当前位置:文档之家› 地下工程和深基坑安全监测预警系统

地下工程和深基坑安全监测预警系统

地下工程和深基坑安全监测预警系统
地下工程和深基坑安全监测预警系统

地下工程和深基坑安全监测预警系统

监测设备数据采集接口说明

1.概述

地下工程和深基坑安全监测预警系统(以下简称监测系统)于2013年3月启动,现已基本完成主系统设计开发并进入试运行阶段。根据系统平台设计要求,监测系统的现场监测数据实时采集有数据接口中间件(使用中间件需要第三方软件商编写接口软件)及数据采集专用客户端两种接入模式。除倾斜监测、裂缝监测等个别项目是手工录入数据外,其余项目均采用数据自动采集上传数据(详见下表)。监测项目、监测设备及对应的采集方式如下表:

2.数据流程

监测系统数据传输流程如下图:

?数据接口中间件

由系统技术支持单位提供数据接口中间件(Dll动态库)及调用说明,由监测单位自行完成各监测设备的实时数据上传工作。

?第三方接口软件

各监测机构自行或委托专业单位编写接口软件以实现各监测设备的数据实时上传的工作。

?数据采集专用客户端

自行开发或委托专业单位开发并提供技术支持。

基坑监测设备在满足一定技术要求后,方可接入基坑监测系统,否则不允许进行数据传

输。设备技术和操作主要要求包含以下几点:

1)设备具有通讯输出功能。

监测设备具备串口输出功能,并有明确的协议,提供同一监测工程五次规范测试的串口输出数据文件。通讯参数统一设置为“9600,n,8,1”。

2)设备支持测点号编辑功能。

监测时,设备操作软件支持测点号手工编辑功能(字符和数字)。

监测设备采集的数据,通过串口或USB口直接接入电脑,经由监测客户端软件上传原始数据。通过设备厂商提供的软件系统计算或修正后再导出的监测数据不能作为原始数据,监管系统不予接收。

4)满足自动采集原则。

除裂缝和倾斜监测项目外,其余项目均需实现自动采集。水位、应力监测设备应实现电子化,进行监测操作时,采集到的数据自动记录在设备内存中,每次监测结束后接入电脑,通过监测客户端自动上传数据。

5)满足数据输出规则。

监测设备输出的数据以文件包的形式通过串口与监测客户端交互。除深层水平位移(含支护桩和土体)项目按测点输出外,其余监测项目均按每次监测所有测点一并输出。

每次监测开始需从平台获取新监测编号,获取监测编号后24小时内必须上传监测数据,否则作异常数据处理。

使用机器人全站仪监测时,监测编号使用系统中当时的最大监测编号并保持不变,直到晚上12点再更换新监测编号。

广州地下工程和深基坑安全监测预警办法pdf

附件 广州市地下工程和深基坑安全监测预警办法 第一条 为进一步加强全市地下工程及深基坑工程的监测管理,规范地下工程及深基坑安全监测工作,有效防范重大质量安全事故发生,根据国家相关的法规标准,结合本市实际,制定本办法。 第二条 本办法适用于本市辖区内房屋建筑和市政基础设施地下工程及深基坑工程的安全监测管理工作。 第三条 广州市城乡建设委员会负责全市地下工程和深基坑安全监督管理及地下工程和深基坑安全监测预警系统(以下简称监测预警系统)管理工作。 市、区(县级市)建设行政主管部门按照监督管理分工,负责监管建设项目的地下工程和深基坑安全监督管理及监测预警上报管理工作。 参与地下工程与深基坑作业活动的生产经营单位,应当建立健全地下工程及深基坑安全监测排查治理和建档监控等制度,建立地下工程及深基坑安全监测主要负责人安全生产责任制 第四条 在本市辖区范围承接地下工程和深基坑安全监测活动的监测机构应具备工程监测资质,并与监测预警系

