当前位置:文档之家› LED驱动计算公式

LED驱动计算公式

LED驱动计算公式
LED驱动计算公式

LED驱动变压器设计计算公式

LF-GOE100YA0920A电源设计计算书

电源的主要特性及功能描述;

输入电压范围AC90V~AC305V,额定输入电压范围AC100V~AC277V.输入电源工作频率47Hz~63Hz,额定输入频率50Hz~60Hz.输出功率112W,额定输出DC90V~DC120V@0.92A开路输出电压:小于135V,短路输入功率:小于15W.

效率:90V ac input大于87%,220V ac input大于89%,277V ac input大于90%.

输出纹波:在输入电压范围内,纹波电压小于1.2V,其它功能附详细的规格书.

电源的相关参数设计计算如下:

1.对于电源工作保险丝的选定

Po(max)=126V*0.92A*1.05=121.716W(输出电压电流按照规格书的额定输出的上限计算).Pin(max)=Po(max)/Eff=121.716W/0.80=152.145W(按照电源起动到PFC电压还没升起来的这段时间的效率并适当取低一点点进行计算,否则,频繁的开关机有可能会冲坏保险丝).

Iin rms(max)=Pin(max)/Vin(min)=152.145W/75V=2.029A(最小输入电压根据电源的最低起动电压计算,这款电源设定最低起机电压为75V,允许电源在最低起机电压下带额定负载起机)

考虑到电路中PFC校正值并不是完整的1,需要除以0.99的功率因素,以及查相关的保险丝的图表所得,在最高工作环境温度65度时,需扣除0.8的过热等因素引起的加速熔断的折扣率,再除以安规要求的0.75的折扣率,即保险丝因选择:2.029A/0.99/0.8/0.75=3.416A.

由于PFC+PWM两极架构的电源开机讯间的输入浪涌电流非常大,加热敏电阻后也能达到近80A,由此保险丝需选择大于3.416A的高分断能力的慢断型。

再考虑到这款LED电源是使用在室外的路灯上,需要承受较多且较大的雷击,按照规格要求是线对线打4KV,需选择耐4KV以上雷击的保险丝。

综合以上对此款产品的保险丝最小应选择AC300V5A慢断型保险丝。

2.桥堆的选定:

依据前面的计算知道,电源的最大输入功率为152.145W,最大输入RMS电流是2.029A,(最低输入电压频繁开关机,输出带满负载工作,此时PFC电路还没开始工作)

桥堆输出最低直流电压:DC(min)=AC75V*1.35=DC101.25V.(输入电压降额到AC75V,全波整流后的输出最大电压为输入的有效电压乘以根号2,但是随着输出带负载越大这个系数将会越低,这里取1.35,这个值不可以按照PFC上的输出电压进行计算,因为起机的时候PFC还没有开始工作,如果按照工作以后PFC上的电压进行计算,那当电源频繁的开关机动作的时候,桥堆将会被电流冲坏)。输入功率除以桥堆后的输出DC电压就得到了桥堆的输出平均电流:152.145W/101.25V=1.5027A..

一般二极管类的元器件,考虑工作峰值电流的冲击,热损耗及高环境温度下工作等因素,这里按照输出平均电流的三倍进行取值。得:1.5027A*3=4.508A,由于5A的桥堆不常见,这里直接取6A的桥堆。

由上面的降额曲线可得出,桥堆本体温度在120度以内,整流后都能保证持续输出4.5A没有问题。根据规格书的要求,输入最高有效值电压为AC305V,输出最大的直流电压为AC305V*1.414=427V。

根据上面图表可知,按照耐电压的要求,选用GBU606/GBU608/GBU610都是比较安全的。

3.PFC电路的设计.(选择CRM模式的BOOST电路做为PFC电路)输入90V ac‐305Vac,输出电压420V(根据规格书的要求,PFC在输入最高为277V ac时要求大于0.92,可定义PFC输出电压为比277V ac整流后大25V到35V,可保证PF值满足要求).根据经验,PFC电感先选用RM10型号,下文将通过计算验证是否合理。先根据输入的条件计算PFC电感量。由于PFC电感量并不是非常严格的,只要保证电路的工作频率不进入到音频范围内就可以了。计算方式如下:由公式

可计算出PFC的电感量。其中Vrms为输入有效值电压,Ton为开关管的导通时间,E为PFC电路的效率,Po为电源输出功率。

由公式

可计算出PFC的关断时间,进而可计算出PFC的最小工作频率。定义电感量为450uH,计算最低输入电压

450uH=180^2*Ton*0.95/2*122Ton=3.567us.

Toff=3.567us*180*1.414/(420-180*1.414)=5.476us

T=Ton+Toff=3.567us+5.476us=9.43us Fs=106.04KHz.

计算最高输入电压:

450uH=277^2*Ton*0.95/2*122Ton=1.506us

Toff=1.506us*277*1.414/(420‐277*1.414)=20.827us

T=Ton+Toff=1.506us+2.827us=22.333us Fs=44.78KHz.

计算在最低AC90V输入电压:

450uH=90^2*Ton*0.95/2*100Ton=11.70us

Toff=11.70us*90*1.414/(270‐90*1.414)=10.43us

T=Ton+Toff=11.70+10.43=22.13us Fs=45.19KHz

计算在低压段最高输入电压:

450uH=175^2*Ton*0.95/2*100Ton=3.09us

Toff=3.09us*175*1.414/(270‐1.414*175)=33.91us

T=Ton+Toff=3.09us+33.91us=37us Fs=27KHz.

PFC输出电压按照两段式输出,即在输入有效值电压小于AC175V时,PFC输出电压设定为270V,在

输入有效值电压大于AC175V时,PFC输出电压设定为420V。

根据以上计算的工作频率,取电感量为450uH,在AC90V‐AC277V范围内,PFC的工作频率均远超过20KHz的最高音频,最高工作频率在100多一点点KHz。因此,PFC电感将不会发出人耳能听到的声音出来,也不会给传导辐射带来很大麻烦。流过PFC电感及MOS管的峰值电流:

由于选用的PFC电路是工作在临界模式的BOOST电路,流过PFC电感及MOS管的峰值电流为正弦波峰值电流的2倍,且在最低输入电压下达到最大:

Ipk=2*√2*Po/Vin(rms min)*Eff=2*√2*121.716/90*0.90=4.25A.

Po为输出最大功率Vin(rms min)为输入的最低有效电压Eff为PFC的效率

PFC电感最少匝数:N=L*Ipk/Ae*△B=450uH*4.25A/98*0.30=65TS,因此,PFC电感的匝数最少必须大于65匝,才能保证磁感应强度控制在小于0.30特斯拉,保证变压器不会出现饱和现象。

(此PFC电感是按照输出功率100W,电压及电流均偏5%上限的极端情况设定的,如果能控制输出

电压的精度,PFC电感的匝数还可以减小一点点),漆包线线径可根据实际的情况选择。

PFC MOS管的选定如下:

根据上面计算得到Ipk=4.25A,由于这个工作频率非常高,可以等同于是直流,考虑到管子的热损耗及高环境温度下工作,同样选择三倍的余量得到4.25*3=12.75A.查询了一款12A的MOS管的规格书如下图:

根据上图,12A的MOS管在本体温度升高到100度时,允许通过的电流降低到7.7A,根据左边的Derating温度降额曲线可知,管子的本体温度在125度时,允许通过的电流大约为5A,是大于计算得出的峰值电流4.25A的,因此这款PFC的MOS管选择是比较安全可靠的。

