当前位置:文档之家› 光伏电站不同电压系统直流侧串联数

光伏电站不同电压系统直流侧串联数

光伏电站不同电压系统直流侧串联数

光伏电站不同电压系统直流侧串联数

1MWp光伏阵列。光伏阵列所处纬度:35°;光伏组件为60片多晶硅265W组件,其中Vmppt=30.8V,Imppt=8.6A;

1000V系统的组串数采用22,组串并联数182回;组件至汇流箱电缆采用1×4mm2;汇流箱采用16回路汇流箱,对应数量取11台,汇流箱出线电缆截面相应采用1×70mm2。

1500V系统的组串数采用34,组串并联数112回;组件至汇流箱电缆采用1×4mm2;汇流箱采用16回路汇流箱,对应数量取7台,汇流箱出线电缆截面相应采用1×70mm2。

光伏发电系统的效率最优化研究

光伏发电系统的效率最优化研究 在能源枯竭与环境污染问题日益严重的当今世界,光伏发电成为可再生能源领域中最清洁、最现实、最有大规模开发利用前景的发电方式之一。然而,光伏电池的输出特性具有强烈的非线性,且受外界环境因素影响大,所以如何有效的利用太阳能,提高太阳能利用效率,成为太阳能利用中一个迫切需要解决的问题。本文以光伏发电系统为研究对象,以最大限度利用太阳能为主要目标,展开了光伏发电系统效率最优化的理论和实验研究。 具体说来,本文的主要研究内容可归纳如下: 一、概述了光伏发电系统的组成,根据不同场合的需要,对光伏发电系统进行了分类,并介绍了目前我国光伏发电技术的应用。在此基础上,详细分析了光伏电池板的工作原理,采用MATLAB对同一光照强度下的光伏电池模型进行仿真,并将具有强寻优能力的仿真软件1st0pt率先用在光伏电池模型的仿真上,得出光照强度不断变化条件下的电流—电压,功率—电压的二维曲线,并且得出电流—电压—光照和功率—电压—光照的三维曲线。仿真曲线很直观地表示出电池的输出电流和电压的对应关系,同时也表明:光伏电池既非恒压源,也非恒流源,它不可能为负载提供任意大的功率;光伏电池特性具有强烈的非线性,并且其输出功率受到日照等周围环

境因素的影响。 二、在实验室现有的110W。光伏电池的基础上,分别对光照不变和光照变化条件下的光伏电池进行实验测试,并将实验数据拟合成曲线,从而得到110W。光伏电池的实际输出特性曲线,实际输出曲线不仅很好地表明了光伏电池输出特性强烈的非线性,而且对以后的仿真研究有很大的实际价值,为实验验证打下了基础。 三、分析比较了几种传统光伏发电系统效率优化方法的优缺点。定电压跟踪法实现比较简单、稳定,然而其控制精度差,必须人工干预才能良好运行;电导增量法可以使输出端电压比较平稳,然而整个系统比较复杂,费用较高;功率回授法实现比较方便,但是稳定性及可靠性不理想,实际使用中不常用;扰动观察法控制简单,容易实现,但可能会发生振荡和误判现象。在实验室110W_p光伏电池参数的基础上,采用扰动观察法,对光伏发电系统进行仿真研究,仿真结果表明采用扰动观察法会导致在最大功率点附近产生功率损失。 四、提出了一种基于遗传算法的光伏发电系统的效率优化算法,尝试将遗传算法用在光伏发电系统优化问题中。遗传算法将问题的求解表示成“染色体”,将其置于问题的“环境”中,根据适者生存的原则,从中选择出适应环境的“染色体”进行复制,即再生,通过交叉、变异两种基因操作产生出新一代更适合环境的“染色体”群,这样一代代不断改进,最后收敛到

光伏系统设计计算公式

光伏发电系统设计计算公式 1、转换效率: η= Pm(电池片的峰值功率)/A(电池片面积)×Pin(单位面积的入射光功率) 其中:Pin=1KW/㎡=100mW/cm2。 2、充电电压: Vmax=V额×1.43倍 3.电池组件串并联 3.1电池组件并联数=负载日平均用电量(Ah)/组件日平均发电量(Ah) 3.2电池组件串联数=系统工作电压(V)×系数1.43/组件峰值工作电压(V) 4.蓄电池容量 蓄电池容量=负载日平均用电量(Ah)×连续阴雨天数/最大放电深度 5平均放电率 平均放电率(h)=连续阴雨天数×负载工作时间/最大放电深度 6.负载工作时间 负载工作时间(h)=∑负载功率×负载工作时间/∑负载功率 7.蓄电池: 7.1蓄电池容量=负载平均用电量(Ah)×连续阴雨天数×放电修正系数/最大放电深度×低温修正系数 7.2蓄电池串联数=系统工作电压/蓄电池标称电压 7.3蓄电池并联数=蓄电池总容量/蓄电池标称容量 8.以峰值日照时数为依据的简易计算 8.1组件功率=(用电器功率×用电时间/当地峰值日照时数)×损耗系数 损耗系数:取1.6~2.0,根据当地污染程度、线路长短、安装角度等; 8.2蓄电池容量=(用电器功率×用电时间/系统电压)×连续阴雨天数×系统安全系数 系统安全系数:取1.6~2.0,根据蓄电池放电深度、冬季温度、逆变器转换效率等; 9.以年辐射总量为依据的计算方式 组件(方阵)=K×(用电器工作电压×用电器工作电流×用电时间)/当地年辐射总量 有人维护+一般使用时,K取230;无人维护+可靠使用时,K取251;无人维护+环境恶劣+要求非常可靠时,K取276; 10.以年辐射总量和斜面修正系数为依据的计算 10.1方阵功率=系数5618×安全系数×负载总用电量/斜面修正系数×水平面年平均辐射量 系数5618:根据充放电效率系数、组件衰减系数等;安全系数:根据使用环境、有无备用电源、是否有人值守等,取1.1~1.3; 10.2蓄电池容量=10×负载总用电量/系统工作电压;10:无日照系数(对于连续阴雨不超过5天的均适用) 11.以峰值日照时数为依据的多路负载计算 11.1电流: 组件电流=负载日耗电量(Wh)/系统直流电压(V)×峰值日照时数(h)×系统效率系数 系统效率系数:含蓄电池充电效率0.9,逆变器转换效率0.85,组件功率衰减+线路损耗+尘埃等0.9.具体根据实际情况进行调整。 11.2功率:

太阳能光伏系统在变电站直流系统中的应用

太阳能光伏系统在变电站直流系统中的应用 摘要:太阳能是资源最丰富的可再生能源,具有独特的优势和巨大的开发利用潜力。充分利用太阳能有利于保持人与自然的和谐相处及能源与环境的协调发展。进入21世纪以来,世界太阳能光伏发电产业快速发展,市场应用规模迅速扩大,中国光伏产业在国家大型工程项目、推广计划和国际合作项目的推动下,正以前所未有的速度迅速发展。随着太阳能光伏电池价格的逐渐降低,变电站使用太阳能供电已经成为可能。 关键字:太阳能光伏,光伏直流系统,光伏控制器 太阳能是资源最丰富的可再生能源,具有独特的优势和巨大的开发利用潜力。充分利用太阳能有利于保持人与自然的和谐相处及能源与环境的协调发展。进入21世纪以来,世界太阳能光伏发电产业快速发展,市场应用规模迅速扩大,中国光伏产业在国家大型工程项目、推广计划和国际合作项目的推动下,正以前所未有的速度迅速发展。随着太阳能光伏电池价格的逐渐降低,变电站使用太阳能供电已经成为可能。

2110kV变电站光伏直流系统的应用 110kV变电站作为典型的无人值守变电站,其直流负荷正常不超过1kW,配置的蓄电池容量为200Ah,直流充电机的额定电压、额定电流分别为220V、40A,太阳能光伏直流系统110kV变电站试用非常理想。变电站直流系统为独立的太阳能发电系统,在白天有日照的情况下,由太阳能光伏系统产生的电能向变电站内的直流系统供电,同时再和变电站原有的交直流系统连接。通过光伏控制器来实现当光伏发电系统发电量不足时的电源自动切换,增强直流系统供电的可靠性。变电站光伏直流系统原理图见图1所示。 太阳能光伏系统在变电站直流系统中的应用 图1变电站太阳能光伏直流系统连接原理图 3变电站光伏直流系统的特点 在变电站原有直流系统的基础上,增加了太阳能电池组件和光伏控制器,太阳能电池组件方阵在太阳光的照射下产生并输出电能,经光伏控制器稳压后输出至直流系统的合闸母线上。在充电机输出回路上加防反二极管(实际上,在光伏控制

光伏电站监控系统

光伏电站监控系统 PMU(Power Management Unit)是本公司自主开发的光伏监控产品,与本公司研发的逆变器连用,可以方 便用户记录光伏电站的发电量,运行状态,是否出现错误等信息。PMU广泛应用于发电厂、办公大楼、商 场酒店、生活小区等区域的太阳能发电设备的管理。 PMU的特点是结构简单、可靠性高、功能较强、维护方便。 PMU通过RS485总线与逆变器相连,并通过TCP/IP与PC机连接,同时,一台PMU可接多达10台光伏逆变器和多台PC机,组网监控,适用于中小型发电场所。 图1-1表明:PMU在光伏发电站中充当中位机(连接PC机和逆变器的桥梁),PMU通过RS485通讯总线与逆变器通讯,能获取并存储逆变器至少三年的数据,然后通过TCP/IP将数据传到PC机的AS Control软件上,用户可以坐在家里通过AS Control直接查看数据,而不用到光伏电站现场。图1-1 光伏发电系统客户终端示意图 1. 专用监控主板 2. 10/100M以太网卡控制器

3. 1G NandFlash存储容量 4. 丰富的外部接口(I/O): 一个RS485通讯口 一个网线口,10/100(BASE-T) 一个MiniUSB-B接口 5. 支持ACTIVESYNC同步通讯 PMU采用最新WINCE6.0系统,可以配合上位机程序AS Control使用,具体的AS Control的使用方法请参考AS Control的使用说明。 1.数据实时更新; 2.多用户同时监控多台逆变器; 3.高可靠性、低功耗; 4.接口丰富:RS485、USB、RJ45,扩展方便。 PMU只能安装在室内使用,若超出下列范围可能导致PMU的损坏。另外,过热,过冷,浸在水中或遇火, 强烈撞击都会损坏PMU。 存储容量:1GByte 输入电压:7.5VDC 输入电流:1A 机器功耗:1W o工作温度范围:-10 - +40C o存储温度范围:-20 - +60C 湿度范围:0% - 98% 连接时间与速度视网络状况,正常网络状态下:AS Control与PMU连接不超过3分钟,PMU与逆变器的连接也不超过3分钟(单台连接)。 通信接口连接方式限制距离 USB接口 MiniUSB_B MAX. 2 m Ethernet RJ45 MAX. 100 m RS485 RJ45 MAX. 300 m

发电效率PR计算公式

光伏电站发电效率的计算与监测 1、影响光伏电站发电量的主要因素 光伏发电系统的总效率主要由光伏阵列的效率、逆变器的效率、交流并网效率三部分组成。 1.1光伏阵列效率: 光伏阵列的直流输出功率与标称功率之比。光伏阵列在能量转换与传输过程中影响光伏阵列效率的损失主要包括:组件匹配损失、表面尘埃遮挡损失、不可利用的太阳辐射损失、温度的影响以及直流线路损失等。 1.2逆变器的转换效率: 逆变器输出的交流电功率与直流输入功率之比。影响逆变器转换效率的损失主要包括:逆变器交直流转换造成的能量损失、最大功率点跟踪(MPPT)精度损失等。 1.3交流配电设备效率: 即从逆变器输出至高压电网的传输效率,其中影响交流配电设备效率的损失最主要是:升压变压器的损耗和交流电气连接的线路损耗。 1.4系统发电量的衰减: 晶硅光伏组件在光照及常规大气环境中使用造成的输出功率衰减。 在光伏电站各系统设备正常运行的情况下,影响光伏电站发电量的主要因素为光伏组件表面尘埃遮挡所造成太阳辐射损失。 2、光伏电站发电效率测试原理 2.1光伏电站整体发电效率测试原理 整体发电效率E PR公式为: E PDR PR PT = —PDR为测试时间间隔(t?)内的实际发电量;—PT为测试时间间隔(t?)内的理论发电量;

