当前位置:文档之家› 氮气保护乙炔氮气用量计算

氮气保护乙炔氮气用量计算

氮气保护乙炔氮气用量计算
氮气保护乙炔氮气用量计算

化工生产中惰性气体需用量取决于系统中氧浓度的下降值。见表5—12。

表5—12部分可燃物质最高允许含氧量,%

惰性气体用量,可根据上表数据按下面公式计算。

(1)所使用的惰性气体不含氧及其他可燃物 Vx=(21- O)÷O ×V

式中Vx——惰性气体用量,米3;O——从表5—12中查得氧的最高容许浓度,%;V——设备中原有的空气容积(其中氧占21%)。

例如乙烷,用氮气保护,最大容许含氧量为9%,设备内原有空气容积为100米3,则Vx=(21-9)÷9×100=133.3米3。

也就是说必须向空气容积为100米3的设备内送入133.3米3纯惰性气体,乙烷和空气才不能形成爆炸性混合物(但此时需注意,氮气可使人窒息).

(2)使用的惰性气体中含有部分氧Vx=(21-O)÷(O-O’)×V 式中,O’为惰性气体含氧浓度%,其他同前。例如在前述的条件下,若所加入的氮气中含氧6%,则 Vx =(21-9)÷(9-6)×100=400米3。通入400米3的氮气才是安全的。向有爆炸危险的气体及蒸气中添加保护气体时,应注意保护气体的漏失及空气的混入。为了防止事故发生,应当进行漏失量的测定。例如一个容器装两种气体混合物,其一是保护气体CO2,且CO2浓度随时间而变化,这种变化取决于从周围吸入的空气量。影响漏失量的因素有不严密处的几何尺寸及设备周围的空气压力等设备在正常情况下,这些因素都可取为常数。因此,漏失量C(米3/分)为 C=(2.303×V÷τ)lg(R0/Rτ) 式中V——容器的容

积,米3;τ——泄漏时间,分; R0——在τ=0时,CO2的百分含量, Rτ——在时间τ时CO2的百分含量。可以用分析的方法求得CO2的Ro及Rτ值。例如设容积为100米3,Ro=9.1%(CO2 ),分析测定Rτ值,列于下表:

即C≈10米3/分。

3.稀释气体在分解爆炸性气体中的使用

具有分解爆炸危险性的气体,如果超过其分解爆炸的临界压力是危险的,为此,可采用添加惰性气体进行稀释,以抑制爆炸的发生。我们把抑制爆炸所必要的稀释气体浓度,作为分解爆炸性气体—稀释气体的爆炸临界浓度。此值可由实验求得。见下例。

图5—3表示:使用铂丝作为点火源,测定的乙炔爆炸临界值。图中a线表示乙炔—水蒸气混合物中乙炔含量;b线表示点火临界压力;c线表示乙炔分压。图中,乙炔—水蒸气混合物,随着温度上升,水蒸汽浓度提高,乙炔浓度下降,其分压也有所降低,其点火临界压力上升。

图5—4、图5—5、图5—6分别表示乙炔—氢混合气体,乙炔—氮混合气体,乙炔

-惰性介质系列的爆炸临界值。

溶剂对乙炔的稳定作用

溶解于溶剂中的乙炔比气相乙炔稳定,即使直接在溶剂中给予点火能也不着火。在一定条件下,乙炔同溶剂或溶解在同一溶剂中的其他物质的反应非常快,但未发现爆炸。

将丙酮加入到小型耐压容器中,加压使乙炔溶解,测定在气相中点火分解爆炸的压力。如图5—7所示,总压低于7公斤/厘米2时,溶剂中乙炔不受气相爆炸影响。但高于7公斤/厘米2,溶剂中的乙炔也会引起分解爆炸。因此,总压在7公斤/厘米2以下时,溶剂中的乙炔较气相乙炔为稳定。

液氧中乙炔含量标准操作规程

液氧中乙炔含量标准操作规程 (比色法) 1、方法原理 借助于液氧的温度将试样中蒸发出的乙炔冻结(在标准大气压力下,乙炔的沸点为-83℃,液氧的沸点为-183℃)。被冻结的乙炔在常温下用氮气吹入乙炔吸收剂。在乙炔吸收剂的胶体溶液中,乙炔与氯化亚铜作用生成了均匀的紫红色溶液。利用分光光度法进行测定,可确定乙炔的含量。 反应式: 2Cu(NO3)2+4NH4OH+2NH2OH·HCl →Cu2Cl2+4NH4NO3+N2↑+6H2O ------ (1) Cu2Cl2 +C2H2+2NH4OH→Cu2C2+2NH4Cl+2 H2O ------------------------------------- (2) 2、仪器与设备 乙炔含量测定装置如图1所示。所需主要仪器: a.分光光度计; b.蒸发瓶:250mL; c.吸收瓶:20 mL; d.蛇形冷凝管:18~22圈; e.微量注射器:50μL; f.冰瓶:内径200mm,高250mm。 3、试剂与溶液 试剂与溶液如下: a.溶解乙炔:要求纯度在90%以上; b.氨水(1+1):取50 mL氢氧化铵,用水稀释到100 mL,摇匀; c.硝酸铜溶液:称取10g硝酸铜,溶解于100mL容量瓶中,用水稀释至刻度,摇匀; d.盐酸羟胺溶液:称取46 g盐酸羟胺,溶解于100mL容量瓶中,定容; e.白明胶溶液:称取0.5 g优质白明胶,加25mL水,加热使其溶解; f.无水乙醇; g.乙炔吸收液:在100mL容量瓶中,加入硝酸铜溶液5mL,氨水(1+1)5mL,盐酸羟胺溶液5mL,于沸腾水浴中加热还原成无色,在加入白明胶溶液4.5 mL及无水乙醇32mL,用水稀释至刻度,摇匀;