统进行对接,将本机构信息及所监测工程信息如实在监测预警系统进行登记。 第五条 监测机构的监测人员应经培训考核合格后持证上岗。监测人员不得同时受聘于两个或两个以上监测机构。 第六条 监测机构的监测设备应能实现自动采集并实时发送监测数据功能,确因设备故障导致数据异常或不能自动采集的,在临时采取其他监测手段监测采集数据和做好记录的同时,及时将监测情况向广州市城乡建设委员会提出书面报告,并尽快排除设备故障。 第七条 监测机构在进行工程监测前应先登录监测预警系统对监测工程信息进行登记,并上传监测平面图、监测方案、监测方案审批表等相关资料。 第八条 监测机构须严格按照监测规范及监测方案进行监测,确保采集数据的真实性与准确性,及时对数据进行分析并归档,定期对监测仪器进行检定与维护,确保监测系统的稳定性。 第九条 监测机构应加强内部管理,在接受委托、数据传输、数据处理等各个环节加强管理,防止出现数据误报情况及防止发生编制虚假监测报告、恶意修改监测数据等违规行为。

深基坑工程管理规定

深基坑工程管理规 定

《深基坑工程管理规定》的补充规定 为了进一步加强深基坑工程的管理,现将《深基坑工程管理规定》(青建管字[ ]36号)做如下补充规定: 一、深基坑工程设计方案评审前,青岛市勘察设计协会或各市(区)施工图审查机构应提前2个工作日向当地建筑工程安全、质量监督部门报告。 建筑工程安全、质量监督部门应派相关人员参加深基坑工程设计方案的评审,以了解深基坑工程设计方案的评审情况。 二、各级建筑工程质量、安全监督部门根据各自职责范围分别对深基坑工程施工进行监督管理。 安全监督部门根据国家规范、规程及设计要求对深基坑施工过程中的安全生产及整个深基坑监测工作进行监督管理。 质量监督部门根据国家规范、规程及设计要求对深基坑施工过程中的原材料质量、施工质量、质量检测和验收及工程技术资料进行监督管理。 三、各建设、施工、监理、检测、监测单位必须按有关规定分别控制好实体质量和安全,并将相关资料留存工程档案。同时必须积极配合建筑工程安全、质量监督部门的监督检查工作。 四、当发生深基坑工程质量安全事故或严重威胁周边环境安全时,各方必须及时按要求向当地建筑工程安全、质量监督部门报告。当地建筑工程安全、质量监督部门应立即派人到现场调查处理。青岛市勘察设计协会或各市(区)施工图审查机构应组织评审专家马上到现场参与调查处理,根据事故发生的初步原因,确定具体由质量或安全监督部门牵头处理深基坑工程事故。

五、本规定自颁布之日起生效。 深基坑工程管理规定 发布日期: 10月30日 深基坑工程管理规定 第一章总则 第一条为了加强对深基坑工程的管理,确保建设工程及相邻建筑物、构筑物、道路及地下管线的安全,根据国家和省有关法律、法规,结合本市实际,制定本规定。 第二条本规定所称深基坑,是指开挖深度超过5米(含5米)或地下室三层以上(含三层),或深度虽未超过5米,但地质条件和周围环境及地下管线特别复杂的工程。 本规定所称深基坑工程,包括工程勘察、围护结构设计、围护结构施工、地下水控制、基坑监测、土方挖填等内容。 第三条本规定适用于青岛市行政区域内深基坑工程勘察、设计、施工、监理和监测及其相关的管理活动。 第四条青岛市建设委员会是本市深基坑工程的管理部门。 各市(区)建设行政主管部门负责辖区内深基坑工程的管理工作。 青岛市勘察设计协会具体负责组织市内四区深基坑工程设计方案的评审工作;各市(区)施工图审查机构具体负责组织辖区内深基坑工程(深度小于10米)设计方案的评审工作。以上两级组织评审机构可根据实际情况联合组织评审。 各级建筑工程质量、安全监督机构具体负责深基坑工程施工质量、安全的日常监督检查工作。 第二章深基坑工程的报建与许可第五条建设单位或者工程总承包单位应当按照承发包有关管理规定,择优选择具备相应资质和能力的深基坑工程勘察、设计、施工、监理和监测单位。 第六条深基坑工程施工前必须办理招标投标、质量安全监督手续,并依法取得施工许可证。 第七条建设单位和施工单位在办理建筑工程质量、安全监督手续时,除按规定提交有关文件外,应同时提交深基坑工程设计方案专家组评审报告、市勘察设计协会或各市(区)施工图审查机构出具的设计方案复核证明、加盖评审专用章的图纸以及经施工企业技术负责人和总监理工程师批准的深基坑工程专项施工方案。 第三章深基坑工程前期准备 第八条建设单位应当在勘察前对深基坑附近的建筑物、构筑物、道路、地下管线等现

