当前位置:文档之家› 22.3.1--利用二次函数求几何面积的最值问题教案与例题

22.3.1--利用二次函数求几何面积的最值问题教案与例题

22.3.1--利用二次函数求几何面积的最值问题教案与例题
22.3.1--利用二次函数求几何面积的最值问题教案与例题

30322(5)b a -=-=?

-第1课时 利用二次函数求几何面积的最值问题

1.二次函数的最值

问题:从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h =30t -5t 2(0≤t ≤6).小球运动的时间是多少时,小球最高?小球运动中的最大高度是多少?

可以借助函数图象解决这个问题.画出函数h =30t -5t 2(0≤t≤6)的图象(如图). 可以看出,这个函数的图象是一条抛物线的一部分.这条抛物线

的顶点是这个函数的图象的最高点,也就是说,当t 取顶点的横

坐标时,这个函数有最大值. 因此,当t = 时, h 有最大值

也就是说,小球运动的时间是3 s 时,小球最高.小球运动中的

最大高度是45 m.

一般地,当a>0(a<0)时,抛物线y =ax 2+bx +c 的顶点是最低(高)点,也就是说,当x =a

b 2-时,二次函数y =ax 2+bx +

c 有最小(大)值a b ac 442-。 例题:

1.二次函数y =x 2-4x +c 的最小值为0,则c 的值为(B )

A.2

B.4

C.-4

D.16

2.已知0≤x≤2

1,那么函数y =-2x 2+8x -6的最大值是(B ) A. -6 B.-2.5 C.2 D .不能确定

3.已知y =-x (x +3-a )+1是关于x 的二次函数,当x 的取值范围在1≤x≤5时,若y 在x =1时取得最大值,则实数a 的取值情况是(D )

A.a=9

B.a=5

C .a≤9

D .a≤5

4.二次函数y =2x 2-6x +1,当0≤x≤5时,y 的取值范围是-27≤y≤21 . 5.若二次函数y =x 2+ax +5的图象关于直线x =-2对称,且当m≤x≤0时,y 有最大值5,最小值1,则m 的取值范围是-4≤m≤-2 .

2243045.44(5)ac b a --==?-

602l ??- ???301522(1)

b a -=-=?-22

430225.44(1)

ac b a --==?-2.几何面积的最值

问题:总长为60 m 的篱笆围成矩形场地,矩形面积S 随矩形一边长l 的变化而变化,当l 是多少米时,场地的面积S 最大?

解:矩形场地的周长是60 m ,一边长为l m ,

所以另一边长为 m .

场地的面积S =l (30-l ),

即S =-l 2+30l (0

也就是说,当l 是15 m 时,场地的面积S 最大.

在周长一定的情况下,所围成的几何图形的形状不同,所得到的几何图形的面积也不同.利用二次函数求几何图形的最大(小)面积的一般步骤:

(1)引入自变量,用含自变量的代数式分别表示与所求问题相关的量.

(2)分析题目中的数量关系,根据题意列出函数解析式.

(3)根据函数解析式求出最值及取得最值时自变量的值,注意自变量的取值范围. 例题:

1.已知一个直角三角形两直角边长之和为20cm ,则这个直角三角形的最大面积为(B )

A .25cm 2

B .50cm 2

C .100cm 2

D .不确定

2.用一条长为40cm 的绳子围成一个面积为acm 2的长方形,a 的值不可能为(D )

A.20

B.40

C.100

D.120

3.如图,在矩形ABCD 中,AD =1,AB =2,从较短边AD 上找一点E ,过这点剪下两个正方形,它们的边长分别是AE ,DE 的长,当剪下的两个正方形的面积之和最小时,点E 应选在(A )

A .AD 的中点 B.AE:ED=(5-1):2 C.AE:ED=2:1 D.AE:ED=(2-1):2

4.(2016?兰州)某农场拟建三间长方形种牛饲养室饲养室的一面靠

墙(墙长50m ),中间用两道墙隔开(如图).已知计划中的建筑材

料可建墙的总长度为48m ,则这三间长方形种牛饲养室的总占地面积

的最大值为144 m 2.

5.如图,线段AB =6,点C 是AB 上一点,点D 是AC 的

中点,分別以AD ,DC ,CB 为边作正方形,则当AC =4 时,

三个正方形的面积之和最小。

6.如图,在△ABC 中,∠B =90°,AB =8cm ,BC =6cm 点P 从点A

开始沿AB 向B 以2cm /s 的速度移动点Q 从点B 开始沿BC 向C 以

1cm /s 的速度移动,如果P ,Q 分别从A ,B 同时出发,当△PBQ 的面

积最大时,运动时间为2s .

7.[2016?内江] 某中学课外兴趣活动小组准备围建个矩形苗圃园,其中一边靠墙,另外三边用长为30m 的篱笆围成,已知墙长为18m (如图所示),设这个苗圃园垂直于墙的一边的长为xm .

(1)若苗圃园的面积为72m 2,求x

(2)若平行于墙的一边长不小于8m ,这个苗圃园的面积

有最大值和最小值吗?如果有,求出最大值和最小值;如

果没有,请说明理由.

(3)当这个苗圃园的面积不小于100m 2时,直接写出x 的

取值范围.

解:(1)根据题意得(30-2x )x =72

解得x 1=3,x 2=12

∵0<30-2x≤18,x >0

∴6≤x <15.∴x =12.

(2)有最大值和最小值.设苗圃园的面积为ym 2,

∴y =x (30-2x )=-2x 2+30x .

由题意知8≤30-2x≤18,x >0,解得6≤x≤11.

∵a=-2<0,-a 2b =-)(2-230 =2

15. ∴当x =2

15时,y 有最大值,y 最大值=112.5. 当x =11时,y 有最小值,y 最小值=88.