天然气管道安全置换方法的探讨

天然气管道安全置换方法的探讨 摘要:参考英国技术标准与燃气公司成熟经验,分析了3种城市天然气管道置换技术(直接置换、间接置换、阻隔置换),对天然气管道置换工艺参数的确定及控制方法进行了探讨,分析了置换方法在城镇管网和用户管道系统的应用。 关键词:城镇燃气管道;直接置换;间接置换;阻隔置换;置换技术 一、天然气置换方法 为确保安全,在长输管道和厂站的投产过程中一般都选用惰性气体置换。惰性气体置换虽然安全性方面比较好,但是操作复杂且成本高,在低压管道置换过程中一般采用天然气直接置换。本文结合英国燃气行业标准和国内实际工作,详细探讨城市天然气管网的置换安全及置换方法。 二、置换安全 天然气置换是一项非常危险的工作,若置换方案不当或操作失误,可能发生恶性事故,给人民群众的生命和财产造成损失。天然气置换的安全问题是在置换过程中首先要解决的问题,必须符合下述要求才允许实施置换工作。 1、置换前必须进行风险评估。 2、戴上适合的个人防护装置。 3、准备呼吸器并能正常使用。 4、准备灭火器并置于适当的位置。 5、管道内空气的置换应在强度试验、严密性试验、吹扫清管、干燥合格后进行。 6、间接置换应采用氮气或其他无腐蚀、无毒的惰性气体为置换介质。 7、现场必须设置“禁止火源”、“禁止吸烟”等安全警示标牌。 8、置换进气端处必须安装压力表,监测压力。 9、放散口高出地面2米以上。 10、要求管道在置换中接地,特别是连接pe管道时必须接地。 11、火源必须距离放散口的上风向5米以外。 12、确保气体能畅通无阻地排到大气中。 13、置换过程中放空系统的混合气体应彻底放 14、采用阻隔置换法置换空气时,氮气或惰性气体的隔离长度应保证到达置换管道末端空气与天然气不混合。 15、放空隔离区内不允许有烟火和静电火花产生。 16、置换管道末端应配备气体含量检测设备,当置换管道末端放空管口气体含氧量体积分数不大于2%或可燃气体体积分数大于95%时即可认为置换合格。 三、置换方法 按照采用的置换方式不同,将置换方法分为三类:直接置换、间接置换和阻隔置换。

新版氮气安全技术说明书

化学品安全技术说明书 修订日期:2014-7-20 SDS编号:KLSDS02 产品名称:氮气版本:01 第一部分化学品及企业标识 化学品中文名称:工业氮 化学品英文名称: nitrogen 企业名称:湖州南浔康龙气体有限公司 地址:湖州市菱湖镇竹墩工业集中区 邮编:313018 电子邮件地址: 传真号码: 应急咨询电话:0 技术说明书编号:KLSDS002 化学品推荐用途和限制用途:应用在气体配置,氮气惰性气体,常用作保护气体,如:瓜果,食品,灯泡填充气。液氮还可用作深度冷冻剂。高纯氮气用作色谱仪等仪器 的载气。用作铜管的光亮退火保护气体。氮气也作为食品保鲜保护气体的用途。在化工行业,氮气主要用作保护气体、置换气体、洗涤气体、安全保障气体。用作铝制品、铝型材加工,铝薄轧制等保护气体。用作回流焊和波峰焊配套的保护气体,提高焊接质量。用作浮法玻璃生产过程中的保护气体,防锡槽氧化。 第二部分危险性描述 紧急情况概述:压缩气体 GHS危险性类别:加压气体-压缩气体, 标签要素: 象形图: 警示词:警告 危险信息:含压力下气体,如受热可爆炸。 防范说明:防范措施:远离热源和火源;避免阳光直射。在运输中钢瓶上要加装安全帽和防震橡皮圈,穿防护服和戴手套。 事故响应:火灾时,使用水、泡沫、干粉、二氧化碳灭火。泄漏时,迅速撤离泄漏污染区人员至上风处,并进行隔离,严格限制出入。建议应急处理人员戴自给正压式呼吸器,穿一般作业工作服。尽可能切断泄漏源。合理通风,加速扩散。

安全储存:远离火种、热源。避免阳光直射,保管在通风良好的场所。 废弃处置:允许气体安全地扩散到大气中。 主要物理和化学危险信息:压缩气体,不支持燃烧,钢瓶容器受热易超压,有爆炸危险。健康危害:没有明显的毒性作用,由于无味、无色、无嗅,故空气中含量高时无法发觉,如果氧含量低于18%则威胁生命。缺氧症状为恶心、困倦、皮肤眼睑变青, 无知觉直至死亡。 环境危害:该物质对环境无危害。 第三部分成分/组成信息 第四部分急救措施 皮肤接触:若有皮肤冻伤,先用温水洗浴,再涂抹冻伤软膏,用消毒纱布包扎。 眼睛接触:立即翻开上下眼睑,用流动清水或生理盐水冲洗,就医。 吸入:迅速撤离现场到空气新鲜处;如呼吸停止,进行人工呼吸;如呼吸困难,给输氧。 食入:无资料 第五部分消防措施 危险特性:氮本身不燃烧,但盛装氮气容器与设备遇明火、高温可使器内压力急剧升高直至爆炸。 有害燃烧产物:无 灭火方法及灭火剂:用水冷却火场中容器,使用与着火环境相适应的灭火剂灭火。 灭火注意事项:灭火人员戴自给正压式呼吸器。 第六部分泄漏应急处理 作业人员防护措施、防护装备:大量泄漏时应急处理人员戴自给式呼吸器,穿工作服。 低温液体泄漏时应做好自身防护。 处置程序:迅速撤离泄漏污染区人员至上风处,并隔离直至气体散尽。切断气源,通风对流,稀释扩散。液氩泄漏时,须穿戴防护用具进入现场,保证现场通风。 让泄漏氮自行挥发。泄漏容器不能再用,及时返回厂家。

氮气安全技术说明书

氮气安全技术说明书 第1部分化学品及企业标识 化学品中文名称:氮气化学品英文名称:Nitrogen 产品代码:产品推荐用途:化肥、氨、硝酸等化合物的制造,惰性保护介质,速冻食品、低温 粉碎等的制冷剂、冷却剂,电子工业、化学气向淀积,还用作标准气、平衡气。产品限制用途:非说明书规定用途的其他任何用途 第2部分危险性概述 物理化学危险:无色无臭气体,比空气轻,不燃烧。有窒息性,在密闭空间内可将人窒息死亡。若遇高温,容器内压增大,有开裂和爆炸的危险。 健康危害:空气中氮气含量过高,使吸入气氧分压下降,引起缺氧窒息。吸入氮气浓度不太高时,患者最初感胸闷、气短、疲软无力;继而有烦躁不安、极度兴奋、乱跑、叫喊、神情恍惚、步太不稳,称之为“氮酩酊”,可进入昏睡或昏迷状态。吸入高浓度,患者可迅速出现昏迷、呼吸心跳停止而致死亡。潜水员深潜时,可发生氮的麻醉作用;若从高压环境下过快转入常压环境,体内会形成氮气气泡,压迫神经、血管或造成微血管阻塞,发生“减压病”。 环境危害:该物质对环境无危害,但氮大量排放时会使密闭空间的氧含量降低,有缺氧窒息的危险。 GHS危险性类别:标签要素: 象形图: 警示词: 危险信息:含压力下气体,如受热可爆炸;防范说明:预防措施:1、远离热源和火源。2、操作人员必须经过专门培训,严格遵守操 作规程。 事故响应:1、如发生泄露,建议应急处理人员戴自给式呼吸器。切断气源,然后抽排或强力通风。漏气容器不能再用,且要经过空气臵换以清除可能剩下的气体。2、皮肤接触:脱去污染的衣着,用清水彻底冲洗皮肤。3、眼睛接触: 提起眼睑,用流动清水或生理盐水冲洗,就医。 安全储存:不燃性压缩气体,保持容器密闭。远离火种热源。储存区应备有应 急处理设备。 废弃处臵:遵守国家和当地法律法规,自然通风处理。

