当前位置:文档之家› Okibacterium endophyticum sp. nov., a novel endophytic actinobacterium

Okibacterium endophyticum sp. nov., a novel endophytic actinobacterium

Okibacterium endophyticum sp. nov., a novel endophytic actinobacterium
Okibacterium endophyticum sp. nov., a novel endophytic actinobacterium

ORIGINAL PAPER

Okibacterium endophyticum sp.nov.,a novel endophytic actinobacterium isolated from roots of Salsola af?nis C.A.Mey

Hong-Fei Wang?Yong-Guang Zhang?Li Li?

Wei-Hong Liu?Wael N.Hozzein?Ji-Yue Chen?

Jian-Wei Guo?Yuan-Ming Zhang?Wen-Jun Li

Received:3November2014/Accepted:30December2014/Published online:8January2015

óSpringer International Publishing Switzerland2015

Abstract A white bacterial strain,designated EGI 650022T,was isolated from the roots of Salsola af?nis C.A.Mey,collected from Urumqi City,Xinjiang, north-western China.The strain was found to be aerobic,Gram-stain positive,oxidase-positive and catalase-positive.Cells were non-motile and irregular rods.Growth occurred at NaCl concentrations between 0and7%(w/v),temperatures between5and45°C, and pH6.0–9.0.Phylogenetic analysis based on16S rRNA gene sequence indicated that strain EGI650022T belongs to a clade with the genera Okibacterium and Plantibacter in the family Microbacteriaceae.The novel strain EGI650022T showed highest levels of16S rRNA gene sequence similarity with members of the genera Okibacterium and Plantibacter(97.2–98.0%). The cell-wall peptidoglycan contained glutamate, homoserine,glycine,alanine and lysine.The predom-inant menaquinones(MKs)were MK-11,MK-12and MK-12(H4).The polar lipid pattern comprised phos-phatidylglycerol,diphosphatidylglycerol,two unknown glycolipids and two unknown phospholipids.The major fatty acids were anteiso-C15:0and anteiso-C17:0.The DNA G?C content was66.0mol%.The DNA–DNA relatedness values of strain EGI650022T with Okibac-terium fritillariae DSM12584T,Plantibacter?avus DSM14012T and Plantibacter auratus DSM19586T

Electronic supplementary material The online version of this article(doi:10.1007/s10482-014-0376-0)contains supple-mentary material,which is available to authorized users.

H.-F.WangáY.-G.ZhangáL.LiáJ.-Y.Chená

J.-W.GuoáY.-M.ZhangáW.-J.Li(&)

Key Laboratory of Biogeography and Bioresource in Arid Land,Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences,U¨r}u mqi830011, People’s Republic of China

e-mail:liwenjun3@https://www.doczj.com/doc/2415980488.html,;liact@https://www.doczj.com/doc/2415980488.html, H.-F.Wang

University of Chinese Academy of Sciences,

Beijing100049,People’s Republic of China

Y.-G.ZhangáW.-J.Li

State Key Laboratory of Biocontrol,Key Laboratory

of Biodiversity Dynamics and Conservation of Guangdong Higher Education Institutes,College of Ecology and Evolution,Sun Yat-Sen University, Guangzhou510275,People’s Republic of China W.-H.Liu

Department of Agriculture and Biological Sciences,Dali University,Dali671003,People’s Republic of China W.N.Hozzein

Bioproducts Research Chair(BRC),College of Science, King Saud University,Riyadh11451,Kingdom of Saudi Arabia

W.-J.Li

Key Laboratory of Microbial Diversity in Southwest China,Ministry of Education,Yunnan Institute of Microbiology,Yunnan University,Kunming650091, People’s Republic of China

Antonie van Leeuwenhoek(2015)107:835–843 DOI10.1007/s10482-014-0376-0

were39.7,19.7and22.0%.Based on phylogenetic, phenotypic,chemotaxonomic and DNA–DNA hybrid-ization data,strain EGI650022T is considered to represent a novel species of the genus Okibacterium,for which the name Okibacterium endophyticum sp.nov.is proposed;the type strain is EGI650022T(=JCM 30086T=KCTC29492T).

Keywords Okibacterium endophyticum sp.nov.áEndophytic actinobacteriumáPolyphasic taxonomy Introduction

The genus Okibacterium was?rst proposed by Evtushenko et al.(2002)and comprises only one species,Okibacterium fritillariae,which was isolated from seeds of Fritillaria ruthenica Wikstr and Clematis recta L.Okibacterium strains contain lysine, alanine,glycine,glutamate and homoserine in their cell wall peptidoglycan,which enable them to be differentiated from members of the genus Plantibacter (Behrendt et al.2002).The genus Plantibacter currently contains two recognized species and can be clustered with Okibacterium in the phylogenetic tree based on16S rRNA gene sequence analysis(Lin and Yokota2006;as shown in Fig.1).In this study,we describe a bacterial strain,designated EGI650022T, which was isolated from surface-sterilized root of Salsola af?nis C.A.Mey,collected from Urumqi City, https://www.doczj.com/doc/2415980488.html,parative16S rRNA gene sequence analysis indicated that strain EGI650022T is closely related to O.fritillariae JCM12284T,Plantibacter ?avus DSM14012T and Plantibacter auratus DSM 19586T(highest levels of16S rRNA gene sequence similarity of98.0,97.5and97.2%,respectively).The aim of this work was to determine the exact taxonomic position of strain EGI650022T by using a polyphasic approach.

Materials and methods

Isolation and maintenance of organism

The halophyte plant S.af?nis C.A.Mey was collected from the suburban district of Urumqi,Xinjiang Province and used as a source for isolation of bacterial strains.Strain EGI650022T was isolated from the

roots of healthy halophyte plant S.af?nis C.A.Mey. The healthy plant samples were washed in running tap water to remove adhered epiphytes and surface-sterilized according to the?ve-step sterilization pro-cedure(Qin et al.2008).The surface-sterilized roots were aseptically crumbled into smaller fragments using a commercial Joyoung blender(Qin et al.2009), spread onto glycerol-asparagine agar(ISP5;Shirling and Gottlieb1966)amended with3%NaCl,and incubated at30°C for4–6weeks.The puri?ed strain was maintained on yeast extract-malt extract agar(ISP 2;Shirling and Gottlieb1966)slants at4°C for short-term preservation and as25%(v/v)glycerol suspen-sion at-80°C for long-term preservation.Strain EGI 650022T has been deposited in the Korean Collection for Type Cultures(KCTC;South Korea)and the Japan Collection of Microorganisms(JCM;Japan)under the accession numbers KCTC29492T and JCM30086T, respectively.

Phenophytic characterization

Gram-stain was carried out by using the standard Gram stain procedure.The morphological,physiolog-ical and biochemical characteristics of strain EGI 650022T were investigated using cultures grown on ISP2medium,at30°C for5days.Cell morphology was observed using light microscopy(BH-2;Olym-pus)and scanning electron microscopy (QUANTA200;FEI).Colours of colonies were deter-mined by using colour chips from the ISCC-NBS colour charts standard(Kelly1964).Cell motility was tested by monitoring the degree of turbidity on motility test medium as described by MacFaddin (1980).Growth at different temperatures(0,5,10,15, 20,25,30,37,40,45,50,55and60°C),different NaCl concentrations(0–10%,w/v)(at intervals of 1%)was tested on ISP2medium at30°C for 14days.The pH range(4.0–12.0at intervals of1.0pH units)for growth was tested in ISP2liquid medium with the pH adjusted as described by Xu et al.(2005). Catalase and oxidase activities were determined in 3%(v/v)H2O2and1%(w/v)tetramethyl-p-phenyl-enediamine,respectively.Decomposition of test sub-stances was performed by using the media and methods of Gonzalez et al.(1978).H2S production was tested as described by Lee et al.(2001).Other biochemical tests including methyl red and indole tests were detected according to Goodfellow(1986).Nutritional features were determined using Biolog GN III MicroPlate according to manufacturer’s instructions and the reactions were observed after incubating the plates at30°C for12–48h.Enzyme activities were examined using the API ZYM kit (bioMe′rieux)following the manufacturer’s instruc-tions.Other physiological and biochemical tests were performed using API20NE and API50CH.

O.fritillariae JCM12284T,P.?avus DSM14012T and P.auratus DSM19586T,which were used as reference strains for phenotypic characterization,fatty acid and DNA–DNA hybridization,were obtained from the JCM(Japan)and the Deutsche Sammlung von Mikroorganismen and Zellkulturen(DSMZ, Germany).