即这个苗圃园的面积有最大值和最小值,最大值为112.5m 2,最小值为88m 2.

(3)6≤x≤10.

考查角度1利用二次函数解决实际中围成面积的最值问题

1.[2016?绍兴]课本中有一例题:

有一个窗户形状如图①所示,上部是一个半圆,下部

是一个矩形.如果制作窗框的材料总长为6m ,如何设计这

个窗户,使透光面积最大?

这个例题的答案是:当窗户半圆的半径约为0.35m 时,透光

面积最大值约为1.05m 2.

我们如果改变这个窗户的形状,上部改为由两个正方形组成

的矩形,材料总长仍为6m ,如图②所示.解答下列问题:

(1)若AB 为1m ,求此时窗户的透光面积.

(2)与例题比较,改变窗户形状后,窗户透光面积的最大值有没有变大?请通过计算说明.

解:(1)由已知可得AD =4

5221-1-1-1-6 (m ),则窗户的透光面积为45×1=45(m 2). (2)设AB =xm ,则AD =(3-4

7x)m ∵3-47>0,且x >0,∴0<x <7

12 设窗户的透光面积为Sm 2,由已知得S=AB.AD=x(3-47x)=-47x 2+3x=-47(x-76)2+7

9, ∵x=76在0<x <7

12的范围内, ∴当x =76时,S 最大值=7

9>1.05. 与例题比较,改变窗户形状后,窗户透光面积的最大值变大.

考查角度2利用二次函数解决动态几何面积的最值问题

1.如图,在△ABC 中,∠B =90°,AB =12mm ,BC =24mm ,动点P 从点A 开始沿边AB 向B 以2mm /s 的速度移动,动点Q 从点B 开始沿边BC 向C 以4mm /s 的速度移动.已知

P ,Q 分别从A ,B 同时出发,求△PBQ 的面积S (mm 2)与出发时间t (s )的函数解析式,

并求出t 为何值时,△PBQ 的面积最大,最大值是多少?

解:由题意可知,BP =(12-2t )mm ,BQ =4tmm

∴S =21BP ?BQ =2

1(12-2t )?4t ,整理,得 S =-4t 2+24t ,易知0<t <6.

∵S=-4t 2+24t=-4(t-3)2+36,

∴当t =3时,S 取得最大值,为36.

故S 与的函数解析式为S =-4t 2+24t (0<t <6).

当t =3时,△PBQ 的面积最大,为36mm 2.

总结:1.怎样求二次函数的最大(小)值?

2.求几何图形面积的最值时都有哪些步骤?

二次函数中常见图形的的面积问题

二次函数中常见图形的的面积问题

二次函数中常见图形的的面积问题说出如何表示各图中阴影部分的面积? 如图1,过△ABC的三个顶点分别作出与水平垂直的三条线,外侧两条直线之间的距离叫△ABC的“水平宽”,中间的这条直线在△ABC内部线段的长度叫△ABC 的“铅垂高h”。三角形面积的新方法:,即三角形面积等于水平宽与铅垂高乘积的一半。 x y O M E N A 图 O x y D C 图 x y O D C E B 图六 P x y O A B D 图 E x y O A B 图 x y O A B 图

抛物线322+--=x x y 与x 轴交与A 、B (点A 在B 右侧),与y 轴交与点C , D 为抛物线的顶点,连接BD ,CD , (1)求四边形BOCD 的面积. (2)求△BCD 的面积.(提示:本题中的三角形没有横向或纵向的边,可以通过添加辅助线进行转化,把你想到的思路在图中画出来,并选择其中的一种写出详细的解答过程) 如图1,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0), 交y 轴于点B 。 (1)求抛物线和直线AB 的解析式;(2)求△CAB 的铅垂高CD 及S △CAB ; (3)设点P 是抛物线(在第一象限内)上的一个动点,是否存在一点P ,使S △ PAB =S △CAB ,若存在,求出P 点的坐标; 若不存在,请说明理由。

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,4),C(2,4)三点,且与x 轴的另一个交点为E 。 (1)求该抛物线的解析式; (2)求该抛物线的顶点D 的坐标和对称轴; (3)求四边形ABDE 的面积 已知二次函数322--=x x y 与x 轴交于A 、B 两点(A 在B 的左边),与y 轴交于点C ,顶点为在双曲线3 y x =上是否存在点N ,使得ABC NAB S S ??=,若存在直接写出N 的坐标;若不存在,请说明理由. A x y O B C 变式二图

二次函数的存在性问题(面积)及答案

图12-2 x C O y A B D 1 1 二次函数的存在性问题(面积问题) 1、[08云南双柏]已知:抛物线y =ax 2 +bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴 的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB

2020二次函数中的面积问题

二次函数——面积问题 〖知识要点〗 一.求面积常用方法: 1. 直接法(一般以坐标轴上线段或以与轴平行的线段为底边) 2. 利用相似图形,面积比等于相似比的平方 3. 利用同底或同高三角形面积的关系 4. 割补后再做差或做和(三边均不在坐标轴上的三角形及不规则多边形需把图形分解) 二.常见图形及公式 抛物线解析式y=ax 2 +bx+c (a ≠0) 抛物线与x 轴两交点的距离AB=︱x 1–x 2︱= a ? 抛物线顶点坐标(-a b 2, a b ac 442-) 抛物线与y 轴交点(0,c ) “歪歪三角形中间砍一刀” ah S ABC 2 1=?,即三角形面积等于水平宽与铅垂高乘积的一半. y 轴交PCD 的面 3、已知抛物线c bx x y ++=2与y 轴交于点A ,与x 轴的正半轴交于B 、C 两点,且BC=2,S △ABC =3,则b = , c = . 〖典型例题〗 ● 面积最大问题 1、二次函数c bx ax y ++=2 的图像与x 轴交于点A (-1,0)、B (3 ,0),与y 轴交于点C ,∠ACB=90°. (1)求二次函数的解析式; (2)P 为抛物线X 轴上方一点,若使得△PAB 面积最大,求P 坐标 (3)P 为抛物线X 轴上方一点,若使得四边形PABC 面积最大,求P 坐标 (4) P 为抛物线上一点,若使得ABC PAB S S ??=2 1,求P 点坐标。 ● 同高情况下,面积比=底边之比 2.已知:如图,直线y=﹣x +3与x 轴、y 轴分别交于B 、C ,抛物线y=﹣x 2+bx +c 经过点B 、C ,点A 是 B 图1