理论发电量PT 公式中: i o I T I =,为光伏电站测试时间间隔(t ?)内对应STC 条件下的实际有效发电时间; -P 为光伏电站STC 条件下组件容量标称值; -I 0为STC 条件下太阳辐射总量值,Io =1000 w/m 2; -Ii 为测试时间内的总太阳辐射值。 2.2光伏电站整体效率测试(小时、日、月、年) 气象仪能够记录每小时的辐射总量,将数据传至监控中心。 2.2.1光伏电站小时效率测试 根据2.1公式,光伏电站1小时的发电效率PR H i H i PDR PR PT = 0I I i i T = —PDRi ,光伏电站1小时实际发电量,关口计量表通讯至监控系统获得; —P ,光伏电站STC 条件下光伏电站总容量标称值; —Ti ,光伏电站1小时内发电有效时间; —Ii ,1小时内最佳角度总辐射总量,气象设备采集通讯至监控系统获得; —I 0=1000w/m 2 。 2.2.2光伏电站日效率测试 根据气象设备计算的每日的辐射总量,计算每日的电站整体发电效率PR D D PDR PR PT = 0I I T = —PDR ,每日N 小时的实际发电量,关口计量表通讯至监控系统获得; —P ,光伏电站STC 条件下光伏电站总容量标称值; —T ,光伏电站每日发电有效小时数

光伏电站用户站电力监控系统安全防护方案

光伏电厂电力监控系统安全防护技术方案 编制: 审核: 批准: 单位名称(加盖公章) 2017 年6月22日

一、方案编制依据 《中华人民共和国计算机信息系统安全保护条例》国务院1994年147号令(2011年修订) 《电力监控系统安全防护规定》中华人民共和国国家发展和改革委员会2014年第14号令 《电力行业网络与信息安全管理办法》国能安全〔2014〕317号 《电力行业等级保护管理办法》国能安全〔2014〕318号 《电力监控系统安全防护总体方案》国能安全〔2015〕36号 二、总体目标和原则 (一)总体目标 确保新特汇能电厂电力监控系统和电力调度数据网络的安全,抵御黑客、病毒、恶意代码等各种形式的恶意破坏和攻击,特别是抵御集团式攻击,防止电力监控系统的崩溃或瘫痪,以及由此造成的电力系统事故或大面积停电事故。 (二)总体原则 坚持“安全分区、网络专用、横向隔离、纵向认证”总体原则,重点强化边界防护,提高内部安全防护能力,保证电力生产控制系统及重要数据的安全。 三、安全防护方案 (一)电力监控系统概述 1.分散控制系统(DCS) 无 2.网络监控系统(SCADA) 本厂SCADA系统包括(2)台主机兼工作站、(4)台工作站,操作系统主要采用LINUX 系统,数据库主要采用MySQL数据库。系统外部通信接口如下,均采用TCP/IP协议进行数据通讯:

3.相量测量装置(PMU) 无。 4.电能量采集装置 本厂电能采集装置采用兰吉尔FFG_Plus,电能表通过RS485与电能采集装置进行数据传输,后经过采集装置通过TCP/IP协议进行数据通讯。 5.总体网络拓扑图 (二)安全分区 按照《电力监控系统安全防护规定》,原则上将发电厂基于计算机及网络技术的业务系统划分为生产控制大区和管理信息大区,并根据业务系统的重要性和对一次系统的影响程度将生产控制大区划分为控制区(安全区Ⅰ)及非控制区(安全区Ⅱ),重点保护生产控制及直接影响机组运行的系统。 本厂安全分区如下: 安全Ⅰ区:光伏区环网、工作站、保护装置、直流系统、ups、站用变、站控设备组成的控制网络,与安全Ⅱ区通过防火墙实现硬件隔离。 安全Ⅱ区:电能采集、功率预测数据,安全Ⅱ区与安全Ⅲ区通过反向隔离装置实现硬件隔离。 安全Ⅲ区:MIS管理系统,此链路独立无其他连接,气象站通过反向隔离装置与安全Ⅱ区功率预测实现硬件隔离。 汇能库尔勒光伏一电站安全分区表

