当前位置:文档之家› 我国光学加工技术的发展历史

我国光学加工技术的发展历史

我国光学加工技术的发展历史
我国光学加工技术的发展历史

我国光学加工技术的发展历史

发布日期:2008-03-05 我也要投稿!作者:网络阅读:[ 字体选择:大中

小 ]

我国光学仪器的加工技术,虽然有较长历史但形成批量生产并具有完整的工艺是在新中国成立后。光学冷加工工艺在解放前虽然已有所采用,但缺乏完整性。解放后经过光学行业各方面人士及职工的努力,方逐步形成了较完善的加工方法。

五十年代初期,光学行业的设备陈旧,工艺落后。进入第一个五年计划后,加工工艺主要是采用“苏联”的工艺,设备也是由苏联引的和按“苏联”图纸制造的专用设备,二十世纪六十年代初期,国内个别厂家由德国引进了先进设备(如铣磨机和光学对中心磨边机),受到这些设备的启示,国内在六十年代中期开始工艺科研和研制新设备。首先进行的是研究粗磨机机械化和设计粗磨机,由于设备和工艺的改进,加工效率有很大的提高,但是后来受政治形势的影响,光学工艺的革新受到冲击,刚见成效的工艺革新,就此停止。

二十世纪七十年代中期,对光学冷加工技术改造和技术革新提出了“四化”目标,即毛坯型料化、粗磨机械化、精磨高速化、定心磨边自动化。经过努力,这些目标全部在二十世纪八十年代初基本实现了。

光学工业实现了光学冷加工“四化”,为军转民生产光学仪器奠定了有力基础。二十世纪八十年代针对当时民用光学仪器生产,又提出了光学零件制造的新四化,即抛光高速化,清洗超声化,辅助工序机械化和辅料商品化。“新四化”,虽然受到了管理体制改变的影响,在研制设备和进行工艺科研的时间和深度不够理想,但全部实现了。二十世纪八十年代重点是对光学加工机理和工艺因素的研究和探讨,通过科研人员和课题组的努力,均取得了理想的科研成果。在光学零件的定摆磨削和光学零件加工中不同牌号玻璃与不同结合剂的丸片之间的合理匹配都在光学加工方面有了突破,引起光学界的重视。这些科研的成果对光学加工工业起了重要作用,为了我们进一步提高光学加工的科研水平,奠定了雄厚的基础,为新的创新开辟了道路。

二十世纪八十年代是我们光学技术和工艺科研硕果累累的时期。不但在光学加工的基础理论方面,而在加工设备,加工工艺,加工模具,以及辅料等方面都取得了可喜成果。如光学加工机理,光学零件加工工艺因素,光敏胶,PH值稳定剂,光学导电膜,易腐蚀玻璃保护膜;PJM-320平面精磨机,QJM220球面精磨机,QJP-100与QJP-40光学中球面与小球面精磨抛光机;光学零件复制法;光学零件超声清洗代替清擦,光学零件真空吹塑包装以及自聚焦透镜制造等等,真是不胜枚举。这些科研成果,不但通过了部级鉴定,而且均获得子部级奖励或国家发明将。进入九十年代后,在中国光学行业有了更大的进展,这是由于光学产品出口,光学工艺也随着有了更大的改变和进展。我们采用了几十年的成盘加工工艺受到了冲击,而单件光学加工在光学批量生产中占据了统治地位。

本世纪初,我国光学制造业已取得了辉煌的成果,进入了发展的高峰,已形成了很强的生产能力。据有数字统计的资料,我国光学制造能力已超过了五亿件/年,当然这不包括,一些小型民办企业的生产能力。在亚洲也好,在世界上也好,中国光学冷加工的能力应当是名列前茅的,但我们的技术水平却是比较落后。主要是表现在不能大批量生产高精度元器件,大部分企业不能长期稳定生产,不能制造高精度的特种光学零件。造成此种现象的原因:a.执行工艺规程不够b.没有专门工艺研究和工艺设备的研究开发单位c.没有行业法规d.没有软件贸易企业,没有“光学工程”的承包单位。

光学加工设备和光学工艺的发展是分不开的。孔夫子说过“工欲善其事,必先利其器”。

这说明设备在工艺技术发展中的重要性。我国光学加工设备和国际上光学设备的发展过程是一致的,即脚踏、机动、电动。基本是两大系列,一是德国系列、二是日本系列。解放前主要是德国设备为主,即从1936年云光厂成立,从国外引进的德国设备如:单轴粗磨机、二轴精磨抛光机、四轴精磨抛光机、五轴精磨抛光机等。二是伪满的大陆科学院为维修使用的光学仪器从日本购进的设备。解放后156项中的西光厂又从苏联购进了光学加工设备、它的原型机亦是德国设备、如ЩМ-500和ЩnМ-350型单轴粗磨机、ЩnМ-350三轴精磨抛光机、ЩnМ-200中型六轴精磨抛光机、和ЩnМ-60小型六轴抛光机以及Ц-2型定心磨边机等。在上世纪六十年代末期、由长春专用设备厂研制出了GM0.8铣磨机、南仪厂又在七十年代初期研制出GP-5型高抛机(后改成Q835型)。铣磨代替了粗磨、高抛代替了古典抛光。这是光学制造史上具有重要意义的年代。此后研制出了PJM-320。在平面加工方面实现高速化起了决定性的作用。

从光学加工技术发展来看,我国光学加工技术主要分为两大分支。一支就是原五十三工厂承袭德国人的加工技术,基本上就是散粒磨料加工,古典式抛光,而另一分支是新中国成立以后,为配合156项援建项目而引进的苏联的加工技术。它主要包含有散粒磨料粗磨,古典式和准球心抛光,弹性胶盘,柏油抛光模和自准定心磨边。

由古典方法转向机械化粗磨(铣磨)、准球心抛光,是光学制造业的一次重大的变革。

对光学加工改革起着推动作用的是兵器工业“739”会议。上世纪七十年中期是我国光学制造技术大变革的时期。八十年代光学制造技术最大变革由成盘加工转向单件加工。

单件加工很早就在日本采用,1983年“北总”是从日本引进PenTaxK1000相机开始引进这种技术和设备的。而部分技术人员和工人早在这以前从事劳务出口时,在日本已经接确此项工艺,但由于我们在八十年代初期,虽然引进了设备,而在工艺结构上还不完善,没有相应配套的工装和辅料,所以采用上述设备后,生产效率并不高。加之当时,生产批量不大,没能引起人们的注意和足够的认识。但是一些专家看到了此种工艺的特点,它很适合中国国情。因此北总在1983年于江西召开的工艺研讨会上把它列入了三条高效生产线之内。这三条生产线即:平面高效生产线(228厂承担)、球面单件生产线(308和598厂承担),刚性上盘球面零件高效生产线(248和原5208厂承担)。