Chemotaxonomy

Cell biomass of strain EGI650022T for DNA extrac-tion and for the analysis of menaquinones(MKs),cell wall peptidoglycan and polar lipids were obtained from cultures grown on ISP2medium at30°C for5days. MKs were extracted and analysed as described previ-ously(Collins et al.1977;Kroppenstedt1982),using reversed-phase HPLC with an Agilent ZORBAX Eclipse XDB-C18(15094.6mm)column.A puri-?ed cell-wall preparation was obtained and hydrolysed as described by Kim and Lee(2011).Amino acids in cell-wall hydrolysates were analysed by using precol-umn derivatization with o-phthalaldehyde(OPA)by using HPLC as described by Tang et al.(2009).Polar lipids were extracted and separated by two-dimen-sional TLC following the method of Minnikin et al. (1984),and identi?ed by spraying the plates with10% ethanolic molybdophosphoric acid,molybdenum blue, ninhydrin and a-naphthol reagents(Minnikin et al. 1984;Komagata and Suzuki1987)and with Drag-endorff’s reagent(Sigma).For cellular fatty acid analysis,cell biomass of strain EGI650022T,O. fritillariae JCM12284T,P.?avus DSM14012T and P. auratus DSM19586T was harvested from TSA plates [tryptic soy agar(soybean-casein digest agar medium); BD]at30°C for5days.Cellular fatty acids analysis was performed as described by Sasser(1990)accord-ing to the standard protocol of the MIDI/Hewlett Packard microbial identi?cation system(Sherlock Version6.1;MIDI database TSBA6).For identi?ca-tion of the mycolic acids present in the cell wall,one-

dimensional TLC was carried out following the standard procedure by Minnikin et al.(1975).

Molecular analysis

Extraction of chromosomal DNA and the ampli?ca-tion of the16S rRNA gene by PCR were performed as described by Li et al.(2007).The DNA G?C content of strain EGI650022T was determined by the method of Mesbah et al.(1989).The16S rRNA gene was sequenced at Sangon Biotech(Shanghai)Co.,Ltd. (https://www.doczj.com/doc/2415980488.html,),and was identi?ed using the Eztaxon-e server database(Kim et al.2012). Alignment of sequences was carried out with CLUS-TAL X1.83software(Thompson et al.1997).Phy-logenetic tree was constructed according to the neighbor-joining(Saitou and Nei1987)methods by using MEGA version5.0(Tamura et al.2011).Evo-lutionary distances were computed using the Kimura two-parameter method(Kimura1983).Bootstrap analysis was used to evaluate reliability of tree topology of the neighbor-joining data by performing 1,000replications(Felsenstein1985).DNA–DNA hybridization tests were carried out by the?uoromet-ric micro-well method(Ezaki et al.1989;Christensen et al.2000).Hybridization was performed with?ve replications for each example,and the two extreme values(highest and lowest)for each sample were excluded.DNA–DNA relatedness values are expres-sed by calculating the means of the remaining three values.The hybridization temperature was46°C. Results and discussion

Phenotypic characteristics

Strain EGI650022T was found to be Gram-staining positive,aerobic,non-spore-forming,non-motile and irregular rod-shaped(Supplementary Fig.S2).Colo-nies on ISP2medium were observed to be smooth, circular,convex,translucent and white-coloured. Growth of strain EGI650022T was observed at 5–45°C,pH6.0–9.0and0–7%NaCl(w/v),with optimal growth at25–30°C,2–4%NaCl(w/v)and pH7.0–8.0.In contrast to strains O.fritillariae JCM 12284T,P.?avus DSM14012T and P.auratus DSM 19586T,EGI6500322T tolerated wider temperature range(5–45°C)and higher salt concentration(up to 7%NaCl),which distinguished the novel strains from its closest related reference strains.The strain was oxidase-positive,which is the same as the type strain of O.fritillariae JCM12284T and signi?cantly different to the type strains of P.?avus DSM14012T and P.auratus DSM19586T.The main characteristics that differentiate strain EGI650022T from species of the genera Okibacterium and Plantibacter are listed in Table1.

Chemotaxonomic characteristics

The predominant MKs detected in strain EGI650022T were determined to be MK-12(51.6%),MK-11 (22.0%),MK-12(H4)(16.0%)and MK-10 (10.4%).The amino acids in the peptidoglycan layer of strain EGI650022T comprised glutamic acid, glycine,alanine,homoserine and lysine.The peptido-glycan type of EGI650022T was similar to those of the type strain of O.fritillariae JCM12284T,but differs signi?cantly compared with Plantibacter species;L-2,4-diaminobutyric acid was not detected.Mycolic acids were absent.The polar lipids detected in strain EGI650022T were diphosphatidylglycerol,phosphat-idylglycerol,two unidenti?ed glycolipids and two unidenti?ed phospholipids(Supplementary Fig.S1). The major fatty acid pro?le mainly consisted of ([10%of the total fatty acids)anteiso-C15:0(37.5%), anteiso-C17:0(36.7%)and Sum in Feature4(iso-C17:1 and/or anteiso-C17:1;10.4%).Qualitative and quan-titative differences were noted between the cellular fatty acid composition and proportion of strain EGI 650022T and its closest phylogenetic neighbours (Supplementary Table S1).In comparison with strains P.?avus DSM14012T and P.auratus DSM19586T, strains EGI650022T and O.fritillariae JCM12284T contained larger amounts of anteiso-C17:1,and also showed smaller amounts of anteiso-C15:0.However, strain EGI650022T could also be distinguished from O.fritillariae JCM12284T by the presence of anteiso-C17:1A.

Phylogenetic analysis

The DNA G?C content of strain EGI650022T was determined to be66.0mol%which is similar to the range of the genus Okibacterium(66.6–67.2%; Evtushenko et al.2002),but a value lower than those

Table1Comparison of phenotypic characteristics of strain EGI650022T with the reference type strains of the related taxa Characteristics1234

Colony colour White Yellow Yellow Yellow Temperature range for growth(°C)5–455–3510–355–35 NaCl range for growth(%)0–70–60–30–4 Optimal NaCl(%)2–41–322 Oxidase??--

H2S production-W--Hydrolysis of

Starch-?-? Tween60?-?? Tween80---?

API20NE

Reduction of nitrates to nitrites?---

N-Acetyl-glucosamine,gluconate--?? Enzyme activity(API ZYM)

Alkaline phosphatase---? Trypsin-?-? Chymotrypsin-?--

b-Galactosidase-??? Acid production from(API50CH)

Glycerol,D-galactose,D-mannitol,amygdalin-??? Gentiobiose,D-turanose

Xylitol,D-arabinose-?--

D-Tagatose,inositol,D-adonitol--?-Lactose,arbutin,methyl-b-D-xylopyranoside--?? Metezitose,D-lyxose

Raf?nose---?

D-Glucose,L-arabinose??W?

D-Ribose??-?

D-Sorbitol,L-sorbose,melibiose?---

L-Rhamnose?-?? Utilization of(Biolog GN III MicroPlate)

N-Acetyl neuraminic acid,fusidic acid

D-Serine,lincomycin,myo-inositol--?-Minocycline,guanidine HCl,Niaproof4

Vancomycin,tetrazolium violet

Tetrazolium blue,bromo-succinic acid

Dextrin,D-lactose,N-acetyl-b-D-mannosamine--??

N-Acetyl-D-galactosamine,L-histidine

D-Melibiose,troleandomycin,rifamycin sv?-?-

L-Galactonic acid lactone

b-Hydroxy-D,L-butyric acid

Gentiobiose,D-turanose,acetoacetic acid-??? Sodium bromate

Stachyose,D-galacturonic acid,formic acid?---

reported for Plantibacter species(68.0–70.0%;Beh-rendt et al.2002;Lin and Yokota2006).The almost complete16S rRNA gene sequence of strain EGI 650022T determined in this study(Gen Bank acces-sion number KM114213)comprised1,529nucleo-tides.The results from the EzTaxon server(http:// https://www.doczj.com/doc/2415980488.html,/)indicated that the closest phylo-genetic neighbours were O.fritillariae JCM12284T, P.?avus DSM14012T and P.auratus DSM19586T, which showed98.0,97.5and97.2%of16S rRNA gene sequence similarities to strain EGI650022T, respectively.Analysis based on the neighbor-joining method showed that strain EGI650022T grouped with the type species of the genus Okibacterium,and formed a cluster with O.fritillariae DSM12584T,P.?avus DSM14012T and P.auratus DSM19586T (Fig.1).Furthermore,strains O.fritillariae JCM 12284T,P.?avus DSM14012T and P.auratus DSM 19586T were selected as the representative strains to perform DNA–DNA hybridization studies.The experiments showed that DNA–DNA relatedness values with O.fritillariae JCM12284T,P.?avus DSM 14012T and P.auratus DSM19586T were39.7,19.7 and22.0%,respectively(Supplementary Table S2), which is signi?cantly less than70%cut-off point according to the criterion recommended for the delineation of bacterial species by Stackebrandt and Goebel(1994).