氮气安全技术说明书

氮气安全技术说明书

氮气安全技术说明书 第1部分化学品及企业标识 化学品中文名称:氮气化学品英文名称:Nitrogen 产品代码:产品推荐用途:化肥、氨、硝酸等化合物的制造,惰性保护介质,速冻食品、低温 粉碎等的制冷剂、冷却剂,电子工业、化学气向淀积,还用作标准气、平衡气。产品限制用途:非说明书规定用途的其他任何用途 第2部分危险性概述 物理化学危险:无色无臭气体,比空气轻,不燃烧。有窒息性,在密闭空间内可将人窒息死亡。若遇高温,容器内压增大,有开裂和爆炸的危险。 健康危害:空气中氮气含量过高,使吸入气氧分压下降,引起缺氧窒息。吸入氮气浓度不太高时,患者最初感胸闷、气短、疲软无力;继而有烦躁不安、极度兴奋、乱跑、叫喊、神情恍惚、步太不稳,称之为“氮酩酊”,可进入昏睡或昏迷状态。吸入高浓度,患者可迅速出现昏迷、呼吸心跳停止而致死亡。潜水员深潜时,可发生氮的麻醉作用;若从高压环境下过快转入常压环境,体内会形成氮气气泡,压迫神经、血管或造成微血管阻塞,发生“减压病”。 环境危害:该物质对环境无危害,但氮大量排放时会使密闭空间的氧含量降低,有缺氧窒息的危险。 GHS危险性类别:标签要素: 象形图: 警示词: 危险信息:含压力下气体,如受热可爆炸; 防范说明:预防措施:1、远离热源和火源。2、操作人员必须经过专门培训,严格遵守操 作规程。 事故响应: 1、如发生泄露,建议应急处理人员戴自给式呼吸器。切断气源,然后抽排或强力通风。漏气容器不能再用,且要经过空气臵换以清除可能剩下 的气体。2、皮肤接触:脱去污染的衣着,用清水彻底冲洗皮肤。3、眼睛接触: 提起眼睑,用流动清水或生理盐水冲洗,就医。 安全储存:不燃性压缩气体,保持容器密闭。远离火种热源。储存区应备有应 急处理设备。 废弃处臵:遵守国家和当地法律法规,自然通风处理。

氮气保护乙炔氮气用量计算

化工生产中惰性气体需用量取决于系统中氧浓度的下降值。见表5—12。 表5—12部分可燃物质最高允许含氧量,% 惰性气体用量,可根据上表数据按下面公式计算。 (1)所使用的惰性气体不含氧及其他可燃物 Vx=(21- O)÷O ×V 式中Vx——惰性气体用量,米3;O——从表5—12中查得氧的最高容许浓度,%;V——设备中原有的空气容积(其中氧占21%)。 例如乙烷,用氮气保护,最大容许含氧量为9%,设备内原有空气容积为100米3,则Vx=(21-9)÷9×100=133.3米3。 也就是说必须向空气容积为100米3的设备内送入133.3米3纯惰性气体,乙烷和空气才不能形成爆炸性混合物(但此时需注意,氮气可使人窒息). (2)使用的惰性气体中含有部分氧Vx=(21-O)÷(O-O’)×V 式中,O’为惰性气体含氧浓度%,其他同前。例如在前述的条件下,若所加入的氮气中含氧6%,则 Vx =(21-9)÷(9-6)×100=400米3。通入400米3的氮气才是安全的。向有爆炸危险的气体及蒸气中添加保护气体时,应注意保护气体的漏失及空气的混入。为了防止事故发生,应当进行漏失量的测定。例如一个容器装两种气体混合物,其一是保护气体CO2,且CO2浓度随时间而变化,这种变化取决于从周围吸入的空气量。影响漏失量的因素有不严密处的几何尺寸及设备周围的空气压力等设备在正常情况下,这些因素都可取为常数。因此,漏失量C(米3/分)为 C=(2.303×V÷τ)lg(R0/Rτ) 式中V——容器的容

积,米3;τ——泄漏时间,分; R0——在τ=0时,CO2的百分含量, Rτ——在时间τ时CO2的百分含量。可以用分析的方法求得CO2的Ro及Rτ值。例如设容积为100米3,Ro=9.1%(CO2 ),分析测定Rτ值,列于下表: 即C≈10米3/分。 3.稀释气体在分解爆炸性气体中的使用 具有分解爆炸危险性的气体,如果超过其分解爆炸的临界压力是危险的,为此,可采用添加惰性气体进行稀释,以抑制爆炸的发生。我们把抑制爆炸所必要的稀释气体浓度,作为分解爆炸性气体—稀释气体的爆炸临界浓度。此值可由实验求得。见下例。 图5—3表示:使用铂丝作为点火源,测定的乙炔爆炸临界值。图中a线表示乙炔—水蒸气混合物中乙炔含量;b线表示点火临界压力;c线表示乙炔分压。图中,乙炔—水蒸气混合物,随着温度上升,水蒸汽浓度提高,乙炔浓度下降,其分压也有所降低,其点火临界压力上升。 图5—4、图5—5、图5—6分别表示乙炔—氢混合气体,乙炔—氮混合气体,乙炔

氮气置换方案

1 编制依据 1)《氮气置换要求》 2)SY0401-98《输油输气管道线路工程施工及验收规范》 3)SY/T5922-2003《天然气管道运行规范》 4)国家和行业现行的有关规定、规范和验收标准 5)同类工程施工经验 2 质量保证计划 2.1.1所标记的标准制品(可燃气体检测仪)的现有产品在类似工程中有满意的性能记录,产品符合技术规范。 2.1.2 根据进行的工作,不论完成到什么程度,随时接受项目监理的检查。 2.1.3 随时准备接受质量管理部门对工程质量的检查。 2.1.4 对管道工程中置换接口的施工,按业主、监理指定的焊接工艺规程的要求进行。 3 质量控制要点及要求 3.1置换不留盲端,在所有的气头检测点2分钟内每隔30秒检测1次,连续三次检测,每次检测仪检测到可燃气体量均在1%以下,且保持一致。 3.2 注氮量以管线和设备有氮气压力≥0.02MPa为准,最终保持稳定。 3.3注氮温度、速度严格控制,满足《氮气置换技术要求》。 3.4可燃气体检测仪有校验证书记录设备系列号。