北总在江西开会的同时,机械部决定由沈工所(沈阳仪器仪表工艺研究所)牵头,江西光学仪器总厂,南京电影机厂等单位参加研究建立一条刚性上盘最佳参数高效生产线。由于技改投资强度大,研制单位多力量雄厚,所以很快研制成功,经专家门鉴定认为是国内第一条光学零件高效生产线,在国内具有领先地位。这样,一时在全国光学行业兴起一股光学零件刚性上盘进行加工的热流。国内不少厂订购了这种设备(每条生产线含三台Q826铣磨机和四台Q875精磨抛光机)。此生产线可以完成粗磨、精磨、超精磨和抛光等光学加工任务。事情总有它的两面性,最佳参数生产线具有高效,精度较高,流水作业等优点,但同时又有一定的缺点,如个别零件(中心特别薄的负透镜等)不能加工,模具制造难度大以及相应配套的辅料需要进口或配套供应等。这样使这股刚性上盘热很快冷下来,取而代之的是单件加工的高效生产技术。这是由于大批量生产引起的,首先“云华”合资厂为进行大批量生产望远镜而引进成套加工设备和加工工艺。由于它的高效和操作方式很适合中国国情,加之是按工艺结构全面引进(即按产品加工要求成套引进设备、技术及辅料),所以很快就得到了国人的认可,为了使这一工艺和设备早日实现国产化,二九八厂、南仪厂、光辉厂都投入了一定的力量进行研制。于1990年研制出了国产四轴单件精磨机。继之,二九八厂亦研制出了精磨机、抛光机、磨边机等设备。北总科技局很重视单件加工技术的国产化,在研制经费上给予了支持,使得单件加工在我国很快的推广起来。现在单件加工设备已经有了一个较完善

的系列。相应的辅料也有部分能够生产。

单件加工在大批量生产中,目前在中国的光学行业起着重要作用。但在上个世纪末和本世纪初世界光学仪器行业发展很迅速,同时光电仪器在更多的领域得到应用。在光学加工方面除了对批量有较大的要求外,更重要的是要提高加工精度,扩大加工范畴。因而国内光学工艺方面的专家对非球面加工,自聚焦透镜制造,导波器件制造进行了研究和探讨,而且取得了初步成果。经过几十年的努力,我国光学行业建立了自己的光学加工工艺,研制出一系列的光学加工设备。有些设备已成为国内名牌产品,有的已出口援外或外贸出口。这些设备有Q826、Q875、Q835A、QM-80、YG367、YG368、QA8510等名牌设备,最近我们又研制出了环抛机床和下摆机床。

光学加工技术的发展是随着光学仪器的发展而发展,同时各相关专业的发展也对其起着重要的影响。新的加工技术,新的加工设备都需各专业配合特别是数控技术的配合方能研制成功,我们相信在本世纪初会有更多新的光学加工技术和加工设备出现。

国内外机械制造技术的发展现状及趋势

国内外机械制造技术的发展现状及趋势 学院:材料学院姓名:*** 学号:00000000 摘要:机械制造业已经熔入电子学、信息科学、材料学、生物学、管理科学等最新科学成就,现代制造技术的发展趋势有三个方面:高精度、高效自动化和特种加工。 关键词:现代机械制造技术 现代制造技术是以传统制造技术与计算机技术、信息技术、自动控制技术等现代高新技术交叉融合的结果,是一个集机械,电子、信息、材料、能源与管理技术于一体的新型交叉学科,它使制造技术的内涵和水平发生了质的变化。因此,凡是那些能够融合当代科技进步的最新成果,最能发挥人和设备的潜力,最能体现现代制造水平并取得理想技术经济效果的制造技术均称为现代制造技术,它给传统的机械制造业带来了勃勃生机。 一国外现代机械制造技术的现状 在产品设计方面,普遍采用计算机辅助产品设计(CAD)、计算机辅助工程分析(CAE)和计算机仿真技术;在加工技术方面,巳实现了底层(车间层)的自动化,包括广泛地采用加工中心(或数控技术)、自动引导小车(AGV)等.近10余年来,发达国家主要从具有全新制造理念的制造系统自动化方面寻找出路,提出了一系列新的制造系统。如计算机集成制造系统、智能制造系统、并行工程、敏捷制造等。 1.1 计算机集成制造系统(CIMS) 它是在自动化技术、信息技术和制造技术的基础上,通过计算机及其软件,将制造厂全部生产活动所需的各种分散的自动化系统有机地集成起来,是适合于多品种、中小批量生产的总体高效率、高柔性的制造系统。首先在功能上,它包含了一个工厂的全部生产经营活动,即从市场预测、产品设计、加工工艺、制造、管理至售后服务以及报废处理的全部活动.因此它比传统的工厂自动化的范围要大得多,是一个复杂的大系统,是工厂自动化的发展方向。其次,在集成上,它涉及的自动化不是工厂各个环节自动化的简单叠加,而是在计算机网络和分布式数据库支持下的有机集成。这种集成主要体现在以信息和功能为特征的技术集成,即信息集成和功能集成。计算机集成制造系统的核心技术是CAD/cAM技术。 1.2 智能制造系统(IMS) 是指将专家系统、模糊逻辑、人工神经网络等人工智能技术应用到制造系统中,以解决复杂的决策问题,提高制造系统的水平和实用性。人工智能的作用是要代替熟练工人的技艺,学习工程技术人员的实践经验和知识,并用于解决生产中的实际问题,从而将工人、工程技术人员多年来积累起来的丰富而又宝贵的实践经验保存下来,在实际的生产中长期发挥作用。智能制造系统的核心技术是人工智能。

光学显微镜的发展历程

光学显微镜的发展历程 光学显微镜(简称显微镜),顾名思义是一种通过光学放大成像,显示物体微观结构的一种光学仪器,它由一个或多个透镜通过组合构成。显微镜成像是一种光的艺术,在配合各种不同的光源时,可形成各自不同类型的影像,演变形成了各种类型的显微镜。 1.单目生物显微镜(光学显微镜发展的初期阶段1.0) 显微镜发展初期,光学技术不发达,当时制成的显微镜为单光路直筒设计,只能使用一只目镜进行观察,因此常被称作单目显微镜。单目显微镜受当时的电子、机械、信息等技术的局限,通常具有以下几种特点:①采用反光镜反射自然光提供照明;②粗、细准焦螺旋采用分离式手轮;③载物台为单层结构,且不可移动。 早期影像技术还未起步,使得显微镜下的微观世界只能即时观察,若想把看到的微观世界呈现出来,与他人进行沟通交流,就需通过笔、纸把观察到的影像,以临摹的方式画出来,因此生物绘画就成了当时生物学工作者的一项必备技能。生物绘画要求观察者左眼进行观察,右眼辅助绘画,难度较高,绘画结果精度较低,且容易受到人为主观因素的影响而失真。 综上所述,在当时使用显微镜观察被认为是一项十分复杂的科学实验操作过程,操作人员需进行训练才能熟练使用显微镜,并获得较理想的结果。尽管如此,显微镜的出现,大幅拓宽了人类的观察范围,也使得微生物学、医学等学科取得了前所未有的进步。 2.双目生物显微镜(显微镜发展的第二阶段2.0)

