to the maximum potential in Greece,Portugal,Spain,France and Poland in 2030,but only in the CAP scenario and for cost reductions of at least 35%in Spain and Greece and at least 40%for Portugal and Poland.The share of tidal electricity in RES-e reaches 6e 11%,depending on the country.Finally,for countries such as Lithuania,Sweden and Finland,tidal electricity is only cost-effective in 2050while the long-term CAP makes tidal cost-competitive also in Croatia in 2050.However,the contribution of tidal in these countries is quite small,up to 6%of RES electricity.

In general terms,at country level,UK and Ireland seem to be the

most sensitive member states to variations in cost and ef ?ciency assumptions in the medium term.In 2050,all countries seem to respond in a similar manner to such variations,as the costs of plants are assumed to be lower by default due to the exogenous common assumption on technology learning.

It should be highlighted that the results at member-state level are highly dependent on the maximum technical potentials considered,for which there is substantial uncertainty.Several studies are underway to estimate tidal and wave potentials,in particular for the Atlantic Arc countries,including own work by the European Commission's Joint Research Centre.However,there is not yet harmonized data for the other member states with a maritime territory.In particular [37],mentions separated potential data for tidal energy for France,Germany,Ireland,the UK,the Netherlands,and Spain,which were not considered in this study.This more recent data could change the results substantially,especially for countries such as Poland or Lithuania,which do not have at the moment expertise on marine energy.Note however that,although the results of our assessment indicate that marine technologies are deployed to their maximum potential in these countries,the generated electricity is limited e less than 7TWh for Poland and 0.02TWh for Lithuania,for example.5.Conclusions

In this study we assessed the effects of technological improve-ment on marine power competitiveness,focussing on investment and O &M costs reduction and ef ?ciency increases.We explored the cost-effectiveness of marine energy technologies until 2050within the EU28energy system.To do so,we used the JRC-EU-TIMES bottom-up linear optimisation model,assessing both the impacts of current expectations of marine energy technology evolution for tidal and wave plants,and more optimistic assumptions about the decrease in technology cost due to technology learning and ef ?-ciency improvements.We assessed these effects for two alternative

(a)Nuclear (Baseline = 100)

(b)Thermal fossils (Baseline = 100)

(c)RES-e (Baseline = 100)

CAPCOST: CAP scenario, sensitivity analysis of cost CPICOST: CPI scenario, sensitivity analysis of cost

CAPEFF: CAP scenario, sensitivity analysis on capacity factor CPIEFF: CPI scenario, sensitivity analysis on capacity factor

90

92949698100102

0%10%20%30%40%50%I n d e x (B a s e l i n e = 100)

% change in parameters (absolute value)

203090

929496981001020%10%20%30%40%50%I n d e x (B a s e l i n e = 100)

% change in parameters (absolute value)

203090

951001050%10%20%30%40%50%I n d e x (B a s e l i n e = 100)

% change in parameters (absolute value)

203090

92949698100102

0%10%20%30%40%50%I n d e x (B a s e l i n e = 100)

% change in parameters (absolute value)

205090

929496981001020%10%20%30%40%50%I n d e x (B a s e l i n e = 100)

% change in parameters (absolute value)

2050

90

951001050%10%20%30%40%50%I n d e x (B a s e l i n e = 100)

% change in parameters (absolute value)

2050

CPICOST

CPIEFF CAPCOST CAPEFF

Fig.5.Electricity generation mix.

A.Sgobbi et al./Renewable Energy 89(2016)515e 525

522

CO 2mitigation policy scenarios.

Our analysis takes a simpli ?ed approach to R &D and innovation,since we assume that technological improvements on costs and on ef ?ciencies can be decoupled.In reality,higher ef ?ciencies or ca-pacity factors could imply cost increases.Another limitation of our approach is the uncertainty associated with the maximum tech-nological potential for marine power deployment in EU28t.At this stage,it is extremely dif ?cult to obtain reliable data for all the member states and thus the effect of a higher (or smaller)technical potential on marine energy deployment should be further assessed.Further work with re ?ned scenarios,including current de-velopments in the sector,and updated country-speci ?c potentials for wave and tidal energy will be undertaken to explore the robustness of the results.Finally,our analysis uses a simple cost-effective approach,whereas there are many other factors in ?u-encing marine technology deployment that we do not capture,such as job creation,environmental preferences or constraints,and competition with non-energy uses of the marine space.These as-pects in reality in ?uence the adoption of technology-speci ?c policy incentives in several ways that are out of the scope of this paper.At a more general level,our modelling assumptions about the ex-pected development of energy technologies in the future energy system of Europe,while based on expert opinion and,where available,sectoral studies,are subject to uncertainty.Nonetheless,this simpli ?ed approach allows us to provide insights on priority areas of the technology development for further research.

We conclude that,with the model assumptions applied in this research,the current expectations on marine techno-economic improvements and without considering speci ?c technology policy incentives,it will be a major challenge to achieve the industry's targeted levels of deployment of 3.6GW by 2020and 100GW by 2050[13].With the considered technology improvement expec-tations and from a purely cost-optimisation perspective,the total installed capacity in our model results in 2020is 0.2GW,while in 2050installed capacity ranges from 0.2GW to 74GW depending on the CO 2mitigation cap.

Marine energy technologies would still need to achieve tech-nological improvements well above those currently expected in order to become competitive prior to 2050.For wave power tech-nologies,we conclude that improvements in the costs and ef ?-ciency beyond 50%with respect to current expectations would be needed for the technology to be cost-effective in EU28.In our analysis,although we decreased the technology costs up to 50%and increased its capacity factor up to 50%,wave power remains un-competitive.Only for cost reductions higher than 60%in a CAP scenario would wave energy become competitive,and only if the cost of tidal energy does not improve beyond 50%of expected costs in 2030.In the modelling framework used for this research,wave and tidal energy are substitutes,and this assumption is a key driver behind the result.This result is partly driven by the

competition

Fig.6.National share of deployed maximum potential for 50%ef ?ciency improvement (coloured background)and share of tidal generated electricity of RES-e (bar charts)for 20%,35%and 50%variation in cost and ef ?ciency for the years 2030(left)and 2050(right)for the scenarios CPI and CAP.White countries are out of the scope.

A.Sgobbi et al./Renewable Energy 89(2016)515e 525523

with tidal energy,which is cheaper,and partly by the modelling assumption that wave and tidal energy compete for the same en-ergy potential.It is however also in line with the expectations of the industry,that indicates a minimum reduction of80%in the cost of wave technologies for its market deployment[20].Improved data on the maximum realisable potential for tidal and wave at the country level separately could help further investigate the competitiveness of wave energy.

In order to bring forward the deployment of tidal energy to 2030,substantial techno-economic improvements would be needed:with a mid-term CO2emission cap(CPI),tidal energy would be deployed in2030only with a40%and higher improve-ment in the ef?ciency or at least50%cost reductions.Our results point to the fact that improving technological ef?ciency is also key to ensure higher deployment of tidal energy,and it is more important than reducing costs.Therefore,focussing R&D and innovation efforts of improving ef?ciencies would seem to be more effective in bringing forward and accelerating the competitiveness of tidal energy.If an80%overall long-term CO2cap(CAP)is in place, ef?ciency improvements or cost reduction higher than30%and25% with respect to those currently expected would not bring about signi?cant additional deployment compared to reference.Similarly, in the long-term(2050),improving ef?ciency by more than25% would only have minor impacts on the additional level of deploy-ment of tidal energy in the CPI e whereas the saturation is reached much earlier for the CAP scenario(techno-economic improvements of10%and above).While there is a need for further assessments under different conditions and/or techno-economic improvements, this sensitivity analysis does provide information that can help set R&D and innovation targets and priorities for the short and me-dium term.

In the presence of a medium and long-term CO2cap,the large-scale deployment of tidal technologies is useful in ensuring cost-effectiveness of the transition to a low carbon Europe.However, because of its smaller technical potential compared with other renewable technologies as wind,their additional deployment brings relatively small savings in terms of total EU28energy system costs.Nonetheless,the results of our modelling exercise indicate that investing the equivalent of0.1e1.1BEuro2010per year in R&D and innovation for the marine power industry could be cost-effective over the long-term,provided it leads to cost reduction or ef?ciency improvements in the range explored.This is the range of annualised savings brought about in the total discounted system cost by an increasing deployment of tidal energy in Europe.The lower end of the spectrum is aligned with estimated?nancial re-sources mobilised in2011for research and investment on marine energy in Europe of100MEuro2010.The higher end of the spectrum is,on the other hand,comparable to the investment in research and development for wind energy[18].

