当前位置:文档之家› 零件结构的铸造工艺性分析

零件结构的铸造工艺性分析

零件结构的铸造工艺性分析
零件结构的铸造工艺性分析

零件结构的铸造工艺性分析

铸造工艺性,是指零件结构既有利于铸造工艺过程的顺利进行,又有利于保证铸件质量。

还可定义为:铸造零件的结构除了应符合机器设备本身的使用性能和机械加工的要求外,还应符合铸造工艺的要求。这种对铸造工艺过程来说的铸件结构的合理性称为铸件的铸造工艺性。

另定义:铸造工艺性是指零件的结构应符合铸造生产的要求,易于保证铸件品质,简化铸造工艺过程和降低成本。

铸造工艺性不好,不仅给铸造生产带来麻烦,不便于操作,还会造成铸件缺陷。因此,为了简化铸造工艺,确保铸件质量,要求铸件必须具有合理的结构。

一、铸件质量对铸件结构的要求

1.铸件应有合理的壁厚

某些铸件缺陷的产生,往往是由于铸件结构设计不合理而造成的。采用合理的铸件结构,可防止许多缺陷。

每一种铸造合金,都有一个合适的壁厚范围,选择得当,既可保证铸件性能(机械性能)要求,又便于铸造生产。在确定铸件壁厚时一般应综合考虑以下三个方面:保证铸件达到所需要的强度和刚度;尽可能节约金属;铸造时没有多大困难。

(1)壁厚应不小于最小壁厚

在一定的铸造条件下,铸造合金能充满铸型的最小壁厚称为该铸造合金的最小壁厚。为了避免铸件的浇不足和冷隔等缺陷,应使铸件的设计壁厚不小于最小壁厚。各种铸造工艺条件下,铸件最小允许壁厚见表1-1~表1-5

表1-1 砂型铸造时铸件最小允许壁厚(单位:㎜)

表1-2 熔模铸件的最小壁厚(单位:㎜)

表1-3 金属型铸件的最小壁厚(单位:㎜)

表1-4 压铸件的最小壁厚(单位:㎜)

(2)铸件的临界壁厚

在铸件结构设计时,为了充分发挥金属的潜力,节约金属,必须考虑铸造合金的力学性能对铸件壁厚的敏感性。厚壁铸件容易产生缩孔、缩松、晶粒粗大、偏析和松软等缺陷,从而使铸件的力学性能下降。从这个方面考虑,各种铸造合金都存在一个临界壁厚。铸件的壁厚超过临界壁厚后,铸件的力学性能并不按比例地随着铸件壁厚的增加而增加,而是显著下降。因此,铸件的结构设计应科学

地选择壁厚,以节约金属和减轻铸件重量。在砂型铸造工艺条件下,各种合金铸件的临界壁厚可按最小壁厚的3倍来考虑。铸件壁厚应随铸件尺寸增大而相应增大,在适宜壁厚的条件下,既方便铸造又能充分发挥材料的力学性能。表1-5,表1-6给出砂型铸造各种铸造合金的临界壁厚。

表1-5 砂型铸造各种铸造合金的临界壁厚(单位:㎜)

表1-6 碳素铸钢件砂型铸造的临界壁厚(单位:㎜)

含碳量0.10 0.20 0.30 0.40 0.50

临界壁厚11 13.5 18.5 25 39

(3)铸件的内壁厚度

砂型铸造时,铸件内壁散热条件差,即使内壁厚度与外壁厚度相等,但由于它比外壁的凝固速度慢,力学性能往往要比外壁低,同时在铸造

过程中易在内、外壁交接处产生热应力致使铸件产生裂纹。对于凝固收

缩大的铸造合金还易产生缩孔和缩松,因此铸件的内壁厚度应比外壁厚

度薄一些。

图1-1 铸件内壁的合理结构a,b)不合理c)合理

表1-7砂型铸造各种铸造合金件内、外壁厚相差值

合金类别铸铁铸钢铸铝铸铜

铸件内壁比外壁厚度应

10~20 20~30 10~20 15~20

减少的相对值%

注:铸件内腔尺寸大的取下限

对于锻钢制造的轴类零件来说,增大直径便可提高承载能力。但对铸件来说,随着壁厚的增加,中心部分晶粒粗大,承载能力并不随壁厚增加而成比例地增加。因此,在设计较厚铸件时,不能把增加壁厚当作提高承载能力的唯一办法。为了节约金属,减轻铸件重量,可以选择合理的截面形状,如承受弯曲载荷的铸件,可选用“T”型或“工”型截面。采用加强筋也可减小铸件壁厚。一般筋厚﹤内壁厚﹤外壁厚。

2 . 铸件壁应合理连接

铸件壁厚不均,厚薄相差悬殊,会造成热量集中,冷却不均,不仅易产生缩孔、缩松,而且易产生应力、变形和裂纹。所以要求铸件壁厚尽量均匀,如图

1-2(a)所示结构中壁厚不均,在厚的部分易形成缩孔,在厚薄连接处易形成裂纹。改为1-2(b)结构后,由于壁厚均匀,即可防止上述缺陷产生。也可用薄壁加加强筋结构。加强筋的布置应尽量避免或减少交叉,防止习惯年成热节。例如钳工划线平台,其筋条布置如图1-3所示。

铸件各部分壁厚不均现象有时不可避免,此时应采用逐渐过渡的方式,避免截面突然变化。接头断面的类型大致可分为L、V、K、T 和十字型五种。在接头处,凝固速度慢,容易产生应力集中、裂纹、变形、缩孔、缩松等缺陷。在接头形式的选用中,应优选L型接头,以减小与分散热节点及避免交叉连接。

逐渐过渡的形式与尺寸如表1-8所示。由表可知,壁厚差别不很大时,采用圆弧过渡;壁厚差别很大时,采用L型过渡,在同等情况下,铸钢件的过渡尺寸比铸铁件要大。两壁相交,其相交和拐弯处要作成圆角。

图1-2 均匀壁厚避免形成热节举例

3.结构斜度

进行铸件设计时,凡顺着拔模方向的不加工表面尽可能带有一定斜度以便于起模,便于操作,简化工艺。铸件垂直度越小,斜度越大。

综合以上所述,为了保证铸件质量,铸件的合理结构为:

1) 壁厚力求均匀,减小厚大断面,防止形成热节。办法是将厚大部位挖去一部

分;图1-5

2) 内壁厚度应小于外壁。因为内壁冷却慢,适当减薄(图1-6)。

3) 应有利于补缩和实现顺序凝固。

有些铸件铸锭厚度较大或厚度不均。如果该件所用合金的体积收缩较大,则很容易形成缩孔、缩松。此时应仔细审查零件结构,尽可能采取顺序凝固方式,让薄壁处先凝,厚壁处后凝,使在厚壁处易于安放冒口补缩,以防止缩孔、缩松。图1-7

4) 注意防止发生翘曲变形。

细长杆状铸件,大平板铸件,增加加强筋及改变截面形状

床身一类的铸件,其截面形状不允许变化,为防止其变形可采用反挠度,即在模样上采取反变形量。如果既不能设加强筋,又不能该变截面形状,只好采用人工失效方法消除应力减少变形。

5) 应避免水平方向出现较大平面。大平面铸件的上部型砂时间受金属液体烘烤,容易造成夹砂。解决的办法是倾斜浇注或设计成倾斜壁。应避免铸件收缩时受到阻碍,否则会造成裂纹,对于收缩大的合金铸件尤其要注意这一点。

4 . 铸件结构设计原则

(1)设计铸件壁厚时应考虑到合金的流动性;