二次函数动点面积最值问题

二次函数最大面积 例1如图所示,等边△ ABC中,BC=10cm,点R, P?分别从B,A同时岀发,以1cm/s的速度沿线段BA,AC 移动,当移动时间 练习 1如图,在矩形ABCD中,AB=6cm , BC=12cm,点P从点A岀发沿AB边向点B以1cm/s的速度移动,同时点Q从点B岀发沿BC边向C以2cm/s的速度移动,如果P,Q同时岀发,分别到达B、C两点就停止移动。 _ ___________________________________________ 2 (1 )设运动开始后第t秒,五边形APQCD的面积是Scm ,写岀S与t函数关系式,并指岀 t的取值范围。 (2) t为何值时,S最小?并求岀这个最小值。 A开始沿 Q B B边向点B以 A 2 如图,在△ ABC 中,/ B=9 0°, AB=22CM,BC=20CM ,点P 从点 2cm/S的速度移动,点Q从点B开始沿着BC边向点C以1cm/S的速度移动,P,Q分别从A,B 同时岀发。 2 求四边形APQC的面积y ( cm )与PQ移动时间x (s)的函数关系式, 以及自变 量x的取值范围。 C 3如图正方形ABCD的边长为4cm,点P是BC边上不与B,C重合的任意一点点P作PQ丄AP交DC于点Q,设BP的长为x cm,CQ的长为y cm。 (1)求点P在BC上的运动的过程中y的最大值。 1 (2 )当y= cm时,求x的值。 4 4如图所示,边长为 在线段 记CD (1) 过A D P B B 1的正方形OABC的顶点O为坐标原点,点A在x轴的正半轴上,动点点E, 连接O BC上移动(不与B,C重合),连接OD,过点D作DE丄OD, 的长为 t o 1 当t=丄时,求线段DE 3 如果梯形CDEB的面积为所在直线的函数表达式 S,那么S是否 以及此时 (2) 存在最大值?若存在,请求出最大值,t的值; 若不存在,请说明理由。 2 2 (3)当OD DE的算术平方根取最小值时, (4)求点E的坐标。 二次函数最大面积交AB D B E 能力提高 例题如图所示,在梯形ABCD中,AD// BC,AB=AD=DC=2CM,BC=4C在等腰△ PQR中,/ QPR=120 ,底边QR=6CM点B,C,Q,R在同一直线 1cm/s的速度沿直线I向左匀速移动, (1) (2) t秒时梯形 I上,且C,Q两点重合,如果等腰△ PQR以 2 ABCD与等腰△ PQF重合部分的面积记为Scm 当t=4时,求S的值。 当4< t < 10时,求S与t的函数关系式, A 并求岀S的最大值。 D 1 / 2

二次函数教案设计(全)

课题:1.1二次函数 教学目标: 1、从实际情景中让学生经历探索分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法去描述变量之间的数量关系。 2、理解二次函数的概念,掌握二次函数的形式。 3、会建立简单的二次函数的模型,并能根据实际问题确定自变量的取值范围。 4、会用待定系数法求二次函数的解析式。 教学重点:二次函数的概念和解析式 教学难点:本节“合作学习”涉及的实际问题有的较为复杂,要求学生有较强的概括能力。 教学设计: 一、创设情境,导入新课 问题1、现有一根12m 长的绳子,用它围成一个矩形,如何围法,才使举行的面积最大?小明同学认为当围成的矩形是正方形时 ,它的面积最大,他说的有道理吗? 问题2、很多同学都喜欢打篮球,你知道吗:投篮时,篮球运动的路线是什么曲线?怎样计算篮球达到最高点时的高度? 这些问题都可以通过学习俄二次函数的数学模型来解决,今天我们学习“二次函数”(板书课题) 二、 合作学习,探索新知 请用适当的函数解析式表示下列问题中情景中的两个变量y 与x 之间的关系: (1)面积y (cm 2)与圆的半径 x ( Cm ) (2)王先生存人银行2万元,先存一个一年定期,一年后银行将本息自动转存为又一个一年定期,设一年定期的年存款利率为文 x 两年后王先生共得本息y 元; (3)拟建中的一个温室的平面图如图,如果温室外围是一个矩形,周长为12Om , 室内通道的尺寸如图,设一条边长为 x (cm), 种植面积为 y (m2) (一)教师组织合作学习活动: 1、先个体探求,尝试写出y 与x 之间的函数解析式。 2、上述三个问题先易后难,在个体探求的基础上,小组进行合作交流,共同探讨。 (1)y =πx 2 (2)y = 2000(1+x)2 = 20000x 2+40000x+20000 (3) y = (60-x-4)(x-2)=-x 2+58x-112 (二)上述三个函数解析式具有哪些共同特征? 让学生充分发表意见,提出各自看法。 x