由于使用单目生物显微镜时需将一只眼对准目镜,长时间观察极易疲劳。电灯的出现使得显微镜的照明得到大幅度改善,特别是光源的亮度充足且亮度还可不断提高,从而促使人们能够利用分光棱镜将物镜传上来的光信号一分为二,便于使用者通过两只眼睛进行观察,这样便大幅减轻眼睛负担,提高使用的舒适度,因此这种显微镜也被称作双目生物显微镜(图1-2)。双目生物显微镜除了具备双目观察筒外,得益于当时光学、电子技术、机械技术的发展,使得显微镜整体上有了较大的改进。 显微镜发展至这一阶段,是光学技术的快速发展时期,尤其是可控的电灯取代自然光使得显微镜的使用不再受自然环境以及地理位置的影响。另外由于电灯的多样化,以及各种滤光镜的运用,光学技术的进步,促使荧光显微镜、金相显微镜、偏光显微镜,倒置显微镜等多种类型显微镜得以面世。 3.三目生物显微镜(显微镜发展的第三阶段3.0) 光学成像效果取得重大进展之后,人们将显微镜改善的重点放在了显微图像的获取技术上。人们在双目光路信号进行再次分光,形成三目观察筒,然后将摄像采集器安装于三目观察筒上以获得显微图像。此后显微影像逐渐成为人们记录原始信息的重要手段。相比之前提及的显微绘画,这种获取显微画面的方式更精准、更高效,更先进。 4.数码液晶显微镜(显微镜发展的第四阶段4.0) 数码显微镜凭其能够实时显示及图像处理等优点,获得了广泛的应用,显微观察不再拘泥于传统双目观察筒。上一代显微镜要获得显

激光加工技术存在的问题及未来发展展望

激光加工技术存在的问题及未来发展展望一、国外激光加工技术及发展动态 以德国、美国、日本、俄罗斯为代表的少数发达国家,目前主导和控制着全球激光技术和产业的发展方向。 其中,德国Trumpf、Rofin-Sinar公司在高功率工业激光器上称雄天下;美国IPG公司的光纤激光器引领世界激光产业发展方向。欧美主要国家在大型制造产业,如机械、汽车、航空、造船、电子等行业中,基本完成了用激光加工工艺对传统工艺的更新换代,进入“光加工”时代。 经过几十年的发展,激光技术开辟了广阔的应用天地,应用领域涵盖通信、材料加工、准分子光刻及数据存储等9个主要类别。根据国外统计资料表明,2013年全世界总的激光销售超过1000亿元。其中全球激光器市场销售额较2013年增长6.0%,达到93.34亿美元。美国市场借助出口方面的出色表现有所增长;欧洲凭借德国的出口增长仅维持收支平衡;亚洲市场,东盟国家的增长抵消了中国的经济放缓以及日本的零增长。 二、国内激光产业发展现状 1.国内激光产业整体格局 国内激光企业主要分布在湖北、北京、江苏、上海及深圳等地,已基本形成以上述省市为主体的华中、环渤海、长三角、珠三角四大激光产业基地,其中有一定规模的企业约300家。 2014年我国激光产业链产值约为800亿元。主要包括:激光加工装备产业达到350亿元(其中,用于切割、打标和焊接的高功率激光设备占据了67%的市场份额);激光加工在重工业、电子工业、轻工业、军用、医疗等行业的应用达到450亿元。预计在今后三年,我国激光产业平均行业复合成长率将不低于20%。 我国激光加工产业可以分为四个比较大产业带,珠江三角洲、长江三角洲、华中地区和环渤海地区。这四个产业带侧重点不同,珠三角以中小功率激光加工机为主,长三角以大功率激光切割焊接设备为主,环渤海以大功率激光熔覆和全固态激光为主,以武汉为首的华中地区则覆盖了大、中、小激光加工设备。这四

先进材料成型技术及理论

华中科技大学博士研究生入学考试 《先进材料成形技术与理论》考试大纲 一、《先进材料成形技术及理论》课程概述 编号:MB11001 学时数:40 学分:2.5 教学方式:讲课30、研讨6、实验参观4 二、教学目的与要求: 材料的种类繁多,其加工方法各异,近年来随同科学技术的发展,新材料、材料加工新技术不断出现。本课程将概述材料的分类及其加工方法的选择;重点介绍液态金属精密成形、金属材料塑性精确成形及金属连接成形等研究与应用领域的新技术、新理论;阐述材料加工中的共性与一体化技术。本课程作为材料加工工程专业的学位课,将使研究生对材料加工的新技术与新理论有个全面的了解,引导研究生在大材料学科领域进行思考与分析,为从事材料加工工程技术的研究与发展奠定基础。 三、课程内容: 第一章材料的分类及其加工方法概述 1.1材料的分类及加工方法概述 1.2材料加工方法的选择(不同材料)及不同加工方法的精度比较(同一种材料) 1.3材料加工中的共性(与一体化)技术 1.4材料加工技术的发展趋势 第二章液态金属精密成形理论及应用 2.1 材料液态成形的范畴及概述 2.2 消失模精密铸造原理及应用(原理、关键技术、应用实例、缺陷与防治) 2.3 Corsworth Process新技术(精密砂型铸造:锆英(砂)树脂砂型、电磁浇注、热法旧砂再生) 2.4 半固态铸造成形原理与技术(流变铸造、触变成形、注射成形) 2.5 铝、镁合金的精确成形技术(金属型铸造、压铸、反重力精密铸造、精密熔模铸造等) 2.6 特殊凝固技术(快速凝固、定向凝固、振动凝固) 2.7 金属零件的数字化铸造(铸件三维造型、工艺模拟及优化、样品铸件快速铸造、工业化生产及 其设计) 2.8 高密度粘土砂紧实机理及其成形技术(高压造型、气冲造型、静压造型) 第三章金属材料塑性精密成形工艺及理论 3.1 金属塑性成形种类与概述 3.2金属材料的超塑性及超塑成形(概念、条件、成形工艺) 3.3 复杂零件精密模锻及复杂管件的精密成形(精密模锻、复杂管件成形) 3.4 板料精密成形(精密冲裁、液压胀形、其它板料精密成型) 3.5 板料数字化成形(点(锤)渐进成形、线渐进(快速)成形、无模(面、液压缸作顶模)成形)

光学显微镜的发展历史

光学显微镜的发展历史、现状与趋势 杨拓拓 (苏州大学现代光学技术研究所,江苏苏州215000) 1基本原理 显微镜成像原理及视角放大率 显微镜由物镜和目镜组成。物体AB 在物镜前焦面稍前处,经物镜成放大、倒立的实像A'B',它位于目镜前焦面或稍后处,经目镜成放大的虚像,该像位于无穷远或明视距离处。 图1-1显微镜系统光路图 牛顿放大率公式: f f x x ''= 'x 是像点到像方焦点的距离,x 是物点到物方焦点的距离。 根据牛顿放大率公式可得物镜的垂轴放大率为 '1'1'11--f f x ?== β 目镜的视觉放大率为: '22250 f =Γ 组合系统的放大率为 '1f

'2'121250f f ? -=Γ=Γβ 显微镜系统的像方焦距 ?-=/'2'1'f f f '250 f = Γ 显微镜系统成倒像轴向放大率 '2'1'2'1/f f x x =β 若物点A 沿光轴移动很小的距离,则通过显微镜系统的像点'2A 将移动很大的距离,且移动 方向相同。 显微系统的角放大率 '2'1'2'1/x x f f =γ 即入射于物镜为大孔径光束,而由目镜射出为小孔径光束。 显微镜的孔径光阑 单组低倍显微物镜,镜框是孔径光阑。 复杂物镜一般以最后一组透镜的镜框作为孔径光阑。 对于测量显微镜,孔阑在物镜的象方焦面上,构成物方远心光路。 显微镜的视场光阑和视场 在显微物镜的象平面上设置了视场光阑来限制视场。由于显微物镜的视场很小,而且要求象面上有均匀的照度,故不设渐晕光阑。 显微镜是小视场大孔径成像,为获得大孔径并保证轴上点成像质量,显微镜线视场不超过物镜的1/20,线视场要求: 1'120202β?=≤f y