Accelerating the deployment of tidal stream and range tech-nologies,while important as part of a low-carbon portfolio,has only limited impact on the energy system in terms of its afford-ability and security.More and earlier deployment of other low-carbon technologies is therefore needed,alongside policies to support the development of the marine energy industry.This should include electricity storage and smart grids,to enhance the stability of the electricity system and provide the?exibility needed with a high share of non-dispatchable electricity.

Acknowledgements

The authors wish to acknowledge the useful coments of two anonymous referees,as well as the contributions of the several invited external experts and the colleagues who participated in the JRC-EU-TIMES model validation within which the results were generated.The valuable contributions and inputs from colleagues, in particular of the Energy Technology Policy Outlook Unit,Institute for Energy and Transport,Joint Research Centre,are gratefully acknowledged.The views expressed are purely those of the authors and may not in any circumstances be regarded as stating an of?cial position of the European Commission.

References

[1]EEA,Trends and Projections in Europe2013.Tracking Progress towards

Europe's Climate and Energy Targets until2020,EEA Report10/2013,Euro-pean Environment Agency,Copenhagen,2013.

[2]EEA,Annual European Union Greenhouse Gas Inventory1990-2011and In-

ventory Report2013.Submission to the UNFCCC Secretariat,EEA Technical Report8/2013,European Environment Agency,Copenhagen,2013.

[3]EEA,End-user GHG Emissions from Energy.Reallocation of Emissions from

Energy Industries to End Users2005-2010,EEA Technical Report18/2012, European Environment Agency,Copenhagen,2012.

[4]European Commission,A Policy Framework for Climate and Energy in the

Period https://www.doczj.com/doc/2416350021.html,(2014)https://www.doczj.com/doc/2416350021.html,munication from the Commission to the Council,the European Parliament,the Council,the Euro-pean Economic and Social Committee and the Committee of the Regions, European Commission,Brussels,2014,p.18.

[5]European Commission,Blue Energy:Action Needed to Deliver on the Potential

of Ocean Energy in European Seas and https://www.doczj.com/doc/2416350021.html,(2014)https://www.doczj.com/doc/2416350021.html,mu-nication from the Commission to the European Parliament,the Council,the European Economic and Social Committee,and the Committee of the Regions, European Commission,Brussels,2014.

[6]H.Jeffrey,B.Jay,M.Winskel,Accelerating the development of marine energy:

exploring the prospects,bene?ts and challenges,Technol.Forecast.Soc.

Change80(2013)1306e1316.

[7]M.Previsic,The Future Potential of Wave Power in the United States,United

States Department of Energy e Wind&Power Technologies Program,2012.

[8]U.S.Energy Information Administration,Annual Energy Outlook2014with

Projections to2040,U.S.Energy Information Administration,2014.

[9]JRC-IET,Technology Map of the European Strategic Energy Technology Plan

(SET-plan)Technology Descriptions,in:JRC Scienti?c and Technical Report, Institute for Energy and Transport of the Joint Research Centre-European Commission,2013,p.156.

[10]The Crown Estate,UK Wave and Tidal Key Resource Areas Project,2012.

[11]G.Mork,S.Bartsow,M.T.Pontes,A.Kabuth,Assessing the global wave energy

potential,in:OMAE2010(ASME),29th International Conference on Ocean, Offshore Mechanics,and Arctic Engineering,Shanghai,China,2010.

[12]European Ocean Energy Association,Industry Vision Paper2013,2013.

[13]European Ocean Energy Association,Oceans of Energy.European Ocean En-

ergy Roadmap2010e2050,2010.Brussels.

[14]JRC-IET,Technology Map of the European Strategic Energy Technology Plan

(SET-plan)Technology Descriptions,JRC Scienti?c and Technical Reports, Institute for Energy and Transport of the Joint Research Centre e European Commission,2011,p.178.

[15]Bloomberg New Energy Finance,A Drop in the Ocean e Wave and Tidal

Deployment to2020,Marine Research Note,2013.

[16]Renewable UK,Wave and Tidal Energy in the UK,State of the industry report

2011,2011.

[17]Renewable UK,Wave and Tidal Energy in the UK,State of the industry report

2013,2013.

[18]T.D.Corsatea,D.Magagna,Overview of European Innovation Activities in

Marine Energy Technologies,JRC Scienti?c and policy reports,European Commission,Joint Research Centre,Luxembourg,2013.

[19] E.a.N.R.Department of Communication,Offshore Renewable Energy Devel-

opment Plan.A Framework for the Sustainable Development of Ireland's Offshore Renewable Energy Resource,2014.

[20] D.Magagna,A.MacGillivray,H.Jeffrey,C.Hanmer,A.Raventos,A.Badcock-

Broe, E.Tzimas,Wave and Tidal Energy Strategic Technology Agenda,SI Ocean,2014.

[21]S.Simoes,W.Nijs,P.Ruiz,A.Sgobbi,D.Radu,P.Bolat,C.Thiel,S.Peteves,The

JRC-eu-times Model.Assessing the Long-term Role of the SET Plan Energy Technologies,JRC Scienti?c and Policy Reports,Institute for Energy and Transport of the Joint Research Centre e European Commission,2013,p.376.

[22]R.Loulou,U.Remme,A.Kanudia,A.Lehtila,G.Goldstein,Documentation for

the TIMES Model-Part I,Energy Technology Systems Analysis Programme (ETSAP),2005.

[23]R.Loulou,U.Remme,A.Kanudia,A.Lehtila,G.Goldstein,Documentation for

the TIMES Model-Part II,Energy Technology Systems Analysis Programme, 2005.

[24]S.Simoes,J.Cleto,P.Fortes,J.Seixas,G.Huppes,Cost of energy and envi-

ronmental policy in Portuguese CO2abatement d scenario analysis to2020, Energy Policy36(2008)3598e3611.

[25]P.Russ,J.-C.Ciscar,B.Saveyn,A.Soria,L.Sz a b o,T.V.Ierland,D.V.Regemorter,

R.Virdis,Economic Assessment of Post-2012Global Climate Policies e Analysis of Gas Greenhouse Gas Emission Reduction Scenarios with the POLES and GEM-e3Models,JRC Policy Report,Institute for Prospective Technology

A.Sgobbi et al./Renewable Energy89(2016)515e525 524

Studies of Joint Research Centre of the European Commission,2009,p.70. [26]European Commission,Energy https://www.doczj.com/doc/2416350021.html,(2011)885Final.

Communication to the European Parliament,the Council,the European Eco-nomic and Social Committee and the Committee of the Regions,2011.

Brussels.

[27]RES2020Project Consortium,The Pan European TIMES Model for RES2020.

Model Description and De?nitions of Scenarios,Intelligent Energy Europe Project no:EIE/06/170/SI2.442662,2009,pp.1e27.

[28]Eurelectric,Hydro in Europe:Powering Renewables,2011.

[29]S.Simoes,J.Seixas,P.Fortes,G.Huppes,The savings of energy saving:in-

teractions between energy supply and demand side policies e quanti?cation for Portugal,Energy Ef?c.J.7(2014)179e201.

[30]European Commission,Decision406/2009/EC of the European Parliament and

of the Council on the Effort of Member States to Reduce Their Greenhouse Gas Emissions to Meet the Community's Greenhouse Gas Emission Reduction Commitments up to2020,2009.Brussels.

[31]European Union,Directive2009/29/EC of the European Parliament and of the

Council of23April2009amending Directive2003/87/EC so as to improve and

extend the greenhouse gas emission allowance trading scheme of the Com-munity,European Commission,Brussels,2009.

[32]European Union,Directive2009/28/EC of the European Parliament and of the

Council on the Promotion of the Use of Energy from Renewable Sources,2009.

Brussels.

[33]European Union,Directive2012/27/EU of the European Parliament and of the

Council of25October2012on Energy Ef?ciency,Amending Directives2009/ 125/EC and2010/30/EU and Repealing Directives2004/8/EC and2006/32/EC, European Union,Brussels,2012.