二次函数的应用——面积最大问题

《二次函数的应用——何时围得面积最大?》 说课稿 【教材分析】 二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实际问题,而最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,对于面积问题学生易于理解和接受,也为求解最大利润等问题奠定基础。目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关的应用问题。 【课时安排】 教材中二次函数的应用只设计了3个例题和一部分习题,无论是例题还是习题都没有归类,不利于学生系统地掌握解决问题的方法,我设计时把它分为面积最大、利润最大、运动中的二次函数、综合应用四课时,本节是第一课时。 【学情及学法分析】 对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,本节课正是为了弥补这一不足而设计的,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课

标中知识与技能呈螺旋式上升的规律。 【教学目标】 1.知识与技能:通过本节学习,巩固二次函数y=2ax bx c ++(a ≠0)的 图象与性质,理解顶点与最值的关系,会求解最值问题。 2. 过程与方法:通过观察图象,理解顶点的特殊性,会把实际问题中 的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的 能力,并体会一般与特殊的关系,了解数形结合思想、函数思想。 3.情感、态度与价值观:通过学生之间的讨论、交流和探索,建立合 作意识,提高探索能力,激发学习的兴趣和欲望,体会数学在生活中广泛 的应用价值。 教学重点: 利用二次函数y=2ax bx c ++(a ≠0)的图象与性质,求面积最值问题 教学难点: 正确构建数学模型 三、教学方法与手段的选择 由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本 节课以“启发探究式”为主线开展教学活动,解决问题以学生动手动脑探 究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性, 突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。 为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。 四、教学流程 (一)复习引入: 复习引入阶段我设计了三个问题:

二次函数的存在性问题(面积问题)

二次函数的存在性问题(面积问题) [08湖北荆州]已知:如图,R t △AOB 的两直角边OA 、OB 分别在x 轴的正半轴和y 轴的负 半轴上,C 为OA 上一点且OC =OB ,抛物线y=(x -2)(x -m )-(p-2)(p-m)(m 、p 为常数且m+2≥2p>0)经过A 、C 两点. (1)用m 、p 分别表示OA 、OC 的长; (2)当m 、p 满足什么关系时,△AOB 12220.(1)0 2)()(2)()0 )(2)0,222020 2,1(2),2 11 (2) 2211 (2)22 1 (2) 1 2(2)1 2 2()2 AOB AOB AO y x x m p p m x p x m p x p x m p m p m p p OA m p OC P OC OB S OA OB S OA OB P m p P m P m p m S =-----=---+=∴==+-+>>∴+->>∴=+-===∴==+-=-+++∴=-=+?-令得:(整理得:(当时,. B 最大 [08湖北荆州]如图,等腰直角三角形纸片AB C 中,AC =BC =4,∠ACB =90o,直角边AC 在x 轴上,B 点在第二象限,A (1,0),AB 交y 轴于E ,将纸片过E 点折叠使BE 与EA 所在直线重合,得到折痕EF (F 在x 轴上),再展开还原沿EF 剪开得到四边形BCFE ,然后把四边形BCFE 从E 点开始沿射线EA 平移,至B 点到达A 点停止.设平移时间为t (s ),移动速度为每秒1个单位长度,平移中四边形BCFE 与△AEF 重叠的面积为S. (1)求折痕EF 的长; (2)是否存在某一时刻t 使平移中直角顶点C 经过抛物线243y x x =++的顶点?若存在, 求出t 值;若不存在,请说明理由; (3)直接写出....S 与t 的函数关系式及自变量t 25.145101ABC BE EA FE EA Rt AC BC CAB EF EA A OA OE AE EF ∴⊥=∴∠=?∴=∴===∴=()折叠后与所在直线重合又中(,) ,折痕 ∥BA 交Y 轴于P , 2()存在.设CP 413 POC C CP AC OA OC OP ==∴==则为等腰直角三角形,直角顶点在射线上移动 ,

二次函数求最大利润问题的教学设计

二次函数求最大利润问题的教学设计 范亚书 一、学生知识状况分析 学生的知识技能基础:由简单的二次函数y=x2开始,然后是y=ax2,y =ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c,学生已经掌握了二次函数的三种表示方式和性质。 学生的活动经验基础:在前面对二次函数的研究中,学生研究了二次函数的图象和性质,掌握了研究二次函数常用的方法。 二、教学任务分析 “怎样获得最大利润”似乎是商家才应该考虑的问题,但是这个问题的数学模型正是我们研究的二次函数的范畴。二次函数化为顶点式后,很容易求出最大或最小值。而何时获得最大利润就是当自变量取何值时,函数值取最大值的问题。因此本节课中关键的问题就是如何使学生把实际问题转化为数学问题,从而把数学知识运用于实践。即是否能把实际问题表示为二次函数,是否能利用二次函数的知识解决实际问题,并对结果进行解释。具体地,本节课的教学目标是: (一)知识与技能

1、能根据实际问题建立二次函数关系式,并探求出何时刻,实际问题可取得理想值,增强学生解决实际问题的能力。 2、能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力。(二)过程与方法 经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力。 (三)情感态度与价值观 1、体会数学与人类社会的密切联系,了解数学的价值。增进对数学的理解和学好数学的信心。 2、认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用。 教学重点:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值 教学难点:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最值 三、教学过程分析