置换质量控制流程图 4 施工部署 施工指导思想 我们的置换施工指导思想是在确保符合QHSE相关要求下,不惜一切人力物力,视项目建设所需,确保工程质量达到要求,确保干燥置换施工进度按计划和项目总体要求进行。 根据项目输气支线工程特点,我们制定出如下施工总部署: 1)根据各工序特点,合理安排施工步骤,使各工序环环紧扣先全部完成线路的降压放空,再进行充氮置换。 2)合理调配施工人员和设备 在置换施工时实行各工序流水线作业,逐段推进的方式。准备工作如场地清

理平整、平整,设备倒场就位、流程连接、注氮工作分别交给专门机组完成。可燃气体检测由检测组独立承担。 5 总体施工方案 5.1 总体施工流程 5.2置换开展的必要条件及准备 1. 全线路天然气降压、放空。 2. 临时用地、施工审批等各项手续办妥;临时用电、工农关系等协调完毕。 3. 置换的设备、机具、仪器、人员就位,流程连接完毕。 4. 必须接到本次动火连头现场领导组的指令方可进行施工。 5.3全线路管线、阀室及站场管网、装置充氮置换天然气 1 充氮置换目的 因新建管线H1桩至万通化工管道即将投产,须与临港分输站至成城沥青计量站段老管道连通,但由于老管道内天然气是易燃气体,若直接进行动火连头施工作业,必将产生爆炸造成事故,为了避免造成不必要的损失,保证连头作业在安全的条件下顺利进行,需要在连头作业前对管中天然气进行充氮置换。 2 全线充氮方案 根据《氮气置换技术要求》,采用无腐蚀、无毒害的惰性气体作为隔离介质,采用无隔离清管器方案及“气推气”方式。

防止氮气泄露安全措施(新版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 防止氮气泄露安全措施(新版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

防止氮气泄露安全措施(新版) 1、目的: 因氮气泄漏能引起人员氮气窒息,为有效的预防氮气泄漏窒息事故的发生,确保员工生命、财产安全和生产正常进行,特制定本措施。 2.1、组织指挥机构: 总指挥:彭闯 副总指挥:张奉海、李卫军、黄德龙(总指挥因故不能承担指挥职责,依次由副总指挥承担总指挥职能) 现场指挥:王国伟、张爱国 成员:公司全部员工、监理工程师、各施工单位员工 2.2、职责 (一)领导指挥小组职责

1、全面掌握事故过程及危害程度; 2、安排公司相关部门人员赶赴现场指挥事故处理工作; 3、对事故进行调查了解,按照“四不放过”原则加强管理。 (二)现场指挥职责 1、接到事故报警后,立即赶到事故现场组织事故抢救,防止和控制事故蔓延扩大; 2、根据事故严重程度及时落实有关人员按规定时间向有关部门上报事故情况,不得谎报、瞒报、拖延不报; 3、氮气理化特性 中文名:氮(氮气) 英文名:Nitrogen 分子式:N2 相对分子量:28.01本品为无色无臭气体。本品商品纯度:高纯氮≥99.9%;工业一级≥99.5%;二级≥98.5%。熔点:-209.8℃。沸点-195.6C。相对密度(水21)0.81(·196~:);相对密度(空气=1)0.97。饱和蒸气压1026.42KPa(-173℃)。临界温度-147℃。临

氮气安全技术说明书MSDS

氮气安全技术说明书 第一部分化学品名称及企业标识 化学品中文名称:氮 化学品俗名:氮气 化学品英文名称: nitrogen 技术说明书编码: 33 CAS No.:7727-37-9 企业名称:武汉纽瑞德特种气体有限公司 第二部分:成分/组成信息 第三部分:危险性概述 危险性类别: 侵入途径: 健康危害:空气中氮气含量过高,使吸入气氧分压下降,引起缺氧窒息。吸入氮气浓度不太高时,患者最初感胸闷、气短、疲软无力;继而有烦躁不安、极度兴奋、乱跑、叫喊、神情恍惚、步态不稳,称之为“氮酩酊”,可进入昏睡或昏迷状态。吸入高浓度,患者可迅速昏迷、因呼吸和心跳停止而死亡。潜水员深替时,可发生氮的麻醉作用;若从高压环境下过快转入常压环境,体内会形成氮气气泡,压迫神经、血管或造成徽血管阻塞,发生“减压病”。 环境危害: 燃爆危险:本品不燃。 第四部分:急救措施 皮肤接触: 眼睛接触: 吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。呼吸心跳停止时,立即进行人工呼吸和胸外心脏按压术。就医。 食入: 第五部分:消防措施 危险特性:若遇高热,容器内压增大,有开裂和爆炸的危险。

有害燃烧产物:氮气。 灭火方法:本品不燃。尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。 第六部分:泄漏应急处理 应急处理:迅速撤离泄漏污染区人员至上风处,并进行隔离,严格限制出入。建议应急处理人员戴自给正压式呼吸器,穿一般作业工作服。尽可能切断泄漏源。合理通风,加速扩散。漏气容器要妥善处理,修复、检验后再用。 第七部分:操作处置与储存 操作注意事项:密闭操作。密闭操作,提供良好的自然通风条件。操作人员必须经过专门培训,严格遵守操作规程。防止气体泄漏到工作场所空气中。搬运时轻装轻卸,防止钢瓶及附件破损。配备泄漏应急处理设备。 储存注意事项:储存于阴凉、通风的库房。远离火种、热源。库温不宜超过30℃。储区应备有泄漏应急处理设备。 第八部分:接触控制/个体防护 中国MAC(mg/m3):未制定标准 前苏联MAC(mg/m3):未制定标准 TLVTN: ACGIH 窒息性气体 TLVWN:未制定标准 监测方法: 工程控制:密闭操作。提供良好的自然通风条件。 呼吸系统防护:一般不需特殊防护。当作业场所空气中氧气浓度低于18%时,必须佩戴空气呼吸器、氧气呼吸器或长管面具。 眼睛防护:一般不需特殊防护。 身体防护:穿一般作业工作服。 手防护:戴一般作业防护手套。 其他防护:避免高浓度吸入。进入罐、限制性空间或其它高浓度区作业,须有人监护。 第九部分:理化特性 外观与性状:无色无臭气体。 pH: 熔点(℃): 相对密度(水=1): (-196℃) 沸点(℃):