[34] C.O.Wene,Experience Curves for Energy Technology Policy,OECD/IEA,2000.

[35]K.Schoots,F.Ferioli,G.J.Kramer,B.C.C.van der Zwaan,Learning curves for

hydrogen production technology:an assessment of observed cost reductions, Int.J.Hydrogen Energy33(11)(2013)2630e2645.

[36]S.I.Ocean,Ocean Energy:Cost of Energy and Cost Reduction Opportunities,

2013.Available at:http://siocean.eu/en/upload/docs/WP3/CoE%20report% 203_2%20?nal.pdf.

[37]T.J.Hammons,Tidal Power in the UK and worldwide to Reduce greenhouse

gas emissions,Int.J.Eng.Bus.Manag.3(2011)16e28.

A.Sgobbi et al./Renewable Energy89(2016)515e525525

无线电海洋遥感技术

听讲座《无线电海洋遥感技术》心得 讲座开始后,陈泽宗教授从海洋生态环境、无线电海洋观测原理、雷达监测技术及未来发展趋势等方面进行了讲解。陈教授以自身经历出发,讲述了我国海洋地理环境以及自己去沿海及岛屿的亲身感受。陈教授以海浪灾害给我国造成的巨大经济损失,说明了海洋观测的重要性;在无线电观测的讲解上,陈教授提及不同现场监测设备的造价及原理,分析了国内外不同产品的优劣,进而提出采用远程无线电海洋观测的必要意义。陈教授从1987年开始研究高频地波雷达,陈教授先后3次承担国家863计划课题,研制出了一代又一代的雷达产品。他表示,未来的海洋观测网络将更为全面,覆盖岸边、近海、大洋、极地,实现从海面到海底的立体观测,也将形成由简单要素到多要素综合的集成观测。 海洋覆盖着地球面积的71%,容纳了全球97%的水量,为人类提供了丰富的资源和广阔的活动空间。随着人口的增长和陆地非再生资源的大量消耗,开发利用海洋对人类生存与发展的意义日显重要。所以,必须利用先进的科学技术,全面而深入地认识和了解海洋,指导人们科学合理地开发海洋。在种种情况下,遥感技术应运而生。 海洋遥感技术,主要包括以光、电等信息载体和以声波为信息载体的两大遥感技术。海洋声学遥感技术是探测海洋的一种十分有效的手段。利用声学遥感技术,可以探测海底地形、进行海洋动力现象的观测、进行海底地层剖面探测,以及为潜水器提供导航、避碰、海底轮廓跟踪的信息。海洋遥感技术是海洋环境监测的重要手段。卫星遥感技术的突飞猛进,为人类提供了从空间观测大规模海洋现象的可能性。目前,美国、日本、俄罗斯、中国等国已发射了10多颗专用海洋卫星,为海洋遥感技术提供了坚实的支撑平台。海洋导航技术,主要包括无线电导航定位、惯性导航、卫星导航、水声定位和综合导航等。其中,无线电导航定位系统,包括近程高精度定位系统和中远程导航定位系统。最早的无线电导航定位系统是20世纪初发明的无线电测向系统。20世纪40年代起,人们研制了一系列双曲线无线电导航系统,如美国的“罗兰”和“欧米加”,英国的“台卡”等。卫星导航系统是发展潜力最大的导航系统。1964年,美国退出了世界上第一个卫星导航系统——海洋卫星导航系统,又称子午仪卫星导航系统,开辟了卫星导航的新纪元。 遥感技术是充分利用现有数据和信息资源的最佳途径,是实现海洋资源与环境可持续发展的关键技术和重要手段,在全球变化、资源调查、环境监测与预测中起着其它技术无法替代的作用。同时在维护海洋资源与环境可持续发展的过程中将极大地促进信息科学技术、空间科学技术、环境科学技术和地球科学的发展。随着科学技术的发展,海洋遥感卫星相继升空,海洋探测技术越来越先进,水下地形测量、重力测量仪器不断更新换代,为海洋基础数据获取提供了保障。

海洋自动观测技术

中国海洋大学本科生课程大纲 课程属性:公共基础/通识教育/学科基础/专业知识/工作技能,课程性质:必修、选修 一、课程介绍 1.课程描述:通过本课程的学习,了解国内外的海洋仪器发展历史和现状,掌握基本的海洋自动观测仪器设备的工作原理,以及海洋自动观测仪器设备用传感器的测试及标定方法,通过该课程的学习最终能将所学的各门专业课知识融入到海洋观测技术中,学会如何设计一套海洋自动观测系统。 2.设计思路:本课程以系列海洋浮标为主线,结合当前国内外的海洋观测项目,辅以大量的海洋观测案例,使同学们将掌握的各科理论知识及时应用到海洋观测实际设计中,通过由浅入深的设计,循环渐进,让同学们掌握如何设计海洋仪器设备的基本方法和技能。 3. 课程与其他课程的关系:电路原理、模拟电子技术基础、数字电子技术基础、微机原理及接口技术、单片机原理及应用、检测技术。 二、课程目标 本课程针对海洋自动观测技术,融合模拟电子技术、数字电子技术、电路原理、传感器技术、单片机原理、机械原理、海洋学等,对海洋自动观测仪器设备进行系统分析介绍,了解如何将本专业所学知识融入到海洋技术中,要求深入理解所学知识之 - 3 -

间的相互关联,从系统的观念来理解海洋自动观测仪器设备的背景、结构和特点。本课程的目标是培养学生的工程观点和工程设计能力,培养符合国家经济发展需要的工程技术人才。 三、学习要求 海洋自动观测技术是一门涉及到政治、经济、工程和技术等诸多学科综合性的课程,作为研发工程师,在校期间不仅要有扎实的理论基础和熟练的专业技能,而且要有一定的经济常识,做到技术上先进,经济上合理。要达到以上学习任务,学生必须: (1)按时上课,上课认真听讲,积极参与课堂讨论、作业典型案例分析。本课程将包含较多的课下作业、讨论等课堂活动。 (2)保质保量的按时完成课下作业。以3-5人小组为单位,针对海洋仪器设计的各个环节均有书面作业需要提交,只有在作业中才能够不断掌握所学习的内容。 (3)在前期各阶段课外作业的基础上,学期结束前形成符合规范的海洋仪器设计说明书和主要图纸,促进学生工程设计能力的提高。 四、教学进度 - 3 -

海洋能源的利用与开发(1)

可再生能源利用上海电力2009 年第 1 期 海洋能源的利用与开发 Sonal Patel 摘要:海洋蕴藏着巨大的能量,海洋能源不仅清洁环保,而且是一种取之不竭的可再生清洁能源。文章介绍了多种海洋再生能源的前沿技术及其应用情况,并分析了海洋能发展的现状以及对环境影响的主要因素。关键词:海洋再生能源;波浪能;潮汐能;潮流能;海水温差能;海水盐差能 中图分类号: P743文献标识码: B 随着人们日益关注环境、经济以及依赖化石能源引发的成本问题,开发利用可再生能源已逐渐成为当前行业的发展趋势。在取得推广应用风能发电和太阳能发电圆满成功后,如何从覆盖地球面积70%以上的海洋中获取再生能源,成了能源行业关注的焦点。目前,世界各大新能源开发商正在就此进行着积极的探索,并已经取得了初步的成果。 1海洋再生能源发展概况 海洋中的可再生自然能源主要包括波浪能、潮汐能、潮流能(海流能)、海水温差能和海水盐差能。据测算,海洋能的蕴藏总量高达 4 000 TW,开发潜力巨大。 海洋能源不仅清洁环保、可再生,更重要的是海洋能中的波浪能、潮汐能和潮流能还具有风能和太阳能无法比拟的优势,即可预测性。由月球引力变化造成的潮汐可以提前好几年进行预报;而洋流图则可以通过卫星进行绘制。可预测性有助于防范大规模的停电事故的发生。此外,无论是海上涡轮机或是浸没式零排放涡轮机,因其处于人们看不到的地方而不具有视觉污染。 事实上,试图利用海洋能发电的想法早在100 年前便有之, 因当时技术和资金等问题, 其开发进程十分缓慢。例如:在1912年,德国在北海海岸建造了世界上第一座潮汐电站布苏姆潮汐电站。 以加拿大的芬迪湾建造潮汐电站为例,其建设规划可追溯到1925年。当时缅因州同意投资 1 亿美元在该州帕萨马科迪湾( Passam aquo ddy Bay) 建立潮汐电站; 1935 年罗斯福总统也对该项目表示支持并拨款1 000万美元,但是该项目最终未能实现。同时期的英国布里斯托尔海峡潮汐电 32