Conclusion

The results obtained from the chemotaxonomic and phylogenetic analysis clearly indicate that strain EGI

Table1continued

Characteristics1234

D-Raf?nose,potassium tellurite?--?

p-Hydroxy-phenylacetic acid,lithium chloride?-?? Glycyl-L-proline,a-keto-butyric acid???-

D-Lactic acid methyl ester??--

L-Pyroglutamic acid-??-

c-Amino-butyric acid-?--

D-Arabitol-?-? Predominant menaquinones(MK)11/12/12(H4)11/10a9/10a10/11a Polar lipids PG/DPG/GL PG/DPG a PG/DPG/PI/GL PG/DPG Peptidoglycan amino acid Lys Lys DAB a DAB a DNA G?C content(mol%)66.067.0a68.0a70.0a

All data were obtained from this study except where indicated.Both strains are positive for the following characteristics:presence of catalase,esterase(C4),esterase lipase(C8),leucine arylamidase,valine arylamidase,cystine arylamidase,acid phosphatase, naphthol-AS-BI-phosphohydrolase,a-galactosidase,a-glucosidase and b-glucosidase;hydrolysis of Tween20,Tween40and aesculin;assimilation of glucose,arabinose,mannose,mannitol,N-acetyl-glucosamine,maltose,malic acid,D-trehalose,D-cellobiose,sucrose,b-methyl-D-glucoside,D-salicin,N-acetyl-D-glucosamine,D-fructose,D-galactose,D-fucose,L-fucose,L-rhamnose,inosine,D-sorbitol,glycerol,D-glucose-6-phosphate,D-fructose-6-phosphate,gelatin,L-alanine,L-arginine,L-aspartic acid,L-glutamic acid,L-serine,pectin,D-gluconic acid,methyl pyruvate,L-lactic acid,a-keto-glutaric acid,D-malic acid,L-malic acid, a-hydroxy-butyric acid,propionic acid and acetic acid;sensitivity of1%sodium lactate,nalidixic acid,aztreonam and sodium butyrate;acid production from D-xylose,fructose,D-mannose,aesculin,salicin,cellobiose,maltose,sucrose and trehalose.Both strains are negative for the following characteristics:presence of lipase(C14),b-glucuronidase,N-acetyl-b-glucosaminidase,a-mannosidase,b-fucosidase,arginine dihydrolase and urease;assimilation of potassium gluconate,capric acid,adipic acid,citrate, phenylacetic acid,3-methyl glucose,D-aspartic acid,D-glucuronic acid,glucuronamide,mucic acid,quinic acid and D-saccharic acid; sensitivity of D-serine;acid production from erythritol,L-xylose,dulcitol,methyl-a-D-mannopyranoside,methyl-a-D-glucopyranoside,N-acetyl-glucosamine,inulin,starch,glycogen,D-fucose,L-fucose,D-arabitol,L-arabitol,gluconate, 2-ketogluconate and5-ketogluconate;hydrolysis of casein,gelatin;and in methyl red,glucose fermentation and indole production tests

Strains1EGI650022T(Okibacterium endophyticum sp.nov.),2O.fritillariae DSM12584T,3Plantibacter auratus DSM19586T,4 P.?avus DSM14012T.?Positive,-negative,W weakly positive,PG phosphatidylglycerol,DPG diphosphatidylglycerol,PI phosphatidylinositol,GL unidenti?ed glycolipids

a Data were obtained from Evtushenko et al.(2002),Behrendt et al.(2002)and Lin and Yokota(2006)

650022T is a member of the genus Okibacterium (Table1;Fig.1).Strain EGI650022T could be distinguished from the type strain of O.fritillariae by differences in phenotypic and chemotaxonomic features,including colony color,decomposition of starch and Tween60,H2S production,nitrate reduc-tion,utilization and product acid of some substrates, activity of some enzymes and susceptibility to some chemical substrates,MKs composition(Table1). These differences,in combination with the phyloge-netic analysis and DNA–DNA hybridization data of strain EGI650022T,suggest that the novel strain EGI 650022T is differentiated from the type strain of the O. fritillariae.Therefore,strain EGI650022T is consid-ered to represent a new species of the genus Okibac-terium,for which the name Okibacterium endophyticum sp.nov.is proposed.

Description of O.endophyticum sp.nov. Okibacterium endophyticum(en.do.phy’ti.cum.Gr. pref.endo,within;Gr.n.phyton,plant;L.fem.suff.–icum,adjectival suf?x used with the sense of belong-ing to;N.L.neut.adj.endophyticum,within plant, endophytic,pertaining to the original isolation from plant tissues).

Cells are Gram-stain positive,catalase-positive, oxidase-positive,aerobic and non-motile,irregular rods(length0.78–1.25l m,width0.27–0.29l m). Colonies grown on ISP2agar are white-colored, convex and round.Growth occurs at5–45°C on ISP2 medium,with optimum growth occurring at25–30°C. Cells grow in the presence of0–7%(w/v)NaCl (optimum2–4%)and at pH6.0–9.0(optimum pH 7.0–8.0).Hydrolyses Tween20,Tween40and Tween 60,but not starch,casein and Tween80.H2S produc-tion and methyl red test are negative.In the API20NE test system,positive for aesculin hydrolysis,nitrate reduction,assimilation of arabinose,glucose,malic acid,maltose,mannitol and mannose,but negative for arginine dihydrolase,b-galactosidase,gelatin hydro-lysis,glucose fermentation,indole production,urease and assimilation of N-acetyl-glucosamine,adipic acid, capric acid,citrate,phenylacetic acid and potassium gluconate.In the API ZYM test system,positive for acid phosphatase,cystine arylamidase,esterase(C4), esterase lipase(C8),a-galactosidase,a-glucosidase,b-glucosidase,leucine arylamidase,naphthol-AS-BI-phosphohydrolase and valine arylamidase,but nega-

tive for N-acetyl-b-glucosaminidase,alkaline phos-

phatase,chymotrypsin,b-fucosidase,b-

glucuronidase,lipase(C14),a-mannosidase and tryp-

sin.In the API50CH test system,acid is produced only

from aesculin,L-arabinose,cellobiose,fructose,D-

glucose,maltose,D-mannose,melibiose,L-rhamnose, D-ribose,salicin,D-sorbitol,L-sorbose,sucrose,treha-lose and D-xylose.According to the Microplates

(Biolog GN III)assay,positive for acetic acid,N-

acetyl-D-glucosamine,L-alanine,L-arginine,L-aspartic

acid,aztreonam,D-cellobiose,formic acid,D-fructose, D-fructose-6-phosphate,D-fucose,L-fucose,D-galact-ose,L-galactonic acid lactone,D-galacturonic acid, gelatin,D-gluconic acid,D-glucose-6-phosphate,L-glutamic acid,glycerol,glycyl-L-proline,a-hydroxy-butyric acid,b-hydroxy-D,L-butyric acid,p-hydroxy-phenylacetic acid,inosine,a-keto-butyric acid,a-keto-glutaric acid,L-lactic acid,D-lactic acid methyl ester, lithium chloride,D-melibiose,methyl pyruvate,b-methyl-D-glucoside,nalidixic acid,pectin,potassium tellurite,propionic acid,D-raf?nose,L-rhamnose,rif-amycin sv,D-salicin,L-serine,sodium butyrate,1% sodium lactate,D-sorbitol,stachyose,sucrose,D-treha-lose,troleandomycin and Tween40;but negative for acetoacetic acid,N-acetyl-D-galactosamine,N-acetyl-b-D-mannosamine,N-acetyl neuraminic acid,c-amino-butyric acid,D-arabitol,D-aspartic acid, bromo-succinic acid,dextrin,fusidic acid,gentiobiose, glucuronamide,D-glucuronic acid,guanidine HCl,L-histidine,myo-inositol,a-D-lactose,lincomycin, 3-methyl glucose,minocycline,mucic acid,niaproof 4,L-pyroglutamic acid,quinic acid,D-saccharic acid, D-serine,sodium bromate,tetrazolium blue,tetrazo-lium violet,D-turanose and vancomycin.The major cellular fatty acids are anteiso-C15:0and anteiso-C17:0. The predominant MKs are MK-12,MK-11and MK-12 (H4).The cell wall peptidoglycan contains the amino acids glutamic acid,glycine,alanine,homoserine and lysine.The polar lipid pro?le comprises diphosphat-idylglycerol,phosphatidylglycerol,two unidenti?ed glycolipids and two unidenti?ed phospholipids.The G?C content of the genomic DNA of the type strain is 66.0mol%.

The type strain,EGI650022T(=KCTC

29492T=JCM30086T),was isolated from the roots

of a healthy halophyte sample of S.af?nis C.A.Mey,

collected from suburban district of Urumqi,Xinjiang

province,north-west China.The16S rRNA gene

sequence of strain EGI650022T has been deposited in GenBank under the accession number KM114213. Acknowledgments The authors are grateful to Prof.Dr. Aharon Oren(The Hebrew University of Jerusalem,Israel)for his kind help with the Latin etymology for the new species,Prof. Hans-Peter Klenk(DSMZ,Germany)and Prof.Takuji Kudo (JCM,Japan)for their kindly providing reference type strains. This research was supported by the National Natural Science Foundation of China(Nos.81102806,31200008and 31400009).The Hundred Talents Program of Chinese Academy of Sciences,the High-level Talents Program of Xinjiang Autonomous Region and the West Light Foundation of Chinese Academy of Sciences.WNH and W-J L extend their appreciation to the Deanship of Scienti?c Research at King Saud University for funding the work through the research group project no.RGP-205.W-J Li was also supported by Guangdong Province Higher Vocational Colleges&Schools Pearl River Scholar Funded Scheme(2014).