光伏并网项目的效率及损耗

将各种损耗都算进来后光伏并网电站系统效率通常为多少呢? 光伏组件虽然使用寿命可达25-30年,但随着使用年限增长,组件功率会衰减,会影响发电量。另外,系统效率对发电量的影响更为重要。 1组件的衰减 1,由于破坏性因素导致的组件功率骤然衰减,破坏性因素主要指组件在焊接过程中焊接不良、封装工艺存在缺胶现象,或者由于组件在搬运、安装过程中操作不当,甚至组件在使用过程中受到冰雹的猛烈撞击而导致组件内部隐裂、电池片严重破碎等现象; 2,组件初始的光致衰减,即光伏组件的输出功率在刚开始使用的最初几天内发生较大幅度的下降,但随后趋于稳定,一般来说在2%以下; 3,组件的老化衰减,即在长期使用中出现的极缓慢的功率下降现象,每年的衰减在0.8%,25年的衰减不超过20%;25年的效率质保已经在日本和德国两家光伏公司的组件上得到证实。2012年以后国内光伏组件已经基本能够达到要求,生产光伏组件的设备及材料基本采用西德进口。 2系统效率 个人认为系统效率衰减可以不必考虑,系统效率的降低,我们可以通过设备的局部更新或者维护达到要求,就如火电站,水电站来说,不提衰减这一说法。 影响发电量的关键因素是系统效率,系统效率主要考虑的因素有:灰尘、雨水遮挡引起的效率降低、温度引起的效率降低、组件串联不匹配产生的效率降低、逆变器的功率损耗、直流交流部分线缆功率损耗、变压器功率损耗、跟踪系统的精度等等。 1)灰尘、雨水遮挡引起的效率降低 大型光伏电站一般都是地处戈壁地区,风沙较大,降水很少,考虑有管理人员人工清理方阵组件频繁度一般的情况下,采用衰减数值:8%; 2)温度引起的效率降低 太阳能电池组件会因温度变化而输出电压降低、电流增大,组件实际效率降低,发电量减少,因此,温度引起的效率降低是必须要考虑的一个重要因素,在设计时考虑温度变化引起的电压变化,并根据该变化选择组件串联数量,保证组件能在绝大部分时间内工作在最大跟踪功率范围内,考虑0.45%/K的功率变化、考虑各月辐照量计算加权平均值,可以计算得到加权平均值,因不同地域环境温度存在一定差异,对系统效率影响存在一定差异,因此考虑温度引起系统效率降低取值为3%。 3)组件串联不匹配产生的效率降低 由于生产工艺问题,导致不同组件之间功率及电流存在一定偏差,单块电池组件对系统影响不大,但光伏并网电站是由很多电池组件串并联以后组成,因组件之间功率及电流的偏差,对光伏电站的发电效率就会存在一定的影响。组件串联因为电流不一致产生的效率降低,选择该效率为2%的降低。 4)直流部分线缆功率损耗 根据设计经验,常规20MWP光伏并网发电项目使用光伏专用电缆用量约为350km,汇流箱至直流配电柜的电力电缆(一般使用规格型号为ZR-YJV22-1kV-2*70mm2)用量约为35km,经计算得直流部分的线缆损耗3%。 5)逆变器的功率损耗 目前国内生产的大功率逆变器(500kW)效率基本均达到97.5%的系统效率,并网逆变器采用无变压器型,通过双分裂变压器隔离2个并联的逆变器,逆变器内部不考虑变压器效率,即逆变器功率损耗可为97.5%,取97.5%。 6)交流线缆的功率损耗 由于光伏并网电站一般采用就地升压方式进行并网,交流线缆通常为高压电缆,该部分

光伏DC1500V光伏直流系统断路器选型方案介绍

光伏DC1500V光伏直流系统断路器选型方案介绍光伏DC1500V直流系统断路器选型方案 随着光伏DC1500V系统的脚步临近,选型问题大家也提上了议事日程。2015年7月圣昂电气在国内率先上市DC1500V直流光伏断路器,并在2015年8月在三峡新能源30MW光伏电站项目中得到采用,这是国内第一次在大型地面光伏电站中批量使用DC1500V直流断路器。今天就和大家分享我们在DC1500V光伏系统的选型思路。 断路器的额定工作电流、额定工作电压、分断能力三大指标在光伏系统中应重点关注额定工作电压与额定工作电流,分断能力做参考指标。额定工作电压、额定工作电流的选型应当确保断路器保护可靠且无误动作。在光伏系统中断路器选型主要依据是组件的参数、组串块数、海拔、辐照度峰值、极端低温及余量等几个主要方面,组件参数与组串块数是主要的计算依据,海拔、辐照度峰值、极端低温应当与设计余量测算一起考量。额定工作电压主要与组件参数、组串块数有直接联系,海拔与低温在考虑设计余量中考虑。额定工作电流与辐照度峰值、经验余量一同考虑。我们的选型思路以额定工作电压与额定工作电流为主线展开,首先我们先谈系统电压,其次谈电流。 我们选择已经通过UL1500V认证的国内某知名组件厂的组件作为计算参照样本,组件功率260W到275W,组件效率16.8%。需要重点说明的是组件厂的样本参数是大气 AM1.5, 辐照度1000 W/m?, 温度25?C环境下参数,现场峰值数据与以上条件差异较大,这是余量设计计算的重点考虑方面。组件参数选择方面重点参照组件三个主要参数,1.最大工作电压;2.最大工作电流;3.最大开路电压。 首先我们来探讨一下电压的计算: 光伏组件参数表: (图表一)

光伏电站监控系统实施方案分析

光伏电站监控系统实施方案分析

————————————————————————————————作者:————————————————————————————————日期:

光伏电站监控系统分析 摘要:综合论述了目前国内具有实际工程意义的大型光伏电站及分布式光伏系统的几种监控系统方案。光伏监控系统采用的通讯手段主要包括:有线方式:工业RS485总线、PROFIBUS总线、工业以太网、CAN总线、Modern电话线;无线方式:ZIGBEE、GPRS、WIFI、BLUETEETH、IRDA红外。文中对各种通讯方式的构成、特点及应用作了简要阐述及对比。 引言 太阳能光伏发电项目随中国政府持续出台的支持光伏产业发展的政策不断增多[1],截至2012 年底,我国累计建设容量7.97 GW,其中大型光伏电站4.19 GW,分布式光伏系统3.78 GW [2]。国家能源局发布的《太阳能发电发展“十二五”规划》称,到2015 年底,太阳能发电装机容量达到2100万kW(即21 GW)以上,年发电量达到250 亿kWh。随着大型光伏电站及分布式光伏系统的建设和投运,业主及电网公司对设备的实时监控提出了更高的要求。 光伏监控系统需实现的功能有:1)汇流箱、逆变器、电池板、蓄电池组及其控制器(带储能功能的光伏系统)、环境温度等底层设备实时数据及状态的采集;2)底层设备故障报警;3)重要数据的历史存储;4)远方及本地对电站设备的必要操控。即集遥测、遥控、遥信、遥调功能为一体,且需具备高可靠性,全年不间断工作。目前具有实际工程意义的监控系统从物理实现方式上可分为有线及无线两种。有线方式主要包括:工业RS485总线、PROFIBUS现场总线、CAN 总线、Modem电话线、工业以太网;无线方式主要包括:ZIGBEE、GPRS、WIFI、BLUETEETH、IRDA红外。需根据实际工程要求及各种通讯方式的特点选择适合的监控方案。 1 基于现场总线的光伏监控系统 1.1 兆瓦级及以上并网光伏电站监控系统 兆瓦级及以上光伏电站占地面积广、设备数量及种类庞大、建设集中。目前最为广泛采用的是有线监控方式。整体架构包括:本地数据采集、数据传输、数据存储与处理三部分,如图1所示。