海洋观测浮标通用技术要求

海洋观测浮标通用技术要求 (试行) 国家海洋局 二〇一四年十二月 1范围

本要求规定了海洋观测浮标的系统组成、技术要求、检验方法及标志、包装、运输和贮存的要求。 本要求适用于海洋观测网业务化应用的海洋观测浮标的采购、检验和评估。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 CB/T 3855 海船牺牲阳极保护阴极设计和安装 GB/T 13972-2010 海洋水文仪器通用技术条件 GB/T 14914 海滨观测规范 HY/T 143-2011 小型海洋环境监测浮标 HY/T 142-2011 大型海洋环境监测浮标 3术语和定义 3.1海洋观测浮标 锚泊在特定海区对该海区的水文、气象等要素进行定点、自动、长期、连续观测并定时发送资料的浮标。 3.2浮标检测仪 一种配备浮标专用检测软件,可对浮标进行工作参数设置及功能检测的设备。 3.3浮标接收岸站 接收海洋观测浮标发送或者通过数据平台中转的测量数据的地面接收设备和设施。 4系统组成 4.1基本组成 海洋观测浮标由浮标体、数据采集器、安全系统、浮标检测仪、传感器、通信系统、供电系统、锚系、浮标接收岸站(以下简称岸站)九部分组成。 4.2浮标体 为浮标提供浮力支撑,同时也作为仪器搭载平台,由塔架、标体、配重组成。 4.3数据采集器 按照设定的工作时序,自动采集、处理、存储观测数据,并将处理后的数据通过无线通信方式实时发送到岸站。 4.4安全系统 具有警示、防雷、发现浮标移位、开舱、进水的功能,由雷达反射器、避雷针、卫星定位系统、开舱、进水传感器组成。 4.5浮标检测仪 对浮标进行设置、调试和检测。 4.6传感器 包括风、空气温度、相对湿度、气压、水温、盐度、波浪、海流传感器等。

【论文】海洋资源利用现状与前景

我国海洋矿产资源利用现状、不足,前景 【摘要】:我国是一个海洋大国 , 管辖的海域十分广阔,共有300万平方公里左右。其 中分布十分广阔的大洋金属结核,以及丰富的天然气和石油,这些早已引起人们的重视,我国也已在东太平洋的C-C区圈定15万平方公里的开辟区,已获联合国的批准。本文着重介绍了我国海洋资源的概况、海洋产业的状况及发展现状,以及海洋产业发展中存在的问题 , 对发展我国海洋产业提出了几点建议,并预测我国海洋资源的利用前景。 Our country is a maritime country, sea areas under the jurisdiction of sea is very broad, a total of 300 square kilometers. The distribution of the very broad ocean metal tuberculosis, and plenty of natural gas and oil, which has drawn the attention of people, our country also has set up a file in the eastern Pacific C-C the delineation of 15 square kilometers of the open area, has been approved by the United Nations. This paper introduces the general situation of China's ocean resources, the condition of the Marine industry development and the present situation, and Marine industry development, the problems in the development of China's ocean industry and puts forward some suggestions and predicted the prospect of China's ocean resources. 【关键词】:海洋资源资源利用现状发展前景海洋优势 【正文】: 我国海洋资源的优势和利用现状:

国内外海洋石油开发现状与发展趋势

一、海洋石油开发现状 世界石油开发已有200 多年的历史,但直到19 世纪61 年代末期,才真正进入近代石油工业时代。1869 年是近代石油工业纪元年,从此,世界石油产量开始迅速增长。尽管在19 世纪末,美国已在西海岸水中打井,开始了海洋石抽生产,但真正成为现代化海洋石油工业,还是在第二次世界大战以后。海洋石袖是以1947 年美国成功地制造出第一座钢质平台为标志,逐步进人现代化生产。 1990-1995 年期间全世界除美国外有718 个海上新拙气田进行开发。最活跃的地区在欧洲,有265个油气田进行开发,其配是亚洲,有l88个,非洲102 个,拉丁美洲94 个,澳大利亚41 个,中东21 个。 1990 -1995 年期间开发的海上新油气目中,储量、天然气田生产能力、油田生产能力排在~ 前 5 位的国家如下图所示。在此期间,全世界18个国家开发的海上油气田数见表1990-1995 年期间油田开盘前5 位的国家统计表 1990- 1995 年期间开发的海上油气田数

1989-1993 年期间,世界石油钻井作业小断增多,共钻海上钻探井或评价井约6 870 口,发展最快的是北美,从1989 年的410 口上升到1993 年的500口。全世界有242 个海上油气田投入生产,其中油田139个,气田103个。从分布上看,西北欧居第一位,共投产67个油、气田,其中油田40个,气田27个。在此期间全球海洋石油总投资额为3379亿美元。 1990-1995年期间,全世界(不含美国)共安装了7113座平台,其中有83座不采用常规固定式平台,而采用半潜式、张力腿式和可移式生产平台。巴西建造了300~1400m深的采油平台,挪威建造的张力腿平台水深达350m,中国南海陆丰22I生产储

海洋资源的开发和利用(一)

海洋资源的开发和利用(一) 2.了解世界海洋渔业资源的分布和海洋渔业生产状况;了解世界海洋油气资源的开发过程。 3.了解在海洋资源的开发利用过程中,可能出现的问题以及应采取的措施。树立人类对海洋资源的合理利用和保护的观点。 在教学中,教师可首先向学生介绍海洋油、气资源的勘探和开发过程。教师利用课本插图《海上钻井平台》,从海洋油、气资源的勘探、开采、运输、对生产设备和技术的要求、对工作人员素质的要求等方面进行讲述。这里,也可以将海洋油气资源的生产与陆地油气资源的生产过程做一个对比,突出海底石油和天然气勘探、开采的高投资、高技术难度、高风险的特点。最后,向学生介绍我国在海底石油和天然气勘探、开采过程中,采取的国际合作和工程招标方式。 在教学中,教师可引导学生读《大陆架剖面示意》图,了解大陆架海域的范围和自然条件,讲解海洋渔业资源主要集中在沿海大陆架海域的原因。在讲解渔场形成原因时,可结合已学过的有关洋流的知识进行分析,为什么有寒暖流交汇的地方或有冷海水上泛的地方会形成大渔场。接下来,教师可引导学生读《世界主要渔业地区的分布》图,并说明在温带海区由于饵料丰富,世界大渔场多在温带海区,使很多温带的沿海国家成为世界的主要渔业国。如中国和日本是世界海洋渔获量较多的国家,对国民的食品结构影响很大。特别是日本可耕地有限,人口密度又大,海洋食品占有很大比重,如日本人喜欢吃的生鱼片、寿司等。如有条件,可向学生播放有关日本饮食文化的录像。 在教学中,教师可搜集一些有关陆地自然资源和能源短缺或枯竭的具体事例,向学生进行介绍,使之认识到海洋资源开发利用的意义和必要性。然后,让学生说出所知道的海洋资源的种类。在此基础上,教师归纳出目前人类开发利用的海洋资源的种类。接下来,对海水资源(包括海洋化学资源、水资源)、海洋生物资源、海洋矿产资源、海洋能源资源的特点和利用潜力进行讲述。

海洋能的开发和利用

[中南大学] 21世纪的新能源——海洋能 姓名:[甘俊霞] 学号:[010*******] 班级: [11级地学试验班] 指导教师:[唐有根] 2013年4月29日