流动性越好的合金,充型能力越强,铸造时就不容易产生浇不足、冷隔等缺陷,因此,能铸出的铸件最小壁厚尺寸也就越小。

(2)铸型型腔的形状与尺寸大小是根据铸件的形状与尺寸决定的。不同的型腔形状和尺寸对液态金属的流动的阻力,散热情况是不同的,从而会导致液态金属

在型腔内的流动与填充情况不同。因此,铸件结构上应尽量避免突变性的转变、壁厚急剧的变化、细长结构、大的水平面、高度较大的凸台等。

(3)一个铸件在生产过程中是否出现缩孔、缩松、变形、热裂、冷裂等收缩类铸造缺陷,出现在哪个部位、严重程度如何,都与铸件结构密切相关。由此可以得出指导铸件结构设计的原则:

1) 对凝固收缩大,容易产生集中缩孔的合金,如铸钢、球墨铸铁、可锻铸铁、黄铜、无锡青铜、铝硅共晶合金等,倾向于采用顺序凝固方式铸造。这时在进行铸件结构设计时,应使铸件结构形式有利于顺序凝固。

2) 对溶液产生缩松的合金,如锡青铜、磷青铜等采用冒口补缩效果不大,常采用同时凝固方式来使缩松更分散些;对收缩较小的合金,如铸铁更倾向于采用同时凝固方式铸造。这时铸件的结构应是壁厚均匀,尽量减少金属的聚集与消除热节。对于一些结构形状复杂的大铸件,也可将其各部分按顺序或同时凝固方式设计。

3) 尽量使铸件结构有利于自由收缩,如尽量减少铸件的轮廓尺寸,减少突出部分,必要时可将一个铸件分成几个小铸件,然后用焊接或螺栓连接起来。

4) 尽量避免产生应力集中的形状,如不应有尖角、不同壁厚之间的连接要平缓。

5) 应考虑到各种铸造方法的工艺过程、凝固特点、铸型和型芯的特点。尤其市使用金属铸型和型芯的铸造方法。如金属型铸造、压力铸造,应便于铸件的抽芯和出芯。

二、从生产工艺考虑—简化工艺便于操作—角度对铸件结构提出的要求

铸件结构不仅应有利于保证铸件质量,防止和减少铸造缺陷,而且应保证造型、制芯、清理等操作的方便,以利于提高生产率和降低成本。因此要求铸件要:1、便于起模。

改进妨碍起模的凸台、凸缘,筋板和外表面侧凹。

2、减少和简化分型面

减少分型面的数目,既可减少砂箱数目,又能提高铸件尺寸精度。曲面分型,工艺复杂,操作不便(制造模样和造型不方便),应尽量做成平直分型面。

3、改进铸件内腔结构,尽量减少砂芯数量

4、简化清理操作

5、增加结构斜度

铸件最好有结构斜度。这样不仅起模方便,也提高铸件尺寸精度,甚至减少砂芯数量。对那些不允许有结构斜度的铸件,在制造模样时,应做出角度很小的拔模斜度。

三、组合铸件

有些大而复杂的铸件,受工厂条件限制,无法生产或虽能生产但质量难以保证,可用“一分为二”或“化整为零”。即分成两个或两个以上的简单铸件,使复杂铸件分成简单件,大件变成小件,铸造完后再用螺栓或焊接方法连接起来。这样做,不仅简化铸造过程,加工和运输也方便,并使原来无法生产的铸件得以生产。

《铸造工艺学》课后习题答案

《铸造工艺学》课后习题答案 湖南大学 1、什么是铸造工艺设计? 铸造工艺设计就是根据铸造零件的结构特点、技术要求、生产批量、生产条件等,确定铸造方案和工艺参数,绘制铸造工艺图,编制工艺卡等技术文件的过程。 2、为什么在进行铸造工艺设计之前要弄清楚设计的依据,设计依据包括哪些内容? 在进行铸造工艺设计前设计者应该掌握生产任务和要求,熟悉工厂和车间的生产条件这些是铸造工艺设计的基本依据,还需要求设计者有一定的生产经验,设计经验并应对铸造先进技术有所了解具有经济观点发展观点,才能很好的完成设计任务 设计依据的内容 一、生产任务1)铸件零件图样提供的图样必须清晰无误有完整的尺寸,各种标记2)零件的技术要求金属材质牌号金相组织力学性能要求铸件尺寸及重量公差及其它特殊性能要求3)产品数量及生产期限产品数量是指批量大小。生产期限是指交货日期的长短。二、生产条件1)设备能力包括起重运输机的吨位,最大起重高度、熔炉的形式、吨位生产率、造型和制芯机种类、机械化程度、烘干炉和热处理炉的能力、地坑尺寸、厂房高度大门尺寸等。2)车间原料的应用情况和供应情况3)工人技术水平和生产经验4)模具等工艺装备制造车间的加工能力和生产经验 三、考虑经济性对各种原料、炉料等的价格、每吨金属液的成本、各级工种工时费用、设备每小时费用等、都应有所了解,以便考核该工艺的经济性。 3.铸造工艺设计的内容是什么? 铸造工艺图,铸件(毛坯)图,铸型装配图(合箱图),工艺卡及操作工艺规程。 4.选择造型方法时应考虑哪些原则? 1、优先采用湿型。当湿型不能满足要求时再考虑使用表干砂型、干砂型或其它砂型。 选用湿型应注意的几种情况1)铸件过高的技术静压力超过湿型的抗压强度时应考 虑使用干砂型,自硬砂型等。2)浇注位置上铸件有较大水平壁时,用湿型易引起 夹砂缺陷,应考虑使用其它砂型3)造型过程长或需长时间等待浇注的砂型不宜 选用湿型4)型内放置冷铁较多时,应避免使用湿型 2、造型造芯方法应和生产批量相适应 3、造型方法应适用工厂条件 4、要兼顾铸件的精度要求和生产成本 5-浇注位置的选择或确定为何受到铸造工艺人员的重视?应遵循哪些原则? 确定浇注位置是铸造工艺设计中重要的一环,关系到铸件的内在质量、铸件的尺寸精度铸造工艺过程中的难易,因此往往须制定出几种方案加以分析,对此择优选用。 应遵循的原则为:1、铸件的重要部分应尽量置于下部2、重要加工面应朝下或呈直立状态3、使铸件的大平面朝下,避免夹砂伤疤类缺陷4、应保证铸件能充满5、应有利于铸件的补缩6、避免用吊砂,吊芯或悬臂式砂芯,便于下芯,合箱及检验7、应使合箱位置,浇注位置和铸件冷却位置相一致 5为什么要设计分型面?怎样选择分型面? 分型面的优劣,在很大程度上影响铸件的尺寸精度、成本和生产率。选择分型面的原则:1、应使铸件的全部或大部置于同一半型内2、应尽量减少分型面数目,分型面少,铸件精度容易保证3、分型面应尽量选用平面4、便于下芯,合箱,检查型腔尺寸。5、不使砂箱过高6、受力件的分型面的选择不应削弱铸件结构强度7、注意减轻铸件的清理和机