References

Behrendt U,Ulrich A,Schumann P,Naumann D,Suzuki K-l (2002)Diversity of grass-associated Microbacteriaceae isolated from the phyllosphere and litter layer after mulching the sward;polyphasic characterization of Sub-tercola pratensis sp.nov.,Curtobacterium herbarum sp.

nov.and Plantibacter?avus gen.nov.,sp.nov.Int J Syst Evol Microbiol52:1441–1454

Christensen H,Angen O,Mutters R,Olsen JE,Bisgaard M (2000)DNA–DNA hybridization determined in micro-wells using covalent attachment of DNA.Int J Syst Evol Microbiol50:1095–1102

Collins MD,Pirouz T,Goodfellow M,Minnikin DE(1977) Distribution of menaquinones in actinomycetes and Cor-ynebacteria.J Gen Microbiol100:221–230 Evtushenko LL,Dorofeeva LV,Krausova VL,Gavrish EY, Yashina SG,Takeuchi M(2002)Okibacterium fritillariae gen.nov.,sp.nov.,a novel genus of the family Micro-bacteriaceae.Int J Syst Evol Microbiol52:987–993 Ezaki T,Hashimoto Y,Yabuuchi E(1989)Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridiza-tion in micro-dilution wells as an alternative to membrane ?lter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains.Int J Syst Bacteriol39:224–229

Felsenstein J(1985)Con?dence limits on phylogenies:an approach using the bootstrap.Evolution39:783–791 Gonzalez C,Gutierrez C,Ramirez C(1978)Halobacterium vallismortis sp.nov.,an amylolytic and carbohydrate-metabolizing,extremely halophilic bacterium.Can J Microbiol24:710–715

Goodfellow M(1986)Genus Rhodococcus Zopf1891,28AL.

In:Sneath PHA,Mair NS,Sharpe NE,Holt JG(eds)Ber-gey’s manual of systematic bacteriology,vol2.Williams and Wilkins,Baltimore,pp1472–1481Kelly KL(1964)Color-name charts illustrated with centroid colors.Inter-Society Color Council-National Bureau of Standards,Chicago(Published in US)

Kim SJ,Lee SS(2011)Amnibacterium kyonggiense gen.nov., sp.nov.,a new member of the family Microbacteriaceae.

Int J Syst Evol Microbiol61:155–159

Kim OS,Cho YJ,Lee K,Yoon SH,Kim M,Na H,Park SC,Jeon YS,Lee JH,Yi H,Won S,Chun J(2012)Introducing EzTaxon-e:a prokaryotic16S rRNA gene sequence data-base with phylotypes that represent uncultured species.Int J Syst Evol Microbiol62:716–721

Kimura M(1983)The neutral theory of molecular evolution.

Cambridge University Press,Cambridge

Komagata K,Suzuki K-I(1987)Lipid and cell-wall analysis in bacterial systematics.In:Colwell RR,Grigorova R(eds) Methods in microbiology.Academic Press,Orlando Kroppenstedt RM(1982)Separation of bacterial menaquinones by HPLC using reverse phase(RP18)and a silver loaded ion exchanger as stationary phases.J Liq Chromatogr 5:2359–2387

Lee KC,Kim KK,Eom MK,Kim MJ,Lee JS(2001)Fontiba-cillus panacisegetis sp.nov.,isolated from soil of a ginseng ?eld.Int J Syst Evol Microbiol61:369–374

Li WJ,Xu P,Schumann P,Zhang YQ,Pukall R,Xu LH, Stackebrandt E,Jiang CL(2007)Georgenia ruanii sp.

nov.,a novel actinobacterium isolated from forest soil in Yunnan(China)and emended description of the genus Georgenia.Int J Syst Evol Microbiol57:1424–1428

Lin YC,Yokota A(2006)Plantibacter auratus sp.nov.,in the family Microbacteriaceae.Int J Syst Evol Microbiol 56:2337–2339

MacFaddin JF(1980)Biochemical tests for identi?cation of medical bacteria,2nd edn.Williams and Wilkins,Baltimore Mesbah M,Premachandran U,Whitman WB(1989)Precise measurement of the G?C content of deoxyribonucleic acid by high-performance liquid chromatography.Int J Syst Bacteriol39:159–167

Minnikin DE,Alshamaony L,Goodfellow M(1975)Differen-tiation of Mycobacterium,Nocardia,and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates.J Gen Microbiol88:200–204

Minnikin DE,O’Donnell AG,Goodfellow M,Alderson G, Athalye M,Schaal K,Parlett JH(1984)An integrated procedure for the extraction of bacterial isoprenoid qui-nones and polar lipids.J Microbiol Methods2:233–241 Qin S,Wang HB,Chen HH,Zhang YQ,Jiang CL,Xu LH,Li WJ (2008)Glycomyces endophyticus sp.nov.,an endophytic actinomycete isolated from the root of Carex baccans Nees.Int J Syst Evol Microbiol58:2525–2528

Qin S,Li J,Chen HH,Zhao GZ,Zhu WY,Jiang CL,Xu LH,Li WJ(2009)Isolation,diversity,and antimicrobial activity of rare actinobacteria from medicinal plants of tropical rain forests in Xishuangbanna,China.Appl Environ Microbiol 75:6176–6186

Saitou N,Nei M(1987)The neighbor-joining method:a new method for reconstructing phylogenetic tree.Mol Biol Evol 4:406–425

Sasser M(1990)Identi?cation of bacteria by gas chromatog-raphy of cellular fatty acids.MIDI technical note101.

Microbial ID,Inc.,Newark

Shirling EB,Gottlieb D(1966)Methods for characterization of Streptomyces species.Int J Syst Bacteriol16:313–340 Stackebrandt E,Goebel BM(1994)Taxonomic note:a place for DNA–DNA reassociation and16S rRNA sequence ana-lysis in the present species de?nition in bacteriology.Int J Syst Bacteriol44:846–849

Tamura K,Peterson D,Peterson N,Stecher G,Nei M,Kumar S (2011)MEGA5:molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance,and maximum parsimony methods.Mol Biol Evol 28:2731–2739

Tang SK,Wang Y,Chen Y,Lou K,Cao LL,Xu LH,Li WJ (2009)Zhihengliuella alba sp.nov.,and emended

description of the genus Zhihengliuella.Int J Syst Evol Microbiol59:2025–2033

Thompson JD,Gibson TJ,Plewniak F,Jeanmougin F,Higgins DG(1997)The CLUSTAL_X windows interface:?exible strategies for multiple sequence alignment aided by quality analysis tools.Nucleic Acids Res25:4876–4882

Xu P,Li WJ,Tang SK,Zhang YQ,Chen GZ,Chen HH,Xu LH, Jiang CL(2005)Naxibacter alkalitolerans gen.nov.,sp.

nov.,a novel member of the family‘Oxalobacteraceae’isolated from China.Int J Syst Evol Microbiol 55:1149–1153

井下工具分类及详细介绍

井下工具 目录 打捞类工具 1、公锥 2、母锥 3、滑块捞矛 4、分瓣捞矛 5、TFLM-T提放式可退捞矛 6、提放式分瓣捞矛 7、可退捞矛 8、伸缩捞矛 9、二用伸缩捞矛 10、可退式螺旋卡瓦捞筒 11、可退式蓝式卡瓦捞筒 12、卡瓦捞筒 13、弯鱼头打捞筒 14、提放式可退捞筒 15、短鱼头打捞筒 16、电泵捞筒 17、可退式螺旋卡瓦电泵捞筒 18、活页式捞筒 19、不可退式抽油杆捞筒 20、弯抽油杆捞筒 21、组合式抽油杆捞筒 22、提放式抽油杆捞筒 23、三球打捞器 24、抽油杆接箍捞矛 25、多用打捞筒 26、颠倒式抽油杆捞筒 27、蓝式抽油杆捞筒 28、螺旋式抽油杆捞筒 29、偏心式抽油杆接箍捞筒 30、提放式倒扣捞矛 31、可胀式倒扣捞矛 32、倒扣捞矛 33、倒扣捞筒 34、提放式倒扣捞筒 35、反循环打捞蓝 36、局部反循环打捞蓝 37、开窗捞筒

38、缆绳打捞钩 39、外钩 40、内钩 41、内外组合钩 42、活齿钩 43、一把抓 44、磁力打捞器 45、测井仪器打捞器 46、弹簧打捞筒 47、老虎嘴 整形类工具 48、梨形涨管器 49、偏心辊子整形器 50、长锥面涨管器 51、三锥辊整形器 52、旋转震击式整形器 53、楔形涨管器 54、偏心涨管器 55、球形涨管器 56、顿击器 57、复合式鱼顶修整打捞器 58、鱼顶修整器 震击类工具 59、开式下击器 60、润滑式下击器 61、液压式上击器 62、液压加速器 切割类工具 63、水力式外割刀 64、机械式内割刀 65、机械式外割刀 钻、磨、铣类工具 66、三刮刀钻头 67、十字钻头 68、鱼尾刮刀钻头 69、尖钻头 70、偏心钻头 71、三牙轮钻头 72、平底磨鞋 73、凹面磨鞋 74、梨形磨鞋 75、滚球式平底磨鞋 76、内铣鞋 77、外齿铣鞋