浅谈激光加工技术的发展及应用

浅谈激光加工技术的发展及应用 浅谈激光加工技术的发展及应用 【摘要】因为激光的加工技术的优点是生产的效率极高、加工的质量极好、适用的范围很广等,所以越来愈多的人希望在很多的领域中使用激光加工技术。本文介绍其相关的理论,重点论述其发展和应用。 【关键词】激光加工技术相关理论发展应用 一、前言 近年来重大的发明之一是激光技术。随着社会经济的快速发展,把激光器当成基础的激光加工的技术得到了快速发展。目前其正在被广泛应用在生产、通讯、医疗、军事及科研等多种领域。并且在这些领域都取得了非常好的经济与社会的效益,是我国未来经济的发展的关键。 二、激光加工技术相关理论 笔者认为,了解与应用激光加工技术需要对其相关理论深入的研究。以下笔者从其原理和特点来介绍激光加工技术。 (一)原理 激光加工能够获得极高的能量密度与极高的温度是因为采用的光学系统能够让激光聚焦成为一个非常小的光斑,在这样的高温下,每种坚硬的材料都会被瞬间熔化与气化,然后熔化物被气化而产生的蒸汽压力推动,以很高的速度喷射出来,从而实现了对工件加工的特种加工方法。 (二)特点 激光加工的技术对于加工工具与特殊环境没有要求,不会造成工具的磨损,易于使用自动控制来进行连续加工,且加工效率极高;同时激光的强度极高,聚焦后差不多能够熔化和气化全部的材料,所以能够加工所有硬度的金属与非金属的材料;加上激光加工是属于非接触的加工,及加工速度非常的快,工件没有受力与受热而产生变形;其还能聚焦成为极小的光斑(微米级),能够调节输出的功率,所以

可进行精密且细微的加工。这些均是激光加工优点。但由于其设备的投资比较大,及操作和维护技术要求比较高;且在精微加工的时候,重复的精度与表面的粗糙度难以保证等。这些缺点尽管在一定的程度上缩小了其应用规模,也限制了其发展,但是由于进一步的研究,越来越成熟的技术,激光加工技术有着非常广阔的发展前景。 三、激光加工技术的发展及应用 近年来,由于激光加工技术的快速发展,其被应用于许多的领域。以下是笔者从激光器与激光加工技术领域来介绍激光加工技术的发展,同时介绍目前激光加工技术的具体应用。 (一)激光加工技术的发展 了解激光加工技术的发展,就要研究激光器以及其应用的领域的变化。只有这样才能从根本上了解其发展。 迅速发展的激光器。我国研制出的第一台激光器是在1961年。通过几十年的努力,我国的激光器技术快速的发展起来了,从固体的激光器到气体的激光器,再到如今光纤的激光器、半导体的激光器与飞秒的激光器。光纤的激光器与传统激光器来比较,其优势是功率输出大,光束的质量较好,转换的效率较高,良好的柔性传输等。其在使用激光加工技术加工材料中有着极大的吸引力。现在应用于使用激光来打标、切割以及焊接。而飞秒的激光器则能够使超精微的加工可以实现。其在高技术的领域如微电子、光子学等应用的前景极宽广。同时半导体的激光器正在被直接用在焊接、热处理等方面。总之激光器的迅速发展导致了激光加工技术的快速发展。 广泛的应用领域。激光加工是在机械加工、力加工、火焰加工与电加工之后新产生的一种的加工技术,是借助激光束和物质相互作用的特性,对材料进行切割、焊接、表面处理、打孔以及微加工的综合性技术。激光焊接广泛应用在汽车的零件、密封的器件等多种要求焊接无污染与无变形的器件。激光切割主要应用在汽车的行业、航天的工业等领域。而激光打孔则应用在汽车的制造、化工等产业。广泛的应用领域也使得激光加工技术快速发展。 (二)激光加工技术的应用 激光加工技术在我国的许多领域里占据着重要的位置,以下是笔

材料先进加工技术

1. 快速凝固 快速凝固技术的发展,把液态成型加工推进到远离平衡的状态,极大地推动了非晶、细晶、微晶等非平衡新材料的发展。传统的快速凝固追求高的冷却速度而限于低维材料的制备,非晶丝材、箔材的制备。近年来快速凝固技术主要在两个方面得到发展:①利用喷射成型、超高压、深过冷,结合适当的成分设计,发展体材料直接成型的快速凝固技术;②在近快速凝固条件下,制备具有特殊取向和组织结构的新材料。目前快速凝固技术被广泛地用于非晶或超细组织的线材、带材和体材料的制备与成型。 2. 半固态成型 半固态成型是利用凝固组织控制的技术.20世纪70年代初期,美国麻省理工学院的Flemings 教授等首先提出了半固态加工技术,打破了传统的枝晶凝固式,开辟了强制均匀凝固的先河。半固态成型包括半固态流变成型和半固态触变成形两类:前者是将制备的半固态浆料直接成型,如压铸成型(称为半固态流变压铸);后者是对制备好的半固态坯料进行重新加热,使其达到半熔融状态,然后进行成型,如挤压成型(称为半固态触变挤压) 3. 无模成型 为了解决复杂形状或深壳件产品冲压、拉深成型设备规模大、模具成本高、生产工艺复杂、灵活度低等缺点,满足社会发展对产品多样性(多品种、小规模)的需求,20世纪80年代以来,柔性加工技术的开发受到工业发达国家的重视。典型的无模成型技术有增量成型、无摸拉拔、无模多点成型、激光冲击成型等。 4.超塑性成型技术 超塑性成型加工技术具有成型压力低、产品尺寸与形状精度高等特点,近年来发展方向主要包括两个方面:一是大型结构件、复杂结构件、精密薄壁件的超塑性成型,如铝合金汽车覆盖件、大型球罐结构、飞机舱门,与盥洗盆等;二是难加工材料的精确成形加工,如钛合金、镁合金、高温合金结构件的成形加工等。 5. 金属粉末材料成型加工 粉末材料的成型加工是一种典型的近终形、短流程制备加工技术,可以实现材料设计、制备预成型一体化;可自由组装材料结构从而精确调控材料性能;既可用于制备陶瓷、金属材料,也可制备各种复合材料。它是近20年来材料先进制备与成型加工技术的热点与主要发展方向之一。自1990年以来,世界粉末冶金年销售量增加了近2倍。2003年北美铁基粉末。相关的模具、工艺设备和最终零件产品的销售额已达到91亿美元,其中粉末冶金零件的销售为64亿美元。美国企业生产的粉末冶金产品占全球市场的一半以上。可以预见,在较长一段时间内,粉末冶金工业仍将保持较高的增长速率。粉末材料成型加工技术的研究重点包括粉末注射成型胶态成型、温压成型及微波、等离子辅助低温强化烧结等。 6. 陶瓷胶态成型 20世纪80年代中期,为了避免在注射成型工艺中使用大量的有机体所造成的脱脂排胶困难以及引发环境问题,传统的注浆成型因其几乎不需要添加有机物、工艺成本低、易于操作制等特点而再度受到重视,但由于其胚体密度低、强度差等原因,他并不适合制备高性能的陶瓷材料。进入90年代之后,围绕着提高陶瓷胚体均匀性和解决陶瓷材料可靠性的问题,开发了多种原位凝固成型工艺,凝胶注模成型工艺、温度诱导絮凝成形、胶态振动注模成形、直接凝固注模成形等相继出现,受到严重重视。原位凝固成形工艺被认为是提高胚体的均匀性,进而提高陶瓷材料可靠性的唯一途径,得到了迅速的发展,已逐步获得实际应用。 7. 激光快速成型 激光快速成形技术,是20实际90年代中期由现代材料技术、激光技术和快速原型制造术相结合的近终形快速制备新技术。采用该技术的成形件完全致密且具有细小均匀的内部组