铸造工艺设计基础样本

铸造工艺设计基础 铸造生产周期较长, 工艺复杂繁多。为了保证铸件质量, 铸造 工作者应根据铸件特点, 技术条件和生产批量等制订正确的工艺 方案, 编制合理的铸造工艺流程, 在确保铸件质量的前提下, 尽 可能地降低生产成本和改进生产劳动条件。本章主要介绍铸造工艺设计的基础知识, 使学生掌握设计方法, 学会查阅资料, 培养分 析问题和解决问题的能力。 §1-1 零件结构的铸造工艺性分析 铸造工艺性, 是指零件结构既有利于铸造工艺过程的顺利进行, 又有利于保证铸件质量。 还可定义为: 铸造零件的结构除了应符合机器设备本身的使 用性能和机械加工的要求外, 还应符合铸造工艺的要求。这种对铸造工艺过程来说的铸件结构的合理性称为铸件的铸造工艺性。 另定义: 铸造工艺性是指零件的结构应符合铸造生产的要求, 易于保证铸件品质, 简化铸造工艺过程和降低成本。 铸造工艺性不好, 不但给铸造生产带来麻烦, 不便于操作, 还 会造成铸件缺陷。因此, 为了简化铸造工艺, 确保铸件质量, 要求铸件必须具有合理的结构。 一、铸件质量对铸件结构的要求 1.铸件应有合理的壁厚

某些铸件缺陷的产生, 往往是由于铸件结构设计不合理而造成的。采用合理的铸件结构, 可防止许多缺陷。 每一种铸造合金, 都有一个合适的壁厚范围, 选择得当, 既可保证铸件性能( 机械性能) 要求, 又便于铸造生产。在确定铸件壁厚时一般应综合考虑以下三个方面: 保证铸件达到所需要的强度和刚度; 尽可能节约金属; 铸造时没有多大困难。 ( 1) 壁厚应不小于最小壁厚 在一定的铸造条件下, 铸造合金能充满铸型的最小壁厚称为该铸造合金的最小壁厚。为了避免铸件的浇不足和冷隔等缺陷, 应使铸件的设计壁厚不小于最小壁厚。各种铸造工艺条件下, 铸件最小允许壁厚见表7-1~表7-5 表1-1 砂型铸造时铸件最小允许壁厚( 单位: ㎜) 表1-2 熔模铸件的最小壁厚( 单位: ㎜)

装配结构工艺性分析

一、分析研究产品的零件图样和装配图样 在编制零件机械加工工艺规程前,首先应研究零件的工作图样和产品装配图样,熟悉该产品的用途、性能及工作条件,明确该零件在产品中的位置和作用;了解并研究各 项技术条件制订的依据,找出其主要技术要求和技术关键,以便在拟订工艺规程时采用适当的措施加以保证。 工艺分析的目的,一是审查零件的结构形状及尺寸精度、相互位置精度、表面粗糙度、材料及热处理等的技术要求是否合理,是否便于加工和装配;二是通过工艺分析,对零件的工艺要求有进一步的了解,以便制订出合理的工艺规程。 如图3-8 所示的汽车钢板弹簧吊耳,使用时,钢板弹簧与吊耳两侧面是不接触的,所以吊耳内侧的粗糙度可由原来的设计要求R a3.2 μm 建议改为R a12.5 μ m. 。这样在铣削时可只用粗铣不用精铣,减少

铣削时间。 再如图3-9 所示的方头销,其头部要求淬火硬度55~60HRC ,所选用的材料为T 8A ,该零件上有一孔φ2H7 要求在装配时配作。由于零件长度只有15mm ,方头部长度仅有4mm ,如用T 8A 材料局部淬火,势必全长均被淬硬,配作时,φ 2H7 孔无法加工。若建议材料改用20Cr 进行渗碳淬火,便能解决问题。 二、结构工艺性分析 零件的结构工艺性是指所设计的零件在满足使用要求的前提下,制造的可行性和经济性。下面将从零件的机械加工和装配两个方面,对零件的结构工艺性进行分析。 (一)机械加工对零件结构的要求 1 .便于装夹零件的结构应便于加工时的定位和夹紧,装夹次数要少。图3 -10a 所示零件,拟用顶尖和鸡心夹头装夹,但该结构不便于装夹。若改为图b 结构,则可以方便地装置夹头。 2 .便于加工零件的结构应尽量采用标准化数值,以便使用标准化刀具和量具。同时还注意退刀和进刀,易于保证加工精度要求,减少加工面积及难加工表面等。表3-8b 所示为便于加工的零件结构示例。

机械零件结构工艺性分析与工艺路线的拟定

目录 一、零件结构工艺性分析2 1. 零件的技术要求2 2.确定堵头结合件的生产类型3 二、毛坯的选择4 1.选择毛坯4 2.确定毛坯的尺寸公差4 三、定位基准的选择6 1.精基准的选择6 2.粗基准的选择6 四、工艺路线的拟定7 1.各表面加工方法的选择7 2.加工阶段的划分8 3.加工顺序的安排8 4.具体技术方案的确定9 五、工序内容的拟定10 1.工序的尺寸和公差的确定10 2.机床、刀具、夹具及量具的选择12 3.切削用量的选择及工序时间计算12 六、设计心得35 七、参考文献36

一、零件结构工艺性分析 1.零件的技术要求 1.堵头结合件由喂入辊轴和堵头焊接在一起。其中喂入辊 轴:材料为45钢。堵头:材料为Q235-A。且焊缝不得有夹渣、气孔及裂纹等缺陷。 2.零件的技术要求表:

2. 确定堵头结合件的生产类型 根据设计题目年产量为10万件,因此该左堵头结合件的生产类型为大批量生产。

二、毛坯的选择 1.选择毛坯 由于该堵头结合件在工作过程中要承受冲击载荷,为增强其的强度和冲击韧度,堵头选用锻件,材料为Q235-A,因其为大批大量生产,故采用模锻。喂入辊轴由于尺寸落差不大选用棒料,材料为45钢。 2.确定毛坯的尺寸公差 喂入辊轴: 根据轴类零件采用精轧圆棒料时毛坯直径选择可通过零件的长度和最大半径之比查的毛坯直径 206 L8.24 == R25 查表得毛坯直径为:φ55 根据其长度和直径查得端面加工余量为2。故其长度为206+2+2=210mm

堵头: 1.公差等级: 由于堵头结合件用一般模锻工艺能够达到技术要求,确定该零件的公差等级为普通级。 2.重量: 锻件重量的估算按下列程序进行: 零件图基本尺寸-估计机械加工余量-绘制锻件图-估算锻件重量。并按此重量查表确定公差和机械加工余量 据粗略估计锻件质量: 11.6f Kg M = 3.形状复杂系数: 锻件外廓包容体重量按公式:2N d h 4 M π ρ= g g 计算 293 186.5101104 7.851021.65Kg N M π -= ?????= 形状复杂系数: f 11.6 0.5421.6M S M N === 故形状复杂系数为S2(一般)级。 4.锻件材质系数: 由于该堵头材料为Q235-A 所含碳元素的质量分数分别为C=0.14%—0.22%,小于0.65% 所含合金元素的质量分数分别为Si 0.3%≤、S 0.05%≤、P 0.045%≤故合金元素总的质量分数为0.3%0.05%0.045%0.395%3%++≤<%。故该锻件的材质系数为M1级。 5.锻件尺寸公差 根据锻件材质系数和形状复杂系数查得锻件尺寸公差为 ( 2.41.2+-) 。 6.锻件分模线形状: 根据该堵头的形装特点,选择零件轴向方向的对称平面为分模面,属于平直分模线。