定向井常用井下工具概要

油田技术-定向井工程师序列培训讲义(T2-21) 第一部分定向井常用井下工具的分类 1、泥浆马达(PDM) 2、旋转导向工具 3、扶正器(STB) 4、非磁钻铤(NMDC) 5、悬挂短节(HOS) 6、短非磁钻铤(SNMDC) 7、浮阀(F/V) 8、定向接头(O/S) 9、挠性短节(F/J) 10、震击器(JAR) 11、加重钻杆(HWDP) 12、短钻铤 13、弯接头 14、套管开窗工具 15、其它定向井工具 第二部分定向井常用井下工具的现场检查测绘及使用 一、泥浆马达 1、泥浆马达的主要组成部分 1) 旁通阀总成2) 马达总成 3) 万向轴总成4) 驱动轴总成 2、泥浆马达的工作原理: 马达是一种螺杆钻具(SCREW DRILLS),它是以泥浆作为动力的一种井下动力钻具。马达工作原理:泥浆泵产生的高压泥浆流,经旁通阀进入马达时,转子在压力泥浆的驱动下,绕定子的轴线旋转,马达产生的扭矩和转速,通过万向轴和传动轴传递给钻头,来实现钻井作业。 3、旁通阀结构及工作原理: 旁通阀有旁通和关闭两个位置,在起下钻时位于旁通位置,下钻时允许环空的泥浆由旁通阀阀体侧面的阀口孔流向钻杆(钻具)内孔,起钻时使钻杆内孔的泥浆从阀体侧面的阀口流入环空,减少井台溢出泥浆,当泥浆流量及压力达到一定值时,旁通阀关闭,泥浆流经马达,将泥浆能量转换为机械能。 4、马达总成的结构及工作原理: 马达总成由转子和定子两部分组成。定子与转子之间形成若干个密封腔,在泥浆动力作用下,密封腔不断的形成与消失,完成能量交换从而推动转子在定子中旋转。马达可形成几个密封腔就称几级马达。

5、万向轴总成的工作原理: 万向轴总成位于转子下端,其作用是把马达产生的扭矩和转速传递到传动轴上。由于转子作的是偏心运动,因此要求万向轴具有较好的挠性功能,能将偏心运动转换成传动轴的定轴转动。 6、传动轴总成(drive shaft assembly) 的工作原理: 它的作用是将马达的旋转动力(扭矩和转速)传递给钻头,同时承受钻压所产生的轴向和径向负荷。 7、泥浆马达操作参数及注意事项 <工作压力 <循环压力 <工作压差 <马达井口试验应注意的问题 <不同马达所允许的轴向间隙 <马达使用结束后应注意的问题 <马达到达井场后先要作什么 二、旋转导向工具(另有专题讨论) 旋转导向工具是钻柱保持旋转状态下就能实现造斜、增斜、稳斜、降斜和扭方位等定向钻井目的的井下工具。旋转导向工具的种类繁多,工作原理各异,从技术手段上分有全机械式、电子机械式、电子液压式等,从工作原理上分有静止式和调节式等。静止式是指,当钻柱旋转时,导向支撑块不转动,可沿井眼轴线方向滑动;调节式是指,当钻柱旋转时,支撑块随钻柱一起转动,但其整体工作效果具有导向作用。 到目前为止我们只用过SCHLUMBERGER公司的POWER DRIVE、BAKER HUGHES INTEQ公司的AUTO TRAK 和HALLIBURTON公司的GEO-PILOT旋转导向系统。前者为调节式,后两者为静止式 三、扶正器 1、扶正器的分类 可调扶正器 一体式扶正器 近钻头扶正器 可换套筒式扶正器 2、扶正器的作用 1).在增斜钻具组合和降斜钻具组合中,稳定器起支点作用,通过改变稳定器在下部钻具组合中的位置,可改变下部钻具组合的受力状态,达到控制井眼

井下消防材料库物品清单

井下防材料库设计与消防器材 通过编制标准设计,经过耐7个局l5座生产一矿井和 10多个煤炭设计院的调查,介绍矿井下消防材料库的设计以及其中的消防器材的分类、适用范围、选型与配备标准 l 、有关规定及目前状况《煤矿安全规程》规定:“每一矿井必须在井上下设置消防材料库??,井下消防材料库应装备消防列车”。煤炭部在(83)煤技字第1029号文件《煤矿安全装备基本要求》中指出:井下消防材料库必须备有消防列车、水泵、泡沫灭火器和其它灭火器材”原则上讲,所有执行《煤矿安全规程》的矿井,无论自燃严重与否及井型大小.都必须在井下设置消防材料库。库房内应装备消防列车。并备有水泵、泡沫灭火器,打密闭材料和其它灭火器材。 目前.国内使用的红阳四号井、潘集二号井和兴降庄矿等几项井下消防材料库通用设计(库房长度为20~26.5m),也是采用极其简单的、不装备消防列车的布置型式。这是不符合现行《煤矿安全规程》的要求的。 2 消防器材的选型与配备 井下消防器材可分为直接灭火器材、密闭材料和消防工具三大类。2.1 直接灭火器材 2.1.1 各种灭火剂在井下的适用范围 2.1.1.1 二氧化碳灰灭火剂:二氧化炭灭火剂主要扑灭电气、精密仪器、贵重生产设备等发 生的火灾。适用于井下水泵房、井下变电所、箕斗控制间、井下绞车房、移动变电整流站、充电硐室、电机车库、机械修理间、井下压风机房等场所内设置。 2.1.1.2 于粉灭火剂:于粉灭火剂可分为Bc类于 粉(普通于粉)ABCD类于粉(通用于粉)和D类于粉于粉灭火剂多用于扑敷可燃液体、可燃气体的电气火灾。适用于井下水泵房、井下变电所、箕斗停放间、暗井I=l及井底、井下绞车房、电气修理间、井下练采设备检修硐室、油类贮存硐室、电、气焊硐室、皮带修复硐室、液压动力装置供电硐室、充电硐室、井下爆破材料库、液压泵站等场所。 2.1.1.3 泡沫灭火剂、泡沫灭火剂用来扑救油脂 类、木材等一般固体物质的初起火灾;不适用扑救纤维类、电器类、轻金属类火灾。可用于生产水平井底车场,箕斗停放间、暗井口及井

连续油管井下工具

Rev. Date: 8 Aug 2009 Page 1 of 3 ATTACHMENT 3 DOWNHOLE TOOLS Item Description Of Equipment Connection PN Qty CONNECTORS 1 1-1/2" Slip Connector 1" AMMT C203-002-09 1 2 1-1/2" Slip Connector Redress Kit 5 3 1-1/2" Roll On Connector 1.5" x .109 1" AMMT C160-217-08 1 4 1-1/2" Roll On Connector 1.5" x .109 Redress Kit 5 5 2-1/8" Roll On Connector 1.5" x .109 1-1/2" AMMT C160-217-09 1 6 2-1/8" Roll On Connector 1.5" x .109 Redress Kit 5 7 1-1/2" Dimple Connector2-1/8" OD 1-1/2" AMMT 602-051 1 8 1-1/2" Dimple Connector2-1/8" OD Redress Kit 5 MOTOR HEAD ASSEMBLIES (INCL. CHECK VALVE/DISCONNECT/CIRCULATION VALVE) 9 Motor Head Assembly 1-11/16" HW 1" AMMT C200-025-08 1 10 Motor Head Assembly 1-11/16" HW Redress Kit 5 11 Motor Head Assembly 2-1/8" 1-1/2" AMMT C200-015-09 1 12 Motor Head Assembly 2-1/8" Redress Kit 5 13 Motor Head Assembly 2-3/8" 1-1/2" AMMT C200-022-09 1 14 Motor Head Assembly 2-3/8" Redress Kit 5 CHECK VALVES 15 1-11/16" Twin Flapper Check Valve 1" AMMT C165-076-08 1 16 1-11/16" Twin Flapper Check Valve Redress Kit 5 17 2-1/8" Twin Flapper Check Valve 1-1/2" AMMT C165-067-09 1 18 2-1/8" Twin Flapper Check Valve Redress Kit 5 19 2-1/8" Twin Flapper Check Valve 1-1/2" AMMT C165-083-09 1 20 2-1/8" Twin Flapper Check Valve Redress Kit 5 HYDRAULIC DISCONNECTS丢手 21 1-11/16" Hydraulic Disconnect 1" AMMT C167-088-08 1 22 1-11/16" Hydraulic Disconnect Redress Kit 5 23 2-1/8" Hydraulic Disconnect 1-1/2" AMMT C167-085-09 1 24 2-1/8" Hydraulic Disconnect Redress Kit 5 25 2-3/8" Hydraulic Disconnect 1-1/2" AMMT C167-097-09 1 26 2-3/8" Hydraulic Disconnect Redress Kit 5 CIRCULATION VALVE 27 1-11/16" Dual Circulation Valve 1" AMMT C166-031-08 1 28 1-11/16" Dual Circulation Valve Redress Kit 5 29 2-3/8" Dual Circulation Valve 1-1/2" AMMT C166-035-09 1 30 2-3/8" Dual Circulation Valve Redress Kit 5 NOZZLES喷嘴 31 1-11/16" Rotary Wash Tool 1" MT 551-050 1 32 1-11/16" Rotary Wash Tool Redress Kit 5 33 2-1/8"" Rotary Wash Tool 1-1/2" MT 552-100 1 34 2-1/8"" Rotary Wash Tool Redress Kit 5 35 1-11/16" Multi Port Wash Shoe 1" MT 503-103 1 36 1-11/16" Horizontal Wash Shoe 1" MT 503-104 1 37 1-11/16" Multi Port Up Flow 1" AMMT C162-035-08 1 38 2-18" Multi Port Wash Shoe 1-1/2" MT 504-020 1