光学发展简史

课程名称:光学主讲教师:王丹专业班级: 14光电 学号 201430320311 姓名谢宇成绩: 光学发展简史 摘要:光学是一门古老的科学,从远古时期就已经开始有人研究光的学问;光学也是一门实用的科学,我们日常生活中的许多设备,技术都离不开光学的应用。回顾光学的发展史,更有利于学习和把握光学这门有趣的科学。 关键词:光学科学学习发展史 光学的发展,大体上可以分为五个时期——萌芽时期,几何光学时期,波动光学时期,量子光学时期和现代光学时期。 在萌芽时期,主要进行简单光学元件的制造和基础光学原理的研究。在此时期,先秦典籍已经记载了影的定义和生成,光的直线传播性和针孔成像等光学原理[1];这之后,西方的欧几里得研究了光的反射,叙述了光的反射角等于入射角。在11世纪,阿拉伯学者伊本·海赛木首次提出视觉是由物体发生的光辐射线引起的[2]。14世纪,波特研究了成像暗箱,即小孔成像原理。从15世纪末到16世纪初,凹面镜、凸面镜、眼镜、透镜以及暗箱和幻灯等光学元件相继出现,对光学的研究即将到达一个峰点——几何光学。 紧接着的几何光学时期,是光学真正成为一门科学的时期。从公元1590年到十七世纪初,詹森和李普希同时独立发明了显微镜。在1608年,荷兰的李普塞发明了第一架望远镜。光学仪器的相继问世,给光学的研究插上了助推器。17世纪初,开普勒创设大气折射理论,提出天体望远镜原理。从15世纪中叶到17世纪,斯涅耳和笛卡尔、费马等经过一系列研究总结出的光的反射定律和折射定律,基本奠定了几何光学的基础。此后,在十七世纪中后叶,牛顿发现太阳光折射光谱和“牛顿环”,创立了光的“微粒说”[3]。但从17世纪开始,光的直线传播原理已经不能解释一些实验现象:意大利人格里马首先观察到了光的衍射现象,接着,胡克和波意耳独立地研究了薄膜所产生的彩色条纹干涉。自此,光学

现代机械制造工艺的发展现状及趋势

现代机械制造工艺的发展现状及趋势

现代机械制造工艺的发展现状及趋势 摘要:随着我国社会经济的不断发展,机械制造工艺的发展得到了突飞猛进的进步,而且也推动着其他行业的快速发展,特别是对现代化工业的发展,起到至关重要的作用。机械制造工艺作为现代工业发展的根本动力,仍需要进行不断的优化和创新。自动化控制技术、激光技术的出现,都是当下机械制造工艺当中不可或缺的组成部分,并为制造企业带来巨大的效益。当然,随着社会的进步,我们还需要对机械制造工艺的未来发展趋势进行预测和分析,从而实现我国机械制造行业可持续化发展战略。基于此,本文对我国现代机械制造工艺发展的现状及发展趋势进行探讨和分析。 关键词:机械制造工艺;发展现状;趋势 DOI:10.16640/https://www.doczj.com/doc/2d6571537.html,ki.37-1222/t.2018.08.053 0 导言 进入二十一世纪以来,随着我国现代工业的飞速发展,人们对机械制造的生产需求也越来越高。为了满足社会发展需求,需要人们对机械制造工艺进行不断改进和创新,同时这也是我国机械制造工艺发展的必然趋势。 1 我国现代机械制造工艺的发展现状 机械制造工艺的发展是展现一个国家综合生产力的重

要标志,在近几年的发展过程中,机械制造工艺中所应用的先进技术正在进行优化和改革。 1.1 自动化控制技术 自动化控制是最为常见的现代机械制造工艺,也是机械制造领域中不可或缺的重要组成部分。其自动化控制功能主要表现在自动化加工制造、自动化加工流水线以及自动化制造工程三个方面。例如,在机械制造的生产过程中,实施自动化生产可以代替传统的人工生产力,有效减少了人力的使用量,同时也能够减少由于人为因素造成的生产误差,在每个加工环节中都能够按照初始设定完成机械的加工和制造,大大提高了加工制造的精准性,最终形成自动化性质的生产流水线。然而,在市场需求不断变化的作用下,我国现阶段所应用的自动化控制技术已经难以满足市场需求,对机械制造工艺发展产生了局限性,因此,为了实现我国现代机械制造工艺的可持续发展,对其工艺技术的改进和创新是其必然的发展趋势。 1.2 激光技术 激光技术是现代机械制造工艺中被人们应用最为广泛的工艺技术,其主要包含激光热处理、快速成型技术等。激光技术的应用目的是为了将机械部件的使用年限延长,实现零部件的最大化应用价值。在对部件表面进行热处理的过程中,有效提升了机械部件的耐磨性能,在现代机械制造工艺

激光加工技术的现状及国内外发展趋势

激光加工技术的现状及国内外发展趋势——激光英才网 作为20世纪科学技术发展的主要标志和现代信息社会光电子技术的支柱之一,激光技术和激光产业的发展受到世界先进国家的高度重视。 激光加工是国外激光应用中最大的项目,也是对传统产业改造的重要手段,主要是kW 级到10kW级CO2激光器和百瓦到千瓦级Y AG激光器实现对各种材料的切割、焊接、打孔、刻划和热处理等。 激光加工应用领域中,CO2激光器以切割和焊接应用最广,分别占到70%和20%,表面处理则不到10%。而Y AG激光器的应用是以焊接、标记(50%)和切割(15%)为主。在美国和欧洲CO2激光器占到了70~80%。我国激光加工中以切割为主的占10%,其中98%以上的CO2激光器,功率在1.5kW~2kW范围内,而以热处理为主的约占15%,大多数是进行激光处理汽车发动机的汽缸套。这项技术的经济性和社会效益都很高,故有很大的市场前景。 在汽车工业中,激光加工技术充分发挥了其先进、快速、灵活地加工特点。如在汽车样机和小批量生产中大量使用三维激光切割机,不仅节省了样板及工装设备,还大大缩短了生产准备周期;激光束在高硬度材料和复杂而弯曲的表面打小孔,速度快而不产生破损;激光焊接在汽车工业中已成为标准工艺,日本Toyota已将激光用于车身面板的焊接,将不同厚度和不同表面涂敷的金属板焊接在一起,然后再进行冲压。虽然激光热处理在国外不如焊接和切割普遍,但在汽车工业中仍应用广泛,如缸套、曲轴、活塞环、换向器、齿轮等零部件的热处理。在工业发达国家,激光加工技术和计算机数控技术及柔性制造技术相结合,派生出激光快速成形技术。该项技术不仅可以快速制造模型,而且还可以直接由金属粉末熔融,制造出金属模具。 到了80年代,Y AG激光器在焊接、切割、打孔和标记等方面发挥了越来越大作用。通常认为Y AG激光器切割可以得到好的切割质量和高的切割精度,但在切割速度上受到限制。随着Y AG激光器输出功率和光束质量的提高而被突破。Y AG激光器已开始挤进kw级CO2激光器切割市场。Y AG激光器特别适合焊接不允许热变形和焊接污染的微型器件,如锂电池、心脏起搏器、密封继电器等。Y AG激光器打孔已发展成为最大的激光加工应用。 目前,国外激光打孔主要应用在航空航天、汽车制造、电子仪表、化工等行业。激光打