二次函数与实际问题(面积最值问题)教学设计解读

[教学设计 ] 二次数学的实际运用 ——图形面积的最值问题 【知识与技能】 :通过复习让学生系统性地掌握并认识如何用函数的思想解决几何问题中面积最值问题, 培养其整体性思想。 【过程与方法】 :能通过设置的三个问题, 概括出二次函数解决这类问题的基本思路和基本方法, 并学会用数学问题的结论,分析是否是实际问题的解,掌握类比的数学思想方法。 【情感态度与价值观】 :体会函数建模思想的同时, 体会数学与现实生活的紧密联系, 培养学生认真观察, 不断反思,主动纠错的能力和乐于思考,认真严谨、细心的好习惯。感受多媒体的直观性和愉悦感。 【重点】 :如何利用二次函数的性质解决实际问题——图形面积的最值问题 【难点】 :如何探究在自变量取值范围内求出实际问题的解 【教学过程】 【活动 1】 :导入引言: 二次函数在实际问题中的应用常见类型有抛物线形问题和最值问题。而最值问题考试类型有两类 (1利润最大问题; (2几何图形中的最值问题:面积的最值,用料的最佳方案等,本节课,我们学习如何用二次函数解决实际问题中图形面积的最值问题。 【活动 2】 :师生互动,合作学习 我们来看一道简单的例题

例 1:李大爷要借助院墙围成一个矩形菜园 ABCD ,用篱笆围成的另外三边总长为 24米,则矩形的长宽分别为多少时,围成的矩形面积最大? 师(让学生思考 :题目中已知量是什么? 未知量是什么?如何理解“矩形面积最大”问题?是什么影响了矩形面积的变化呢?我们一起来看下面的动画演示(通过动画演示,让学生感受量的变化 师:在演示中你们看到了什么?想到了什么?你能列出函数解析式吗? 学生解决:若设矩形一边长为 X ,当 X 在变长时,另一边变短,当 X 变短时,另一边变长,则面积 S 也随之发生了变化;设宽 AB 为 X 米,则长为 24-2X (m 所以面积 S=X(24-2X=-2X2+24X=-2(X-122 +288 师:分析归纳解函数问题的一般步骤是什么? (板书 : 第一步,正确理解题意 , 分析问题中的常量和重量; 第二步,巧设未知数,用未知数表示已知量和未知量,列二次函数解析式表示它们的关系; 第三步,计算,将一般式转化为顶点式,求出数学问题的最值。 师:请问这时解出的数学问题的解是不是实际问题的解,如何检验呢?(在师生共同研讨的过程中找出计算中学生容易犯的错误,分析解答是否符合实际问题 小结:求解完答案后,我们要善于检查,分析,反思数学问题的解是否是实际问题的解。 活动 3:变式训练,巩固应用。

二次函数的最大面积问题

初四数学二次函数中的最大面积专题练习题 1.如图,在直角坐标系中有一直角三角形AOB ,O 为坐标原点,OA=1,tan ∠BAO=3,将此三角形绕原点O 逆时针旋转90°,得到△DOC .抛物线y=ax 2+bx+c 经过点A 、B 、 C . (1)求抛物线的解析式. (2)若点P 是第二象限内抛物线上的动点,其横坐标为t . ①设抛物线对称轴l 与x 轴交于一点E ,连接PE ,交CD 于F ,求出当△CEF 与△COD 相似时点P 的坐标. ②是否存在一点P ,使△PCD 的面积最大?若存在,求出△PCD 面积的最大值;若不存在,请说明理由. 2.如图,已知抛物线c x ax y +- =2 32与x 轴相交于A ,B 两点,并与直线221-=x y 交于B ,C 两点,其中点C 是直线221-=x y 与y 轴的交点,连接AC . (1)求抛物线的解析式; (2)证明:△ABC 为直角三角形; (3)△ABC 内部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由. 3.某基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长54米的不锈钢栅栏围成,与墙平行的一边留一个宽为2米的出入口,如图所示,如何设计才能使园地的而积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:

(1)设AB=x 米(x >0),试用含x 的代数式表示BC 的长; (2)请你判断谁的说法正确,为什么? 4.如图,已知抛物线c bx ax y ++=2 过点A (6,0),B (-2,0),C (0,-3). (1)求此抛物线的解析式; (2)若点H 是该抛物线第四象限的任意一点,求四边形OCHA 的最大面积; (3)若点Q 在y 轴上,点G 为该抛物线的顶点,且∠QGA=45o,求点Q 的坐标. 5.如图,抛物线y=-x 2-2x+3 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点. (1)求A 、B 、C 的坐标; (2)设点H 是第二象限内抛物线上的一点,且△HAB 的面积是6,求点H 的坐标; (3)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N .若点P 在点Q 左边,当矩形PQMN 的周长最大时,求△AEM 的面积. 6.如图,△ABC 中,∠C=90°,BC=7cm ,AC=5,点P 从B 点出发,沿BC 方向以2m/s 的速度移动,点Q 从C 出发,沿CA 方向以1m/s 的速度移动.

二次函数的最大面积问题

初四数学二次函数中的最大面积专题练习题 1.如图,在直角坐标系中有一直角三角形AOB ,O 为坐标原点,OA=1,tan ∠BAO=3,将 此三角形绕原点O 逆时针旋转90°,得到△DOC .抛物线y=ax 2+bx+c 经过点A 、B 、C . (1)求抛物线的解析式. (2)若点P 是第二象限抛物线上的动点,其横坐标为t . ①设抛物线对称轴l 与x 轴交于一点E ,连接PE ,交CD 于F ,求出当△CEF 与△COD 相似时点P 的坐标. ②是否存在一点P ,使△PCD 的面积最大?若存在,求出△PCD 面积的最大值;若不存在,请说明理由. 2.如图,已知抛物线c x ax y +- =2 32与x 轴相交于A ,B 两点,并与直线221-=x y 交于B ,C 两点,其中点C 是直线221-=x y 与y 轴的交点,连接AC . (1)求抛物线的解析式; (2)证明:△ABC 为直角三角形; (3)△ABC 部能否截出面积最大的矩形DEFG ?(顶点D 、E 、F 、G 在△ABC 各边上)若能,求出最大面积;若不能,请说明理由. 3.某基地计划新建一个矩形的生物园地,一边靠旧墙(墙足够长),另外三边用总长54米的不锈钢栅栏围成,与墙平行的一边留一个宽为2米的出入口,如图所示,如何设计才能使园地的而积最大?下面是两位学生争议的情境:请根据上面的信息,解决问题:

(1)设AB=x 米(x >0),试用含x 的代数式表示BC 的长; (2)请你判断谁的说确,为什么? 4.如图,已知抛物线c bx ax y ++=2 过点A (6,0),B (-2,0),C (0,-3). (1)求此抛物线的解析式; (2)若点H 是该抛物线第四象限的任意一点,求四边形OCHA 的最大面积; (3)若点Q 在y 轴上,点G 为该抛物线的顶点,且∠QGA=45o,求点Q 的坐标. 5.如图,抛物线y=-x 2 -2x+3 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点. (1)求A 、B 、C 的坐标; (2)设点H 是第二象限抛物线上的一点,且△HAB 的面积是6,求点H 的坐标; (3)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N .若点P 在点Q 左边,当矩形PQMN 的周长最大时,求△AEM 的面积. 6.如图,△ABC 中,∠C=90°,BC=7cm ,AC=5,点P 从B 点出发,沿BC 方向以2m/s 的速度移动,点Q 从C 出发,沿CA 方向以1m/s 的速度移动.

二次函数专题复习教案

初中数学二次函数复习专题 〖知识点〗二次函数、抛物线的顶点、对称轴和开口方向 〖大纲要求〗 1. 理解二次函数的概念; 2. 会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会 用描点法画二次函数的图象; 3. 会平移二次函数y =ax 2(a ≠0)的图象得到二次函数y =a(ax +m)2 +k 的图象,了解特 殊与一般相互联系和转化的思想; 4. 会用待定系数法求二次函数的解析式; 5. 利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x 轴的交点 坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。 内容 (1)二次函数及其图象 如果y=ax 2 +bx+c(a,b,c 是常数,a ≠0),那么,y 叫做x 的二次函数。 二次函数的图象是抛物线,可用描点法画出二次函数的图象。 (2)抛物线的顶点、对称轴和开口方向 抛物线y=ax 2 +bx+c(a ≠0)的顶点是)44,2(2a b ac a b --,对称轴是a b x 2-=,当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。 抛物线y=a (x+h )2+k(a ≠0)的顶点是(-h ,k ),对称轴是x=-h. 〖考查重点与常见题型〗 1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如: 已知以x 为自变量的二次函数y =(m -2)x 2+m 2 -m -2额图像经过原点, 则m 的值是 2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角 坐标系内考查两个函数的图像,试题类型为选择题,如: 如图,如果函数y =kx +b 的图像在第一、二、三象限内,那么函数 y =kx 2 +bx -1的图像大致是( ) 3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中 档解答题和选拔性的综合题,如: 已知一条抛物线经过(0,3),(4,6)两点,对称轴为x =5 3 ,求这条抛物线的解析式。 4. 考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题, 如:

二次函数及三角形周长,面积最值问题

二次函数与三角形周长,面积最值问题 知识点:1、二次函数线段,周长问题 2、二次函数线段和最小值线段差最大值问题 3、二次函数面积最大值问题 【新授课】 考点1:线段、周长问题 例1.(2018·)在平面直角坐标系中,已知抛物线的顶点坐标为(2,0),且经过点(4,1), 如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1. (1)求抛物线的解析式; (2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由. 拓展:在l上是否存在一点P,使PB-PA取得最大值?若存在,求出点P的坐标。

练习 1、如图,已知二次函数24 =-+的图象与坐标轴交于点A(-1,0)和点B(0,-5). y ax x c (1)求该二次函数的解析式;

(2)已知该函数图象的对称轴上存在一点P,使得△ABP的周长最小.请求出点P的坐标. 2、如图,抛物线y=ax2-5ax+4(a<0)经过△ABC的三个顶点,已知BC ∥x轴,点A在x轴上,点C在y轴上,且AC=BC. (1)求抛物线的解析式. (2)在抛物线的对称轴上是否存在点M,使|MA-MB|最大?若存在,求出点M的坐标;若不存在,请说明理由.

例2. (2018?莱芜)如图,抛物线y=ax2+bx+c经过A(﹣1,0),B(4,0),C (0,3)三点,D为直线BC上方抛物线上一动点,DE⊥BC于E. (1)求抛物线的函数表达式; (2)如图1,求线段DE长度的最大值; 练习 1x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,1、如图,抛物线y= 2

二次函数面积最大问题

二次函数面积最大问题 : 1、如图,已知抛物线y=x2+bx+c的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x 轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;(3)求三角形CBM的最大值 2、如图,对称轴为直线x=﹣1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(﹣3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点. ①若点P在抛物线上,且S △POC =4S △BOC .求点P的坐标; ②设点Q是抛物线上一点,位于线段AC的下方,作QD⊥x轴交抛物线于点D,交AC于点P,求线段QP长度的最大值.(3)求S△ACQ的最大值,

3、如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标. 4、如图,已知抛物线y=ax2+bx﹣2(a≠0)与x轴交于A、B两点,与y轴交于C点,直线BD交抛物线于点D,并且D(2,3),tan∠DBA=.(1)求抛物线的解析式;(2)已知点M 为抛物线上一动点,且在第三象限,顺次连接点B、M、C、A,求四边形BMCA面积的最大值;

5、如图,在直角坐标系中,点A的坐标为(﹣2,0),点B的坐标为(1,﹣),已知抛物线y=ax2+bx+c(a≠0)经过三点A、B、O(O为原点).(1)求抛物线的解析式;(2)在该抛物线的对称轴上,是否存在点C,使△BOC的周长最小?若存在,求出点C的坐标;若不存在,请说明理由;(3)如果点P是该抛物线上x轴上方的一个动点,那么△PAB是否有最大面积?若有,求出此时P点的坐标及△PAB的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号) 6、如图,已知抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点(E与A、D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.①求S与m的函数关系式;②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.