零件结构的铸造工艺性分析

零件结构的铸造工艺性分析 铸造工艺性,是指零件结构既有利于铸造工艺过程的顺利进行,又有利于保证铸件质量。 还可定义为:铸造零件的结构除了应符合机器设备本身的使用性能和机械加工的要求外,还应符合铸造工艺的要求。这种对铸造工艺过程来说的铸件结构的合理性称为铸件的铸造工艺性。 另定义:铸造工艺性是指零件的结构应符合铸造生产的要求,易于保证铸件品质,简化铸造工艺过程和降低成本。 铸造工艺性不好,不仅给铸造生产带来麻烦,不便于操作,还会造成铸件缺陷。因此,为了简化铸造工艺,确保铸件质量,要求铸件必须具有合理的结构。 一、铸件质量对铸件结构的要求 1.铸件应有合理的壁厚 某些铸件缺陷的产生,往往是由于铸件结构设计不合理而造成的。采用合理的铸件结构,可防止许多缺陷。 每一种铸造合金,都有一个合适的壁厚范围,选择得当,既可保证铸件性能(机械性能)要求,又便于铸造生产。在确定铸件壁厚时一般应综合考虑以下三个方面:保证铸件达到所需要的强度和刚度;尽可能节约金属;铸造时没有多大困难。 (1)壁厚应不小于最小壁厚 在一定的铸造条件下,铸造合金能充满铸型的最小壁厚称为该铸造合金的最小壁厚。为了避免铸件的浇不足和冷隔等缺陷,应使铸件的设计壁厚不小于最小壁厚。各种铸造工艺条件下,铸件最小允许壁厚见表1-1~表1-5

表1-1 砂型铸造时铸件最小允许壁厚(单位:㎜) 表1-2 熔模铸件的最小壁厚(单位:㎜)

表1-3 金属型铸件的最小壁厚(单位:㎜) 表1-4 压铸件的最小壁厚(单位:㎜) (2)铸件的临界壁厚 在铸件结构设计时,为了充分发挥金属的潜力,节约金属,必须考虑铸造合金的力学性能对铸件壁厚的敏感性。厚壁铸件容易产生缩孔、缩松、晶粒粗大、偏析和松软等缺陷,从而使铸件的力学性能下降。从这个方面考虑,各种铸造合金都存在一个临界壁厚。铸件的壁厚超过临界壁厚后,铸件的力学性能并不按比例地随着铸件壁厚的增加而增加,而是显著下降。因此,铸件的结构设计应科学

零件的工艺性分析

零件的工艺性分析 一、分析研究产品的零件图样和装配图样在编制零件机械加工工艺规程前,首先应研究零件的工作图样和产品装配图样,熟悉该产品的用途、性能及工作条件,明确该零件在产品中的位置和作用;了解并研究各项技术条件制订的依据,找出其主要技术要求和技术关键,以便在拟订工艺规程时采用适当的措施加以保证。工艺分析的目的,一是审查零件的结构形状及尺寸精度、相互位置精度、表面粗糙度、材料及热处理等的技术要求是否合理,是否便于加工和装配;二是通过工艺分析,对零件的工艺要求有进一步的了解,以便制订出合理的工艺规程。 如图3-8 所示的汽车钢板弹簧吊耳,使用时,钢板弹簧与吊耳两侧面是不接触的,所以吊耳内侧的粗糙度可由原来的设计要求R a3.2 μ m 建议改为R a12.5 μ m. 。这样在铣削时可只用粗铣不用精铣,减少铣削时间。 再如图3-9 所示的方头销,其头部要求淬火硬度55~60HRC ,所选用的材料为T 8A ,该零件上有一孔φ 2H7 要求在装配时配作。由于零件长度只有15mm ,方头部长度仅有4mm ,如用T 8A 材料局部淬火,势必全长均被淬硬,配作时,φ 2H7 孔无法加工。若建议材料改用20Cr

进行渗碳淬火,便能解决问题。 二、结构工艺性分析零件的结构工艺性是指所设 计的零件在满足使用要求的前提下,制造的可行性和经济性。下面将从零件的机械加工和装配两个方面,对零件的结构工艺性进行分析。(一)机械加工对零件结构的要求 1 .便于装夹零件的结构应便于加工时的定位和夹紧,装 夹次数要少。图3 -10a 所示零件,拟用顶尖和鸡心夹头装夹,但该结构不便于装夹。若改为图b 结构,则可以方便 地装置夹头。 2 .便于加工零件的结构应尽量采用标准化数值,以便使用标准化刀具和量具。同时还注意退刀和进刀,易于保证加工精度要求,减少加工面积及难加工表面等。表3-8b 所示为便于加工的零件结构示例。 3 .便于数控机床加工被加工零件的数控工艺性 问题涉及面很广,下面结合编程的可能性与方便性来作工艺性分析。 编程方便与否常常是衡量数控工艺性好坏的一个 指标。例如图3-11 所示某零件经过抽象的尺寸标注方法,若用APT 语言编写该零件的源程序,要用几何定义语句描

机械零件的结构工艺性和三化

机械零件的结构工艺性和“三化” 设计机械零作时,不仅应使其摘足使用要求.即具备所要求的工作能力.同时还 应当满足生产要求.使所设计的零件具有良好的结构工艺性. 所谓机械零件的结构工艺性是指零件的结构在满足使用要求的前提下.能用生 产率高、劳动最小、材料消耗少和成本低的方法制造出来.凡符合卜述要求的零件结构被认为具有良好的工艺性。 机械制造包括毛坯生产、切创加工和装民等生产过程。设计时.必须使零件的结构在各个生产过程中都具有良好的工艺性.对工艺性的要求如下. (1)合理选择毛坯零件毛坯可直接利用型材、铸造、般造、冲压和焊接等方法 获得。毛坯的选择与生产的批最、生产的技术条件及材料的性能等有关。 (2)结构简单合理机械零件的结构形状,最好采用最简单的表面,即平面、桂 面及其组合面.尽童减少加工面数和加工面积。 (3)合理确定剐造梢度及表面粗桩度零件的加工费用随精度的提高而增加。 尤其是在对于要求精度较高的情况下,更为显著.因此,在设计零件时不要一味地迫求高精度.要从需要、生产条件和降低制造成本出发,合理地选择零件的精度及相应的表面粗糙度。 下面列举-共常见的工艺结构.供设计时多考。 1.铸造,件的工艺结构 I )拔模抖度 用铸造的方法制造零件毛坯时,为了便于在砂2中取出模样,一般沿模样起模方向作成约1:20的斜度.称为起模斜度。因此.铸件上要有相应的起模斜度。这种斜 度在图上可以不T标往,也不一定舀出,如图0-7所示.必要时.可以在技术要求中用 2)铸造阅角 当零件的毛坯为铸件时.因铸造工艺的要求,铸件各表面相交的转角处都应做成阅角(见图0-8).铸造目角可防止浇注时在转角处产生冲砂现象及避免铸件冷却时 产生编孔和裂纹。铸造阅角的大小一般取R=3-5 mm.可在技术要求中统一注明。 3)岭件序度 当铸件的壁厚不均匀一致时。铸件在浇注后.因各处金属冷却速度不同,将产生裂纹和编孔现象。因此.铸件的壁厚应尽里均匀.当必须采用不同壁厚连接时.应采 用逐渐过渡的方式(见图0-9).