至于MOS管的耐压选择,这个和很多因素有关,包括PFC电感的漏感,PCB走线造成的干扰,输入电压,吸收电路以及允许的降额等级等等因素有关,需要充分考虑选择,此款暂时选择650V耐压的。

PFC升压二极管的选定如下:

前面已经说过,一般二极管类的元器件,需按照输出平均电流的三倍进行取值。

PFC升压二极管输出的平均电流就等于后级电源的输入电流Io=Po/Vpfc*Eff=121.716/270*0.90=0.5A得出二极管的最少选用0.5A*3=1.5A.的平均电流,另外还需满足一个条件是二极管在本体温度达到120度时的平均电流值必须大于输出二极管的最大峰值电流,因为电路工作在高频状态,峰值电流重复持续的快速发生,把它降额等效为平均电流,PFC的升压二极管最大输出峰值电流就等于MOS管和PFC电感的最大峰值电流,也就等于4.25A。查阅一款UF1006CT超快恢复二极管的特性曲线,可得出选用UF1006CT是安全可靠的。从二极管温度降额曲线可以得出,管子温度达到120度是能在这款产品下正常工作的,但是当管子的温度达到130度,二极管输出电流降到了接近4A,是小于PFC电感最大峰值电流4.25A的,也就是说,这会存在管子被击穿损坏的风险。按照BOOST拓扑的结构,二极管的最大反向耐压就是输出最大电压,这款电源设定的BOOST输出电压为420V,假定输出电压偏设定的上限公差并再留取10%的耐压余量,可得:二极管反向耐压选择为:420*1.05/0.9=490V,查询下表特性可知,选择UF1006CT超快恢复二极管是安全可靠的。

PFC输出电解电容的选型,

这种电解电容一般有两种方式可以定义:a.按照PFC电路的输出保持时间;b.按照输出电压的纹波大小.这里选择按照输出电压的保持时间去计算使用输出电解电容的容量,一般定义保持时间为20ms,(解释一下为什么定义20ms,当输入工作电压在低压段,由于某些原因,线路在供电的过程中丢失了一个周期,也就是说60Hz供电的线路在某一个时间段内有最大16.67毫秒是没有供电的,一般的低压段线路的频率都是60Hz,50Hz只工作在高压段供电,供电电压不可能会跌落到低压段,也就是说低压段不可能存在50Hz的供电。下面的计算是按照丢失一个周期计算的,如果要求能抵抗更长的供电丢失周期,需要折算成保持时间去定义电解电容的容量。

C=2Po*Thold/Vbus nor^2‐Vbus min^2=2*121.716W*20*10^‐3/270^2-(√2*AC80V)^2

=243.432*20*10^‐3/72900‐12769=80.97uF(按照低压段计算,欠压关断电压定义为AC80V)

一般电解电容的容量都是控制在±20%,计算得出来的80uF为下限电容,由于还有其它电源有PFC电压需要设定大于450V的,为了兼容,实际选用了100uF/500V的电解电容。上面的计算都是考虑在最差极限的情况下得出来的,实际测试的效果会更好些,代入电源实际的参数可以计算出PFC电源的实际保持时间。

PWM变压器的选型.(选择反激式准谐振架构做为电源的PWM电路)按照输入输出的要求及元器件的耐压,确定变压器的匝比:

输入电压范围AC90~AC305V,PFC大电解电容的电压值:DC270V~DC420V~DC432V(305*√2)

输出电压范围DC90V~DC121V.

初级MOS管的应力:V(mos)pk=Vbus+n*(Vo+Vf)+Vlk

次级整流二极管的应力:V(D)pk=Vbus/n+Vo+Vf,

(Vbus为PFC输出电压,n*Vo为输出电压反射到初级的电压,n为变压器初级比次级的匝数比,Vo为输出电压,Vlk为初级漏感产生的电压,Vf为输出整流二极管的导通压降)

考虑到路灯电源工作环境比较恶劣,灌胶后电源内部整体的温度都比较均衡,需要尽量提高电源的效率去降低电源的发热,从而延长电源的寿命,特别是对电解电容有非常大的意义,因此,PWM的MOS管选用耐压800V 的管子,尽量加大反射电压把占空比调到最大。MOS管保留10%的余量,可得到:

V(mos)pk=Vbus+n*(Vo+Vf)+Vlk

720V=432V+n*(121+1)+80V(暂定Vlk为80V)

n=1.7(变压器初次级匝比不能超过这个数值,否则MOS管将会有风险).

低压满载时,PWM的工作频率最低,原则是在最低输入电压下,带载最大时频率不能低于20KHz,否则进入音频会有噪音出来。频率太低,变压器的磁滞损耗会加大,传递能量的能力会降低,暂定为60KHz,得出变压器的电感量:

Dmax=n(Vo+Vf)/Vbus+n*(Vo+Vf)=1.7*122/(1.7*122+270)=0.434(暂定变压器匝比为1.7,在低压输入下占空比最大)

Lp=Vdc^2*Dmax^2*Eff/2Po*Fs=270^2*0.434^2*0.93/2*121.716*60*10^3=870uH以上的匝比及初级绕组的感量为暂定,把磁芯及匝数定下来后,为了更好的匹配骨架需要稍微调整匝比。这款产品设计参数按照了输出100W 最坏的情况考虑,实际使用输出功率是控制在最大100W‐110W,根据实际外壳及尺寸的要求,变压器选择了PQ3220型号,计算初级绕组,按照低压段输入,

输出带满载:Ts=1/Fs=1/60*10^3=16.67uS.Ton=D*Ts=0.434*16.67uS=7.23uS.

Np=Vbus*Ton/△B*Ae=270V*7.23uS/0.28*170=42Ts.(取整数)

Ns=Np/n=42Ts/1.7=25Ts(1.7的匝比为最大值,留取一定的余量,并且初次级匝数都为偶数,可以更方便变压器使用三明治绕线,经过配比,初级定为46Ts,次级定为28匝,匝比为46/28=1.643.)再次确认最终的Dmax=n(Vo+Vf)/Vbus+n*(Vo+Vf)=1.643*122/(1.643*122+270)=0.426.确认最终的变压器初级绕组感量:

Lp=Vdc^2*Dmax^2*Eff/2Po*Fs=270^2*0.426^2*0.93/2*121.716*60*10^3=840uH.

D=n(Vo+Vf)/Vbus+n*(Vo+Vf)=1.643*122/(1.643*122+420)=0.323.

Fs=Vdc^2*D^2*Eff/2Po*Lp=420^2*0.323^2*0.93/2*121.716*840uH=83.7KHz(高压段输出带满载)

Fs=Vdc^2*D^2*Eff/2Po*Lp=420^2*0.323^2*0.93/2*(90V*0.92A*95%)*840uH=88.4KHz(在高压段输出带最小载时,如果频率高于IC规定的上限130KHz,电源PWM端的MOS管将在第一个波谷与第二个波谷之间切换,造成电源不稳定并且会有可能发出音频噪音,从上面的计算来看,这种情况是不会发生的)

初级绕组通过的峰值电流及有效值电流

IPK=Vbus*Dmax/L*Fs=270V*0.426/840uH*60*10^3=2.282A.(低压段MOS管上的峰峰值电流)IpRMS=IPK*(Dmax/3)^0.5=2.282*(0.426/3)^0.5=0.86A.(低压段MOS管上的有效值电流)IPK=Vbus*D/L*Fs=420V*0.323/840uH*83.7*10^3=1.93A(高压段MOS管上的峰峰值电流).MOS管的选型:

按照上面提到的三倍峰峰值选择MOS管的D极工作电流:

MOS管选择大于3*IPK=3*2.282A=6.846A.找到一款8A800V的管子,先看下面的参数:

从上面的特性表可知,当MOS管的本体温度升高到120度时,管子的漏极还能通过3A的额定电流,这个电流大于PWM电路的开关管产生的2.282A最大峰峰值电流,因此,选用这个MOS管是安全可靠的,并且从前面设计变压器的时候就考虑到选用800V的MOS管的余量问题,如果因为电源的布局等原因造成散热效果不理想,在最高工作环境下会使MOS管的本体温度超过120度,这就需要从新再考虑改善布局提高工作效率或者选用更好的MOS管。

次级绕组通过的峰值电流及有效值电流:

IsK=IPK*n=2.282A.*1.643=3.75A.(低压段输出整流二极管上的峰峰值电流)

IsRMS=IpRMS*n[(1‐Dmax)/Dmax]^2=0.86A.*1.643*[(1‐0.426)/0.426]^2=1.64A.(低压段输出整流二极管上的有效值电流)

Isk=IPK*n=1.93A*1.643=3.17A.(高压段输出整流二极管上的峰峰值电流)从上面的数据看,在低压段的输出整流二极管的峰峰值电流比较大,因在此工作状态下选择输出整流二极管,

输出整流二极管的耐压为Vbus/n+(Vo+Vf)+Vslk=427/1.643+122+70V=452V.保留10%的降额,二极管的耐压选择:452/0.9=502V.

根据以上计算的数据,选择了安森美的MUR460/DO‐201AD封装的超快恢复整流二极管,从右边的曲线看,在环境温度为100度时(不是二极管本体的温度),这个二极管还有近4A的电流输出,大于上面的3.75A的峰峰值电流,能承受600V的反向耐压,反向电压余量也超过10%,因此,选择这款二极管做为这个PWM输出整流二极管是安全可靠的。

输出电解电容的选型:

可以有几种选择方式:a.根据输出纹波电压值定义输出电容的容量;b.根据输出电容上面的纹波电流去定义输出电容的容量。

这里以纹波电流的方式去计算输出电容:

Ic rms=Io*[4/3*(1‐Dmax)‐1]^2=0.92A*[4/3*(1‐0.426)‐1]^2=1.071A.

按照上面的纹波电流值,选择的电解电容的耐纹波电流值需比这个值大。

大功率LED的驱动电路设计(PT4115应用)

大功率LED 的驱动电路设计(PT4115应用) 摘要:LED (light emitting diode )即发光二极管,是一种用途非常广泛的固体发光光源,一种可以将电能转化为光能的电子器件。由于LED 具有节能、环保、使用寿命非常长,LED 元件的体积非常小,LED 的发出的光线能量集中度很高,LED 的发光指向性非常强,LED 使用低压直流电即可驱动,显色性高(不会对人的眼睛造成伤害)等优点,LED 被广泛应用在背光源、照明、电子设备、显示屏、汽车等五大领域。而且随着LED 研发技术的不断突破,高亮度、超高亮度、大功率的LED 相继问世,特别是白光LED 的发光效率已经超过了常用的白炽灯,正朝着常照明应用的方向发展,大有取代传统的白炽灯甚至节能灯的趋势。 本论文主要介绍采用恒流驱动方式实现驱动电路,并且提出一种基于恒流驱动芯片PT4115的高效率的大功率LED 恒流驱动解决方案。该种驱动电路简单、高效、成本低,适合当今太阳能产品的市场化发展。。 关键词:大功率LED ;驱动电路;恒流驱动芯片PT4115 一、LED 主要性能指标: 1)LED 的颜色:目前LED 的颜色主要有红色,绿色,蓝色,青色,黄色,白色,暖白,琥珀色等其它的颜色; 2)LED 的电流:一般小功率的LED 的正向极限电流多在20mA 。但大功率LED 的功率至少在1W 以上,目前比较常见的有1W 、3W 、5W 、8W 和10W 。1W LED 的额定电流为350mA,3W LED 的750mA 。 3)LED 的正向电压:LED 的正极接电源正极,负极接电源负极。一般1W 的大功率LED 的正向电压为3.5V~3.8V 。 4)LED 的反向电压:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏 LED 发光强度:光源在给定方向的单位立体角中发射的光通量定义为光源在该方向的(发)光强(度),单位为坎德拉(cd )。 5)LED 光通量:光源在单位时间内发射出的光量称为光源的发光通量。单位为流明(lm)。如1W 大功率LED 的光通量一般为60~80LM 。 6)LED 光照度:1流明的光通量均匀分布在1平方米表面上所产生的光照度.,单位为勒克斯(lx)。 7)LED 显色性:光源对物体本身颜色呈现的程度称为显色性,也就是颜色逼真的程度。 8)LED 的使用寿命:LED 一般可以使用50,000小时以上。 9)LED 发光角度:二极管发光角度也就是其光线散射角度,主要靠二极管生产时加散射剂来控制。 二、大功率LED 的驱动方式: LED 驱动简单的来讲就是给LED 提供正常工作条件(包括电压,电流等条件)的一种电路,也是LED 能工作必不可少的条件,好的驱动电路还能随时保护LED ,避免LED 被损坏。 LED 驱动通常分为以下三种方式: (1) 镇流电阻驱动:就是简单的的在LED 变LED 的驱动电流.。 LED 的工作电流为: R U U I L -= 所以I 与镇流电阻R 成反比;当电源电压U 时,R 能限制I 的过量增长,使I 不超出LED

LED驱动电路的设计与制作

自动化学院 电子基础课程设计任务书 系班学生: 课题名称:LED驱动电路的设计与制作 课题要求:一、1、工作电源:交流220伏 2、LED功率为3W 二、完成原理图、PCB图设计 三、完成安装及调试。 四、写出设计报告。 课题内容: 第一周:查找相关资料;方案设计。 第一周:设计原理图、PCB图。 第二周:完成安装及调试。撰写报告 主要参考资料: [1].王庆主编. Protel99SE & DXP 电路设计教程. 电子工业出版, 2006.6 [2].康华光等. 电子技术基础(模拟部分第五版).高等教育出版社, 1999.6 [3].康华光等. 电子技术基础(数字部分第五版).高等教育出版社, 1999.6 时间:2009年1月5日

自动化学院 电子基础课程设计评分标准 平时表现评分:(20%) 优秀:(90-100) 遵守纪律,尊敬老师,爱护设备,工作量饱满,动手能力强,无缺勤,很好按课题进度进行。 良好:(80-89) 遵守纪律,爱护设备,工作量饱满,动手能力较强,考勤情况良好,较好按课题进度进行。 中等:(70-79) 遵守纪律,爱护设备一般,工作量一般,动手能力一般,偶尔缺勤,基本按课题进度进行。 及格:(60-69) 遵守纪律一般,人为因素损坏设备,工作量一般,动手能力差,偶尔缺勤,能按课题进度进行。 不及格:(59以下) 不遵守纪律,人为因素损坏设备,有技术安全事故,工作量不饱满,动手能力很差,经常迟到,早退,缺勤。 课题完成情况评分:(50%) 优秀:(90-100) 全部完成任务书要求,完成质量优良、结果正确,所完成的设计有一定的独立见解。 良好:(80-89) 全部完成任务书要求,完成情况良好,所完成的设计正确,解决了一些实际问题,结果正确。 中等:(70-79) 基本完成任务书要求,完成质量尚好,所完成的设计基本正确,但存在一些不足。 及格:(60-69) 基本完成任务书要求,完成质量尚好,所完成的设计基本正确,但有小错误。 不及格:(59以下) 未完成任务书要求,所作的设计有严重错误,基本概念不清。 电子基础课程设计报告质量评分(30%) 1、文献资料收集、整理、分析;对课题研究意义的阐述;文字精练、流畅、绘图整洁、符合标准规范、字体工整; 2、基本概念、基本理论及专业知识掌握扎实,运用灵活;设计思路、设计内容、计算方法及结果、计算机运用正确无误; 3、试验数据的获取(软件调试方法及过程)试验过程(调试过程)的正确性; 4、电子基础课程设计的结论,存在的问题,研究结果的创新性;