二次函数最值问题 优秀教学设计(教案)

二次函数最值重难点设计 尊敬的各位评委老师大家好: 本题出自人教版数学九年级上册第二十二章二次函数中的实际问题与二次函数习题第6题,我将从原题再现,数学地位,目标理念,分析指导,拓展延伸,教学反思这几个流程来完成说题。 首先我们来看下原题:..... 数学地位: 函数与几何综合题能有效的考查学生对学习数学知识的掌握和灵活运用的程度。在各地的中考数学试题中,有关函数与几何构成的综合题占据相当的比例,分值也很大;进入高中后,二次函数的应用更加广泛,更加灵活,更加突出了其重要性。这类题型设计优美,新颖独特,活不超纲,充分体现了考查能力和提高素质教育的思想和要求。 目标理念:主要是从考试大纲分析 本题重要考点是相似三角形的应用及二次函数的应用。直角三角形中30°的角所对的边等于斜边的一半及勾股定理是学生熟悉的,相对较易掌握,对于单独求二次函数的最值问题学生大部分也能掌握,有待提高的是知识点之间的联系和从几何问题中整理出二次函数的模型并利用二次函数的知识求最值,以上是学生现有的能力表现。通过这道题目的讲解,让学生能分析出题目要考查的知识点以及知识点之间的联系,掌握建模思想,并能将这种思想运用到新的题目当中,以实现解题目标。 分析指导:(两种方法) 方法一分析: 首先在Rt △ABC 中利用∠A =30°、AB =12,求得BC =6、AC 的长,然后根据四边形CDEF 是矩形得到EF ∥AC 从而得到△BEF ∽△BAC ,设AE =x ,则BE =12-x .利用相似三角形成比例表示出EF 、DE ,然后表示出有关x 的二次函数,然后求二次函数的最值即可. 解:在Rt △ABC 中,∠A =30°,AB =12, ∴BC =6,AC =AB ?cos30°=12× 23=63. ∵四边形CDEF 是矩形, ∴EF ∥AC . ∴△BEF ∽△BAC . ∴EF:AC =BE:BA . 设AE =x ,则BE =12-x . EF =2 3(12-x ) 在Rt △ADE 中,DE =21AE =2 1x . 矩形CDEF 的面积S =DE ?EF = 21x ?23(12?x)=?43x 2+33x (0<x <12). 当x =6时,S 有最大值. ∴点E 应选在AB 的中点处.

二次函数的最值几何应用教学案

二次函数的最值几何应用教学案 【教学目标】 1.理解二次函数c bx ax y ++=2的图象和性质在平面几何问题中的应用,特别是用来求几何图形面积的最大值或最小值. 2.理解二次函数在求解几何问题中的一般方法和步骤. 【重点、难点】 重点:二次函数c bx ax y ++=2的图象和性质在平面几何中的应用. 难点:如何将几何问题转化为二次函数的图象和性质问题. 【知识要点】 1.一次函数的最值:在函数的取值范围的两个端点,考察该函数的最值; 2.二次函数的最值:在函数的取值范围的两个端点考察该函数的最值; 3.函数的最大值与最小值 最大值: ()()()()()()(). 0max 0000x f y x f y x f x f x f x f x x f y ==≤=记作叫做函数都成立,那么不等式处的函数值是在设函数几何解释: (1) 函数图像的最高点,纵坐标最大的值 在将一条平行于横坐标的直线从y 坐标。 ()()()()()()().0in 0000x f y x f y x f x f x f x f x x f y m ==≥=记作的最小值, 叫做函数都成立,那么不等式处的函数值是在设函数 几何解释: (2) 函数图像的最高点,纵坐标最小的值 (3) 在将一条平行于横坐标的直线从y 轴的负向向正向平移的过程中,与函数的第一个交点的纵坐标。 【经典例题】 例1.求下列函数的最值(自变量范围是R). 132)1(2+-=x x y 32)2(2++-=x x y

例2.已知实数a,b 满足等式5)3(22=+-b a ,求 a b 的最大值和最小值。 例3.已知二次函数2 (1)2y x =-- (1)当23x ≤≤时,求函数的最值。 (2)当03x ≤≤时,求函数的最值。 例4.方程()()22160x m x m +-+-=有一根不大于1,另一根不小于1。 (1)求m 的取值范围 (2)求方程两根平方和的最大值与最小值

二次函数应用(最大面积问题)

一、教学过程 AB 和AD 分别在两直角边上,1、如图。在一个直角三角形的内部画一个矩形ABCD,其中 AN=40m, AM=30m (1)设矩形的一边AB= xm,那么 AD 边的长度如何表示? (2)设矩形的面积为ym2,当x 取何值时,y 的最大值是多少? (二)变式探究 【探究一】在上一个问题中,如果把矩形改成如图所示的位置,其顶点 A 和顶点 D 分别在两直角边上, BC 在斜边上,其他条件不变,那么矩形的最大面积是什么? 【探究二】如图,已知△ABC是一等腰三角形铁板余料,AB=AC=20cm, BC=24cm,若在 △ABC 上,截出一零件 DEFG,使得 EF在 BC上,点 D、G 分别在边 AB、AC上,问矩形 DEFG 的最大面积是多少?