压裂常用的井下工具

目前压裂常用的井下工具有那些? 各有什么作用? 目前压裂常用的井下工具主要有:封隔器、导压喷砂器、水力锚、 直嘴子及其它辅助工具。 它们的作用是: 封隔器:用于分层压裂,将其下入射孔段底部1.5米左右。 对于上部套管需要保护的井,要下入保护上部套管的封隔器, 使封隔器上部套管在压裂时不承受高压。 导压喷砂器:是与封隔器配套使用一次完成多层分压的喷砂工具。 作用:控制施工排量、产生压差。改变压裂液流动方向。 水力锚:用于压裂施工时,固定管柱,防止管柱由于高压断脱在井内 造成事故。 固定管柱,防止油管受压后上顶、产生弯曲、变形。 帮助封隔器工作,保护封隔器胶筒不因油管位移产生破裂失封,致使压裂失败。 直嘴子:控制施工排量。 产生压差,利于封隔器工作。 井下处常用压裂井下工具 压裂施工井下工具分类 ?封隔器 ?控制类工具 第一部分:封隔器 1、K344型封隔器 1)作用:该封隔器适用于中深井的合层、任意一层或分层的压裂与酸化,可以组成一次分压多层的压裂管柱和一次分酸多层的酸化施工管柱。 2)结构 主要有上接头、胶筒座、胶筒、中心管、“O”型胶圈、滤网、下接头等。(如图1所示) 图1 K344型封隔器结构图 3)工作原理 封隔器下入井下设计深度后,从油管内加液压,高压液体经过滤网、下接头的孔眼和中心管的水槽作用在胶筒的内腔。由于此压力大于油、套管环形空间的压力而形成压力差。在此压差的作用下,胶筒胀大将油套管环形空间封隔住。解封时只需泄掉油管内的高压,使油管与油套管环形空间的压力平衡,胶筒靠本身的弹力收回便可解封。 4)K344-115型封隔器主要技术参数(见表1) 表1 K344-115主要技术参数表 最大外径,mm φ115 最小通径,mm φ55 长度,mm 926 坐封压力,MPa 0.5~1.5 工作压力,MPa 35 工作温度,℃90

Cerberus连续油管仿真模拟软件技术要求

Cerberus连续油管仿真模拟软件技术要求 一、产品用途 由于连续油管的队伍急速扩张,再加之近年连续油管拖动压裂的工艺广泛的应用,连续油管长时间处于高压、携砂液冲刷的环境下使用,需要密切的对连续油管的疲劳度进行检测分析。 需要采购相应的软件进行分析计算,通过软件可以对连续油管进行疲劳度分析,施工参数模拟、实时检测数采数据、井筒工况模拟、工具串选配模拟等功能。 通过调研,最终确定Cerberus连续油管仿真模拟软件主要包括的模块有:Orpheus、Reel-trak、Hydra、Velocity String、Solids Cleanout、Achilles、Hercules、String Editor /Reel Editor / Well Editor/Tool String Editor / Fluid Editor模块,并提供软件专用处理机。 二、技术参数 2.1软件模块详细功能

2.2 软件载体处理机参数要求 (1)处理系统Windows10,64位系统,简体中文版; (2)处理器:Inter i5-7200U或以上; (3)内存4GB或以上; (4)DirectX版本:DirectX12或以上。 (5)要求软件专机专用,使用硬件加密方式。 三、产品检验 依据有关标准,协议要求,合同及供方出具的相关技术文件对软件使用、各部性能进行检查验收。生产过程中的组织、生产、检验由乙方负责。 四、产品质量保证及服务 1. 乙方提供软件培训; 2. 现场应用出现问题时,乙方服务人员及时向现场用户提供技术支持。

3. 每年密钥认证由乙方无偿提供。 井下作业公司压裂分公司 2018年9月17日

井下爆炸材料库安全要求实用版

YF-ED-J7692 可按资料类型定义编号 井下爆炸材料库安全要求 实用版 In Order To Ensure The Effective And Safe Operation Of The Department Work Or Production, Relevant Personnel Shall Follow The Procedures In Handling Business Or Operating Equipment. (示范文稿) 二零XX年XX月XX日

井下爆炸材料库安全要求实用版 提示:该操作规程文档适合使用于工作中为保证本部门的工作或生产能够有效、安全、稳定地运转而制定的,相关人员在办理业务或操作设备时必须遵循的程序或步骤。下载后可以对文件进行定制修改,请根据实际需要调整使用。 第一节爆炸材料贮存 第二百九十五条爆炸材料的贮存,永久性地面爆炸材料库建筑结构(包括永久性埋入式库房)及各种防护措施,总库区的内、外部安全距离等,必须符合国家有关规定。 井上、下接触爆炸材料的人员,必须穿棉布或抗静电衣服。 第二百九十六条建有爆炸材料制造厂的矿区总库,所有库房贮存各种炸药的总容量不得超过该厂1个月生产量,雷管的总容量不得超过3个月生产量。没有爆炸材料制造厂的矿区

总库,所有库房贮存各种炸药的总容量不得超过由该库所供应的矿井2个月的计划需要量,雷管的总容量不得超过6个月的计划需要量。单个库房的最大容量:炸药不得超过200t,雷管不得超过500万发。 地面分库所有库房贮存爆炸材料的总容量:炸药不得超过75t,雷管不得超过25万发。单个库房的炸药最大容量不得超过25t。地面分库贮存各种爆炸材料的数量,还不得超过由该库所供应的矿井3个月的计划需要量。 第二百九十七条开凿平硐或利用旧平硐作为爆炸材料库时,必须遵守下列规定: (一)硐口必须装有向外开的2道门,由外往里第一道门为包铁皮的木板门,第二道门为栅栏门。

连续油管配套工具技术要求

采购方案号:xxx 采气井工具及相关配件 技 术 协 议 买受人:吐哈油田工程技术研究院 出卖人:XXXX 签订时间:2018年4月 签订地点:新疆鄯善

1、总则 本协议规定了吐哈油田工程技术研究院用于哈萨克斯坦让那若尔油田的采气井工具及相关配件制造、检验、运输及安装调试等要求。 出卖人应对出卖的采气井工具及相关配件制造、供货、检查、实验和指导安装调试负全部责任,保证所提供的设备满足相关标准及规范,以及相关使用说明书等附带资料文件的要求。 对于不能妥善解决的矛盾,出卖人有责任以书面形式通知买受人,出卖人若有与以上文件不一致的地方,应在其投标书中予以说明,若没有说明,则被认为完全符合上述文件所有要求,即使出卖人符合本技术协议的所有条款,也不能免除出卖人对所有提供设备和附件应当承担的全部责任。 出卖人的供货和服务包括:按照供货清单供货、出厂测试、包装运输、指导安装及调试、质量保证、技术支持等。 2、供货范围

3、技术参数及要求 (1)变口接头 扣型:母扣螺纹3-1/2" V AM TOP 公扣螺纹3-1/2"SL-APEX;适应工作环境:H2S≤6%,CO2≤0.8%;

扣型:公扣螺纹3-1/2" V AM TOP 母扣螺纹3-1/2"SL-APEX;适应工作环境:H2S≤6%,CO2≤0.8%; 扣型:公扣螺纹2-7/8" UPTBG 母扣螺纹2-7/8"SL-APEX;适应工作环境:H2S≤6%,CO2≤0.8%; 扣型:母扣螺纹2-7/8" UPTBG 公扣螺纹2-7/8"SL-APEX;适应工作环境:H2S≤6%,CO2≤0.8%; (2)液控毛细管线 工作压力:10000Psi,壁厚:0.065in,材料:316不锈钢;适应工作环境:H2S≤6%,CO2≤0.8%; 型号:d 3/8'',作用:连接主翼阀与地面控制柜; 型号:d 1/4'',作用:连接井下安全阀阀与地面控制柜; (3)毛细管卡套终端接头″ 型号:1/4"NPT-1/4″ 承压,10000Psi, 总长:50mm;外径:25mm;通径:6mm; 材料:316不锈钢;适应工作环境:H2S≤6%,CO2≤0.8%;作用:连接毛细管与油管挂; 型号:1/2"NPT-1/4″ 承压,10000Psi, 总长:50mm;外径:25mm;通径:6mm; 材料:316不锈钢;适应工作环境:H2S≤6%,CO2≤0.8%;作用:连接井口与毛细管; 型号:1/4"NPT-3/8″ 承压,10000Psi, 总长:50mm;外径:25mm;通径:6mm; 材料:316不锈钢;适应工作环境:H2S≤6%,CO2≤0.8%;作用:连接主翼阀与毛细管; 型号:1/2"NPT-3/8″ 承压,10000Psi, 总长:50mm;外径:25mm;通径:8mm; 材料:316不锈钢;适应工作环境:H2S≤6%,CO2≤0.8%;作用:连接井口与毛细管; 型号:3/8"NPT-3/8″ 承压,10000Psi, 总长:50mm;外径:25mm;通径:8mm; 材料:316不锈钢;适应工作环境:H2S≤6%,CO2≤0.8%;作用:连接主翼阀与毛细管;