分析零件图——零件图的审查

分析零件图——零件图的审查 在制订零件的机械加工工艺规程之前,对零件进行工艺性分析,以及对产品零件图提出修改意见,是制订工艺规程的一项重要工作。 首先应熟悉零件在产品中的作用、位置、装配关系和工作条件,搞清楚各项技术要求对零件装配质量和使用性能的影响,找出主要的和关键的技术要求,然后对零件图样进行分析。 (1) 检查零件图的完整性和正确性 在了解零件形状和结构之后,应检查零件视图是否正确、足够,表达是否直观、清楚,绘制是否符合国家标准,尺寸、公差以及技术要求的标注是否齐全、合理等。 (2) 零件的技术要求分析 零件的技术要求包括下列几个方面:加工表面的尺寸精度;主要加工表面的形状精度;主要加工表面之间的相互位置精度;加工表面的粗糙度以及表面质量方面的其它要求;热处理要求;其它要求(如动平衡、未注圆角或倒角、去毛刺、毛坯要求等)。 要注意分析这些要求在保证使用性能的前提下是否经济合理,在现有生产条件下能否实现。特别要分析主要表面的技术要求,因为主要表面的加工确定了零件工艺过程的大致轮廓。 (3) 零件的材料分析 即分析所提供的毛坯材质本身的机械性能和热处理状态,毛坯的铸造品质和被加工部位的材料硬度,是否有白口、夹砂、疏松等。判断其加工的难易程度,为选择刀具材料和切削用量提供依据。所选的零件材料应经济合理,切削性能好,满足使用性能的要求。 (4) 合理的标注尺寸 ①零件图上的重要尺寸应直接标注,而且在加工时应尽量使工艺基准与设计基准重合,并符合尺寸链最短的原则。如图4-1中活塞环槽的尺寸为重要尺寸,其宽度应直接注出。

②零件图上标注的尺寸应便于测量,不要从轴线、中心线、假想平面等难以测量的基准标注尺寸。如图4-2中轮毂键槽的深度,只有尺寸c的标注才便于用卡尺或样板测量。 ③零件图上的尺寸不应标注成封闭式,以免产生矛盾。如图4-3所示,已标注了孔距尺寸a±δ和角度α±δα,则则x、y轴的坐标尺寸就不能随便标注。有时为了方便加工,可按尺寸链计算出来,并标注在圆括号内,作为加工时的参考尺寸。 ④零件上非配合的自由尺寸,应按加工顺序尽量从工艺基准注出。如图4-4的齿轮轴,图(a)的表示方法大部分尺寸要经换算,且不能直接测量。而图(b) 图4-1 直接标注重要尺寸图4-2 键槽深度的标注图4-3 孔中心距的标注 (a) (b)

铸造复习题新(带答案)

一、填空题 1、常见毛坯种类有铸件、压力加工件、和焊接件。其中对于形状较复杂的毛坯一般采用铸件。 2、影响合金充型能力的因素很多,其中主要有___合金流动性____、__浇铸条件_和_铸型的充填条件__三个方面。 3、凝固过程中所造成的体积缩减如得不到液态金属的补充,将产生缩孔或缩松。 4、铸件应力过大会引起变形、裂纹等缺陷。因此,进行铸件结构设计时应注意使铸件的壁厚尽量均匀一致。 5、液态合金充满铸型,获得尺寸正确、轮廓清晰铸件的能力,称为液态合金的充型能力。 6、铸件上各部分壁厚相差较大,冷却到室温,厚壁部分的残余应力为拉应力,而薄壁部分的残余应力为压应力。 7、任何一种液态金属注入铸型以后,从浇注温度冷却至室温都要经过三个联系的收缩阶段,即液态收缩、凝固收缩和固态收缩。 8、影响合金收缩的因素有化学成分、浇铸温度、铸件结构与铸型条件 9、合金的结晶温度范围愈__小__,其流动性愈好。 10、根据生产方法的不同,铸造方法可分为砂型铸造和特种铸造两大类

11、制造砂型时,应用模样可以获得与零件外部轮廓相似的铸件外形,而铸件内部的孔腔则是由型芯形成的。制造型芯的模样称为芯盒。 12、为使模样容易从砂型中取出,型芯容易从芯盒中取出,在模样和芯盒上均应做出一定的拔模斜度。 13、浇注系统是金属熔液注入铸型型腔时流经的通道,它是由浇口杯、直浇道、横浇道和内浇道组成。 14、铸件常见的缺陷有浇不足、冷隔、气孔、砂眼和缩孔等。 15、合金的液态收缩和凝固收缩是形成铸件缩孔和缩松的基本原因。 16、孕育铸铁的生产过程是首先熔炼出碳和硅含量较低的原始铁水,然后铁水出炉时加孕育剂。 17、可锻铸铁是先浇铸出白口铸铁,然后进行石墨化退火而获得的 18、按铸造应力产生的原因不同可分为热应力应力和机械应力。 19、铸件顺序凝固的目的是防止缩孔、缩松。 20、控制铸件凝固的原则有二个,即顺序凝固和同时凝固。 21影响铸铁石墨化最主要的因素是化学成分和冷却速度。

机械零件结构加工工艺性设计

机械零件结构加工工艺性设计 机器零件的设计,不仅要满足使用性能的要求,而且要考虑到它们的结构工艺性,要注意到在制造过程中可能产生的问题。零件的结构工艺性就是指所设计的零件,在保证使用性能的前提下,能否用生产率高、劳动量小、材料消耗少、成本低的方法制造出来。结构工艺性好的零件,制造是方便而经济的。因此,研究和改善零件的结构工艺性,对机器制造生产有着很大的意义。零件结构设计的基本原则是:(1 )零件的结构形状应尽可能简单,尽量采用平面、圆柱面,以节省材料和工时,简化加工工艺。(2 )零件的 结构应与其加工方法的工艺特点相适应。(3 )零件的结 构形状应有利于提高质量,防止废品。(4 )零件尺寸应 尽量采用标准化,同一零件上相同性质的尺寸最好一致,以简化制造过程。机器制造中,由于各种加工方法的工艺特点不同,它们对零件的结构要求也不一样。下面举例说明各种工艺方法所应考虑的零件的结构工艺性(表8-4 、 8-5 、8-6 、8-7 )。表8-4 铸件结构工艺性举例序号说明不良结构良好结构1取消端盖上部的法兰凸缘,以减少分型面,由三箱造型改为两箱造型,并省去了环状外型芯,简化了造型工艺2改进凸台设计,采用a )或b )的结构设计均可。避免用型芯或活块模造型3把支座结构

由框形截面改为工字形截面,避免采用型芯4改进内腔设计,采用整体型芯,避免使用型芯撑5减少金属局部积聚,使壁厚力求均匀6采用直的轮幅,冷却收缩时产生内应力,可能使轮幅拉裂,采用弯曲轮幅就可借轮幅的变形,使内应力降低7铸件壁由直角连接改为圆角连接,避免应力集中和引起裂纹8交叉结构的铸件设计,切忌尖角交叉,而应采用带有合理圆角的交错或环连接设计

典型零件的机械加工工艺分析

第4章典型零件的机械加工工艺分析 本章要点 本章介绍典型零件的机械加工工艺规程制订过程及分析,主要内容如下: 1.介绍机械加工工艺规程制订的原则与步骤。 2.以轴类、箱体类、拨动杆零件为例,分析零件机械加工工艺规程制订的全过程。 本章要求:通过典型零件机械加工工艺规程制订的分析,能够掌握机械加工工艺规程制订的原则和方法,能制订给定零件的机械加工工艺规程。 §4.1 机械加工工艺规程的制订原则与步骤§4.1.1机械加工工艺规程的制订原则 机械加工工艺规程的制订原则是优质、高产、低成本,即在保证产品质量前提下,能尽量提高劳动生产率和降低成本。在制订工艺规程时应注意以下问题: 1.技术上的先进性 在制订机械加工工艺规程时,应在充分利用本企业现有生产条件的基础上,尽可能采用国内、外先进工艺技术和经验,并保证良好的劳动条件。 2.经济上的合理性 在规定的生产纲领和生产批量下,可能会出现几种能保证零件技术要求的工艺方案,此时应通过核算或相互对比,一般要求工艺成本最低。充分利用现有生产条件,少花钱、多办事。 3.有良好的劳动条件 在制订工艺方案上要注意采取机械化或自动化的措施,尽量减轻工人的劳动强度,保障生产安全、创造良好、文明的劳动条件。 由于工艺规程是直接指导生产和操作的重要技术文件,所以工艺规程还应正确、完整、统一和清晰。所用术语、符号、计量单位、编号都要符合相应标准。必须可靠地保证零件图上技术要求的实现。在制订机械加工工艺规程时,如果发现零件图某一技术要求规定得不适当,只能向有关部门提出建议,不得擅自修改零件图或不按零件图去做。 §4.1.2 制订机械加工工艺规程的内容和步骤 1.计算零件年生产纲领,确定生产类型。 2.对零件进行工艺分析 在对零件的加工工艺规程进行制订之前,应首先对零件进行工艺分析。其主要内容包括: (1)分析零件的作用及零件图上的技术要求。 (2)分析零件主要加工表面的尺寸、形状及位置精度、表面粗糙度以及设计基准等; (3)分析零件的材质、热处理及机械加工的工艺性。