液氧中乙炔含量比色检验分析法

液氧中乙炔含量比色法分析检验标准操作规程 1 方法原理 借助于液氧的温度将试样中蒸发出的乙炔冻结(在标准状态下,乙炔的沸点为-83℃,液氧的沸点为-183℃),被冻结的乙炔在常温下用氮气吹入乙炔吸收剂在乙炔吸收剂的胶体溶液中,乙炔与氯化亚铜作用生成了均匀的紫红色溶液。 2 试剂:硝酸铜、25%氨水、硫酸、氢氧化钠、盐酸氢铵、甲基橙指示剂、白 明胶、95%无水乙醇、硝酸钴、硝酸铬 3 材料及装置:500-1000ml液氧蒸发瓶,蛇形冷凝管,吸收瓶,保温瓶、高 纯氮 4 乙炔吸收剂的配制 4.1 硝酸铜溶液的配制:称取33g(实际3.3)硝酸铜,用蒸馏水溶解至1L(实 际100), 4.2 10%氨水的配制及0.53g氨水的滴定 10%氨水的配制:取400ml25%氨水,用蒸馏水稀释至1L(每次配1/10即可) 0.53g氨水的滴定:取50ml1N硫酸与三角烧瓶中,加入2滴甲基橙指示剂,用 移液管加入5ml10%氨水再用1N氢氧化钠反滴定。 4.3 盐酸羟氨溶液的配制:称取57.5g盐酸羟氨,用蒸馏水稀释至1L 4.4 2%白明胶溶液的配制:称取2g明胶在加热情况下溶解于100ml蒸馏水中, 待溶解均匀后盖上软木塞,冷却保存,有效期1个星期。 4.5 100ml乙炔吸收剂的配制:在100ml容量瓶中加入加入硝酸铜溶液15ml, 10%氨水,使含量正好为0.53g(5.5ml),在加入40ml盐酸羟氨溶液,(不要马 上振荡)待溶液还原成无色后再加入2%白明胶溶液4.5ml,95%无水乙醇28ml, 然后用蒸馏水稀释至刻度,振荡均匀,反应生成的氮气要及时放出,以免容量瓶 爆破。配制好的溶液放暗处保存。 5 测定步骤: a用液氧蒸发瓶准确取液氧500-1000ml; b将洗净干燥的蛇形冷凝管慢慢侵入装有液氧的保温瓶中,并迅速与液氧蒸 发瓶相接,使试样在常温自然下蒸发。 C待所有液氧试样蒸发完后,用缓慢的氮气流吹洗15分钟赶走残余气体。 d关闭氮气阀门及蒸发瓶进口的螺旋夹,将冷凝管接于装有10ml乙炔吸收剂 的吸收瓶上。吸收瓶的个数有乙炔含量多少来确定,一般用1-2各,从保温瓶中 缓慢取出蛇形冷凝管,使气体通过吸收瓶的速度必须一个气泡接一个气泡,不宜

氮气安全技术说明书(1通过)

化学品安全技术说明书 修订日期:2016年11月15日 SDS编号:LGHH-009 产品名称:氮气版本:LG-MSDS-2016 第一部分化学品及企业标识 化学品中文名称:氮气 化学品英文名称:Nitrogen 企业名称:邯郸市xxx工有限公司 地址:河北省xx合义路2号 邮编: 057450 传真:0310-xx77885 联系电话:00310-xx350129 电子邮件地址:wxaqlichao@https://www.doczj.com/doc/2d3582431.html, 企业应急咨询电话:0310-xx77750 产品推荐及限制用途:用于合成氨、制硝酸,用于物质保护剂、冷冻剂。 第二部分危险性概述 紧急情况概述:压缩气体,钢瓶容器受热易超压,有爆炸危险。空气中氮含量过高,使 吸入气氧分压下降,引起缺氧窒息。潜水员深潜时,可发生麻醉作用,若从高压环境下 过快转入常压环境,体内会形成氮气气泡,压迫神经、血管或造成微血管阻塞,发生“减 压病”。该物质对环境无危害。 GHS危险性类别:根据化学品分类、警示标签和警示说明规范系列标准(参阅第十 五部分),该产品属于压力下气体,类别压缩气体;压力下气体,类别液化气体。 标签要素: 象形图:

警示词:警告 危险信息:内装高压气体,如加热可爆炸。 防范说明: 预防措施:回避热源;禁止在靠近热源或明火处使用或贮存;贮存于密封的 容器中;置于阴凉处;在运输中钢瓶上要加装安全帽和防震橡皮 圈。 事故响应:万一泄露,撤离危险区,咨询专家; 万一发生吸入性事故,将患者移至新鲜空气处并保持安静;如呼 吸停止,进行人工呼吸,如果呼吸困难,供给氧气。 安全储存:避免阳光直射,置于阴凉处,禁止在靠近热源或明火处使用或贮 存;贮存于密封的容器中。 废弃处置:允许气体安全地扩散到大气中。 物理化学危害:压缩气体,不支持燃烧,钢瓶容器受热易超压,有爆炸危险。 健康危害:空气中氮含量过高,使吸入气氧分压下降,引起缺氧窒息。吸入氮气浓度不太高时,患者最初感胸闷、气短、疲软无力:继而有烦躁不安、极度兴奋、 乱跑、叫喊、神情恍惚、步态不稳,称之为“氮酩酊”,可进入昏睡或昏迷 状态。吸入高浓度,患者可迅速出现昏迷、呼吸心跳停止而致死亡。潜水员 深潜时,可发生麻醉作用,若从高压环境下过快转入常压环境,体内会形成 氮气气泡,压迫神经、血管或造成微血管阻塞,发生“减压病”。 环境危害:该物质对环境无危害。 第三部分成分/组成信息 √物质混合物 危险组分浓度或浓度范围CAS No. 氮气≥99.5% 7727-37-9 第四部分急救措施 急救: -吸入:迅速撤离现场到空气新鲜处;如呼吸停止,进行人工呼吸;如呼吸困难,给输氧。

化学品安全技术说明书(氮气)