新能源 [认识与了解] 新能源又称非常规能源。是指传统能源之外的各种能源形式。指刚开始开发利用或正在积极研究、有待推广的能源,如太阳能、地热能、风能、海洋能、生物质能和核聚变能等。 新能源一般是指在新技术基础上加以开发利用的可再生能源,包括太阳能、生物质能、水能、风能、地热能、波浪能、洋流能和潮汐能,以及海洋表面与深层之间的热循环等;此外,还有氢能、沼气、酒精、甲醇等,而已经广泛利用的煤炭、石油、天然气、水能、核电等能源,称为常规能源。随着常规能源的有限性以及环境问题的日益突出,以环保和可再生为特祉的新能源越来越得到各国的重视。 一般地说,常规能源是指技术上比较成熟且已被大规模利用的能源,而新能源通常是指尚未大规模利用、正在积极研究开发的能源。因此,煤、石油、天然气以及大中型水电都被看作常规能源,而把太阳能、风能、现代生物质能、地热能、海洋能以及核能、氢能等作为新能源。随着技术的进步和可持续发展观念的树立,过去一直被视作垃圾的工业与生活有机废弃物被重新认识,作为一种能源资源化利用的物质而受到深入的研究和开发利用,因此,废弃物的资源化利用也可看作是新能源技术的一种形式。 新近才被人类开发利用、有待于进一步研究发展的能量资源称为新能源,相对于常规能源而言,在不同的历史时期和科技水平情况下,新能源有不同的内容。当今社会,新能源通常指核能、太阳能、风能、地热能、氢气等。

按类别可分为:太阳能,风能,生物质能,核能,氢能,地热能,海洋能,小水电,化工能(如醚基燃料)等。 而我所要讲的是新能源中的一个小类:海洋能 21世纪的新能源——海洋能 【概念理解】 海洋能(ocean energy)是海水运动过程中产生的可再生能,主要包括温差能、潮汐能、波浪能、潮流能、海流能、盐差能等。潮汐能和潮流能源自月球、太阳和其他星球引力,其他海洋能均源自太阳辐射。海水温差能是一种热能。低纬度的海面水温较高,与深层水形成温度差,可产生热交换。其能量与温差的大小和热交换水量成正比。潮汐能、潮流能、海流能、波浪能都是机械能。潮汐的能量与潮差大小和潮量成正比。波浪的能量与波高的平方和波动水域面积成正比。在河口水域还存 在海水盐差能(又称海水化学能),入海径流的淡水与海洋盐水间有盐度差,若隔以半透膜,淡水向海水一侧渗透,可产生渗透压力,其能量与压力差和渗透能量成正比。地球表面积约为5.1×10^8km^2,其中陆地表面积为 1.49×10^8km^2占29%;海洋面积达 3.61×10^8km^2,以海平面计,全部陆地的平均海拔约为840m,而海洋的平均深度却为380m,整个海水的容积多达1.37×10^9km^3。一望无际的大海,不仅为人类提供航运、水源和丰富的矿藏,而且还蕴藏着巨大的能量,它将太阳能以及派生的风能等以热能、机械能等形式蓄

海洋能源开发利用技术

海洋能源开发利用技术 陈灿若(201664096)能源与动力浩瀚的大海,不仅蕴藏着丰富的矿产资源,更有真正意义上取之不尽,用之不竭的海洋能源。它既不同于海底所储存的煤、石油、天然气等海底能源资源,也不同于溶于水中的铀、镁、锂、重水等化学能源资源。它有自己独特的方式与形态,就是用潮汐、波浪、海流、温度差、盐度差等方式表达的动能、势能、热 得到旋转机械能;旋转机械能再通过驱动发电机发电。 优缺点: 振荡水柱波能装置的优点是转动机构不与海水接触,防腐性能好,安全可靠,维护方便;缺点是空气透平能量转换效率较低。

发展与改进: 振荡水柱式波能装置的转换效率不高,主要问题出在空气叶轮上。针对这一点,改良后的装置使用了一种可控制叶片桨距的空气叶轮,使叶片处于最佳攻角以提高转换效率;此外还还使用了抛物线柱面聚波板,将波浪聚集在气室;与此同时,以前的固定式也改为了漂浮式振荡水柱装置,可以投放在距岸8~12英里的波浪能更加丰富的地方。今后,研究人员将致力于提高装置能量转换效率、增强装置抗浪能力、延长装置使用寿命、降低传输成本方面以达到降低发电成本的目标。 (二)筏式波浪能技术 原理: 筏式波浪能技术通过漂浮在水面的、端部铰接的浮体俘获波浪能,再通过液压系统驱动发电机发电。

pelamis波力装置 pelamis波力装置: 实际上pelamis装置是改良的筏式装置,传统装置只允许一个方向的角位移,在斜浪作用下受到弯曲力矩易损坏。而pelamis装置允许两个方向的角位移。它是世界上第一座进行商业示范运行的漂浮式波力电站。 优缺点: 筏式装置的长度方向顺浪布置,迎波面较小,与垂直于波面的同等尺度的波能装置相比,其吸收波浪能的能力稍逊一筹。但它具有较好的整体性,抗波浪冲击力强,具有较好的能量传递效率和发电稳定性。 (三)振荡浮子式技术 原理: 该技术采用浮子俘获波浪能,通过与浮子连接的液压装置或机械装置将波浪能转换为某种机械能,再通过发电机转换为电能,或通过其他装置制造淡水。 我国的振荡浮子式技术改进与发展: 主要目的之一是攻克动力摄取障碍(1)如何高效地将往复机械能转换为旋转机械能(2)如何为前一级转换提供最佳负载(3)如何具备良好的抗冲击性。振荡浮子技术采取液压柱塞泵和液压马达解决

中国海洋资源开发现状及对策

中国海洋资源开发现状及对策 摘要:本文主要对对中国海洋资源的概况和开发现状进行了梳理,系统分析了中国海洋资源开发活动在观念上、技术上、效益上以及管理上存在的主要问题,提出了增强海洋意识、树立海洋科学发展观、建立海洋综合管理机制、依法治海、科技兴海、进行海洋资源资产化管理等各项对策和措施。 关键词:海洋资源海洋开发海洋管理 1. 中国海洋资源及其开发现状 1.1 多样的海洋生物资源 在我国管辖海域里,已记录到了20 200 多种海洋生物,约占全世界海洋生物总种数的1 /10 。我国海洋生物资源主要可以利用于食品、药物、新材料、能源、饲料等领域;(1)2007年,我国海洋渔业捕捞量为1400 多万t。(2)2007年,海洋生物医药业不断加强新药研制与成果转化,全年实现增加值40亿元。(3)加速研发利用海洋生物各种特性和能力,合成和生产其他新材料,如利用蓝藻生产天然橡胶等。(4)国外的实践和理论研究表明每平方米水面的海藻每年可提取燃油150 L 以上,我国目前还没有投入开发。(5)我国用海洋植物作畜禽动物饲料的研究和应用始于20世纪50年代,至今尚未形成相应的海洋植物饲料加工业。 1.2 珍贵的海洋矿产资源 中国深海的石油和天然气资源,目前发现的石油资源量估计有200 多亿

t ,天然气资源量估计约为8 万亿m3 。2007年,我国努力提高海洋油气开采能力,海洋油气业继续保持快速增长势头。我国大陆架浅海区广泛分布有铜、煤、硫、磷、石灰石等矿,开发主要集中在山东省、广东省、广西壮族自治区、海南省和福建省,但总体来讲,开发程度不高。年经联合国批准我国1991在太平洋获得面积达15万km2的多金属结核开辟区,我国在大洋调查中还发现了富含锌、金、铜、铁、铝、锰、银等元素的海底热液矿藏,但开发利用尚处于研究阶段。可燃冰在我国管辖海域里广泛存在,据测算,仅我国南海的可燃冰资源量就达700 亿t油当量,但由于可燃冰生成环境复杂、特殊、开采难度大,我国直到1990年才开始可燃冰的利用和开采技术研究。 1.3丰富的海水化学资源 我国有宜盐土地及滩涂84 万ha。20世纪90年代以来,海盐产量一直位居世界第一。2007年,中国海盐产量为3 000多万t。海水中也含有80多种元素和多种溶解的矿物质。目前,我国直接提取钾、溴、镁等技术方面已经突破万吨。海水中还含有重水,其是核聚变原料和未来的能源,在我国开发程度不高。截至2007年底,中国已建成运行的海水淡化水日产量已达12万多t,海水直流冷却水年利用量已近480亿m3。 1.4辽阔的海洋空间资源 中国海岸线长达18000多km,岛屿海岸线长约14000 km ,管辖海域300 多万km2相当于我国陆地面积的1 /3 。海洋空间资源的利用主要包括交通运输、生产、通信和电力输送、储藏及交通、娱乐设施等方面。截至2007年,全国亿吨级港口增至14个,港口货物吞吐量与集装箱吞吐量连续5 年居世界首位。滨海旅游消费需求呈现逐年扩张趋势,滨海旅游业保持稳健增长态势。2007年滨