材料与材料加工技术

材料加工技术讲义 徐刚,韩高荣编制 浙江大学材料科学与工程学系 二0一二年六月

绪论 材料是人类文明的物质基础,是社会进步和高新技术发展的先导。自上世纪70年代开始,人们把信息、能源和材料看作是现代社会的三大支柱。新材料和新材料技术的研究、开发和应用反映了一个国家的科学技术与工业化水平。以大规模集成电路为代表的微电子技术,以光纤通信为代表的现代通信技术,以及及现代科技与技术于一体的载人航天技术等,几乎所有的高新技术的发展与进步,都以新材料和新材料技术的发展为突破和前提。 材料的制备与加工,和材料的成分与结构,材料的性能是决定材料使用性能的三大基本要素,构成材料科学与工程学四面体的底面,这充分反映了材料制备及加工技术的重要作用和地位。材料制备与加工技术的发展既对新材料的研究开发、应用和产业化具有决定性的作用,同时又可有效地改进和提高传统材料的使用性能,对传统材料产业的更新改造具有重要作用。因此,材料制备与加工技术的研究开发是目前材料科学与工程学最活跃的领域之一。 材料种类很多,按材料的键合特点和组成分类,大致分为四大类:金属材料、无机非金属材料、高分子材料和复合材料;按材料的用途分类,既可分为结构材料和功能材料两大类,也可细分为建筑材料、信息材料、能源材料、生物材料、航空航天材料等等。相应地,为了适应不同种类材料的键合特点,和使用特点及功能要求,材料制备和加工技术也多种多样。 本讲义是面向浙江大学材料科学与工程学专业学位硕士研究生培养而编写的“材料加工技术”。主要涉及金属材料加工和陶瓷粉体成型烧结先进制备技术,包括:金属材料快速凝固、定向凝固、半固态加工、连续铸轧、复合铸造技术,以及金属粉体、陶瓷粉体制备,和先进陶瓷成型、烧结等材料加工新技术新工艺。注重材料制备及加工技术案例分析,从技术个案的起源、开发、改进和完善的整个过程,对材料加工技术特点及其原理进行系统介绍,重点突出新技术创新的基本规律,培养学生自主创新和利用新技术开发新材料的能力。

光学发展史

光学发展史 光科1001班曲东雪 10272017 摘要:光学的主要光学(optics)是研究光(电磁波)的行为和性质,以及光和物质相互作用的物理学科。光学的起源在西方很早就有光学知识的记载,但是光学真正形成一门科学,应该从建立反射定律和折射定律的时代算起。其发展主要经历了萌芽时期,几何光学时期,波动光学时期和量子光学时期四个阶段。人们通常把光学分成几何光学、物理光学和量子光学来研究。 关键词:光学的定义;光学的历史发展;光学研究内容 Optical Development History Abstract: optical main optical ( Optics ) is the study of light ( electromagnetic waves) behavior and properties, as well as the interaction of light with matter of physics. Optics origin in the West have long optical knowledge records, but the optical true to form a science, should from build reflection law and refraction law era. Its development mainly experienced budding period, geometrical optics, wave optics and quantum optics in four stages: the period of. People usually put on optical geometric optics, physical optics and quantum optics research. Key words: optical definition; optical historical development; optical research content 光学定义 光学(optics),是研究光(电磁波)的行为和性质,以及光和物质相互作用的物理学科。传统的光学只研究可见光,现代光学已扩展到对全波段电磁波的研究。光是一种电磁波,在物理学中,电磁波由电动力学中的麦克斯韦方程组描述;同时,光具有波粒二象性,需要用量子力学表达。光学既是物理学中最古老的一个基础学科,有事当前科学研究中最活跃的前沿阵地,具有强大的生命力和不可估量的前途。光学的发展过程是人类认识客观世界的进程中一个重要的组成部分,是不断揭露矛盾和克服矛盾、从不完全和不确切的认识总部走向较完善和较确切认识的过程。它的不少规律和理论是直接从欧美和生产实践中总结出来的,也有相当多的发现来自长期的系统的科学实验。光学的发展为生产技术提供了许多精密、快速、的衡东的实验手段和重要的理论依据;而圣餐技术的发展,又反过来不断向光学提出许多要求解决的新课题,并为进一步深入研究光学准备了物质条件。 光学的起源在西方很早就有光学知识的记载,欧几里得(Euclid,公元

微型机械加工技术发展现状及趋势分析

微型机械加工技术发展现状及趋势分析 一、概念 微型机械加工或称微型机电系统或微型系统是只可以批量制作的、集微型机构、微型传感器、微型执行器以及信号处理和控制电路、甚至外围接口、通讯电路和电源等于一体的微型器件或系统。其主要特点有:体积小(特征尺寸范围为:1μm-10mm)、重量轻、耗能低、性能稳定;有利于大批量生产,降低生产成本;惯性小、谐振频率高、响应时间短;集约高技术成果,附加值高。微型机械的目的不仅仅在于缩小尺寸和体积,其目标更在于通过微型化、集成化、来搜索新原理、新功能的元件和系统,开辟一个新技术领域,形成批量化产业。 微型机械加工技术是指制作为机械装置的微细加工技术。微细加工的出现和发展早是与大规模集成电路密切相关的,集成电路要求在微小面积的半导体上能容纳更多的电子元件,以形成功能复杂而完善的电路。电路微细图案中的最小线条宽度是提高集成电路集成度的关键技术标志,微细加工对微电子工业而言就是一种加工尺度从微米到纳米量级的制造微小尺寸元器件或薄模图形的先进制造技术。目前微型加工技术主要有基于从半导体集成电路微细加工工艺中发展起来的硅平面加工和体加工工艺,上世纪八十年代中期以后在LIGA加工(微型铸模电镀工艺)、准LIGA加工,超微细加工、微细电火花加工(EDM)、等离子束加工、电子束加工、快速原型制造(RPM)以及键合技术等微细加工工艺方面取得相当大的进展。 微型机械系统可以完成大型机电系统所不能完成的任务。微型机械与电子技术紧密结合,将使种类繁多的微型器件问世,这些微器件采用大批量集成制造,价格低廉,将广泛地应用于人类生活众多领域。可以预料,在本世纪内,微型机械将逐步从实验室走向适用化,