机械制造工艺精品教案-零件结构工艺性

课时:2课时 教学课题:零件结构工艺性 教学目标:学生能够掌握典型零件结构上的工艺审查 能够基本完成对工艺的改进与优化。 教学重点:掌握典型零件结构上的工艺审查 教学难点:能够基本完成对工艺的改进与优化 教具仪器:多媒体 零件结构工艺性 概述 结构工艺性的概念 在机械设计中,不仅要保证所设计的机械设备具有良好的工作性能,而且还要考虑能否制造、便于制造和尽可能降低制造成本。这种在机械设计中综合考虑制造、装配工艺、维修及成本等方面的技术,称为机械设计工艺性。机器及其零部件的工艺性主要体现于结构设计当中,所以又称为结构设计工艺性。零件结构设计工艺性,简称零件结构工艺性,是指所设计的零件在满足使用要求的条件下制造的可行性和经济性。 零件结构工艺性存在于零部件生产和使用的全过程,包括:材料选择、毛坯生产、机械加工、热处理、机器装配、机器使用、维护,直至报废、回收和再利用等。 零件结构工艺性的基本要求 1)机器零部件是为整机工作性能服务的,零部件结构工艺性应服从整机的工艺性。 2)在满足工作性能的前提下,零件造型应尽量简单,同时应尽量减少零件的加工表面数量和加工面积;尽量采用标准件、通用件和外购件;增加相同形状和相同元素(如直径、圆角半径、配合、螺纹、键、齿轮模数等)的数量。

3)零件设计时在保证零件使用功能和充分考虑加工可能性、方便性、精确性的前提下应符合经济性要求,即应尽量降低零件的技术要求(加工精度和表面质量),以使零件便于制造。 4)尽量减少零件的机械加工余量,力求实现少或无切屑加工,以降低零件的生产成本。 5)合理选择零件材料,使其机械性能适应零件的工作条件,且成本较低。 6)符合环境保护要求,使零件制造和使用过程中无污染、省能源,便于报废、回收和再利用。 零件机械加工结构工艺性 对于零件机械加工结构工艺性,主要从零件加工的难易性和加工成本两方面考虑。在满足使用要求的前提下,一般对零件的技术要求应尽量降低,同时对零件每一个加工表面的设计,应充分考虑其可加工性和加工的经济性,使其加工工艺路线简单,有利于提高生产效率,并尽可能使用标准刀具和通用工装等,以降低加工成本。此外零件机械加工结构工艺性还要考虑以下要求:1)设计的结构要有足够的加工空间,以保证刀具能够接近加工部位,留有必要的退刀槽和越程槽等; 2)设计的结构应便于加工,如应尽量避免使钻头在斜面上钻孔; 3)尽量减少加工面积,如对大平面或长孔合理加设空刀等; 4)从提高生产率的角度考虑,在结构设计中应尽量使零件上相似的结构要素(如退刀槽、键槽等)规格相同,并应使类似的加工面(如凸台面、键槽等)位于同一平面上或同一轴截面上,以减少换刀或安装次数及调整时间; 5)零件结构设计应便于加工时的安装与夹紧。 表2-17给出了部分零件切削加工结构工艺性改进前后的示例。

第7章_机械制造工艺基础考试复习题教学提纲

第7章_机械制造工艺基础考试复习题

第7章练习题 一、是非题 1、零件的切削加工工艺性反映的是零件切削加工的难易程度。(√) 2、零件的结构工艺性是衡量零件结构设计优劣的指标之一。(√) 3、在单件小批生产中一般采用机械加工艺过程卡片指导生产。(√) 4、定位基准属于工艺设计过程中所使用的一种基准,因此属于设计基准。 (×) 5、粗基准是粗加工所使用的基准,精基准是精加工所使用的基准。(×) 6、经济精度指的是在正常工艺条件下,某种加工方法所能够达到的精度。 (√) 7、加工顺序的安排仅指安排切削加工的顺序。(×) 8、单件小批生产中倾向于采用工序集中的原则。(√) 9、退火等热处理工序一般安排在半精加工之后、精加工之前进行。(×) 10、箱体类零件的精基准及定位方式一般采用一面两销。(√) 11、热处理前已加工好的中心孔,热处理后必须研磨,以保证定位精度。(√) 12、粗基准是粗加工所使用的基准,精基准是精加工所使用的基准。(×) 13、变速箱体上的Φ50H7Ra0.8μm轴承孔,采用下列方案:钻—扩—粗磨—精磨。(×) 14、在多品种小批量生产中,一般倾向于使用工序分散的原则。(×) 15、有色金属的精加工适合车削和铣削而不适合磨削。(√) 二、选择题 1、下面关于零件结构工艺性论述不正确的是( D ) A.零件结构工艺性具有合理性 B 零件结构工艺性具有综合性 C:零件结构工艺性具有相对性 D零件结构工艺性具有正确性 2、零件加工时,粗基准一般选择(A) A 工件的毛坯面 B工件的已加工表面 C 工件的过渡表面 D工件的待加工表面 3、下面对粗基准论述正确的是(C) A 粗基准是第一道工序所使用的基准 B粗基准一般只能使用一次 C 粗基准一定是零件上的不加工表面 D粗基准是一种定位基准 4、自为基准是以加工面本身为基准,多用于精加工或光整加工工序,这是由于(C) A 符合基准重合原则 B符合基准统一原则 C 保证加工面的余量小而均匀 D保证加工面的形状和位置精度 5、工艺设计的原始资料中不包括(D) A零件图及必要的装配图 B零件生产纲领 C工厂的生产条件 D机械加工工艺规程 6、下面(C )包括工序简图。 A机械加工工艺过程卡片 B机械加工工艺卡片

零件结构的工艺性

零件结构的工艺性 机器上绝大多数零件,都是通过铸造和机械加工来形成,因此,在画零件图时,应该使零件的结构既能满足使用上的要求,又要方便制造。 一、铸造零件的工艺结构 一、拔模斜度 用铸造的方法制造零件毛坯时,为了便于在砂型中取出模样,一般沿模样拔模方向作成约1:20的斜度,叫做拔模斜度。因此在铸件上也有相应的拔模斜度,如下图a所示。这种斜度在图上可以不予标注,也不一定画出,如下图b所示;必要时,可以在技术要求中用文字说明。 二、铸造圆角 在铸件毛坯各表面的相交处,都有铸造圆角(下图),这样既能方便起模,又能防止浇铸铁水时将砂型转角处冲坏,还可以避免铸件在冷却时产生裂缝或缩孔。铸造圆角在图上一般不予标注,常常集中注写在技术要求中。下图所示的铸件毛坯的底面(作为安装底面),需要经过切削加工。这时,铸造圆角被削平。