海洋能源开发与利用综合评价规程-国家海洋技术中心

附件3 国家标准 海洋能电站选址技术规范 第1部分:潮流能 (征求意见稿) 编制说明 标准编写组 二〇一九年三月

《海洋能电站选址技术规范第1部分:潮流能》 编制说明 一、制定标准的背景、目的和意义 我国政府十分重视海洋能的开发利用。2005年以来,我国相继颁布了一系列法律法规以促进和鼓励海洋能的开发利用。在《中华人民共和国可再生能源法》中,明确规定了国家财政需要设立专项资金,用于支持偏远地区和海岛可再生能源独立电力系统建设,以及开展可再生能源勘查、评价和相关信息系统建设的任务。“十一五”期间,国家加大了海洋能开发利用的投资力度,设立了多项海洋能调查和开发利用科研课题。在行政体制上也高度重视可再生能源发展,将“海洋能的研究、应用和管理”定为国家海洋局的管理职责。 2010年11月24日“国家海洋局海洋可再生能源开发利用管理中心”正式挂牌成立,同时启动了海洋可再生能源资金项目。 海洋能源开发利用是缓解我国沿海地区能源短缺和促进海洋经济发展的有效方法,是解决海岛居民生产和生活用电、海上平台能源供应、海防建设能源和淡水问题的有效、可行的方法。 近年来海洋能发展迅速,建成了多座试验电站并成功运行。国家海洋局印发的《海洋可再生能源发展纲要(2013-2016年)》明确了主要任务:我国将大力推进以浙江舟山和广东万山为基地的示范工程建设,遴选具有产业化前景的潮流能和波浪能发电装置,并积极完成国家级海上试验场建设。《海洋可再生能源发展“十三五”规划》是在继承和发展《海洋可再生能源发展纲要(2013-2016年)》基础上制定的我国首个海洋能发展专项规划。《规划》指出,“十三五”期间将以显著提高海洋能装备技术成熟度为主线,着力推进海洋能工程化应用,夯实海洋能发展基础,实现海洋能装备从“能发电”向“稳定发电”转变,务求在海上开发活动电能保障方面取得实效。该标准的

中国海洋资源开发现状、问题以及应对措施

中国海洋资源开发现状、问题以及应对措施 摘要:在21世纪的今天,随着陆地资源的枯竭和新能源开发尚未成熟的状态,人类开始将目光投向了占地球面积71%的海洋,海洋是巨大的资源宝库,拥有丰富的矿产、能源、生物、淡水资源,因此对于海洋的开发和利用日益成为21世纪各国国家战略的重点,我国虽然是一个拥有300万平方公里海洋国土的海洋大国,但海洋技术还处于起步阶段,离世界顶尖水平仍有一定的差距,在海洋技术的探索和使用上还有很长的路要走。 关键词:海洋资源、海洋污染、海洋管理 1海洋资源的分类 1.1海洋化学资源 海水中所含的大量化学物质,在陆地淡水越来越不足的情况下,从海洋中得到淡水已经成为了重要的课题。除了水以外,海水中还含有大量溶解固体和气体物质,其中包括80多种化学元素,各种元素的储量相当可观,如:黄金在海水中的含量虽然非常小,但总量也有500万吨以上,铀有5亿吨以上。据计算,在2.53 km的海水中,除淡水以外,还可以生存32种产品,总价值在30亿美元以上。从经济效益上看,海水价格低廉,取之不尽。目前,对海水化学资源的利用还局限于部分元素,已达工业规模生产的有淡水、食盐、镁和溴等,不难看出海洋化学资源的开发潜力非常巨大。 1.2海洋矿产资源 海洋矿产资源又简称海底资源,包括海滨、浅海、深海、大洋盆地和洋中脊底部的各类矿产资源。按矿床成因和储存状况分为:①砂矿,主要来源于陆地上岩石矿碎屑,经外力总用搬运和分选,在海滨地段沉积富集而成,如砂金、砂铂、金刚石等,②海底自生矿产,由化学、生物和热液作用等在海洋内生成的自然矿物,可直接形成或经富集后形成,如磷灰石、海绿石、天然汽水化合物、海底锰结核及海底多种金属热液矿(以铜、锌为主)③海底固结岩中的矿产,大多数属于陆上矿床向海下的延伸,如海底油气资源、硫矿和煤等。在众多的海洋矿产资源中,以海底油气资源、海底锰结核及海滨复合型砂矿的经济意义最大。 1.3海洋动力资源 海洋动力资源海水运动可以产生巨大的动力资源,如波动能量每秒为27亿kw,海洋中每年波能总量达236520亿kw,表层与深层间的温差总能量为100亿kw,它的热能发电达600亿kw,潮汐能量每年达3500亿Kw。 1.4海洋生物资源 海洋中共有20多万种生物。在不破坏生态平衡的前提下,海洋每年可以产出3亿吨水产品,海洋向人类提供食物的能力,等于全球所有耕地提供农产品的1000倍,按种类可以分为5大类:海洋鱼类资源、海洋软体动物资源、海洋甲壳类动物资源、海洋哺乳动物、海洋植物。

海洋环境监测重点

环境监测 第一章 1.环境监测:通过获得反应环境质量要素的代表值,评价环境质量,确定环境发展变化趋势。 环境监测对象:反映环境质量的各种要素、对环境有影响的各种人类活动因素、对环境造成危害的各类污染源。 2环境监测的分类: (1)按监测目的:监视性检测(例行监测)、特定目的监测、研究性监测 (2)按检测介质对象:水、大气、土壤、生物、固体废物、噪声、放射性卫生 (3)按专业部门:气象、资源、卫生 ●监视性检测(例行监测):对污染源的监测(污染物浓度、排放总量、污染趋势),对环境质量的监测(环境介质、监测对象)●特定目的监测:应急(方向、速度、范围),仲裁(法律责任),考核(人员、方法、项目),咨询(政府、科研、生产)。 ●研究性监测(科研监测):环境本底值(背景值、变化,即区域承载力),健康影响(环境毒理学),监测科研(标准化质量标 准) 3.环境污染的特点:时间分布性、空间分布性、污染物含量的阈值、环境污染综合效应、环境污染的社会评价 ●环境污染的综合效应:单独作用、相加作用、相乘作用、拮抗作用 4.优先污染物:制定一个筛选原则,对众多有毒污染物进行分级排队,从中筛选出潜在危害大、在环境中出现频率高的污染物作为 监测和控制的对象,即经过优先选择的污染物称为环境优先污染物,对优先污染物的监测称为优先监测。 5.环境标准:是标准中一类,它是为了保护人群健康、防治环境污染、促使生态良性循环,同时又合理利用资源,促进经济发 展,依据环境保护法和有关政策,对有关环境的各项工作(例如:有害成分含量及其排放源规定的限量阈值和技术规范)所做的规定。 6..环境标准的分类和分级 ●分类:核心支持系统(环境质量标准、污染物排放标准)环境标准(环境方法标准、环境标准物质标准)体系基础(环境基 础标准) ●分级:国家标准、地方标准、行业标准 第二章水和废水监测 1.水体污染类型:化学型污染、物理性污染、生物型污染 2.水质监测分析方法(我国环保部将现行方法分为三类) A类为国家或行业的标准方法,是评价其它监测方法的基准方法,也是环境纠纷法定的仲裁方法; B类为统一方法,被实验验证是成熟的方法; C类为试用方法,少数人研究和应用,或直接从国外引进,供监测科研人员试用。 3.监测断面和采样点的设置 ⑴布置原则 ①在对调查研究结果和有关资料进行综合分析的基础上,根据水体尺度范围,考虑代表性、可控性及经济性等因素、确定断面类型 和采样点数量,并不断优化。 ②有大量废水排入河流的主要居民区、工业区的上游和下游,支流与干流汇合处,入海河流河口处及受潮汐影响河段,国际河流出 入国境线出入口,湖泊、水库出入口,应设监测断面。 ③饮用水水源地和流经主要风景游览区、自然保护区,以及与水质有关的地方病发病区、严重水土流失区及地球化学异常区的水域 或河段,应设置监测断面。 ④监测断面的位置应避开死水区、回水区、排污口处,尽量选择水流平稳、水面宽阔、无浅滩的顺直河流。 ⑤监测断面应尽可能与水文测量断面重合;要求有明显岸边标志。 ⑵河流监测断面需设置背景断面、对照断面、控制断面和消减断面。为特定的环境管理还可设管理断面。河流只设一个背景断面。 ⑶湖泊、水库监测垂线(或断面)的布设 湖泊、水库通常只设监测垂线,当水体复杂时,可参考河流的有关规定。 ①在湖(库)的不同水域,如进水区、深水区、湖心区、岸边区,按照水体类别和功能设置监测垂线。②湖(库)若无明显功能区 别,可用网格法均匀设置监测垂线,其垂线数根据湖(库)面积、湖内形成环流的水团及入湖(库)河流数等因素酌情确定。 ⑷海洋 用统计方法将监测海域分为污染区、过渡区和对照区 ⑸采样点位的确定 小结: 监测断面和采样点的设置: 河流上——先选取采样断面;(类型、位置)