光伏电站集控中心监控系统

光伏电站集控中心监控系统(SPSIC-3000)简介 如今光伏电站分布地域广、运行管理人员少、运行管理工作量大。为了减少场站监管的工作量、实现不同类型各光伏电站的统一监管、多层监控、从而实现无人值班少人值守的运营模式,国能日新推出了光伏电站集控中心监控系统的解决方案。 光伏电站集控中心监控系统(SPSIC-3000)是在已有的各光伏电站监控的基础上建立统一的实时历史数据库平台以及集中监控平台来实现对光伏电站群的远程监控和管理的总体目标。集控系统将现有光伏电站本地的监控系统、功率预测系统等相关信息进行整合构建成统一的生产信息系统平台,实现各光伏电站监控系统和统一系统平台之间的数据交互,并能够向各个监控点提供统一的运行相关信息,实现新能源公司在监控层面上的一致性。因此,基于远程的集中监控系统平台能够实现对其区域内的光伏电站进行监控调度功能,实现对光伏电站群的集中运行管理、集中检修管理、集中经营管理和集中后勤管理,通过人力资源、工具和备件、资金和技术的合理调配与运用,达到人、财、物的高效运作和资源的优化利用,保障实现光伏电站群综合利用效益最大化。 集控系统充分总结了调度自动化系统的成功运行经验,涵盖了调度主站、变电站、集控中心站运行工作的各种业务需求,可以向用户提供各种规模的调度运行、集控中心、变电站的完整解决方案。系统采用模块化设计,基于厂站一体化综合信息平台,搭建站内各种应用子系统,各子系统相对独立;通过配置的方式改变运行方式,应用子系统可以合并到一台机器/嵌入式工控机上运行,也可以分散到多个机器上运行。在此背景上,紧密跟踪国际上电网调度自动化技术的最新发展,广泛吸取国内外的调度自动化系统的实际经验而产生的新一代平台系统。 光伏电站集控中心监控系统(SPSIC-3000)可实现如下功能: 1、升压站监控系统功能; 2、光功率预测系统; 3、电站视频/安防监控系统; 4、故障报警系统; 5、光伏电站生产运营分析系统; 6、能量综合管理子系统; 7、监控中心GPS; 国能日新24小时技术支持服务,为客户的利益保驾护航。

分布式光伏发电项目系统效率测试方法

附件十一 光伏电站系统效率保证协议 (发包方)与(承包方)经友好协商,一致同意将以下内容作为光伏发电项目总承包合同技术协议的补充协议。 一、光伏电站系统效率要求 发包方要求光伏电站的系统效率(Performance Ratio,即PR值)≥80%。 二、光伏电站系统效率测试方法 1. 目的 光伏电站系统效率测试(PR性能测试)用于证明光伏电站的整体转换效率能够满足电站设计转换效率的要求。 本测试方法是参照《Functional test,Seven day performance test criteria and procedure》,如有不明确的地方,以《Functional test,Seven day performance test criteria and procedure》为准。 2. 最小辐照度要求 测试期间的最小辐照度要求:每15分钟记录一个数据,至少获得40个光伏阵列倾斜面的太阳辐照度采样值数据,并且所测数据不小于600瓦每平方米。如果在测试初期最小辐照度要求不能达到上述要求,应该延长测试周期直至满足最小辐照度要求,或者由合同双方来确定测试周期。 简言之,在测试周期内,至少获得40个数据,每个数据持续15分钟,并且每个数据均满足辐照度大于600瓦每平方米的要求。 3. 性能测试方 合同双方应指定一个经双方认可的性能测试方(独立第三方)来负责测试事宜。性能测试方应起草一份详细的测试方案,并至少在测试开始前30天将方案提交给业主,经业主审核同意后才能实施。性能测试方应保证测试的权威性、公正性。 4. 一般测试条件 测试应该从测试周期第一天的零点开始,到测试周期最后一天的零点结束,

光伏电站电力监控系统网络安全检查专项行动总结报告

光伏电站电力监控系统网络安全检查专项 行动总结报告 *** 年***月***日 一、组织开展情况 为全面落实************行动的通知内容要求,结合***活动发现的问题及整改情况,强化网络安全责任意识、风险意识,坚决消除各类安全问题隐患,切实保障电力监控系统和电网安全稳定运行,***站组织开展光伏电站电力监控系统网络安全检查专项行动,现将工作完成情况汇报如下: 为确保工作取得实效,现场成立“电力监控系统网络安全检查专项行动”活动小组。人员组成如下: 组长:*** 副组长:*** 成员:*** 组长职责:全面负责本次活动组织、开展工作。 副组长职责:负责将上级文件精神传达到全体人员,组织成员按照文件内容开展自查及整改工作,完成自查问题整改情况梳理及总结编制。 组员职责:认真学习、领悟上级公司下发的通知文件精神,按照安排开展自查整改工作。 检查内容:1、围绕基础设施安全,重点检查关键系统、关键设备、关键功能防护措施落实情况;2、围绕体系结构安全,重点检查安全分区、网络专用、横向隔离、纵向认证策略配置情况;3、围绕系统本体安全,重点检查操作系统、通用网络服务、空闲端口、口令设置管理到位情况;4、围绕全方位安全管理,重点检查队伍建设、制度建设、技术手段建设情况;5、加强问题整改闭环管控,重点核实历次安防检查、等保测评发现问题的整改落实情况。