三、铸件壁厚 在浇铸零件时,为了避免各部分冷却速度的不同而产生缩孔或裂缝,铸件壁厚应保持大致用等或逐渐变化,如下图所示。 二、零件加工面的工艺结构 一、倒角和倒圆 如下图所示,为了去除零件的毛刺、锐边和便于装配,在轴或孔的端部,一般都加工成倒角;为了避免因应力集中而产生裂纹,在轴肩处往往加工成圆角的过渡形式,称为倒圆。 二、螺纹退刀槽和砂轮越程槽 在切削加工中,特别是在车螺纹和磨削时,为了便于退出刀具或使砂轮可以稍稍越过加工面,常常在零件的待加工面的未端,先车出螺纹退刀槽或砂轮越程槽,如下图所示。

螺纹退刀槽和砂轮越程槽的结构尺寸系列,可查表。 三、钻孔结构 用钻头钻出的盲孔,在底部有一个120°的锥角,钻孔深度指的是圆柱部分的深度,不包括锥坑,如下图a所示。在阶梯形钻孔的过渡处,也存在锥角120°的圆台,其画法及尺寸注法,如下图b所示。

铸造工艺及应用作业答案及复习资料

铸造生产——指用熔融的液态合金注入预先制备好的铸型中使之 冷却、凝固后获得具有一定形状、尺寸和性能的毛 坯或零件过程,简称铸造。 2、铸造方法的分类 第一章 造型材料 型(芯)砂是由骨干材料、粘结材料和附加物等原材料按一定比例配制而成。 以粘土为粘结材料的粘土型(芯)砂主要由原砂、粘土、附加物和水配制而成。 常用的附加物:煤粉、渣油、淀粉 、锯末等 新砂和旧砂的处理 1.新砂的处理 新砂的处理常用的方法:筛分、水漂洗、酸浸洗、精选 、烘干等 2.旧砂的处理 拟采取措施:对旧砂进行通风冷却,降低温度;经破碎、磁选、过筛,除去杂物;干法碾搓,除去包覆膜、失效粘土及灰分;按一定比例添加原砂,补加新粘土、煤粉;调整含水分量,达到型砂性能要求。

CO2硬化法——向水玻璃砂制成的砂型(芯)中吹入CO2气体,在短时间内就可以使型(芯)砂硬化; 三、C02-钠水玻璃砂的原材料、配方及混制工艺 (一)C02-钠水玻璃砂的原材料 铸钢件用原砂Si02含量应高。一般采用中等粒度的硅砂 涂料的基本组成 涂料一般由耐火粉料、粘结剂、悬浮剂、载液和助剂组成。 涂料的性能 (1)涂料的工艺性能涂料的工艺性能主要有饱沾性、涂刷性、流淌性、流平性、渗透性等。涂刷方法 涂料涂敷的方法有刷、喷、浸三种。 第二章铸型制备 14种造型方法有哪些? 整模造型、分模造型、挖砂和假箱造型、活块和砂芯造型、活砂造型(抽砂造型)、多箱造型、实物造型、刮板造型、抽心模造型和劈箱造型、脱箱造型(活箱造型)、叠箱造型、模板造型、漏模造型、地坑造型 铸型的紧固方法 生产小型铸件的铸型由于抬箱力小,用压铁直接压在砂型上比较方便。 生产大中型铸件的铸型,一般用卡子、螺栓等紧固。 紧固铸型前需在分箱面的四角用铁片将上下砂箱问的缝隙垫实,以防止铸型紧固时砂芯或砂型被压溃。 地坑造型,一般用压铁压在盖箱上。 第三章浇注系统设计 铸铁件浇注系统的组成:浇口盆、直浇道、横浇道、内浇道。、 为避免水平涡流,应采用浇包低位浇注大流充满,并且使浇口杯中液面高度(h)与直浇道直径(d)保持_定的比值(即h>6d)。

零件的结构工艺性分析

零件的结构工艺性分析 零件的结构工艺性是指在满足使用性能的前提下,是否能以较高的生产率和最低的成本方便地加工出来的特性。为了多快好省地把所设计的零件加工出来,就必须对零件的结构工艺性进行详细的分析。主要考虑如下几方面。 (1) 有利于达到所要求的加工质量 ①合理确定零件的加工精度与表面质量 加工精度若定得过高会增加工序,增加制造成本,过低会影响机器的使用性能,故必须根据零件在整个机器中的作用和工作条件合理地确定,尽可能使零件加工方 便制造成本低。 ②保证位置精度的可能性 为保证零件的位置精度,最好使零件能在一次安装中加工 出所有相关表面,这样就能依靠机床本身的精度来达到所要求 的位置精度。如图4-6(a)所示的结构,不能保证φ80㎜与内孔φ 60㎜的同轴度。如改成图(b)所示的结构,就能在一次安装中加 工出外圆与内孔,保证二者的同轴度。 (2) 有利于减少加工劳动量 ①尽量减少不必要的加工面积(a) (b) 减少加工面积不仅可减少机械加工的劳动量,图4-6 有利于保证位置精度的工艺结构 而且还可以减少刀具的损耗,提高装配质量。图(a) 错误(b) 正确 4-7(b)中的轴承座减少了底面的加工面积,降低了修配的工作量,保证配合面的接触。图4-8(b)中减少了精加工的面积,又避免了深孔加工。 (a) (b) (a) (b) 图4-7 减少轴承座底面加工面积图4-8 避免深孔加工的方法 (a) 错误(b) 正确(a) 错误(b) 正确 ②尽量避免或简化内表面的加工 因为外表面的加工要比内表面加工方便经济,又便于测量。因此,在零件设计时应力求避免在零件内腔进行加工。如图4-9所示箱体,将图(a)的结构改成图(b)所示的结构,这样不仅加工方便而且还有利于装配。再如图4-10所示,将图(a)中件2上的内沟槽a加工,改成图(b)中件1的外沟槽加工,这样加工与测量就都很方便。 (3) 有利于提高劳动生产率 ①零件的有关尺寸应力求一致,并能用标准刀具加工。如图4-11(b)中改为退刀槽尺寸一致,则减少了刀具的种类,节省了换刀时间。如图4-12(b)采用凸台高度等高,则减少了加工过程中刀具的调整。如图4-13(b)的结构,能采用标准钻头钻孔,从而方便了加工。 ②减少零件的安装次数零件的加工表面应尽量分布在同一方向,或互相平行或互相垂直的表面上;次要表面应尽可能与主要表面分布在同一方向上,以便在加工主要表面时,

铸造工艺标准设计基础学习知识

铸造工艺设计基础 铸造生产周期较长,工艺复杂繁多。为了保证铸件质量,铸造工作者应根据铸件特点,技术条件和生产批量等制订正确的工艺方案,编制合理的铸造工艺流程,在确保铸件质量的前提下,尽可能地降低生产成本和改善生产劳动条件。本章主要介绍铸造工艺设计的基础知识,使学生掌握设计方法,学会查阅资料,培养分析问题和解决问题的能力。 §1-1 零件结构的铸造工艺性分析 铸造工艺性,是指零件结构既有利于铸造工艺过程的顺利进行,又有利于保证铸件质量。 还可定义为:铸造零件的结构除了应符合机器设备本身的使用性能和机械加工的要求外,还应符合铸造工艺的要求。这种对铸造工艺过程来说的铸件结构的合理性称为铸件的铸造工艺性。 另定义:铸造工艺性是指零件的结构应符合铸造生产的要求,易于保证铸件品质,简化铸造工艺过程和降低成本。 铸造工艺性不好,不仅给铸造生产带来麻烦,不便于操作,还会造成铸件缺陷。因此,为了简化铸造工艺,确保铸件质量,要求铸件必须具有合理的结构。 一、铸件质量对铸件结构的要求 1.铸件应有合理的壁厚 某些铸件缺陷的产生,往往是由于铸件结构设计不合理而造成的。采用合理的铸件结构,可防止许多缺陷。