激光加工技术

激光加工技术 班级:学号: 摘要:作为20世纪科学技术发展的主要标志和现代信息社会光电子技术的支柱之一,激光技术和激光产业的发展受到世界先进国家的高度重视。本文论述了激光加工技术的主要内容,以及它的加工原理、特点及其应用。 关键词:激光技术特点应用 1.引言 激光技术是20世纪60年代初发展起来的一门新兴科学,在材料加工方面,已逐步形成一种崭新的加工方法——激光加工(Lasser Beam Machining 简称LBM)。由于激光加工不需要加工工具、而且加工速度快、表面变形小,可以加工各种材料,已经在生产实践中愈来愈多地显示了它的优越性,所以很受人们重视。 激光技术在我国经过30多年的发展,取得了上千项科技成果,许多已用于生产实践,激光加工设备产量平均每年以20%的速度增长,为传统产业的技术改造、提高产品质量解决了许多问题,如激光毛化纤技术正在宝钢、本钢等大型钢厂推广,将改变我国汽车覆盖件的钢板完全依赖进口的状态,激光标记机与激光焊接机的质量、功能、价格符合国内目前市场的需求,市场占有率达90%以上。 2.激光技术研究的主要内容 (1)激光加工用大功率CO2和固体激光器及准分子激光器的引进机型研究,提高国产机水平;同时开发和研制专用配套的激光加工机床,提高激光器产品在生产线上稳定运行的周期,力争在国内建立较全面的加工用激光器的生产基地。 (2)建立激光加工设备参数的检测手段,并进行方法研究。 (3)激光切割技术研究。 (4)激光焊接技术研究。 (5)激光表面处理技术研究。

(6)激光加工光束质量及加工外围装置研究。 (7)择优支持2~3个国家级加工技术研究中心,开展激光加工工艺技术研究,重点是材料表面改性和热处理方面的研究和推广应用;开展激光快速成形技术的应用研究,拓宽激光应用领域。 3激光加工的原理和特点 3.1.加工原理和特点 1)聚集后,光能转化为热能,几乎可以熔化、气化任何材料。例如耐热合金、陶瓷、石英、金刚石等硬脆材料都能加工。 2)激光光斑大小可以聚集到微米级,输出功率可以调节,因此可用以精密微细加工。 3)加工所用工具是激光束,是非接触加工,所以没有明显的机械力,没有工具损耗问题。加工速度快、热影响区小,容易实现加工过程自动化。还能通过透明体进行加工,如对真空管内部进行焊接加工等。 4)和电子束加工等比较起来,激光加工装置比较简单,不要求复杂的抽真空装置。5)激光加工是一种瞬时、局部熔化、气化的热加工,影响因素很多,因此,精微加工时,精度,尤其是重复精度和表面粗糙度不易保证,必须进行反复试验,寻找合理的参数,才能达到一定的加工要求。由于光的反射作用,对于表面光泽或透明材料的加工,必须预先进行色化或打毛处理,使更多的光能被吸收后转化为热能用于加工。 6)加工中产生的金属气体及火星等飞溅物,要注意通风抽走,操作者应戴防护眼镜。 4.激光技术的应用 激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔、微加工以及做为光源,识别物体等的一门技术,传统应用最大的领域为激光加工技术。激光技术是涉及到光、机、电、材料及检测等多门学科的一门综合技术,传统上看,它的研究范围一般可分为:(1)激光加工系统。包括激光器、导光系统、加工机床、控制系统及检测系统。

金属材料加工先进技术

金属材料加工先进技术 1.块状纳米晶金属材料的显微组织与力学性能特点。 显微组织 纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的材料。就最近邻组态而言,纳米晶(金属)材料是由晶体部分(由所有“晶体原子”所组成)和晶界部分(由所有“晶界原子”所组成)构成的。 纳米材料微观组织超细,含有大量的内界面,大量原子位于纳米内界面上,与传统微米、亚微米尺度的材料相比,纳米材料常表现出一系列特殊的物理性能和优异的机械性能,如高比热、高热膨胀率、高强度、高塑性变形能力等。 力学性能 晶粒大小是影响传统多晶金属材料力学性能的重要因素。随着晶粒减小,材料的强度和硬度增大。当晶粒小到纳米量级时,它将具有非常独特的力学性能。 强度与延伸率:纳米金属比粗晶金属具有较高的屈服强度,对于金属面心立方纳米晶金属(如Cu, Ni, Pd等),当晶粒尺寸在15 -100nm时,屈服强度和硬度随着晶粒尺寸的减小而增大,而当晶粒尺寸小于l0nm时,纳米金属的强度随晶粒尺寸的减小而降低,呈现出反Hall-Petch 关系。 对于同成分的单质或合金纳米材料,除了晶粒大小外,影响因素还有:(1)应力状态和微观结构(如界面结构、微观应变等);(2)样品的致密度; (3)合金及化合物的相组成、成分分布和界面组态;(4)纳米材料的强度对样品表面状态。 塑性:当晶粒细化至纳米量级时,通常几乎不能变形的陶瓷或金属间化合物将可能表现为相当大的塑性,但是在压制纳米粉粒时引入的空隙等缺陷会大幅度降低塑性。 变形机理:a)纳米晶体变形过程少有位错行为。b)金属单质样品的变形过程主要由晶粒转动或晶界滑动完成。 断裂机制:纳米晶金属块体材料的断裂很大程度上与晶界和三叉晶界上空隙的形成和试样的致密度有关。 2.块体纳米晶金属材料的主要制备工艺及每种工艺的优缺点。 金属蒸发凝聚一原位冷压成型法、机械研磨法、非晶晶化法、电解沉积法等几种主要制备技术。 这些制备方法按其界面形成过程可分为三大类: (1)外压力合成,如超细粉冷压法、机械研磨法; (2)沉积合成,如各种沉积方法; (3)相变界面形成,如非晶晶化法。 针对不同的用途,这三类方法各有其优缺点。 目前,金属纳米晶材料制备的一个主要目标,是获得大尺寸的纳米晶体样品,其中界面清洁致密,无微孔隙,晶粒尺寸细小均匀。而目前利用上述几种制备方法均较难达到这一目标。 惰性气体冷凝法 该方法适应范围广,微粉颗粒表面洁净,块体纯度高,相对密度较高;但由于为了防止氧化,制备的整个过程是在惰性气体保护和超高真空室内进行的,设备昂贵,对制备工艺要求较高,故制备难度较大;且加上制备的固体纳米晶体材料中都不可避免地存在杂质和孔隙等缺陷,从而影响了纳米材料的性能,也影响了对纳米材料结构与性能的研究。 高能球磨法

机械制造技术的发展现状

机械制造技术的发展现状 摘要:现代机械制造技术是一门高科技,它是机械 制造技术和计算机信息技术融合技术,因此它是衡量一个国家制造业水平的重要标准。但是由于传统制造技术水平限制,目前我国机械制造发展缓慢、效率低下,很难应对当前快速发展下的激烈市场竞争环境。因此引入先进机械制造技术以充分发挥其智能化、系统化的优势,以提升了生产效率并使产品朝向多样化、精细化的方向迅速发展。 关键词:机械制造技术;发展趋势;特点;发展方向 机械制造业是工业重要组成部分,为各行各业的生产发展提供装备。我国以前经济发展靠的是劳动密集型产业,低水平的加工业,以环境为代价来获取高速增长。当前我国经济面临转型,在未来创新和高科技成为发展的主要动力。机械制造技术的创新已经成为机械制造业发展的主要驱动力,先进的机械制造技术已经成为衡量一个国家科技发展水平 的重要标志,也成为国际间科技竞争的重要领域。 一、现代机械制造技术的特点 1.现代机械制造技术最重要的特点在于,它是一项面向 工业应用,具有很强实用性的新技术。与传统制造技术相比,现代机械制造技术更具有系统性、集成性、广泛性、高精度性。它涉及到产品从市场调研、产品开发及工艺设计、生产