化学品安全技术说明书 (氮气) (液氮) 第一部分 化学品及企业标识 化学品中文名称:氮气(压缩的) (液化的) 化学品俗名或商品名:工业用瓶装压缩氮气 液氮 化学品英文名称:(压缩的) NITROGEN COMPRESSED (液化的) NITROGEN REFRIGERATED LIQUID 第二部分 成分 /组成信息 工业氮 GB/T 3864-2008 项 目 指 标 优等品 一等品 合格品 氮气纯度 10-2 (V/V )≧ 99.5 99.5 99.2 氧含量 10-2(V/V )≦ 0.5 0.5 1.5 水 游离水 mL/ 瓶≦ - 无游离水 100 份 露点 ≦ - 43℃ - - 纯氮: GB/T 8979-2008 项 目 指 标 优等品 一等品 合格品 氮纯度: 10-2(V/V ) ≧ 99.996 99.99 99.95 氧含量: 10-6(V/V ) ≦ 10 50 500 氢含量: 10-6 (V/V ) ≦ 5 10 - 2、CH 4 总含量 10 -6 (V/V ) ≦ 15 20 - CO 、 CO 水含量: 10-6 (V/V ) ≦ 5 15 20 高纯氮: GB/T 8979-2008 项 目 指 标 优等品 一等品 合格品 氮纯度: 10-2 (V/V ) ≧ 99.9996 99.9993 99.999 氧含量: 10-6 (V/V ) ≦ 1.0 2.0 3.0 氢含量: 10-6(V/V ) ≦ 0.5 1.0 1.0 CO 、 2、CH 4 总含量 10-6 (V/V ) ≦ 1.0 2.0 3.0 CO 水含量: 10-6 (V/V ) ≦ 1.0 2.6 5.0

氮气-化学危险品安全技术说明书.

氮气安全技术说明书 (MSDS) 一标识 中文名氮;氮气英文名nitrogen 分子式N2 相对分子量28.01CAS号7727-37-9 危险性第2.2类不燃气体化学类别非金属单质 二主要组成与性状 主要成分含量高纯氧≥99.999% 工业级一级≥99.5% 二级≥98.5%。外观与性状无色无臭气体。主要用途用于合成氨,制硝酸,用作物质保护剂、冷冻剂。 三健康危害 侵入途径吸入 健康危害空气中氮气含量过高,使吸入气氧分压下降,引起缺氧窒息。吸入氮气浓度不太高时,患者最初感胸闷、气短、疲软无力;继而有烦躁不安、极度兴奋、乱跑、叫喊、神情恍惚、步态不稳,称之为“氮酩酊”,可进入昏睡或昏迷状态。吸入高浓度,患者可迅速出现昏迷、呼吸心跳停止而死亡。 四急救措施 吸入迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难给输氧。如呼吸停止,立即进行人工呼吸和胸外心脏按压术。就医。 五燃烧特性与消防 燃烧特性不燃闪点(℃)无意义爆炸下限(%)无意义爆炸上限(%)无意义 危害特性若遇高热,容器内压增大,有开裂和爆炸的危险。 灭火方法本品不燃。用雾状水保持火场中的容器冷却。 六泄漏应急处理 迅速撤离泄漏污染区人员至上风处,并进行隔离,严格限制出入。建议应急处理人员戴自给正压式呼吸器,穿一般作业工作服,不要直接接触泄漏物,尽可能切断泄漏源。合理通风,加速扩散。漏气容器要妥善处理,修复,检验后再.用。 七储运注意事项 不燃性压缩气体。储存于阴凉、通风仓间内。仓间温度不宜超过30℃。远离火种、热源,防止太阳直射。验收时注意品名,注意验瓶日期,先进仓的先发用。搬运时轻装轻卸,防止钢瓶及附件破损。 八防护措施 呼吸系统防护一般不需特殊防护。当作业场所空气中氧气浓度低于18%时,必须佩带空气呼吸器,氧气呼吸器或长管面具。眼睛、身体防护一般不需要特殊防护。手防护戴一般作业防护手套。 其他避免高浓度吸入。进入罐、限制性空间或其他高浓度区作业,须有人监护。 九环境资料及废弃 对环境无害,允许气体安全地扩散到大气中。

乙炔安全

聚氯乙烯树脂生产中乙炔工段防火防爆安全技术措施探讨 -------------------------------------------------------------------------------- 摘要:采用电石法工艺路线生产聚氯乙烯树脂,因工艺过程存在易燃易爆物质乙炔,防火防爆尤为重要。依据国家法律法规、国家或行业规范、标准,结合实际进行研究,提出防火防爆安全技术措施,对聚氯乙烯树脂生产乙炔工段防火防爆有一定的指导作用。 1 乙炔工段工艺流程 乙炔工段工艺流程图见图1 图1 乙炔工段工艺流程图 桶装或袋装电石经过破碎机破碎后,由皮带机送到电石大贮斗内,再从电石大贮斗放入加料斗,经计量后借电石吊斗、电动葫芦、电磁振动器连续加入乙炔发生器。电石水解产生的粗乙炔气由乙炔发生器顶部逸出,经喷淋预冷器、正水封进入冷却塔和乙炔气柜。来自发生器经冷却后的乙炔气,进入乙炔压缩机加压,然后经清净塔除去粗乙炔气中的PH3、H2S等杂质,再经中和塔、冷凝器等除去酸和水分。精制后的精乙炔气送往氯乙烯合成转化工序。 2 乙炔易燃易爆性分析 乙炔工段主要存在易燃易爆物质乙炔。 乙炔的沸点为-83.6℃,凝固点-85℃,在常温常压下比空气略轻、溶于水和有机溶剂的无色可燃气体;工业生产的乙炔含有磷、硫等杂质时带有刺激性臭味,性质活泼;乙炔纯度、操作压力和温度越高,越容易爆炸,在高温、高压下具有强烈的爆炸能力;乙炔爆炸极限范围很宽,在空气中为2.5%~82%(其中7%~13%最易爆炸,最适宜的混合比为13%),在纯氧中为2.3%~93%(其中30%最易爆炸),属于快速爆炸混合物,其爆炸延滞时间只有0.017s,一旦遇到火源,即可发生火灾爆炸事故。 乙炔与游离氯易反应生成氯乙炔,此物质很不稳定,遇光、振动等就能发生爆炸。乙炔还可以和铜、银发生反应生成不稳定具有爆炸性的乙炔铜、乙炔银。 3 乙炔防火防爆安全技术措施 乙炔工段是具有爆炸危险的生产工艺过程,生产装置、设备应具有承受超压性能和完善的生产控制手段,应设置可靠的温度、压力、流量、液面等工艺参数的控制仪表和控制系统,对工艺参数控制要求严格的工艺应设置双系列控制仪表和控制系统;还应设置必要的超温、超压报警、影视、泄压、抑制爆炸装置和防止高低压窜气(液)、紧急安全排放装置。 (1)乙炔生产厂房应为一、二级耐火建筑,建筑物应用钢筋混凝土框架结构。储存电石的仓库、粉碎电石岗位的建筑应按照《建筑设计防火规范》的有关规定设计采取必要的防爆、泄压措施;厂房最好为单层结构,若必须设计成多层时,乙炔发生器应放在顶层;厂房地面采用不发火地面,门窗向外开启;生产厂房、