小型LCD背光的LED驱动电路设计

小型LCD背光的LED驱动电路设计 过去几年来,小型彩色LCD 显示屏已经被集成到范围越来越宽广的 产品之中。彩色显示屏曾被视为手机的豪华配置,但如今,即便在入门级手机 中,彩屏已成为一项标配。幸好,手机产业的经济规模性(全球手机年出货量接 近10 亿部)降低了LCD 彩色显示屏的成本,并使它们集成在无论是便携医疗设备、通用娱乐遥控器、数字相框/彩色LCD 显示屏需要白色背光,以便用户在 任何光照环境下都能正常地观看。这个背光子系统包括1 个高亮度白光发光二 极管(LED)阵列、1 个扩散器(diffuser)以扩散光线和1 个背光驱动器将可用电能 稳压为恒定电流以驱动LED.一块1 到1.5 英寸的显示屏可能包含2 到4 个LED,而一块3.5 英寸显示屏则可能轻易地就包含6 到10 个LED.对于LED 而言,其光 输出与电流成正比,而且由于LED 具有非常陡峭的电流-电压(I-V)曲线,流过LED 的电流紧密匹配是非常重要,这样才能确保均衡背光,因为LED 通常分 布在LCD 显示屏的一边。此外,也需要软件控制让用户调节亮度,以及针对 周围光照环境作出补偿。根据流经LED 电流的不同,LED 的色点(color point) 可能会漂移。因此,将LED 电流设定为固定值并对LED 进行脉宽调制以降低 平均光输出就很普遍。要在手持产品设计中集成小型彩色LCD 显示屏并进而 实现成本、性能和电池寿命的恰当平衡,存在着一系列需要考虑的因素。 电池供电产品需要优化的LED 驱动电路架构,这些架构要处理并存的 多项挑战,如空间受限、需要高能效,以及电池电压变化-既可能比LED 的正 向电压高,也可能低。常用的拓扑结构有两种,分别是LED 采用并联配置的 电荷泵架构/恒流源架构和LED 采用串联配置的电感升压型架构。这两种方案 都有需要考虑的折衷因素,如升压架构能够确保所有LED 所流经的电流大小 相同但需要采用电感进行能量转换,而电荷泵架构使用小型电容进行能量转换,

LED点阵驱动电路设计

电子技术基础课程设计说明书题目:8x8 LED点阵驱动电路设计 学生姓名:王涉华 学号: 201306050122 院(系):理学院 专业:电子科学与技术 指导教师:戴庆瑜 2015 年 12 月 28日

目录 1 选题背景 (1) 1.1 基本设计任务 (1) 1.2 发挥设计任务 (1) 1.3 设计原理 (1) 1.4 方案论证 (1) 2 电路设计 (2) 2.1 电路设计框图 (2) 2.2 工作原理 (3) 3 各主要电路及部件工作原理 (3) 3.1 555多谐振荡电路 (3) 3.2 74HC161引脚图及工作原理 (5) 3.3 74HC138引脚图及工作原理 (6) 3.4 74HC573引脚图及工作原理 (7) 3.5 AT28C16引脚图及相关参数 (7) 3.6 上电复位及开关手动复位电路设计 (8) 3.7 8x8共阴点阵 (9) 3.8 74HC04引脚图及功能 (10) 4 原理总图 (12) 5 元件清单 (13) 6 调试过程及测试数据(采用分模块调试) (13) 6.1 通电前检查 (13) 6.2 复位电路及手动开关复位电路的调试 (13) 6.3 NE55的调试 (14) 6.4 AT28C16的调试 (14) 6.5 结果观察调试 (15) 7 电路实物 (15) 7.1 整体实物电路展示 (15) 7.2 电路功能部分展示 (16) 8 小结 (19) 9 设计体会及改进意见 (19) 9.1 设计体会 (19) 9.2 设计不足 (19) 9.3 设计改进意见 (19) 参考文献 (20)

1 选题背景 LED 点阵显示是利用发光二极管点阵模块或像素单元组成的平面式显示方式。目前,由于成本及实用性的优势,以LED半导体发光器件为显示介质的大型显示屏在公共场合的广告宣传、通告发布等方面已得到广泛的应用,其驱动方式也随着技术的逐渐成熟而变得丰富多样,且各具特色。一个大型LED显示屏由上万个甚至更多的LED单元构成,而如何控制这些单一的单元按照我们的预期呈现显示内容,即LED的单元驱动电路的设计便显得尤为重要。如何设计一个既能满足显示要求又能尽量节省成本的LED驱动电路呢?在这里,我以8x8点阵为例进行研究。 1.1 基本设计任务 (1)能够显示0~9、a~z或A~Z,显示字符数量不少于8个; (2)能手动或自动循环显示字符。 1.2 发挥设计任务 可实现显示内容的左右移动。 1.3 设计原理 通过控制555单稳态触发器输入脉冲频率信号,再通过计数器作为存储器的输入,以存储器和译码器作为高低电平的输入,进而控制加在点阵 LED灯两端的电压,这样就可以实现LED的亮灭控制。 1.4 方案论证 方案一:以74HC161和74HC138构成顺序脉冲发生器,输出作为共阴8x8点阵的横向驱动,纵向驱动由三态门74HC244控制存储器AT28C16的输出来进行调节,三态门控制存储器的八位输出只有一位有效,其它处于高阻状态,依次循环。用两组8输出计数器74HC161作为AT28C16的地址输入,其中一组为另一组置位,每次可点亮一个灯,需要八分之一个字节,只需设置64个灯的总的点亮时间小于人眼的分辨时间(大概为0.02s),利用人眼

LED可调驱动电路电源设计

LED可调驱动电源课程设计 院系: 年级专业: 姓名: 指导教师: 学号: 日期: LED驱动电源课程设计

一、设计规格 1、设计一个恒流LED驱动电路,电流值为350mA 2、设计一个调光电路,PWM波的占空比由20%~80%可调 3、整个驱动电路有9V供电 4、LED电压4-8V 5、电路效率90% 二、设计过程 1、画原理图

2、原理描述 A、555芯片构成的PWM脉宽调制电路 PWM称之为脉冲宽度调制信号,利用脉冲的宽度来调整亮度,也可用来控制DC马达。 PWM脉冲宽度调制信号的基本频率至少约400HZ-10KHZ,当调整LED的明或暗时,这个基本的频率不可变动,而是改变这个频率上方波的宽度,宽度越宽则越亮、宽度越窄则越暗。 PWM是控制LED的点亮时间,而不是改变输出的电压来控制亮度。 以下为PWM工作原理: Reset接脚被连接到+V,因此它对电路没有作用。当电路通电时,Pin 2 (触发点)接脚是低电位,因为电容器C2开始放电。这开始振荡器的周期,造成第3接脚到高电位。当第3接脚到高电位时,电容器C2开始通过R1和对二极管D2充电。当在C2的电压到达+V