863计划海洋技术领域天然气水合物勘探开发关键技术

附件1: 863计划海洋技术领域 “天然气水合物勘探开发关键技术”重大项目 2006年度课题申请指南 一、指南说明 “天然气水合物勘探开发关键技术”是“十一五”863计划海洋技术领域重大项目之一。项目总体目标是:重点开发天然气水合物成矿区带的高精度地球物理和地球化学勘探技术,自主研发水合物钻探取样技术与装备,开展水合物钻探、开发及环境影响评价等关键技术研究,集成海域天然气水合物目标快速探测系统平台,初步形成天然气水合物资源勘探技术系列和装备,有效评价1~2个天然气水合物有利矿区,为天然气水合物开发作技术储备。 重点任务是: ●开发海域天然气水合物矿体目标的三维地震与海底高频地震(HF-OBS)联合探测技术、水合物成矿区带的流体地球化学探测技术,以及水合物成矿区带的高精度海洋人工源电磁探测技术及海底热流原位探测技术,实现水合物成矿区带的高效综合勘探技术系列,为我国海域天然气水合物成矿区带勘探提供高技术支撑。 ●研制水合物的保真取样(芯)器,开发样品处理分析技术,集成天然气水合物保真取样及样品后处理系统,为实现水合物样品采集提供支撑。 ●研制天然气水合物保压保温钻探取芯装备,形成天然气水合物钻探取样系统;开展水合物开发前的实验合成条件模拟、水合物形成的相平衡实验模拟、三维水合物藏生成模拟与开采实验研究平台,以及水合物开发的环境影响评价技术,为水合物开发提供技术储备。 ●通过上述技术的研发,预期获得专利及软件著作版权登记20~30项,培养一支天然气水合物科技研发队伍。

根据上述任务,项目分解为以下10个课题: 1.天然气水合物矿体的三维与海底高频地震联合探测技术 2.天然气水合物的海底电磁探测技术 3.天然气水合物的热流原位探测技术 4.天然气水合物流体地球化学现场快速探测技术 5.天然气水合物原位地球化学探测系统 6.天然气水合物重力活塞式保真取样器研制及样品后处理技术 7.天然气水合物钻探取芯关键技术 8.天然气水合物成藏条件实验模拟技术 9.天然气水合物开采技术平台与开采技术预研究 10.天然气水合物探测技术系统集成 本项目2006年启动除“天然气水合物探测技术系统集成”课题外的9个课题,均为公开发布课题申请指南,采用择优委托方式确定承担单位。 本指南面向全国发布,自由申报、专家评审、公平竞争、滚动发展;申请单位应围绕指南设置的研究目标、研究内容和技术指标等要求,提出课题申请。鼓励产学研单位联合共同申请课题。 依据“阶段目标、滚动支持”的原则,本次指南发布的课题的研究周期不超过四年。 二、指南内容 课题1. 天然气水合物矿体的三维与海底高频地震联合探测技术 (1)研究目标: 开发海域天然气水合物成矿区带三维地震与海底高频地震(HF-OBS)联合探测关键技术;研究天然气水合物矿

海洋调查与观测技术讲义1全解

生物部分 第一节前言 1、基本定义 1.1 海洋监测marine monitoring 在设计好的时间和空间内,使用统一的、可比的采样和检测手段,获取海洋环境质量要素和陆源性入海物质资料,以阐明其时空分布,变化规律及其与海洋开发、利用和保护关系之全过程。 1.2 基线调查baseline investigation 对某设定海区的环境质量基本要素状况的初始调查和为掌握其以后间隔较长时间的趋势变化的重复调查。 1.3 常规监测ordinary monitoring 在基线调查基础上,经优化选择若干代表性测站和项目,进行以求得空间分布为主要目的,长期逐年相对固定时期的观测。 1.4 定点监测fixed-point monitoring 在固定站点进行常年更短周期的观测。其中包括在岸(岛)边设一固定采样点,或在固定站附近小范围海区布设若干采样点两种形式观测。 1.5 应急监测emergency monitoring 在海上发生有毒有害物质泄放或赤潮等灾害紧急事件时,组织反应快速的现场观测,或在其附近固定站临时增加的针对性观测。 1.6 专项调查specific survey 为某一专门需要的调查。如:废弃物倾倒场,资源开发,海岸工程环境评价等进行的调查。 2、监测内容 2.1 海洋环境质量监测要素: —海洋水文气象基本参数; —水中重要理化参数、营养盐类,有毒有害物质; —沉积物中有关物理参数和有毒有害物质; —生物体中有关生物学参数生物残毒及生态; —大气理化参数;

—放射性核素。 2.2 项目选定原则 除水文气象项目必测外,其他项目的选定原则是: —基线调查应是多介质且项目要尽量取全; —常规监测应选基线调查中得出的对监测海域环境质量敏感的项目; —定点监测为海水的pH、浑浊度、溶解氧,化学耗氧量、营养盐类;沉积物的粒度、有机质、氧化还原电位;生物的体长、重量、年龄、性腺成熟度等; —应急监测和专项调查酌情自定。 3、测站布设原则 3.1 测站布设的基本要求 3.1.1 依据任务目的确定监测范围,以最少数量测站,所获取的数据能满足监测目的需要。 3.1.2 基线调查站位密,常规监测站位疏;近岸密,远岸疏;工业人口多密,原始海岸疏。 3.1.3 尽可能沿用历史测站,适当利用海洋断面调查测站,照顾测站分布的均匀性和与岸边固定站衔接。 3.2 调查断面和站位布设原则: 全面覆盖、随机均匀、控制重点、照顾一般 ?应均匀分布和覆盖整个调查评价海域和区域。 ?调查断面方向大体上应与海岸垂直,在主要影响区或生态环境敏感区应加大站位密度(设主断面)。 3.3 各类水域测站布设原则 3.3.1 海域:在海洋水团、水系锋面,重要渔场、养殖场,主要航线,重点风景旅游区、自然保护区,废弃物倾倒区以及环境敏感区设立测站或增加测站密度。 3.3.2 海湾:在河流入汇处,湾中部及湾海交汇处,同时参照湾内环境特征及受地形影响的局部环流状况在辐合区设立测站。 3.3.3 河口:在河流左右侧地理端点联线以上,河口城镇主要排污口以下,并尽量减少潮流影响处。如建有闸坝,应设在闸上游;河口处有支流入汇应设在入汇

辽宁省海洋资源现状及海洋产业发展趋势分析

辽宁省海洋资源现状及海洋产业发展趋势分析 发布时间:2011-11-2信息来源:博雅景观 核心提示:辽宁省是全国重要沿海省市之一,横跨黄海、渤海两个海域,大陆海岸线长约2100km,占全国海岸长的12%。辽宁省海域气候宜人,地理位置优越,海洋资源丰富,沿海城市发达,具有宝贵的地源优势。 近年来,在振兴东北老工业基地的背景下,辽宁省由于大力实施“海上辽宁,科技兴海”战略,发展海洋经济,其海洋经济已经步入稳健发展的轨道,成为国民经济新的增长点,呈现出传统产业、新兴产业和未来高技术产业等多层次推进的可喜格局。沿海地区的社会生产力、综合经济实力和人民生活水平都迈上了一个新的台阶,海洋综合经济实力明显增强,为东北老工业基地的振兴做出了巨大的贡献。 一、辽宁省海洋资源基础及开发利用现状 1、辽宁省海洋资源基础 (1)海洋空间资源 全省拥有海岸线2878.5km,其中,大陆岸线2178.3km,岛屿岸线700.2km;全省滩涂总面积约1696km2,约占全国的9.7%,居全国第六位,其中辽东湾沿岸滩涂面积1020km2,约占全省的60%,黄海北部沿岸滩涂约676km2,约占全省的40%;全省有岛、坨、礁506个,其中面积0.01km2以上的岛屿205个,总面积189.21km2;全省湿地面积共约2132km2。 (2)港口资源 辽宁省海岸线漫长,有着建港的良好条件,全省已形成以大连、营口港为中心,丹东、锦州、葫芦岛港为两翼,连结沿海地方中小港的海上交通运输体系以及40余条海上通道,大连港、营口港、锦州港已分别同100多个国家和地区形成海上贸易网络。 (3)海洋生物资源