输气管道投产中氮气置换的原则及技巧分析

输气管道投产中氮气置换的原则及技巧分析 摘要:输气管道是我国能源输送当中的一种重要输送方式,通过输气管道将我 国的重要能源输送到城市当中的各个角落。在我国的输气管道建设工作当中,国 家不断的重视输气管道的铺设工作,在许多方面都有很大的投入。近年来,随着 我国输气管道的建设工作不断加强,在一定程度上缓解了我国城市当中的能源使 用情况。输气管道中的投产氮气置换,是输气管道当中的一项重要工作,对输气 管道事业的发展有着重大的影响。本文就对输气管道投产中氮气置换的原则及技 巧展开分析。 关键词:输气管道;投产中氮气置换;原则;技巧 引言 我国最大的输气管道------西气东输一线,在投产以来在城市发展的许多方面 都得到了很好的应用,为我国的能源输送提供了很大帮助。以我国目前的输气管 道置换技术来看,经过长期的发展形成有许多先进的技术,例如输气管道投产中 氮气置换所需要的计算公式、置换方式等等,但是输气管道投产中氮气置换仍然 不够完善,在投产中氮气置换工作有很多不必要的操作。输气管道投产中氮气置 换的原则及技巧的合理性对氮气置换工作十分重要。 1 输气管道的投产过程 输气管道投产是指将管道中的空气全部替换为天然气,并升压至所要求的压力,然后进行72小时的试运行过程。先用惰性气体氮气置换空气,然后用天然 气置换氮气。为了减少氮气的使用,在实际的输气管道投产工作当中,往往是在 输气管道中将氮气注入首站是某一干线截断点之间的管道中封存。然后在管道当 中输入天然气,通过天然气会推动氮气进行全线换置,通过计算公式的合理计算 注入适当的氮气,达到既保证满足输气管道投产工作的要求,同时其最大可能地 发挥出氮气的使用效率,帮助减少氮气能源的消耗。在实际的输气管道投产过程 当中,通常使用的是干线和站场同时进行氮气置换的置换方式,在投产过程当中,输气管道的上游气压较大,所以需要通过压力调节阀对天然气进行节流降压才能 够保障氮气进行合理的置换工作。输气管道的投产工作是保障输气管道正常运作 的主要工作内容之一,在其中的氮气应用也要尽可能的避免浪费。在进行输气管 道投产过程中的氮气置换工作之前,需要利用相关的科学手段对即将开始的置换 工作做好前期的准备工作,利用先进的计算方式和置换方式去进行输气管道投产 过程中的氮气置换。 2 输气管道投产中氮气置换的原则 2.1 输气管道投产充氮量和干线注氮长度合理的原则 在进行输气管道投产氮气置换工作过程当中,需要合理的协调投产充氮量和 干线注氮长度,输气管道投产充氮量是指在在输去管道中注氮工作结束之后,管 道中所封存的纯氮气量,干线注氮长度是指在微正压和实际温度下投产充氮量对 应的干线长度。只有将输气管道投产充氮量和干线注氮长度进行合理的计算,才 能将投产工作进行简化。在我国实际的输气管道投产充氮工作当中,干线注氮长 度的计算方式,通常做法是取管道的总长度的某个固定百分比。这种方式在一定 程度上忽视了整个输气管道中的干线存在着一定的差异性,和输气管道中间站场 的数量种类的差异性。这种差异性使得相同长度和管径的输气管道投产所需的干 线注氮长度是不同的。所以干线注氮长度计算方式也有所不同。输气管道投产中 氮气置换工作当中要严格遵循输气管道投产充氮量和干线注氮长度合理的原则。

氮气保护安全技术标准

氮气保护安全技术标准内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

氮气保护安全技术标准 一、【背景介绍】 1、易燃易爆物料与空气形成爆炸性气体,为了降低爆炸风险,在生产过程中通入惰性 气体,控制氧气含量在爆炸极限以下,使混合气体(气相)惰性化,达到防爆目的。 2、易燃易爆物料包括:易燃液体(有机溶剂)形成的蒸发、可燃气体、可燃粉尘。 3、惰性气体:一般情况下使用氮气作为惰性气体。 二、【技术要求】 1、易燃易爆物料只要氧气含量在某个值以下(极限氧含量LOC),就不会 发生爆炸, 不同的物质有不同的极限氧含量LOC值。 常用易燃易爆物料极限氧含量LOC值 2、氢气的极限氧含量(%)4.5为所有物料中最低的,考虑安全系数,设定氮气置换 后极限氧含量LOC 3%是安全可靠的。

2、公司所有溶剂储罐、反应釜、接受罐、离心机等使用易燃易爆有机溶 剂、易燃易爆 可燃气体、易燃易爆粉尘的设备(评估),都需要氮气保护。 )≥99%(工艺特殊要求除外),氮气总管压力≥ 4、氮气的纯度(N 2 0.3Mpa。 三、【实施指南】 1、氮气保护控制方式 a)手动进氮气方式:利用氮气压力表和阀门进行手动控制。 b)自动进氮气方式:利用氮封阀装置(压力差)进行自动控制。 2、氮气保护装置安装 a).溶剂储罐: a).1.安装带呼入、呼出口的阻火式呼吸器。见图 a).2.呼入口接氮气或氮封装置。 a).3.呼出口集中接至排气总管,经管道阻火器(见图)接至 冷凝器或末端尾气处理设施处理后排放。 注意:溶剂储罐第一次使用时,用氮气置换后方可打入溶剂。 a).4.溶剂贮罐安装示意图 b).溶剂接受罐:

氮气安全技术说明书

化学品安全技术说明书 编制按照GB/T 16483、GB/T17519 产品名称:氮气 ******** 编号:SDS 最新版修订日期:2014年11月10日 版本:******* 化学品及企业标识部分第1 别名:化学品中文名:氮气 Nitrogen化学品英文名:*** 企业名称:******* 企业地址: ******电话号码******** 电子邮件地址:****** 应急咨询电话:编:******* 邮 ******** 传真:产品推荐及限制用途:用于合成氨、制硝酸,用于物质保护剂、冷冻剂。危险性概述第2部分 紧急情况概述:压缩气体,不支持燃烧。无明显毒副作用,但氮含量过高,使吸入气氧分压下降,引起缺氧窒息。液氮可对皮肤、眼、呼吸道造成冻伤。对环境无害。 GHS危险性类别: 加压气体压缩气体