本次检查共发现问题***项,整改完成***项,其他整改项按照整改计划有序开展中。 二、发现的主要问题 1、本站未制定机房消防预案; 2、未配置网络安全监测装置,无法对本站安防设备进行实施监控; 3、服务器防火墙策略不够细化; 4、工作站未部署防止恶意代码软件; 5、检查系统软件登录密码不符合要求,存在已调离人员账户; 6、未进行漏洞扫描测试工作; 7、继电保护室湿度35%,湿度偏低; 8、网络未部署IDS/IPS入侵检测/防御设备,无法对攻击行为进行监视; 9、隔离装置未开启日志功能; 10、工作站操作系统未遵循最小安装原则,存在多余的服务DHCP Client、DNS Client。 11、未开展网络信息安全事故应急演练工作。 三、问题整改情况 1、重新修编本站生产安全应急预案,增加机房消防现场处置方案,并报送***县应急管理局备案,并取得备案证明; 2、联系防火墙厂家,到站进行防火墙配置策略细化工作,并备份,截图形成整改报告; 3、工作站部署瑞星杀毒软件企业版,并升级病毒库; 4、更改系统软件登录密码,按照8位数字+大小写字母+特殊符号要求修改; 5、巡视过程中及时打开加湿装置,提高继电保护室湿度; 6、开启日志功能; 7、工作站操作系统遵循最小安装原则,关闭多余的服务DHCP Client、DNS Client。 四、下一步工作计划 1、计划***底前配置网络安全监测装置,对本站安防设备进行实施监控。

光伏电站系统效率分析

光伏电站系统效率分析 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

系统效率分析 运行期光伏电站的生产工艺流程为:通过太阳辐照,经直流发电单元(将太阳能转化成直流电能,再经逆变产生交流电),出口电压为,再经35kV升压箱变,将电压升至35kV后,由35kV集电线路汇集至电站35kV汇集站,再经110kV 汇集站,电压升至110kV后,然后输送至220kV升压站,经220kV主变压器二次升压后,通过220kV架空线路送入系统电网。其发电工艺流程如下: 图运行期光伏电站的生产工艺流程图 结合光伏电站的运行特点其系统损耗主要为以下几方面组成: (1)入射角造成的不可利用的太阳辐射损耗; (2)灰尘、植被等遮挡损耗 (3)温度影响损耗 (4)光伏组件不匹配造成的损耗 (5)直流线路损耗 (6)逆变器损耗 (7)交流线路损耗 (8)变压器损耗 (9)系统故障及维护损耗 结合XX项目实施的实际情况,参考《XX光伏发电项目招商文件》中评分标准的要求,技术方案中系统能力先进性(5分),81%得1分,系统效率最高值得5分;因此系统效率即使是重要的招商得分项,同时该参数又直接影响发电量和效益测评即投标申报电价,为科学合理的控制和了解本项目地的系统效率水平,使其尽可能向可操作、可实现的最高效率努力,系统效率基本取值分析如下: (1)不可利用的太阳辐射损耗 根据项目地的地理位置、气候气象和太阳辐射数据当地的气象和太阳辐射特点,结合项目地太阳入射角的分析计算,并兼顾山地的地形条件在冬至日真太阳时9:00~15:00的阵列布置原则而确定的日照利用边界,经分析,本次由于

光伏电站电力监控系统

光伏电站电力监控系统 [ 编辑:admin | 时间:2012-12-21 16:54:19 | 浏览:77次 | 来源:[db:来源] | 作者: ] 1.1 概述 Acrel-3000 V8.0光伏发电监测系统是江苏安科瑞电器制造有限公司针对太阳能发电系统开发的软件平台,可对太阳能光伏电站里的电池阵列、汇流箱、逆变器、交直流配电柜、太阳跟踪控制系统等设备进行实时监测和控制,通过各种样式的图表及数据快速掌握电站的运行情况,其友好的用户界面、强大的分析功能、完善的故障报警确保了太阳能光伏发电系统的完全可靠和稳定运行。 1.2 光伏发电监测系统组网示意图 1.3 软件功能 ●实时监测太阳能电池板的电压、电流及其运行状况 ●防雷器状态、断路器状态采集与显示 ●实时监控逆变器工作状态,监测其故障信息 ●系统详细运行参数显示 ●故障记录及报警 ●具有电量累计、系统分析、历史记录功能 ●简单易用的参数设置功能 ●系统输出电流、电压,瞬时发电功率、累计发电量,CO2、SO2减排量 1.4 软件界面

系统运行主画面 监控系统提供功能选择画面,并对光伏阵列现场环境进行实时监测与显示,如室外温度值、湿度百分比、光照度及阵列表面温度值等; 汇流监测系统画面 监控系统可分区域实时监测各光伏阵列的充电电压及电流、蓄电池电压及温度等信息,并对故障点进行异常显示与报警提示; 逆变器监测画面 监控系统可绘制显示逆变器电压—时间曲线、功率—时间曲线等,直流侧输入电流实时曲线、交流侧逆变输出电流曲线,并采集与显示日发电量等电参量; 事件记录监测画面 监控系统可针对光伏发电现场的各种事件进行记录,如:通讯采集异常、开关变位、操作记录等,时间记录支持按类型查询,并可对越限报警进行更改设置; 曲线、棒图分析画面 监控系统对光伏发电的发电量可形成月棒图及年度棒图显示,并折算成二氧化碳、二氧化硫减排量值;并可查看太阳辐射强度趋势曲线、风速变化趋势曲线显示。 (注:素材和资料部分来自网络,供参考。请预览后才下载,期待你的好评与关注!)