辽宁海岸带和近海水域已鉴定的海洋生物520多种,其中浮游生物约107种,底栖生物约280种,游泳生物包括头足类和哺乳动物约有137种。现已为渔业开发利用的经济种类80余种。包括鱼类、虾蟹类、头足类等经济生物资源及大量的海洋、滨岸和岛屿珍稀生物物种,毛虾、对虾、海蜇是全国三大地方捕捞品种[1]。 (4)滨海旅游资源 辽宁沿海旅游资源丰富,初步营造了以中国著名旅游城市大连为中心的辽宁南部旅游区、以中国最大的边境城市丹东为中心的东部旅游区和以锦葫历史文化名城为中心的辽宁西部考古、滨海、山川3个中心旅游区,建设了以大连为中心,以丹东、葫芦岛市为两翼,贯通辽宁沿海各市的6个滨海旅游带。 (5)海洋矿产资源 海洋矿产资源种类多,分布广,现探明和发现的矿产资源主要有石油、天然气、铁、煤、硫、岩盐、重砂矿、多金属软泥(热液矿床)等。石油、天然气主要分布在辽东湾,石油资源量约有7.5亿t,天然气资源量约有1000亿m3,已探明具有开发价值的石油储量1.25亿t,天然气储量135亿m3。滨海砂矿主要有金刚石、沙金、锆英石、型沙、砂砾等,开发前景广阔。 (6)海洋能资源 海洋能资源是一种可再生资源,通常指潮汐能、波浪能、海流能、海水温差能和海水盐差能等。辽宁海洋能的蕴藏量约为700万kw,在全国海洋能的蕴藏量中约占0.67%。其中潮汐能约为193.6万kw,约占全国潮汐能的1.05%;波浪能约152万kw,约占全国波浪能的1%;温差能约为150万kw,约占全国温差能的0.3%;海流能约为100万kw,约占全国海流能的1.1%;盐差能约为100万kw,约占全国盐差能的1.1%。 (7)海洋水资源

海洋能发电技术的发展现状与前景

海洋能发电技术的发展现状与前景 摘要: 海洋能是取之不尽、用之不竭的清洁能源。海洋能多种多样, 主要包括波浪能、潮流能、潮汐能和温差能等。利用海洋能发电能够改善能源结构和环境, 有利于海洋资源开发, 受到许多国家的重视。文中对各种海洋能发电系统的主要技术原理、特点和技术现状作了综述和评价, 最后指出海洋能利用的意义和前景。 关键词: 海洋能波浪能潮流能潮汐能环境保护 海洋能是指依附在海水中的能源。海洋通过各种物理过程或化学过程接收、存储和散发能量, 这些能量以波浪、海流、潮汐、温差等形式存在于海洋之中。海洋面积占地球总面积的71%, 到达地球的各种来自宇宙的能量, 大部分落在海洋上空和海水中,部分转化为各种形式的海洋能。海洋能的大部分来自于太阳的辐射和月球的引力。例如: 太阳辐射到地球表面的太阳能大部分被海水吸收, 使海洋表层水温升高, 形成深部海水与表层海水之间的温差, 因而形成由高温到低温的温差能;太阳能的不均匀分布导致地球上空气流运动, 进而在海面产生波浪运动, 形成波浪能;由地球之外其他星球( 主要由月球)的引力导致的海面升高形成位能, 称为潮汐能;由上述引力导致的海水流动( 其特征是在一日内发生的、有规则的双向流动) 的动能称为潮流能;非潮流的海流( 其特征是一日内不发生双向的流动) 的成因有受风驱动或海水自身密度差驱动等, 归根结蒂是由太阳能造成的, 其动能称为海流能。海洋能是清洁的可再生能源, 开发和利用海洋能对缓解能源危机和环境污染问题具有重要的意义, 许多国家特别是海洋能资源丰富的国家, 大力鼓励海洋能发电技术的发展。由于海洋能发电系统的运行环境恶劣, 与其他可再生能源发电系统, 如风电、光伏发电相比, 发展相对滞后, 但是随着相关技术的发展, 以及各国科技工作者的努力, 近年来, 海洋能发电技术取得了长足的进步, 陆续有试验电站进入商业化运行。可以预见, 不远的将来, 随着海洋能发电技术日益成熟, 将会有越来越多的海洋能发电系统接入电网运行。由于海洋蕴涵量巨大, 海洋能必将成为能源供给的重要组成部分。

海洋资源的开发和利用及海洋环境保护

第13讲海洋资源的开发和利用及海洋环境保护 [考纲要求] (1)海洋开发:海洋资源的主要类型及其开发利用现状与前景。海洋空间的重要性、开发利用现状与前景。中国邻近海域,主要渔场和海洋水产,主要盐场。(2)海洋环境保护。主要的海洋环境问题。保护海洋环境的主要措施。 [知识讲解] 一、海洋资源的开发利用 1、海洋资源类型 (1)化学资源:我国海盐产量世界首位。 天津、河北境内的长芦盐场有平坦的海滩和利于蒸发的天气(春季),是我国最大盐场。附近的化工厂的原料之一。 台湾布袋盐场:北回归线附近,副热带高压控制,气流下沉,加之位于台湾山脉的背风坡,故降水少,多晴天,气温高,有利于蒸发;台西平原地势平坦,有利于晒盐。 海南岛莺歌海盐场:热带、地势、背风坡。 (2)生物资源:鱼、虾、贝、藻等,捕捞活动从近海扩展到世界各个海域 大陆架海底:石油、天然气、煤、硫、磷等 (3)矿产资源近岸带的滨海砂矿:砂、贝壳等建筑材料和金属矿产 海盆:深海锰结核,是未来可利用的潜力最大的金属矿产资源我国渤海、黄海的全部、东海的大部分、南海的一部分为大陆架。 亚洲东部岛弧链东侧多深海沟:亚欧板块与太平洋板块碰撞形成。 (4)海洋能源:巨大、可再生、清洁;能量密度小,需采用特殊的转换装置。具有商业开发价值的潮汐发电和波浪发电,但也投资较大,效益不高 2、海洋渔业生产 大陆架海域:阳光集中,生物光合作用强,人海河流带来丰富的营养盐 类, 饵料丰富,底部沉积着大陆带来的泥沙,有利于鱼类产卵发育。 渔业资源分布温带海区:季节变化显著,冬季上泛的底部海水有丰富的营养盐类 寒暖流交汇海区或冷海水上泛区:饵料比较丰富,冷水性与暖水性鱼类 在寒 暖流交汇处集聚。 主要渔业国:中、日,鱼产品消费量高,市场需求大;日本可耕地有限,人口密度高, 海 产消费多;我国东海素有“天然鱼仓”之称,舟山渔场全国最大。 鱼汛:舟山渔场冬季带鱼汛,渤海渔场秋季对虾汛。 3、海洋油气开发:一项高投资、高技术难度、高风险工程,国际合作和工程招标是可行方式 勘探:利用地震波方法寻找,通过海上钻井估计矿藏类型和分布,分析是否具有开发价值 海上钻井平台——新加坡。 开发:开始于20世纪初,经历从近海到远海、从浅海到深海过程。钻井平台是勘探和开采的基地。 输送:油气田离炼油厂都较远,通过船舶或输油管道输送 4、海洋空间利用(海上、海中、海底三部分) 海洋环境复杂性和特殊性:多变的气象状况和海水运动;深海的黑暗、低温、缺氧环境;

相关主题
文本预览
相关文档 最新文档