的2/3时启动接脚6,造成输出接脚(Pin3)跟放电接脚(Pin7)成低电位。 当第3接脚到低电位,电容器C2起动通过R1和D1的放电。当在C2的电压下跌到+V的1/3以下,输出接脚(Pin3)和放电接脚(Pin7)接脚到高电位并使电路周期重复。 Pin 5并没有被外在电压作输入使用,因此它与0.01uF电容器相接。 电容器C2通过R1及二极管,二极管一边为放电一边为充电。充电和放电电阻总和是相同的,因此输出信号的周期是恒定的。工作区间仅随R1做变化。 PWM信号的整体频率在这电路上取决于R1和C2的数值。公式:频率(Hz)= 1.44/(R1 * C2) B、HV9910B构成的恒流驱动电路 HV9910B是PWM高效率LED驱动IC。它允许电压从8VDC一直到450VDC而对HBLED有效控制。HV9910B通过一个可升至300KHz的频率来控制外部的MOSFET,该频率可用一个电阻调整。LED串是受到恒定电流的控制而不是电压,如此可提供持续稳定的光输出和提高可靠度。输出电流调整范围可从MA级到 1.0A。HV9910B使用了一种高压隔离连接工艺,可经受高达450V的浪涌输入电压的冲击。对一个LED串的输出电流能被编程设定在0和他的最大值之间的任何值,它由输入到HV9910B的线性调光器的外部控制电压所控制。 调光: 有两种方式可实现调光,取决于不同的应用,可以单独调节也可

LED电源驱动电路的基本设计详解

LED电源驱动电路的基本设计详解 LED电源驱动电路解析随着白光LED的诞生及其迅速发展,LED开始进入普通照明阶段。LED是一种固态冷光源,是继白炽灯、荧光灯和高强度放电灯(HID)之后出现的第四代电光源。现已普遍应用于建筑物照明、街道照明、景观照明、标识牌、信号灯、以及住宅内的照明等领域中。 LED 供电的原始电源目前主要有三种:即低压电池、太阳能电池和交流市电电源。无论是采用哪一种原始电源,都必须经过电源变换来满足LED 的工作条件。这种电源变换电路,一般来说就是指的LED 驱动电路。在LED 太阳能供电系统中,还需要蓄电池或超级电容器,用以储存太阳能。在夜晚需要照明时,蓄电池或超级电容器再通过控制电路放电,为LED驱动电路供电。 太阳能和风能与LED 的结合,是LED 应用的一大亮点,它将为第三世界的贫困和边远地区带来光明,让绿色照明的光辉照亮世界的每一个角落。 一、低压直流供电的LED驱动电路1.当输入电压高于LED电压时 当输入电压高于LED或LED串的电压降时,通常采用线性稳压器或开关型降压稳压器。(1)线性稳压器 线性稳压器是一种DC-DC 降压式变换器。LED 驱动电路所采用的线性稳压器大都为低压差稳压器(LDO),其优点是不需要电感元件,所需元件数量少,不产生EMI,自身电压降比较低。但是与开关型稳压器相比,LDO的功率损耗还是较大,效率较低。LDO在驱动350mA以上的大功率LED串时,往往需要加散热器。 (2)开关型降压(buck)稳压器 基于单片专用IC 的开关型降压稳压器需要一个电感元件。许多降压稳压器开关频率达1MHz以上,致使外部元件非常小,占据非常小的空间,效率达90%以上。但这种变换器会产生开关噪声,存在EMI问题。图1所示是基于Zetex 公司ZXSC300的3W LED 降压型驱动电路。其中的RCS为电流传感电阻,D1为1A的肖特基二极管。在6V的输入电压下,通过LED的电流达1.11A.ZXSC300 采用5 引脚SOT23 封装。

LM2734大功率LED恒流驱动电路的设计

大功率LED 恒流驱动电路的设计虽然大功率LED 现在还不能大规模取代传统的白炽灯,但它们在室内外装饰、特种照明方面有着越来越广泛的应用,因此掌握大功率LED 恒流驱动器的设计技术,对于开拓大功率LED 的新应用至关重要。LED 按照功率和发光亮度可以划分为大功率LED、高亮度LED 及普通LED。一般来说,大功率LED 的功率至少在1W 以上,目前比较常见的有1W、3W、5W、8W 和10W。已大批量应用的有1W 和3W LED,而5W、8W 和10W LED 的应用相对较少。预计大功率LED 灯会在2008年奥运会上大量应用,因此电子和照明行业都非关注LED 照明新技术的发展应用。 恒流驱动和提高LED 的光学效率是LED 应用设计的两个关键问题,本文首先介绍大功率LED 的应用及其恒流驱动方案的选择指南,然后以美国国家半导体(NS)的产品为例,重点讨论如何巧妙应用LED 恒流驱动电路的采样电阻提高大功率LED 的效率,并给出大功率LED 驱动器设计与散热设计的注意事项。 驱动芯片的选择 LED 驱动只占LED 照明系统成本的很小部分,但它关系到整个系统性能的可靠性。目前,美国国家半导体公司的LED 驱动方案主要定位在中高端LED 照明和灯饰等市场。灯饰分为室内和室外两种,由于室内LED 灯所应用的电源环境有AC/DC 和DC/DC 转换器两种方式,所以驱动芯片的选择 也要从这两方面考虑。 图1:利用DC/DC 稳压器FB 反馈端实现从恒压驱动(左图)到恒流驱动(右图)的转换。 1.AC/DC 转换器 AC/DC 分为220V 交流输入和12V 交流输入。12V 交流电是酒店中广泛应用的卤素灯的电源,现有的LED 可以在保留现有交流12V 的条件下进行设计。针对替代卤素灯的设计,美国国家半导体L M2734的主要优势是体积小、可靠性高、输出电流高达1A,恰好适合卤素灯灯口直径小的特点。2004.01.01研发部 paulzheng

大功率LED的驱动电路设计_图文(精)

《综合课程设计》课程报告 姓名:韩阳 学号:专业:光信息科学与技术 任课教师:王习东 成绩: 三峡大学理学院物理系 2009年1月05日 大功率LED 的驱动电路设计 摘要:LED (light emitting diode)即发光二极管,是一种用途非常广泛的固体发光光源,一种可以将电能转化为光能的电子器件。由于LED 具有节能、环保、使用寿命非常长,LED 元件的体积非常小,LED 的发出的光线能量集中度很高,LED 的发光指向性非常强,LED 使用低压直流电即可驱动,显色性高(不会对人的眼睛造成伤害)等优点,LED 被广泛应用在背光源、照明、电子设备、显示屏、汽车等五大领域。而且随着LED 研发技术的不断突破,高亮度、超高亮度、大功率的LED 相继问世,特别是白光LED 的发光效率已经超过了常用的白炽灯,正朝着常照明应用的方向发展,大有取代传统的白炽灯甚至节能灯的趋势。本论文主要介绍采用恒流驱动方式实现驱动电路,并且提出一种基于恒流驱动芯片PT4115的高效率的大功率LED 恒流驱动解决方案。该种驱动电路简单、高效、成本低,适合当今太阳能产品的市场化发展。。 关键词:大功率LED ;驱动电路;恒流驱动芯片PT4115 一、LED 主要性能指标:

1)LED 的颜色:目前LED 的颜色主要有红色, 绿色, 蓝色, 青色, 黄色, 白色, 暖白, 琥珀色等其它的颜色; 2)LED 的电流:一般小功率的LED 的正向极限电流多在20mA 。但大功率LED 的功率至少在1W 以上,目前比较常见的有1W 、3W 、5W 、8W 和10W 。1W LED 的额定功率为350mA,3W LED的750mA 。 3)LED 的正向电压:LED 的正极接电源正极, 负极接电源负极。一般1W 的大功率LED 的正向电压为3.5V~3.8V。 4)LED 的反向电压:所允许加的最大反向电压。超过此值,发光二极管可能被击穿损坏 LED 发光强度:光源在给定方向的单位立体角中发射的光通量定义为光源在该方向的(发光强(度,单位为坎德拉(cd )。 5)LED 光通量:光源在单位时间内发射出的光量称为光源的发光通量。单位为流明(lm。如1W 大功率LED 的光通量一般为60~80LM。 6)LED 光照度:1流明的光通量均匀分布在1平方米表面上所产生的光照度. ,单位为勒克斯(lx。 7)LED 显色性:光源对物体本身颜色呈现的程度称为显色性,也就是颜色逼真的程度。 8)LED 的使用寿命:LED 一般可以使用50,000小时以上。 9)LED 发光角度:二极管发光角度也就是其光线散射角度,主要靠二极管生产时加散射剂来控制。 二、大功率LED 的驱动方式: LED 驱动简单的来讲就是给LED 提供正常工作条件(包括电压, 电流等条件的一种电路, 也是LED 能工作必不可少的条件, 好的驱动电路还能随时保护LED ,避免LED 被损坏。 LED 驱动通常分为以下三种方式:

LED照明驱动电路设计

采用LED照明,首先需要考虑的是其亮度、成本以及寿命。由于影响LED寿命的主要原因是其频繁启动瞬间的电流冲击,外界的各种 浪涌脉冲,以及正常工作时的电流限制等,笔者在本文介绍的电路综合了这些因素,从电路设计上尽量避免大电流对LED照明灯具的冲击,并将其工作电流稳定在某一范围内,解决了目前LED照明灯具的亮度衰减问题,从而有效地延长其使用寿命。 LED均采用直流驱动,因此在市电与LED之间需要加一个电源适配器即LED驱动电源。它的功能是把交流市电转换成适合LED的直流电。通常驱动LED采用专用恒流源或者驱动芯片,容易受体积和成本等因素的限制,最经济实用的方法就是采用电容降压式电源。用它驱动小功率L ED,具有不怕负载短路、电路简单等优点,而且一个电路能驱动1~70 个小功率LED(但是,这种电源电路启动时的电流冲击,尤其是频繁启动,会给LED造成破坏。当然,采取适当的保护便可避免这种冲击)。 电容降压式电源的典型电路如图1所示,C1为降压电容器(采用金属化聚丙烯电容),R1为C1提供放电回路。电容C1为整个电路提供恒定的工作电流。电容C2为电解电容,其耐压值取决于所串联的LED的个数(约为其总电压的1.5倍以上),它的主要作用是抑制通电瞬间引起的电压突变,从而降低电压冲击对LED寿命的影响。R4为电容C2的泄流电阻,其阻值应随着LED个数的增加适当增加。 需要注意的是,该电路必须根据负载的电流大小选取适当的电容,而不是依据负载的电压和功率,通常降压电容C1的容量C与负载电流I o的关系可近似认为:C=14.5Io,其中C的容量单位是uF,Io的单位是A。限流电容必须采用无极性电容,而且电容的耐压值须在630V以上。

大功率LED恒流驱动电路的设计与研究

虽然大功率LED现在还不能大规模取代传统的照明灯具,但它们在室内外装饰、特种照明方面有着越来越广泛的应用,因此掌握大功率LED恒流驱动器的设计技术,对于开拓大功率LED 的新应用至关重要。LED按照功率和发光亮度可以划分为大功率LED、高亮度LED及普通LED。一般来说,大功率LED的功率至少在1W以上,目前比较常见的有1W、3W、5W、8W和10W。已大批量应用的有1W和3W LED,而5W、8W和10W LED的应用相对较少。预计大功率LED灯会在2010年上海世博会上大量应用,因此电子和照明行业都非常关注LED照明新技术的发展应用。 恒流驱动和提高LED的光学效率是LED 应用设计的两个关键问题,本文首先介绍大功率LED 的应用及其恒流驱动方案的选择指南,然后以美国国家半导体(NS)的产品为例,重点讨论如何巧妙应用LED恒流驱动电路的采样电阻提高大功率LED的效率,并给出大功率LED驱动器设计与散热设计的注意事项。 驱动芯片的选择 LED驱动只占LED照明系统成本的很小部分,但它关系到整个系统性能的可靠性。目前,美国国家半导体公司的LED驱动方案主要定位在中高端LED照明和灯饰等市场。灯饰分为室内和室外两种,由于室内LED灯所应用的电源环境有AC/DC和DC/DC转换器两种方式,所以驱动芯片的选择也要从这两方面考虑。 1. AC/DC转换器 AC/DC分为220V交流输入和12V交流输入。12V交流电是酒店中广泛应用的卤素灯的电源,现有的LED可以在保留现有交流12V的条件下进行设计。针对替代卤素灯的设计,美国国家半导体LM2734的主要优势是体积小、可靠性高、输出电流高达1A,恰好适合卤素灯灯口直

LED背光驱动电路设计分析(整理版本)

白光LED背光驱动电路设计分析(整理版本) 特别是电池供LCD白色LED背光驱动电路设计电产品需要优化的LED驱动电路架构,这些架构要处理并存的多项挑战,如空间受限、需要高能效,以及电池电压变化—既可能比LED的正向电压高,也可能低。常用的拓扑结构有两种,分别是LED 采用并联配置的电荷泵架构/恒流源架构和LED采用串联配置的电感升压型架构。这两种方案都有需要考虑的折衷因素,如升压架构能够确保所有LED所流经的电流大小相同但需要采用电感进行能量转换,而电荷泵架构使用小型电容进行能量转换,但所有LED并联排列得太过紧密以致电流匹配成为均衡背光所面对的一项棘手问题。 对LED背光驱动电路的要求是: 1. 满足背光的亮度要求; 2. 整个显示屏亮度均匀(不允许有某一部分较亮、另一部分较暗的情况); 3. 亮度可以方便地调节; 4. 驱动电路占PCB空间要小; 5. 工作效率高; 6. 综合成本低; 7. 对系统其它模块干扰小。 设计时应做好以下几点: 1.评估显示屏的大概使用时间 选择白光LED驱动器时,需要考虑到显示屏的使用频率。如果显示屏会被长时间背光观看,拥有高效率的转换器对电池使用时间就显得至关重要。较大的显示屏需要较多的LED,而显示屏使用时间较长的应用则会从能效更高的升压型拓扑中受益。相反地,如果显示屏仅用于短时间背光,那么效率就可能不是一项关键的设计参数。 2.仔细考虑LED选择 LED技术持续快速改进,制造商在使用新的材料、制造技术和LED设计来为同等大小的电流释出更大的光输出,这样一来,几年前需要4个LED进行背光的显示屏如今可能采用2个LED就能实现同样的背光亮度。不仅如此,过去通常使用冷阴极荧光灯(CCFL)进行背光的4到7英寸较大显示屏,如今正在转向使用LED进行背

基于STM32的LED驱动电源设计

基于STM32的LED驱动电源设计 摘要 高亮LED是当今照明技术的重大进步。LED驱动电源的控制核心采用ARM系列微处理器STM32,实现LED驱动的智能控制。ARM系列微处理器的应用越来越广泛,其采用当前最先进的设计理念,使得性能大大提升。能使我们在微控制器、集成开发软件、编程语言等知识的学习和掌握水平,使我们在微控制器设计、软件编程等方面的应用能力得到全面训练和提高。 对于一般照明而言,人们更需要白色的的光源。作为一种新型的光源,LED具有无污染、长寿命、耐振动和抗冲击的鲜明特点。虽然白光LED的发光效率正在逐步提高,但是与LED灯配套的驱动器性能不佳,故障率高成了LED推广应用的瓶颈。因此众多厂家选用恒流方式驱动LED,从而设计的开关电源就需要一个能恒流的直流驱动电源。传统的开关电源控制集成电路具有效率高、输出稳定、可靠性高,并可实现远程控制等功能。完全适合用来驱动LED的开关电源。 本文主要通过设计一个恒流驱动电源来驱动LED。通过各种电力电子组件和电力电子电路组成一个恒流的电源,达到设计的要求。 关键词:LED,电源,驱动,STM32