光伏电站监控系统管理制度

编号:SM-ZD-57183 光伏电站监控系统管理制 度 Through the process agreement to achieve a unified action policy for different people, so as to coordinate action, reduce blindness, and make the work orderly. 编制:____________________ 审核:____________________ 批准:____________________ 本文档下载后可任意修改

光伏电站监控系统管理制度 简介:该制度资料适用于公司或组织通过程序化、标准化的流程约定,达成上下级或不同的人员之间形成统一的行动方针,从而协调行动,增强主动性,减少盲目性,使工作有条不紊地进行。文档可直接下载或修改,使用时请详细阅读内容。 1、监控对象及外接系统 1.1、监控对象为光伏电站所属: 1.1.1、逆变器 1.1.2、箱变 1.1.3、其他辅助设备 1.1.4、升压站设备 1.2、主要外接系统: 1.2.1、上级管理部门,如省级调度系统 1.2.2、远程监控系统 2、系统构成 2.1、逆变器主控系统 并网逆变器是光伏电站中重要的电气设备,同时也是光伏发电系统中的核心设备。逆变器将光伏方阵产生的直流电(DC)逆变为三相正弦交流电(AC),输出符合电网要求的电能。逆变器是进行能量转换的关键设备,其效率指标等电

气性能参数,将直接影响电站系统发电量。逆变器监控系统是将逆变器所有数据信号通过光缆传入光伏电站后台的监控系统。 2.2、升压站监控系统 变电站要求以计算机站控系统为核心,对整个变电站系统实现遥测,遥信,遥控,遥调功能。系统可以根据电网运行方式的要求,实现各种闭环控制功能。实现对全部的一次设备进行监视、测量、控制、记录和报警功能,并与保护设备和远方控制中心通讯,实现变电站综合自动化。光伏电站通讯层采用工业光纤以太环网结构。综合自动化根据需要也可采用双网冗余结构。升压站通讯服务器负责与相关调度系统的信息交换。 2.3、箱变控制系统 光伏发电作为可再生能源的主要利用形式,所建成的光伏电站具有其自身的特殊性。最显著的就是发电单元布置较为分散且数量众多,距离集中升压变电所位置较远,需就地经升压变电站升压后传送至集中升压变电所。因此箱式变电站作为升压输电的重要设备,其安全可靠、节能环保、运行

大型光伏电站系统效率计算方法优化分析

大型光伏电站系统效率计算方法优化分析 曹晓宁康巍连乾钧 光伏产业近年来继风力发电后发展最快的行业,据不完全统计,目前全世界范围内光伏发电系统的装机容量已超过40GWp,而且在持续高速增长。近几年我国光伏产业发展速度迅猛,2010年国内光伏发电新增装机容量达到520MWp,大大的超过了2009年的228MWp,而2011年国内光伏发电新增装机容量预计达到2GWp。对于大批进入运营阶段的光伏电站,电站运行状况的检测和运行维护工作将成为研究重点。 系统效率是表征光伏电站运行性能的最终指标,对于一个投入运行的光伏电站,在电站容量和光辐照量一致的情况下,系统效率越高就代表发电量越大。因此系统效率的准确性重要,本文就系统效率的计算方法的优化进行讨论。 一、系统效率的定义 一个发电系统的年发电量衡量这个系统优劣的最直接的标准,在进行一个发电系统的设计时,都要对发电系统的年发电量进行估算,作为后期运行维护的参考标准。进行发电量的估算首先要算出并网光伏发电系统的总效率,并网光伏发电系统的总效率由太阳电池阵列的效率、逆变器的效率、交流并网效率三部分组成。 太阳电池阵列效率η1,太阳电池阵列在太阳辐射强度下,实际的直流输出功率与理论功率之比。太阳电池阵列在能量转换与传输过程中的损失包括:组件匹配损失、表面尘埃遮挡损失、光谱失配损失、温度的影响以及直流线路损失等。 逆变器转换效率η2,逆变器输出的交流电功率与直流输入功率之比。包括逆变器转换的损失、最大功率点跟踪(MPPT)精度损失等。 并网效率η3,即从逆变器输出汇流并入南区10kV变电站400V低压母线段的传输效率,其中最主要的是升压变压器的效率和交流电气连接的线路损耗。 综上,光伏电站系统的总效率为η=η1*η2*η3,在进行光伏电站的设计和设备选型时,可针对性的进行优化设计,提高光伏电站的系统效率。 二、系统效率的算法 对于一个光伏电站,进行系统效率的测算时,通常是用实际计量的发电量与理论发电量相比得到,具体如下所示。

光伏系统直流干线电缆的使用特性及要求

光伏系统直流干线电缆的使用特性及要求 直流干线是光伏组件系统经汇流箱汇流后到逆变器的传输用线。如果说逆变器是整个方阵系统的心脏,那么直流干线系统就是一条条主动脉。由于,直流干线系统采用不接地方案,如果电缆发生接地故障,将会给系统甚至设备带来相比交流大得多的危害,因此,光伏系统工程师对直流电缆的认识,要比其他行业电气工程师更为谨慎。综合各种电缆事故分析,我们得出电缆的接地故障占整个电缆故障的90-95%。 接地故障的主要原因有三种。第一,电缆制造缺陷,为非合格产品;第二,运行环境恶劣、自然老化、以及遭受外力破坏;第三,安装不规范,接线粗糙。接地故障的根本原因却只有一个---电缆的绝缘材料。光伏电站的直流干线运行环境比较恶劣。我国大型地面电站一般都在西部,这些地方一般都是荒漠、盐碱地以及昼间温差大,鼠害也比较严重,环境也会非常潮湿。电缆地埋敷设,电缆沟的填挖要求比较高;分布式电站电缆的运行环境也不比上述地面的要好,电缆会承受很高的温度,有技术人员测控,屋顶温度甚至能达到100-110℃的高温,电缆的防火阻燃要求,以及高温对电缆的绝缘击穿电压影响很大。因此,光伏电站直流干线电缆的选型设计要考虑以下几点: 1、 电缆的绝缘性能 2、 电缆的防潮、防寒以及耐候性 3、 电缆的耐热阻燃性能 4、 电缆的敷设方式 5、 电缆的导体材料(铜芯、铝合金芯、铝芯) 6、 电缆的截面规格 目前,我国光伏电站的直流干线电缆,大多采用一般低压交流电缆来代替,常用型号为 ZR-YJV22 0.6/1kv、ZRYJY23 0.6/1kv,电缆大多数为铜芯电缆,也有些电站逐步开始采用铝合金导体的电缆,但电缆的绝缘材料基本还是按1kv低压电缆的标准生产。也就是说,我们的光伏系统工程师对直流电缆厉害关系有认识,但对电缆的技术方案并没有过多重视。 直流电缆的绝缘特性 1, 交流电缆的场强应力分布是均衡的,电缆绝缘材料着重的是电介质常数,电介质是不受温度影响的;而直流电缆的应力分布是电缆绝内层为最大,受电缆绝缘材料的电阻系数影响,绝缘材料有负温度系数现象,即温度增高,电阻变小;电缆在运行时,线芯损耗会使温度升高,电缆的绝缘材料的电阻系数会随之变化,也将导致绝缘层的电场应力随之变化,也就是说,同样厚度的绝缘层,由于温度升高,其击穿电压随之变小。对于一些分布式电站的直流干线,由