标签要素: 象形图: 警示词:警告 危险性说明:含压力下气体,如受热可爆炸。 防范说明: ·预防措施: ——远离热源和火源;避免阳光直射。在运输中钢瓶上要加装安全帽和防震橡皮圈,穿防护服和戴手套。 ·事故响应: ——吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给氧。如呼吸停止,立即进行人工呼吸。就医。 ——食入:无意义 ——皮肤接触:无意义 ——眼睛接触:无意义 ——火灾时,使用水、泡沫、干粉、二氧化碳灭火。泄漏时,迅速撤离泄漏污染区人员至上风处,并进行隔离,严格限制出入。建议应急处理人员戴自给正压式呼吸器,穿一般作业工作服。尽可能切断泄漏源。合理通风,加速扩散

·安全储存: ——储存于阴凉、通风良好的专用库房或储罐内,远离火种、热源。避免阳光直射。 ——应与易燃物或可燃物分开储存; ——气瓶受热有爆炸危险气瓶储运应轻装、轻卸,防止钢瓶及附件破损。 ·废弃处置: ——允许气体安全地扩散到大气中。 物理和化学危险:压缩气体,不支持燃烧,钢瓶容器受热易超压,有爆炸危险。 健康危害:空气中氮含量过高,使吸入气氧分压下降,引起缺氧窒息。吸入氮气浓度不太高时,患者最初感胸闷、气短、疲软无力:继而有烦躁不安、极度兴奋、乱跑、叫喊、神情恍惚、步态不稳,称之为“氮酩酊”,可进入昏睡或昏迷状态。吸入高浓度,患者可迅速出现昏迷、呼吸心跳停止而致死亡。潜水员深潜时,可发生麻醉作用,若从高压环境下过快转入常压环境,体内会形成氮气气泡,压迫神经、血管或造成微血管阻塞,发生“减压病”。 该物质对环境无危害。环境危害: 第3部分危险性概述 √物质混合物 组分浓度或浓度范围CAS No. 氮气≥99.5%

液氧中乙炔含量的比色法分析

液氧中乙炔含量的比色法分析 1、方法原理 借助于液氧的温度将试样中蒸发出的乙炔冻结(在标准大气压力下,乙炔的沸点为-83℃,液氧的沸点为-183℃)。被冻结的乙炔在常温下用氮气吹入乙炔吸收剂。在乙炔吸收剂的胶体溶液中,乙炔与氯化亚铜作用生成了均匀的紫红色溶液。利用分光光度法进行测定,可确定乙炔的含量。 反应式: 2Cu(NO3)2+4NH4OH+2NH2OH·HCl → Cu2Cl2+4NH4NO3+N2↑+6H2O ------ (1)Cu2Cl2 +C2H2+2NH4OH→Cu2C2+2NH4Cl+2 H2O --------(2) 2、仪器与设备 乙炔含量测定装置如图1所示。所需主要仪器: a.分光光度计; b.蒸发瓶:250mL; c.吸收瓶:20 mL; d.蛇形冷凝管:18~22圈; e.微量注射器:50μL; f.冰瓶:内径200mm,高250mm。 3、试剂与溶液 试剂与溶液如下: a.溶解乙炔:要求纯度在90%以上; b.氨水(1+1):取50 mL氢氧化铵,用水稀释到100 mL,摇匀; c.硝酸铜溶液:称取10g硝酸铜,溶解于100mL容量瓶中,用水稀释至刻度,摇匀; d.盐酸羟胺溶液:称取46 g盐酸羟胺,溶解于100mL容量瓶中,定容; e.白明胶溶液:称取0.5 g优质白明胶,加25mL水,加热使其溶解; f.无水乙醇; g.乙炔吸收液:在100mL容量瓶中,加入硝酸铜溶液5mL,氨水(1+1)5mL,盐酸羟胺溶液5mL,于沸腾水浴中加热还原成无色,在加入白明胶溶液4.5 mL及无水乙醇32mL,用水稀释至刻度,摇匀; h.氮气。

4、标准曲线的绘制 4.1 以乙炔气体制备标准 标准曲线的绘制如下: a.在6支25mL容量瓶中,分别加入乙炔吸收液至刻度,并盖上胶塞; b.用50μL的微量注射器分别向容量瓶的乙炔吸收液内注入5、10、15、 20、25、30μL已知纯度的乙炔气,摇匀; 根据公式1计算出每毫升吸收液相当于含有乙炔的体积: C i=C1×V i -----------------------------------------(1) V1 式中:C i ----------容量瓶中每毫升吸收液相当于含有乙炔的体积,μL/mL; C1 ----------乙炔气的纯度,%; V i----------注入到容量瓶乙炔的体积,μL; V1----------容量瓶中吸收液的体积,mL。 c.室温下放置30min,在波长540nm处,用3cm的玻璃吸收池,以乙炔吸收液为空白测其吸光度A; d.以每个容量瓶中所含乙炔的浓度为横坐标,吸光度A为纵坐标,绘制 标准曲线。 4.2乙炔人造标准色阶的配制 见附录2 5、测定步骤 a.用蒸发瓶取0.25L的液氧试样,迅速连接在事先浸在装有液氧冰瓶中的冷凝管上,盖紧橡皮塞,在蒸发瓶内液氧蒸发过程中,不断向冰瓶内添加冷却用液氧; b.当蒸发瓶内液氧全部蒸发完后,接通氮气,打开螺旋夹调节氮气以每秒2~3个气泡的流量吹洗系统10min; c.关闭螺旋夹,将蛇形冷凝管出口接在装有10 mL乙炔吸收液的吸收瓶上,然后将冷凝管慢慢地从冰瓶中取出,使乙炔自然蒸发并被吸收,当吸收瓶内不再冒气泡时,打开螺旋夹,仍以每秒2~3个气泡的流量向系统通氮气15min,使乙炔从蛇形冷凝管中全部驱除而被吸收; d.吸收完毕后,将吸收液倒入3cm的玻璃吸收池中,在波长540nm处,以乙炔吸收液为空白进行比色,测定其吸光度A,根据吸光度A从标准曲线上查出每毫升吸收液相当于含有乙炔的体积。 6、测定结果 液氧中乙炔的含量按公式2计算: C=C i×V g×10-3 ---------------------------------------(2)

相关主题
文本预览
相关文档 最新文档