连续油管工具 必捷

连续油管工具简介

前言
我公司长期同 Welltonic, DSI, Bakke oil tools 等几家专业的连续油 管工具公司保持良好的关系,在连续油管作业、工具、软件及实时监 控等领域,达成了战略合作协议。这些专业工具公司在全球范围内已 经为 BJ、Schlumberger, Sanjel、Calfrac 等专业油田服务公司提供了优 质的连续油管工具、软件等配套服务。

目录
1 2 3 4 5 6 7 8 9 外卡瓦式连接头 ...................................................................................................... 4 凹座式连接头 .......................................................................................................... 5 内插式连接头 .......................................................................................................... 6 双向可盘式连接头................................................................................................... 7 快速接头 ................................................................................................................. 8 马达头总成.............................................................................................................. 9 双瓣式单向阀 ........................................................................................................ 11 液压丢手 ............................................................................................................... 12 双向循环阀............................................................................................................ 13
10 双向加速器............................................................................................................ 14 11 双向震击器............................................................................................................ 16 12 液压式打捞筒 ........................................................................................................ 18 13 液压式打捞矛 ........................................................................................................ 20 14 钢丝打捞矛............................................................................................................ 22 15 钢丝打捞筒............................................................................................................ 23 16 井下马达 ............................................................................................................... 24 17 磨铣钻头 ............................................................................................................... 26 18 套铣工具 ............................................................................................................... 27 19 万向节................................................................................................................... 28 20 加重杆................................................................................................................... 29 21 液压弓形弹簧扶正器 ............................................................................................. 30 22 刚性扶正器............................................................................................................ 31 23 套管接箍定位器 .................................................................................................... 32 24 跨式皮碗工具 ........................................................................................................ 34 25 跨式封隔器工具 .................................................................................................... 36

【钻井工程】国内外深井、超深井井下工具简介

国内外深井、超深井井下工具简介 按照我们国家对深井、超深井的界定,深井是指井深大于4500m 的井,超深井是指井深6000m以上的井。迄今,世界上最深的井为前苏联的SC-3井,井深12869m。目前,美国深井、超深井的钻井水平大致为:5000m的井完井周期3个月,6000m的井完井周期6个月,7000m的井完井周期12个月。 深井、超深井对钻井的方方面面都是一个极为严峻的挑战,其关键技术包括:先进的地震技术以及对地震资料的准确判读与分析;对邻井钻井资料的全面采集、处理和利用;功率、功能强大且易于控制的钻机设备;先进的数据采集、分析系统和先进的用于不同目的的井下工具;科学合理的钻井设计;成熟的钻井工艺技术;高温高压泥浆体系;科学、强化的生产技术管理等。 随着世界范围内深井、超深井钻井数量与钻井难度的逐年递增,国内外各大石油公司近几年先后开发研制出了用于深井、超深井防斜打直、提高钻速、井眼轨迹和井下参数测量与控制、井眼扩大规整、刚体膨胀管补救、深井扩孔等先进的井下工具,现一一简单介绍如下: 1、井下动力钻具---用于提高机械钻速 ●国产螺杆钻具耐温低,仅能用于上部井段; 1

●BakerHughes INTEQ的高速螺杆钻具采用新的橡胶定子制 造工艺,耐温190℃,且转速与排量成正比,输出功率是涡轮钻具的两倍多; ●俄罗斯的带齿轮减速箱新型涡轮钻具耐温可达250℃∽ 300℃; ●美国Manurer公司为钻高温地热井研制的齿轮减速涡轮钻 具成功钻成了温度高达316℃的地热井; 2、旋冲钻井工具---用于提高机械钻速 ●国内:厂家众多,成熟较少,究其原因,主要有三:一是寿命 短,二是无匹配之钻头,三是无深部极硬之地层,故效果不明显。现场应用最好当属江苏东海的科钻1井,但该井具以下特点:连续取心,工具一次下井工作时间短;钻头为孕镶式天然金刚石取心钻头,抗冲击能力强;地层为非沉质岩地层,硬度高、可钻性差、研磨性强,故应用效果明显; ●国外有适合于地层、同时也适合于工具的专用钻头,如图1。 1

煤矿井上、下消防材料库备用品表

井上消防材料库备用品表 (根据《矿井防灭火规范》编制) 序号备品名称单位数量备注 1 清水泵台1 或存放于设备库中 2 泥水泵台2 或存放于设备库中 3 φ100mm消火水龙带m 200 4 φ75mm消火水龙带m 300 5 φ52mm消火水龙带m 300 6 φ52mm普通消火水枪支5 7 φ52mm多用消火水枪支2 8 φ52mm喷雾消火水枪支2 9 高倍数泡沫发生装置套1 或存放于设备库中 10 消防泡沫喷枪套2 或存放于设备库中 11 高倍数泡沫剂t 0.5 或存放于设备库中 12 消防泡沫剂t 0.2 或存放于设备库中 13 分流管个4 14 集流管个2 15 消火三通个4 16 阀门个4 17 φ52mm斜喷消火阀门个4 18 φ110mm快速接头及帽盖垫圈套30

19 φ75mm快速接头及帽盖垫圈套20 20 φ52mm快速接头及帽盖垫圈套40 21 吸液器个2 22 管钳子把8 23 折叠式帆布水箱个1 24 轻型钩杆个2 25 重型钩杆个1 26 救生绳根4 27 撬棍根2 28 木棍把2 29 平板锹把4 30 伸缩梯副1 31 组装梯副1 32 普通梯副2 33 小靠梯副2 34 10L泡沫灭火器个25 35 CO2灭火器个10 36 8kg干粉灭火器个14 37 1211灭火器(2L)个14 38 喷雾喷嘴个4 39 泡沫灭火器起泡药瓶个50 40 灭火岩粉kg 500

41 石棉毯块5 42 20L汽油桶个1 43 20L普通油桶个2 44 风筒布m 500 45 水泥t 5 46 水玻璃t 1 47 石灰t 4 48 φ1/4”速接钢管节50 每节15m 49 φ1/2”速接钢管节50 每节10m 50 φ1’速接钢管节50 每节10m 51 φ100mm钢管m 500 焊成快速接头 52 φ150mm钢管m 100 焊成快速接头 53 φ200mm钢管m 50 焊成快速接头 54 φ75mm胶管m 500 55 28kW局扇台3 56 11kW局扇台3 57 接管工具套4 58 φ15mm胶管m 500 59 φ10mm胶管m 500 60 单相变压器台3 61 电力开关台3 62 电缆m 500

井下工具表资料

井下工具

目录打捞类工具 1、公锥 2、母锥 3、滑块捞矛 4、分瓣捞矛 5、TFLM-T提放式可退捞矛 6、提放式分瓣捞矛 7、可退捞矛 8、伸缩捞矛 9、二用伸缩捞矛 10、可退式螺旋卡瓦捞筒 11、可退式蓝式卡瓦捞筒 12、卡瓦捞筒 13、弯鱼头打捞筒 14、提放式可退捞筒 15、短鱼头打捞筒 16、电泵捞筒 17、可退式螺旋卡瓦电泵捞筒 18、活页式捞筒 19、不可退式抽油杆捞筒 20、弯抽油杆捞筒

21、组合式抽油杆捞筒 22、提放式抽油杆捞筒 23、三球打捞器 24、抽油杆接箍捞矛 25、多用打捞筒 26、颠倒式抽油杆捞筒 27、蓝式抽油杆捞筒 28、螺旋式抽油杆捞筒 29、偏心式抽油杆接箍捞筒 30、提放式倒扣捞矛 31、可胀式倒扣捞矛 32、倒扣捞矛 33、倒扣捞筒 34、提放式倒扣捞筒 35、反循环打捞蓝 36、局部反循环打捞蓝 37、开窗捞筒 38、缆绳打捞钩 39、外钩 40、内钩 41、内外组合钩 42、活齿钩

43、一把抓 44、磁力打捞器 45、测井仪器打捞器 46、弹簧打捞筒 47、老虎嘴 整形类工具 48、梨形涨管器 49、偏心辊子整形器 50、长锥面涨管器 51、三锥辊整形器 52、旋转震击式整形器 53、楔形涨管器 54、偏心涨管器 55、球形涨管器 56、顿击器 57、复合式鱼顶修整打捞器 58、鱼顶修整器 震击类工具 59、开式下击器 60、润滑式下击器 61、液压式上击器 62、液压加速器

切割类工具 63、水力式外割刀 64、机械式内割刀 65、机械式外割刀钻、磨、铣类工具 66、三刮刀钻头 67、十字钻头 68、鱼尾刮刀钻头 69、尖钻头 70、偏心钻头 71、三牙轮钻头 72、平底磨鞋 73、凹面磨鞋 74、梨形磨鞋 75、滚球式平底磨鞋 76、内铣鞋 77、外齿铣鞋 78、柱形铣鞋 79、锥形铣鞋 80、领眼磨鞋 81、套铣筒 82、扶正器