STM32-based software design of the LED drive power Author : Dai Y uanwei Tutor : Zhang Yuxiang Abstract Bright LED lighting technology is today a major advancement. LED drive power control core with ARM family of microprocessor STM32, realization of LED-driven intelligent control.ARM family of microprocessor used more widely, which uses the most advanced design concepts, making the performance greatly enhanced.Allow us to micro-controllers, integrated development software, programming languages, such as knowledge, learning and mastery level, so that we in micro-controller design, software programming and other aspects of competency have been fully trained and improved. For general lighting purposes, people need white light.As a new type of light source, LED has no pollution, long life, resistance to vibration and shock of the distinct characteristics.Although the luminous efficiency white LED is gradually improving, but with LED lights matching drive poor performance, promote the use of LED failure rate has become the bottleneck.So many manufacturers use constant current mode to drive LED, and thus the design of switching power supply will need a constant current of the DC drive power.The conventional switching power supply control IC with high efficiency, output stability, high reliability, and offer features such as remote control.Entirely suitable for driving LED's switching power supply. In this paper, through the design of a constant current drive power to drive the LED.Through a variety of power electronic components and power electronic circuits to form a constant current power supply, to meet the design requirements. Key words: LED, Power , Drive, STM32

LED驱动电路设计

LED驱动电路设计 功率因数改善探讨以及NCP1014解决方案 本参考设计将分析现有照明LED驱动电路设计功率因数低的原因,探讨改善功率因数的技术及解决方案,以NCP1014为例,介绍相关设计过程、元器件选择依据、测试数据分享,显示这参考设计如何轻松符合“能源之星”固态照明标准的功率因数要求,非常适合低成本、低功率LED照明应用。 无源PFC与有源PFC方案比较 典型离线反激电源转换器在开关稳压器前面采用全波桥整流器及大电容,选择这种配置的原因是每2个线路周期内线路功率降低,直到零,然后上升至下一个峰值。大电容作为储能元件,填补相应所缺失的功率,为开关稳压器提供更加恒定的输入,维持电能流向负载。这种配置的功率利用率或输入线路波形的功率因数较低。线路电流在接近电压波形峰值的大幅度窄脉冲处消耗,引入了干扰性的高频谐波。 业界有关无源(Passive)功率因数校正(PFC)的方案众多,这些方案通常都使用较多的额外元器件,其中的一种方案就是谷底填充(valley-fill)整流器,其中采用的电解电容和二极管组合增大了线路频率导电角,从而改善功率因数。实际上,这个过程从高线路电压处以低电流给串联电容充电,然后在较低电压时以较大电流让电容放电给开关稳压器。典型应用使用2个电容和3个二极管,而要进一步增强功率因数性能,则使用3颗电容和6个二极管。 图1:典型谷底填充电路。 虽然谷底填充整流器提高了线路电流的利用率,但并未给开关稳压器提供恒定的输入。提供给负载的功率拥有较大纹波,达线路电源频率的2倍。需要指出的是,仍然需要4个二极管来对线路电源整流,使这种方案所用的二极管数量达到7个或10个。这些二极管及多个电解电容增加了方案成本,降低了可靠性,并占用了可观的电路板面积。 另外一种方案是在反激转换器前采用有源(Active) PFC段,如NCP1607B。这种方案提供典型性能高于0.98的优异功率功数,但增加了元件数量、降低了效率及增加了复杂性,最适用的功率电平远高于本应用的功率电平。

LED显示屏恒流驱动电路的设计(精)

L ED 显示屏恒流驱动电路的设计 ① 堵国梁, 史小军, 朱为摘要:本文介绍了L ED 显示屏常规型驱动电路的设计方式及其存在的缺陷, 提出了简单的L ED 显示屏恒流驱动方式及电路的实现。 关键词:L ED 显示屏动态扫描驱动电路 中图分类号:TN 873+. 93文献标识码:A 文章编号:1005-9490(2001 03-0252-051引言 L ED 显示屏是80年代后期在全球迅速发展起来的新型信息显示媒体, 它利用发光二极管构成的点阵模块或像素单元, 组成大面积显示屏幕, 以其可靠性高、使用寿命、环境适应能力强、性能价格比高、使用成本低等特点, 在信息显示领域已经得到了非常广泛的应用[1]。 L ED 显示屏主要包括发光二极管构成的阵列、 驱动电路、控制系统及传输接口和相应的应用软件等, 其中驱动电路设计的好坏, 对L ED 显示屏的显示效果、制作成本及系统的运行性能起着很重要的作用。所以, 设计一种既能满足控制驱动的要求, 同时使用器件少、成本低的控制驱动电路是很有必要的。本文就常规型驱动电路的设计作些分析并提出恒流驱动电路的设计方式。 2L ED 显示屏常规驱动电路的设计 L ED 显示屏驱动电路的设计, 与所用控制系统相配合, 通常分为动态扫描型驱动及静态锁存型驱动二大类。以下就动态扫描型驱动电路的设计为例为进行分析: 动态扫描型驱动方式是指显示屏上的4行、8行、16行等n 行发光二极管共用一组列驱动寄存器, 通过行驱动管的分时工作, 使得每行L ED 的点亮时间占总时间

的1 n , 只要每行的刷新速率大于50H z , 利用人眼的视觉暂留效应, 人们就可以看到一幅完整的文字或画面[2]。 常规型驱动电路的设计一般是用串入并出的通用集成电路芯片如74HC 595或M C 14094等作为列数据锁存, 以8050等小功率N PN 三极管为列驱动, 而以达林顿三极管如T IP 127等作为行扫描管, 其电路如图1所示。 ①来稿日期:2001206225 图1常规型驱动电路 如以单色点阵、16行×64列为一个基本单元, 则需用8片74HC 595、64 个8050及16个行扫描管, 其工作原理为:

LED驱动芯片工作原理与电路设计

LED驱动芯片工作原理与电路设计 内容提要 本书概要地叙述了LED的发光原理及其驱动特点,着重讨论了用IC芯片驱动LED电路的工作原理和线路分析,介绍了应用于LED直流-直流驱动器、交流- 直流驱动器的许多芯片及其实用电路,并给出了电路中关键元件的计算公式 本书内容丰富,通俗易懂,前后联系,将LED的特点、驱动电路的理论分析和实际应用紧密结合起来,具有很强的实用性。可供从事LED应用的相关工程技术人员参考,亦可供大专院校相关专业的师生阅读。 目 录 第1章 发光二极管(LED)的发光原理及特性 1.1 半导体材料 1.2 LED的结构和发光原理 1.2.1 LED的结构 1.2.2 LED的发光原理 1.3 LED的主要参数和特性 1.3.1 LED的电学特性 1.3.2 LED的光学特性 1.3.3 LED的热特性 1.4 LED的结构和所用的衬底、外延材料 1.4.1 LED的结构的变化 1.4.2 LED的外延材料 1.4.3 LED的衬底材料 1.5 LED的应用领域 1.5.1 指示光源 1.5.2 背光源 1.5.3 大屏幕显示 1.5.4 在汽车上的应用 1.5.5 在景观装饰照明中的应用 1.5.6 在交通信号灯上的应用 1.5.7 在普通照明方面的应用 1.6 白光LED的实现方法 1.6.1 蓝光LED加黄色荧光粉YAG 1.6.2 利用紫光或紫外光(300~400nm)LED激发R、G、B三基色荧光粉 1.6.3 用三基色(R、G、B)LED芯片组成白光像素 1.7 白光LED性能的改进 1.7.1 解决散热问题 1.7.2 提高发光效率 1.7.3 降低生产成本 1.7.4 控制LED的空间色度和显色性的均匀一致性 第2章 用低压电源驱动LED 2.1 概述 2.1.1 LED的特点及对驱动电源的要求 2.1.2 LED的原始电源 2.1.3 LED由电池供电时的驱动方式 2.2 LED在驱动电路中的连接方式 2.2.1 串联方式 2.2.2 并联方式 2.2.3 混联方式 2.3 用LED作为LCD显示屏的背光源及驱动 2.3.1 各种尺寸显示屏幕的背光照明