(三)课下作业 1、如图,在一面靠墙的空地上用长为24 米的篱笆,围成中间隔有两道篱笆的长方形花圃, 设花圃的宽AB 为 x 米,面积S 平方米 (1)求 S 与 x 的函数关系式及自变量的取值范围; (2)当 x 取何值时所围成的花圃面积最大,最大值是多少? (3)若墙的最大利用长度为8 米,求此时围成花圃的最大面积和最小面积分别是多少? 2、如图, AD 是△ ABC的高, BC=60cm,AD=40cm,点 P,Q 是 BC边上的点,点 S 在 AB 边上,点 R 在 AC 边上,四边形 SPQR是矩形,求矩形 SPQR面积最大值 BC、 CD 上的两个动点,当M 点在BC 上运动时,3、正方形ABCD边长为 4, M 、N 分别是 保持 AM和MN垂直 (1)证明: RT△ ABM∽ RT△ MCN (2)设 BM=x,梯形 ABCN 的面积为y,求y与x之间的函数关系式:当 M 点运动到什么位 置时, (3)四边形ABCN 面积最大,并求出最大面积

九年级数学下册 实际问题中二次函数的最值问题教案

第2课时 实际问题中二次函数的最值问题 1.经历数学建模的基本过程,能分析实际问题中变量之间的二次函数关系. 2.会运用二次函数求实际问题中的最大值或最小值. 3.能应用二次函数的性质解决图形最大面积、利润最大问题. 一、情境导入 孙大爷要围成一个矩形花圃.花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米,矩形ABCD 的面积为S 平方米.当x 为何值时,S 有最大值?并求出最大值. 二、合作探究 探究点一:最大面积问题 【类型一】利用二次函数求最大面积 小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S (单位:平方米)随矩形一边长x (单位:米)的变化而变化. (1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当x 是多少时,矩形场地面积S 最大?最大面积是多少? 解析:利用矩形面积公式就可确定二次函数.(1)矩形一边长为x ,则另一边长为60-2x 2 ,从而表示出面积;(2)利用配方法求出顶点坐标. 解:(1)根据题意,得S =60-2x 2 ·x =-x 2+30x .自变量x 的取值范围是0<x <30. (2)S =-x 2+30x =-(x -15)2 +225,∵a =-1<0,∴S 有最大值,即当x =15(米)时,S 最大值=225平方米. 方法总结:二次函数与日常生活的例子还有很多,体现了二次函数这一数学模型应用的广泛性.解决这类问题关键是在不同背景下学会从所给信息中提取有效信息,建立实际问题中变量间的二次函数关系. 【类型二】最大面积方案设计 施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM 为12米.现以O 点为原点,OM 所在直线为x 轴建立直角坐标系(如图所示). (1)直接写出点M 及抛物线顶点P 的坐标; (2)求出这条抛物线的函数关系式; (3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB ,使A 、D 点在抛物线上,B 、C 点在地面OM 上.为了筹备材料,需求出“脚手架”三根木杆AB 、AD 、DC 的长度之和的最大值是多少,请你帮施工队计算一下.

二次函数的应用_——最大面积问题教学设计

《二次函数的应用——面积最大问题》教学设计 二次函数的应用——面积最大问题。所用教材是教育材九年级上册第三章第六节二次函 数的应用,本节共需四课时,面积最大是第一节。 下面我将从教材容的分析、教学目标、重点、难点的确定、教学方法的选择、教学过程 的设计和教学效果预测几方面对本节课进行说明。 一、教学容的分析 1、地位与作用: 二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际 问题能力的一个综合考查。新课标中要求学生能通过对实际问题的情境的分析确定二次函数 的表达式,体会其意义,能根据图象的性质解决简单的实际问题,而最值问题又是生活中利 用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感 兴趣,对于面积问题学生易于理解和接受,故而在这儿作专题讲座,为求解最大利润等问题 奠定基础。目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和 函数有关的应用问题。此部分容是学习一次函数及其应用后的巩固与延伸,又为高中乃至以 后学习更多函数打下坚实的理论和思想方法基础。 2、课时安排 教材中二次函数的应用只设计了3个例题和一部分习题,无论是例题还是习题都没有 归类,不利于学生系统地掌握解决问题的方法,我设计时把它分为面积最大、利润最大、运 动中的二次函数、综合应用四课时,本节是第一课时。 3.学情及学法分析 学生由简单的二次函数y =x 2学习开始,然后是y =ax2,y =ax 2+c ,最后是y=a(x-h)2, y =a(x-h)2+k ,y =ax 2+bx+c ,学生已经掌握了二次函数的三种表示方式和图像的性质。 对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值, 但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,本节课正是为了弥补这 一不足而设计的,目的是进一步培养学生利用所学知识构建数学模型,解决实际问题的能力, 这也符合新课标中知识与技能呈螺旋式上升的规律。 二、教学目标、重点、难点的确定 教学目标: 1、知识与技能:通过本节学习,巩固二次函数y=2ax bx c ++(a ≠0)的图象与性 质,理解顶点与最值的关系,会求解最值问题。 2.过程与方法:经历“实际问题转化成数学问题——利用二次函数知识解决问题— —利用求解的结果解释问题”的过程体会数学建模的思想,体会到数学来源于生活,又服务 于 生活。 3.情感态度、价值观:培养学生的独立思考的能力和合作学习的精神,在动手、交流过 程中培养学生的交际能力和语言表达能力,促进学生综合素质的养成。 教学重点:利用二次函数y=2ax bx c ++(a ≠0)的图象与性质,求面积最值问题 教学难点:1、正确构建数学模型 2、对函数图象顶点、端点与最值关系的理解与应用 三、教学方法与手段的选择 由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究 式”为主线开展教学活动,解决问题以学生动手动脑探究为主,必要时加以小组合作讨论, 充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使

相关主题
文本预览
相关文档 最新文档