光伏电站电力监控系统设计方案的实现

光伏电站电力监控系统设计方案的实现 1 概述 当今世界,煤炭、石油等化石能源频频告急,环境污染问题日益严峻。而太阳能作为最具潜力的可再生能源,因其储量的无限性、存在的普遍性、利用的清洁性以及实用的经济性,越来越被人们所青睐。大力发展光伏产业、积极开发太阳能,在全球范围得到了空前重视,已成为各国可持续发展战略的重要组成部分。光伏产业也称太阳能电池产业,即利用太阳能级半导体电子器件吸收太阳光辐射能,并使之转换为电能的产业。 光伏电站主要由光电池阵列、汇流箱、低压直流柜、逆变柜、交流低压柜、升压变压器等组成,最后产生的高压交流直接并入电网。针对每个环节电力参数检测的需要,安科瑞公司推出了AGF系列光伏汇流采集装置、PZ系列直流检测仪表及ACR系列电力质量分析仪,分别应用于汇流箱、直流柜及交流柜中,并通过Acrel-3000 V8.0光伏电力监控系统实现后台集中监控。 Acrel-3000 V8.0光伏发电监测系统是上海安科瑞电气股份有限公司针对太阳能发电系统开发的软件平台,可对太阳能光伏电站里的电池阵列、汇流箱、逆变器、交直流配电柜、太阳跟踪控制系统等设备进行实时监测和控制,通过各种样式的图表及数据快速掌握电站的运行情况,其友好的用户界面、强大的分析功能、完善的故障报警确保了太阳能光伏发电系统的完全可靠和稳定运行。 2 光伏电站电力监控表计 AGF系列光伏汇流采集装置是专门应用于智能光伏汇流箱,用于监测光电池阵列中电池板运行状态,光电池电流测量,汇流箱中防雷器状态采集、直流断路器状态采集、继电器接点输出,带有风速、温度、辐照仪等传感器接口,装置带有RS485接口可以把测量和采集到的数据和设备状态上传。 PZ系列直流检测仪表是针对直流屏、太阳能供电、电信基站等应用场合而设计的,该系列仪表可测量直流系统中的电压、电流、功率、正向与反向电能。既可用于本地显示,又能与工控设备、计算机连接,组成测控系统。

光伏电站220V直流系统运行规程

光伏电站220V直流系统运行规程 1、直流系统的作用和组成 1.1直流系统的作用:直流系统在变电站中为控制、信号、仪表、继电保护及自动化装置、事故照明、通讯等提供可靠的直流电源,还为操作提供可靠的操作电源。 直流系统能够自动实现恒流主充电、稳压均衡充电、浮充电,并能根据电池状态进行主充、均充、浮充状态的转换,对电池组每次合闸操作和事故放电损耗的电能进行及时补充。1.2 直流系统的组成: 1.2.1本站电力电源的220V直流系统由充电柜、馈线柜、事故照明、逆变柜、蓄电池组成 1.2.1.1充电柜:采用珠海瓦特电力设备有限公司提供的GZDW-C 系列直流电源装置。每面充电柜由5块WEPR-22020CF高频开关整流模块、WDJ微机监控单元、1.2.1.2馈线柜:由各直流负载电源空气开关、放电开关、绝缘监测仪组成。

1.2.1.3蓄电池组: 圣阳牌GFMD-C系列电池采用最新的AGM技术、高纯度材料以及多项专利技术,使其具有较长的浮充和循环寿命,具有高能量比,低自放电率以及很好的耐高低温性能。 蓄电池技术参数表 容量范围(C10)100Ah—3000Ah 设计寿命长设计寿命达15年(25℃)自放电小≤1%/月(25℃) 高密封反应效率≥99% 均匀一致的浮充电压≤±50mV 广泛的工作温度范围-15~45℃ 端子-采用嵌铜芯圆端子结构设计。 产品型号额 定 电 压 10h率 容量 (Ah) 长 (m m) 宽 (mm ) 高 (mm ) 重 量 (kg) 短 路 电 流 参 考 内 阻 端子 类型

GFM D-20 0C 2 200 98.5 174 348. 5 13.5 310 0.5 GFM -21 1.2.1.4 作为调度通讯装置直流电源的48V直流系统由3面柜组成,其中光传输设备及PCM设备柜1面、交流电源柜1面、综合配线柜1面。 1.2.1.5充电柜:每面充电柜由3块中达电通ESR-48/50高频开关整流模块、MCS3000监控器、电池巡检仪、交流输入空开、直流输出空开、电池保护熔断器等组成。 1.2.1.6馈线柜:由智能控制器、联络开关、放电开关、各直流负载电源空气开关组成。 1.2.1.6电池柜:采用中达电通生产的DCF126-2/300固定型阀控密封铅酸蓄电池24块。 1.2.1.7交流电源柜:由智能控制器和ATS型切换开关组成。 1.2.1.8通讯配线柜:与调度、地调、电量采集等通讯接口。 2、直流系统投入前的检查 2.1蓄电池投入前的检查

相关主题
文本预览
相关文档 最新文档