常见LED驱动电路的分析

图一为一个实际的采用电容降压的LED驱动电路﹕请注意﹐大部分应用电路中没有连接压敏电阻或瞬变电压抑制晶体管﹐建议连接上﹐因压敏电阻或瞬变电压抑制晶体管能在电压突变瞬间( 如雷电﹑大用电设备起动等 )有效地将突变电流泄放﹐从而保护二级关和其它晶体管﹐它们的响应时间一般在微毫秒级。 电路工作原理﹕ 电容C1的作用为降压和限流﹕大家都知道﹐电容的特性是通交流﹑隔直流﹐当电容连接于交流电路中时﹐其容抗计算公式为﹕ XC = 1/2πf C 式中﹐XC 表示电容的容抗﹑f 表示输入交流电源的频率﹑C 表示降压电容的容量。 流过电容降压电路的电流计算公式为﹕ I = U/XC 式中 I 表示流过电容的电流﹑U 表示电源电压﹑XC 表示电容的容抗 在220V﹑50Hz的交流电路中﹐当负载电压远远小于220V时﹐电流与电容的关系式为﹕ I = 69C 其中电容的单位为uF﹐电流的单位为mA 下表为在220V﹑50Hz的交流电路中﹐理论电流与实际测量电流的比较

电阻R1为泄放电阻﹐其作用为﹕当正弦波在最大峰值时刻被切断时﹐电容C1上的残存电荷无法释放﹐会长久存在﹐在维修时如果人体接触到C1的金属部分﹐有强烈的触电可能﹐而电阻R1的存在﹐能将残存的电荷泄放掉﹐从而保证人﹑机安全。泄放电阻的阻值与电容的大小有关﹐一般电容的容量越大﹐残存的电荷就越多﹐泄放电阻就阻值就要选小些。经验数据如下表﹐供设计时参考﹕ D1 ~ D4的作用是整流﹐其作用是将交流电整流为脉动直流电压。 C2﹑C3的作用为滤波﹐其作用是将整流后的脉动直流电压滤波成平稳直流电压 压敏电阻( 或瞬变电压抑制晶体管 )的作用是将输入电源中瞬间的脉冲高压电压对地泄放掉﹐从而保护LED不被瞬间高压击穿。 LED串联的数量视其正向导通电压( Vf )而定﹐在220V AC电路中﹐最多可以达到80个左右。 组件选择﹕电容的耐压一般要求大于输入电源电压的峰值﹐在220V,50Hz的交流电路中时﹐可以选择耐压为400伏以上的涤纶电容或纸介质电容。 D1 ~D4 可以选择IN4007。 滤波电容C2﹑C3的耐压根据负载电压而定﹐一般为负载电压的1.2倍。其电容容量视负载电流的大小而定。 下列电路图为其它形式的电容降压驱动电路﹐供设计时参考﹕

LED恒流驱动电路设计

LED恒流驱动电路设计 0 引言 随着LED技术的发展,大功率LED在灯光装饰和照明等领域得到了普遍的使用,同时功率型LED驱动芯片也显得越来越重要。由于LED的亮度输出与通过LED的电流成正比,为了保证各个LED亮度、色度的一致性,有必要设计一款恒流驱动器,使LED电流的大小尽可能一致。 基于LED发光特性,本文设计了一种宽电压输入、大电流、高调光比LED恒流驱动芯片。该芯片采用迟滞电流控制模式,可以用于驱动一颗或多颗串联LED。在6V~30V的宽输入电压范围内,通过对高端电流的采样来设置LED平均电流,芯片输出电流精度控制在5.5%,同时芯片可通过DIM引脚实现模拟调光和PWM调光,优化后的芯片响应速度可使芯片达到很高的调光比。 本文首先对整体电路进行了分析,接着介绍各个重要子模块的设计,最后给出了芯片的整体仿真波形、版图和结论。 1 电路系统原理 图1是芯片整体架构以及典型应用电路图。 该电路包括带隙基准、电压调整器、高端电流采样、迟滞比较器、功率管M1、PWM和模拟调光等模块。此外该芯片还内置欠压和过温保护电路,从而能在各种不利的条件下,有效的保证系统能够稳定的工作。 图1 芯片整体等效架构图 从图1中可以看到电感L、电流采样电阻RS、续流二极管D1形成了一个自振荡的连续电感电流模式的恒流LED控制器。该芯片采用迟滞电流控制模式,因为LED驱动电流的变化就反应在RS两端的压差变化上,所以在电路正常工作时,通过采样电阻RS采样LED中的电流并将其转化成一定比例的采样电压VCS,然后VCS进入滞环比较器,通过与BIAS模块产生的偏置电压进行比较,产生PWM控制信号,再经栅驱动电路从而控制功率开关管的导通与关断。 下面具体分析电路的工作原理。首先芯片在设计时会内设两个电流阈值IMAX和IMIN。当电源VIN上电时,电感L和电流采样电阻RS的初始电流为零, LED电流也为零。这时候,CS_COMP迟滞比较器的输出为高,内置功率NMOS开关管M1导通, SW端的电位为低,流过LED的电流开始上升。电流通过电感L、电流采样电阻RS、LED和内部功率开关从VIN流到地,此时电流上升斜率由VIN、电感(L)、LED压降决定。当LED电流增大到预设值IMAX时, CS_COMP 迟滞比较器的输出为低,此时功率开关管M1关闭,由于电感电流的连续性,此时电流以另一个下降斜率流过电感(L)、电流采样电阻(RS)、LED和续流肖特基二极管(D1),当电流下降到另外一个预定值IMIN时,功率开关重新打开,电源为电感L充电, LED电流又开始增大,当电流增大到IMAX时,控制电路关断功率管,重复上一个周期的动作,这样就完成了对LED电流的滞环控制,使得LED的平均电流恒定不变。 从以上分析可知, LED的平均驱动电流是由内设的阈值IMAX和IMIN决定,因而不存在类似于峰值电流控制模式的反馈回路。所以与峰值电流控制模式相比,滞环电流控制模式具有自稳定性,不需要补偿电路,另外峰值电流检测模式动态响应调节一般需要几个周期的时间,而滞环电流控制至多一个周期就可以稳定系统的动态响应,所以滞环电流控制的动态响应更加迅速。当然滞环电流控制模式存在着输出纹波较大,变频控制容易产生变频噪声等缺点,但是在大功率LED照明驱动应用中,一定的纹波变化和开关频率变化不会对LED 的整体照明性能产生较大影响。

相关主题
文本预览
相关文档 最新文档