每一种铸造合金,都有一个合适的壁厚范围,选择得当,既可保证铸件性能(机械性能)要求,又便于铸造生产。在确定铸件壁厚时一般应综合考虑以下三个方面:保证铸件达到所需要的强度和刚度;尽可能节约金属;铸造时没有多大困难。 (1)壁厚应不小于最小壁厚 在一定的铸造条件下,铸造合金能充满铸型的最小壁厚称为该铸造合金的最小壁厚。为了避免铸件的浇不足和冷隔等缺陷,应使铸件的设计壁厚不小于最小壁厚。各种铸造工艺条件下,铸件最小允许壁厚见表7-1~表7-5 表1-2 熔模铸件的最小壁厚(单位:㎜)

零件结构的工艺性

零件结构的工艺性 一、零件结构工艺性概念 机械加工零件的结构工艺性 由于一般情况下切削加工的劳动耗费最多.因而零件结构的切削加工工艺性更为重要。下面将就单件小批生产中对它考虑的一般原则及实例进行简要分析。 ①尽量减少不必要的加工面积 减少加工面积不仅可减少机械加工的劳动量,而且还可以减少刀具的损耗,提高装配质量。图 2(b)中的轴承座减少了底面的加工面积,降低了修配的工作量,保证配合面的接触。图3(b)中减少了精加工的面积,又避免了深孔加工。 (a) (b) 图2 减少轴承座底面加工面积 设计零件 设计结构 选择材料 确定尺寸 使用性能:能用、好用、耐用 工艺要求:好做、好装、好修

(a) 错误(b) 正确 (a) (b) 图3 避免深孔加工的方法 (a) 错误 (b) 正确 ②尽量避免或简化内表面的加工 因为外表面的加工要比内表面加工方便经济,又便于测量。因此,在零件设计时应力求避免在零件内腔进行加工。如图4所示,将图(a)中件2上的内沟槽a加工,改成图(b)中件1的外沟槽加工,这样加工与测量就都很方便。 3、有利于提高劳动生产率 (a) (b) 图5 退刀槽尺寸一致 (a) 错误(b) 正确 ①零件的有关尺寸应力求一致,并能用标准刀具加工。如图5(b)中改为退刀槽尺寸一致,则减少了刀具的种类,节省了换刀时间。如图6(b)采用凸台高度等高,则减少了加工过程中刀具的调整。如图7(b)

的结构,能采用标准钻头钻孔,从而方便了加工。 (a) (b) 图6 凸台高度相等 (a) 错误(b) 正确 (a) (b) 图7 便于采用标准钻头 (a) 错误(b) 正确 ②减少零件的安装次数:零件的加工表面应尽量分布在同一方向,或互相平行或互相垂直的表面上;次要表面应尽可能与主要表面分布在同一方向上,以便在加工主要表面时,同时将次要表面也加工出来;孔端的加工表面应为圆形凸台或沉孔,以便在加工孔时同时将凸台或沉孔全锪出来。如:图8(b)中的钻孔方向应一致;图9(b)中键槽的方位应一致。

铸造工艺习题及答案

一、名词解释 1、(铸造用原砂中的)泥份:是指原砂中直径小于20μm的颗粒 2、钙膨润土活化处理:;根据阳离子的交换特性对钙土进行处理使之转化为钠基膨润土,蒙脱石的晶层间阳离子交换{PNa(+1)→PCa(+2)} 3、铸件工艺出品率:铸件出品率=铸件质量除以铸件质量+冒口总质量+浇注系统质量乘以100% 4、通用冒口:在铸型内储存供补缩铸件用熔融金属的空腔 5、浇注系统:铸型中液态金属流入型腔的通道 6、铸造收缩率:由于合金的收缩,为保证铸件应有的尺寸,在模型上必须比铸件放大一个该合金的收缩量。它取决于合金种类、铸件结构、尺寸等因素 7、起模斜度:为便于起模样或开芯盒,在铸件垂直分型面的各个侧面上设计的斜度 8、封闭式浇注系统:在正常浇注条件下,所有组元都能为金属液充满的浇注系统 9、开放式浇注系统:金属液不能充满所有组元的的浇注系统。 10、粘土型砂:以粘土为粘结剂的型砂 11、紧实率:型砂紧实前后的体积变化 12、侵入气孔:-也叫外因气孔由于型砂中的气体侵入金属造成的在湿型铸件中常见的一种缺陷 13、破碎指数:生产中常采用落球法测出的破碎指数来间接表示型砂的韧性。测量时,将一个钢球在一定高度落下,砸在一个放在筛网上的标准试样上,用留在筛网上的砂块重量与标准试样重量之比值表示破碎指数 14、铸件的分型面:两半铸型相互接触的表面 15、铸件的浇注位置:指浇注时铸件在铸型中所处的位置 16、化学粘砂:在高温条件下金属氧化物与铸型间发生化学作用而使金属表面与铸型 发生粘结的现象。 17、机械粘砂:金属熔液渗入砂粒间隙,凝固后将砂粒机械的粘连在铸件的表面上

18、型砂的透气性:型砂允许气体通过并逸出的能力 19、覆模砂:指树脂以一层薄膜包覆在砂粒表面,这样可以完全发挥树脂的粘结作用,改善树脂砂的性能,节省树脂用量 20、型砂的残留强度:是将∮30mm*50mm或者∮50mm环形钠水玻璃砂试样加热到一定温度并在该温度下保温30-40分钟在随炉冷却至室温测定的抗压强度 21、铸造工艺设计:对于某一个铸件,编制出其铸造生产工艺过程的技术文件就是铸 造工艺设计 22、铸造工艺方案:造型,造芯方法和铸型种类的选择,浇注位置及分析面的确定 23、剩余压力角: 24、冷芯盒法:在室温下,通过吹气使砂芯在芯盒内快速硬化的制芯方法叫冷芯盒法。 25、热冷芯盒法:是铸造生产中一种机器制造型芯的方法。通过吹气使砂芯在芯盒内 快速硬化的制芯方法叫冷芯盒法,通过加热的方法使砂芯在芯盒内快速缩聚硬化的制芯方法叫热芯盒法。 26、工艺出品率:铸造工艺出品率=铸件重/模重*100%,模重就是浇注系统+铸件的 总质量,也即浇模所需铁水重量。 27、顺序凝固:采用各种措施来使铸件结构上各部分按照远离冒口的部分先凝固,然 后是靠近冒口部分,最后才是冒口本身凝固的次序进行凝固。 问答题: 1.试述夹砂的形成机理及预防措施。 1)铸型表面沙层受热发生膨胀,再砂层表面产生压缩应力,沙粒不能重新排列时砂型表面就会受到破坏而发生夹砂结疤缺陷。 2)铸型中浇入金属后,铸型表面产生很薄的干燥层,紧接干燥层产生高水层,其强度远比湿型本体底。铸型表层受热膨胀,强度低的高水层中产生应力集中而出现裂纹, 由鼠尾进一步发展成夹砂结疤。 3)因为铸型的高水层强度较低,以及由于铸型表面干燥层膨胀而与铸型本体分离,能自由滑动,所以就夹砂结疤而言,其最容易产生的条件是浇注时间过长、铸件壁厚和 外形平坦处。 措施:

相关主题
文本预览
相关文档 最新文档