准备、加工制造、售后服务等产品寿命周期的所有内容,并将它们结合成一个有机的整体。 2.现代机械制造技术虽然仍大量应用于加工和装配过程,但在其制造过程中还综合应用了设计技术、自动化技术、计算机技术、信息技术和现代系统管理技术等。在产品设计、制造和生产管理等方面的应用。 3.现代机械制造技术比传统的制造技术更加重视技术与 管理的结合,更加重视制造过程组织和管理体制的简化以及合理化,从而产生了一系列先进的制造模式。 二、现代机械制造技术的发展现状 几年来,我国现代机械制造业不断采用先进制造技术,机械制造有了显著的发展,无论制造总量还是制造技术水平都有很大的提高。机械制造从产品研发、技术装备和加工能力等方面都取得了很大的进步,但与工业发达国家相比,仍然存在一个阶段性的整体上的差距。 1.设计方面。工业发达国家不断更新设计数据和准则, 采用新的设计方法,广泛采用计算机辅助设计技术,大型企业开始无图纸的设计和生产。我国采用计算机辅助设计技术的比例较低。 2.管理方面。工业发达国家广泛采用计算机管理,重视 组织和管理体制、生产模式的更新发展,推出了准时生产、敏捷制造、精益生产、并行工程等新的管理思想和技术。我

现代光学的发展历程

现代光学的发展 众所周知,因为有了光,人们才能看见这个色彩斑斓的世界,才能在这世界上生存。因此在我们的生活中有许许多多的光现象及其应用的产生。无论是建造艺术,还是雕塑、绘画及舞蹈艺术等众多领域都离不开光的存在,也因为有了光的存在,使其更加的炫目夺人。 那么,光在于现代是如何发挥它对人类的作用的呢?而光又是如何发展成 为现代光学呢? 20世纪中叶随着新技术的出现,新的理论也不断发展,由于光学的应用十 分广泛,已逐步形成了许多新的分支学科或边缘学科。几何光学本来就是为设 计各种光学仪器而发展起来的专门学科,随着科学技术的进步,物理光学也越 来越显示出它的威力,例如光的干涉目前仍是精密测量中无可替代的手段,衍 射光栅则是重要的分光仪器,光谱在人类认识物质的微观结构(如原子结构、分 子结构等)方面曾起了关键性的作用,人们把数学、信息论与光的衍射结合起来, 发展起一门新的学科——傅里叶光学把它应用到信息处理、像质评价、光学计 算等技术中去。特别是激光的发明,可以说是光学发展史上的一个革命性的里 程碑,由于激光具有强度大、单色性好、方向性强等一系列独特的性能,自从 它问世以来,很快被运用到材料加工、精密测量、通讯、测距、全息检测、医 疗、农业等极为广泛的技术领域,取得了优异的成绩。此外,激光还为同位素 分离、储化,信息处理、受控核聚变、以及军事上的应用,展现了光辉的前景。 光学是物理学的一个分支, 是一门古老的自然学科, 已经有数千年发展历 史。在十七世纪前后, 光学已初步形成了一门独立的学科。以牛顿为代表的微 粒说和与之相应的几何光学;以及以惠更斯为代表的波动说和与之相应的波动 光学构成了光学理论的两大支柱。到十九世纪末, 麦克斯韦天才地总结和扩充 了当时已知的电磁学知识, 提出了麦克斯韦方程组, 把波动光学推到了一个更 高的阶段。然而, 人们对光的更进一步的认识是与量子力学和相对论的建立分 不开的。一方面, 十九世纪及其以前的光学为这两个划时代的物理理论的建立 提供了依据。另一方面, 这两个理论的建立, 更加深了人类对光学有关现象的 深入了解。从十七世纪到现在,光学的发展经历了萌芽时期、几何光学时期、 波动光学时期、量子光学时期、现代光学时期等五大历史时期。

激光加工专业技术有哪些【详情】

激光加工技术有哪些【详情】

————————————————————————————————作者:————————————————————————————————日期:

激光加工技术有哪些 内容来源网络,由深圳机械展收集整理! 更多激光加工设备技术展示,就在深圳机械展! 激光加工技术是利用激光束与物质相互作用的特性,对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔及微加工等的一门加工技术。激光加工作为先进制造技术已广泛应用于汽车、电子、电器、航空、冶金、机械制造等国民经济重要部门,对提高产品质量、劳动生产率、自动化、无污染、减少材料消耗等起到愈来愈重要的作用。 激光技术是涉及到光、机、电、材料及检测等多门学科的一门综合技术,传统上看,它的研究范围一般可分为以下9个方面: 1.激光加工系统。包括激光器、导光系统、加工机床、控制系统及检测系统; 2.激光加工工艺。包括焊接、表面处理、打孔、打标、微调等各种加工工艺; 3.激光焊接:汽车车身厚薄板、汽车零件、锂电池、心脏起搏器、密封继电器等密封器件以及各种不允许焊接污染和变形的器件。使用的激光器有YAG激光器,CO2激光器和半导体泵浦激光器; 4.激光切割:汽车行业、计算机、电气机壳、木刀模业、各种金属零件和特殊材料的切割、圆形锯片、压克力、弹簧垫片、2mm以下的电子机件用铜板、一些金属网板、钢管、镀锡铁板、镀亚铅钢板、磷青铜、电木板、薄铝合金、石英玻璃、硅橡胶、1mm以下氧化铝陶瓷片、航天工业使用的钛合金等等。使用激光器有YAG激光器和CO2激光器; 5.激光打标:在各种材料和几乎所有行业均得到广泛应用,使用的激光器有YAG激光器、CO2激光器和半导体泵浦激光器; 6.激光打孔:激光打孔主要应用在航空航天、汽车制造、电子仪表、化工等行业。激光打孔的迅速发展,主要体打孔用YAG激光器的平均输出功率已由400w提高到了800w至1000w。国内比较成熟的激光打孔的应用是在人造金刚石和天然金刚石拉丝模的生产及钟表和仪表的宝石轴承、飞机叶片、多层印刷线路板等行业的生产中。使用的激光器多以YAG激光器、CO2激光器为主,也有一些准分子激光器、同位素激光器和半导体泵浦激光器; 7.激光热处理:在汽车工业中应用广泛,如缸套、曲轴、活塞环、换向器、齿轮等零部件的热处理,同时在航空航天、机床行业和其它机械行业也应用广泛。我国的激光热处理应用远比国外广泛得多。使用的激光器多以YAG激光器,CO2激光器为主; 8.激光快速成型:将激光加工技术和计算机数控技术及柔性制造技术相结合而形成,多用于模具和模型行业。使用的激光器多以YAG激光器、CO2激光器为主; 9.激光涂敷:在航空航天、模具及机电行业应用广泛。使用的激光器多以大功率YAG激光器、CO2激光器为主。 激光加工为工业制造提供了一个清洁无污染的环境及生产过程,而这也是当下激光加工的优势。 技术特性

相关主题
文本预览
相关文档 最新文档