连续油管简述资料

连续油管作业技术简述 1.连续油管简述 连续油管(coiled tubing,简称CT) 装置是一种有别于传统作业方式的特种作业设备, 自上世纪60年代初引入油田生产后,便以其高效、实用、经济的特点倍受使用者的青睐。连续管也称柔性管,是一种强度高、塑性好、抗腐蚀较强的ERW 焊接钢管,单根长度可达几千米,在生产线连续生产并按一定长度缠绕在卷筒上交付使用。 进入2000 年后, 由于材质和设备制造技术的更新提高, 连续油管技术发展迅速,新型连续油管车各方面性能大为改进, 能够适应更加恶劣环境和从事更为复杂的技术。 2.连续油管设备组成 连续油管设备主要包括以下几部分: (1)滚筒:储存和传送连续油管; (2)注入头:为起下连续油管提供动力; (3)操作室:设备操作手在此监测和控制连续油管; (4)动力组:操作连续油管设备所要求的液压力源; (5)井控装置:连续油管带压作业时的井口安全装置。 3.连续油管工作原理 其工作原理是:车辆停靠井口处,依次吊装防喷器、注入头于井口(防喷管)上,将CT 从绞盘上拉出经鹅颈管导向进入注入头, 由注入头链条拉紧后通过防喷器下入作业管柱中, 绞盘轴端的接头可与配套设备联接, 泵注液体或气体入井, 操作室内可远程控制CT 起下及相关部件的动作。 4.连续油管技术的应用 连续油管以其高效性、经济性以及对地层污染小等优点目前已广泛应用于钻井、完井、采油、修井和集输等各个作业领域,被称作“万能作业机”。 4.1连续油管的冲砂洗井 冲砂洗井是目前最常见的连续油管修井作业。 洗井是将洗井液通过连续油管泵入井内, 使砂粒松动并将其从生产油管与连续油管的环空冲到地面上来。 连续油管由于其具有良好的挠性等特点,除进行常规的冲洗作业外,还用于解决一些比较复杂的井下管柱被卡堵情况。这类井既无法建立循环又不能起出井下管柱,常规方法处理

连续油管作业工艺

连续油管作业工艺 概述 目前,油气田已进入开发中后期,随着资源勘探力度加大,降低作业成本,规避作业风险已成为油气田开发的首要考虑因素,在老井加深侧钻挖潜增效、难动用储量增产措施开采,水平井及浅层石油天然气、煤层气资源开发,是提高油气采收率的最有效的途径,连续油管作业技术本身所具有的柔性刚度及自动化程度高、可带压作业等特性,非常适合于这种作业,并能够有效降低成本和对作业环境的损害,被认为是21世纪油气井修井作业方法的一项革命性新技术。可以预见,连续油管技术必将成为未来修井作业行业的主导技术之一。特别是在在小井眼、老井眼重入和带压作业中应用前景广阔,为连续油管技术提供了广阔的发展空间。 目前连续油管作业几乎涉及到了所有的常规钻杆、油管作业。已广泛应用于油气田的修井、酸化、压裂、射孔、测井、完井、钻井以及地面输油气管道解堵疏通等多个领域,特别是应用于带压作业、水平井及大斜度井测井射孔、完井等作业,被誉为“万能作业”设备,使用连续油管作业机作业同使用常规油管作业相比,具有节省作业时间、减少地层伤害、作业安全可靠等优点,在油气勘探与开发中发挥越来越重要的作用。 随着勘探开发的不断深入,一批深井超深井陆续出现,对井下作业技术提了出了越来越高的要求,为适应工作需要,迫切需要超长度、大管径、高强度连续油管,为此开发了 D50.8m m X6500M连续油管装置并投入使用。 关键字:连续油管,修井,增产措施 一.连续油管装置设备主要规格及技术参数 (一).连续油管装置技术参数 D50.8m m X6500M连续油管作业装置是一种移动式液压驱动的用于起下连续油管和运输连续油管的设备,主要由连续油管、液压注入头、井口防喷系统、液压动力系统等组成。 1.D50.8m m连续油管装置整体技术参数 ⑴ 最大容管量: D50.8m m×6500m(2″ ×6500m) ⑵ 最大工作压力: 103M P a ⑶ 最大起下速度: 60m/m i n

关于连续油管的应用

连续油管应用: 连续油管起初作为经济有效的井筒清理工具,在市场上赢得了立足之地。修井和完井作业的经济收入占连续油管作业总收入的75%以上,连续油管在世界各油气田的应用范围持续扩大。事实上连续油管所具有的带压欠平衡作业、作业的快速高效、对地层的低伤害、低成本(来源于工序的简化)等等优点和应用价值,是在连续油管诞生30年后的上世纪90年代才真正被人们所认识。其后连续油管广范应用于油气田修井、钻井、完井、测井等作业,在油气田勘探与开发中发挥着越来越重要的作用。90年代后,连续油管压裂技术和连续油管钻井技术,在工艺技术上和实际的应用中得到了较快的发展。我国引进和利用连续油管作业技术始于70年代,1977年,我国引进了第一台波温公司生产的连续油管作业机,在四川油田开始利用连续油管进行气井小型酸化、注氮排残酸、气举降液、冲砂、清蜡、钻磨等一些简单作业,累计进行数百口井的应用试验,取得了明显效果,积累了初步的经验,随后在全国各油田推广应用。目前,据不完全统计,国内共有引进的连续油管作业机30台左右,主要分布在四川、大庆、长庆、胜利、华北、中原、吉林、新疆、辽河、吐哈、大港、河南和克拉玛依等油田。四川、辽河、华北自引进连续油管以来累计作业井次均己超过1000井次。大庆油田自1985年引进连续油管作业装置以来,共在百余口井中进行了修井等多种井下作业,主要用于气举、清蜡、洗井、冲砂、挤水泥封堵和钻水泥塞等。吐哈油田自1993年引进连续油管作业机以来,作业井次达40~60井次,用连续油管进行测井的最大井深已达到4300m。总的来讲,国内连续油管作业机主要应用于以下几个方面:冲砂洗井、钻桥塞、气举、注液氮、清蜡、排液、挤酸和配合测试。用得比较多的是冲砂堵、气举排液和清蜡,占95%以上。连续油管作业在我国油田受到普遍欢迎。

连续油管钻井技术(总24页)

连续油管钻井技术(总 24页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

新兴的连续油管钻井技术 发布时间:2010-04-09 11:39:17 连续油管起初作为经济有效的井筒清理工具,在市场上赢得了立足之地。传统的修井和完井作业的经济收入占连续油管作业总收入的四分之三以上。随着连续油管设备在油气田上的应用范围持续扩大,近年来,连续油管钻井技术和连续油管压裂技术成为发展最快的两项技术。 连续油管钻井技术的发展 连续油管钻井(CTD)研究始于上世纪六十年代。在上世纪七十年代中期,利用连续油管进行了钻井作业。当时的连续油管装置包括16英尺直径的滚筒、6150FPM注入头、3000psi防喷器以及由40英尺长的管子经端面焊接而成的3000英尺长的连续油管。利用该装置和转速为300rpm的5″容积式马达、三牙轮钻头等钻井工具,钻6-1/4″井眼的浅井。钻了10口井后不再使用该装置。 在上世纪八十年代,传统钻井在浅油气藏钻井市场有很强的竞争力,连续油管钻井则不景气。这不仅是因为传统的钻井设备更为便宜,而且由于人们当时没有认识到连续油管钻井在改善钻井工艺或降低钻井成本上的优势。 从上世纪九十年代初开始,连续油管钻井技术进入了发展和应用时期。1991年,在巴黎盆地成功地进行了连续油管钻井先导性试验,同年在德克萨斯利用连续油管进行了3井次的重钻井作

业。此后,连续油管钻井技术迅速发展,至1997年,共完成了4000个连续油管钻井项目(见图1)。 连续油管钻井技术的迅速发展归功于以下几个因素:连续油管行业已经发展到能提供必要的设备和基本技术的成熟阶段;连续油管钻井技术在市场上具有竞争力,有时甚至占上风;在定向钻井和欠平衡钻井方面处于技术优势地位;油气工业界对于连续油管钻井的能力和局限性有了更多的理解,能更合理地选择钻井对象,最终使连续油管钻井的成功率更高。 近年来,连续油管钻井每年达到900~1000口,其中,老井侧钻钻定向井约120口,新钻浅直井约800口。连续油管钻井技术已经成为经济高效地在各种油气藏进行加深钻井、老井侧钻、钻浅井的重要技术,在钻井市场,特别在欠平衡水平钻井市场赢得了地位。 连续油管 钻井系统的优缺点 连续油管钻井系统的优点,包括:一、控制压力能力强,能在欠平衡条件下安全、高效地钻井。二、适合于现有井的加深钻井和侧钻作业,与用常规钻井设备或修井设备达到同样的目标相比,用连续油管可以节约费用25%~40%。三、容易提高钻井工艺自动化水平,操作人员少。四、装备的机动性好,安装、拆卸容易,节约时间。五、起下钻快,钻进快,钻井作业周期短。六、地面设备占地少,适合于地面条件受限制的地区或海上平台作业。七、连

相关主题
文本预览
相关文档 最新文档