地下水控制方案

地下水控制方案方案 一、编制依据 1、根据武汉市急救中心和武汉市疾控中心迁建工程项目基坑支护施工图 2、国家有关施工技术、安全规范、规程 3、湖北中南勘察设计院有限责任公司提供的本场地《岩土工程勘察报告》 二、工程概况 1、工程名称:武汉市急救中心和武汉市疾控中心迁建工程项目 2、工程地点:武汉市江汉区马场路 3、建设单位:武汉城投房产集团有限公司 4、工程规模:该项目由1栋7层高层办公楼、1栋9层高层办公楼、1栋15层超高层办公楼组成,附设2层地下室。用地面积约1.28万㎡,总建筑面积约4.99万㎡,地下建筑面积1.62万㎡。 拟建场区地势较为平坦,场地标高在21.04~22.12米之间。 场区地貌单元属长江一级阶地,与长江最近直线距离约5000m。。 场地地质情况 拟建场区地层按各岩土层的成分、成因及工程性质等自上而下依次可分为:①杂填土(Qml);②粉质粘土夹粉土(Q4 al+pl);③粉质粘土(Q4 al+pl);④粉质粘土、粉土、粉砂互层(Q4 al+pl);⑤-1粉细砂(Q4 al+pl);⑤-2粉细砂(Q4 al+pl); ⑤a粉质粘土(Q4 al+pl);⑥中粗砂夹砾石(Q4 al+pl);⑦-1强风化泥质砂砾岩(K-E);⑦-2中风化泥质砂砾岩(K-E);⑦-2-1中风化泥质砂砾岩破碎岩(K-E)。 各岩土层名称、岩性描述、空间分布详见下表: 工程地质分层表

详见《工程地质剖面图》及《钻孔柱状图》。 1.4.2地下水类型及地下水位 场地地下水主要为上层滞水及下部承压水。上层滞水主要由地表水源、大气降水和生活用水补给,无统一的自由水面,水位及水量随地表水源、大气降水和生活用水排放量的影响而波动。承压水赋存于下部砂性土层中,水量大且水位随长江水位的变化有变化,具统一承压水位,与长江有较密切的水力联系,水位因长江水位季节性变化而变化。 场地承压水静止水位在地面以下3.64m,

最新地下工程和深基坑安全监测预警系统作业指导书

地下工程和深基坑安全监测预警系统作业 指导书

地下工程和深基坑安全监测预警系统标准化作业指导书 https://www.doczj.com/doc/2b15788741.html,/ 广州市建设工程质量安全检测中心

目录 第一篇 (1) 网络平台操作篇 (1) 一、登录页面 (2) 二、系统页面 (2) 三、机构管理 (3) (一)信息登记 (3) (二)行为管理 (4) 四、监测管理 (4) (一)工程项目登记 (5) (二)巡检记录登记 (16) (三)简报信息登记 (17) (四)原始数据查询 (18) (五)监测情况查询 (19) 第二篇 (27) 监测点保护篇 (27) 一、目的 (28) 二、适用对象 (28)

三、工作职责 (28) 四、质量标准 (29) 五、保护方法及措施 (29) (一)监测基准点 (29) (二)围护结构水平位移观测墩 (30) (三)围护结构顶部位移(水平和垂直位移)监测点 (31) (四)围护结构深层水平位移监测点 (32) (五)内支撑、外拉锚的应力、应变及轴力监测点 (33) (六)周边建(构)筑物位移监测点 (35) (七)地下水位监测点 (35) (八)测点保护标示 (37) 第三篇 (38) 仪器现场操作篇 (38) 一、全站仪测量外业指导书 (39) (一)适用对象 (39) (二)参考规范标准 (39) (三)测量原理 (39) (四)整置仪器 (39) (五)监测项目现场操作流程 (41) 二、测斜仪测量作业指导书 (45) (一)适用对象 (45)

(二)参考规范标准 (45) (三)测量方法及仪器操作(S INGO测斜仪) (46) (四)注意事项 (48) 三、电子水准仪测量作业指导书 (49) (一)适用对象 (49) (二)参考规范标准 (49) (三)测量原理 (49) (四)建立外业监测控制网 (49) (五)操作流程(索佳SDL1X) (50) 四、裂缝测量作业指导书 (56) (一)适用对象 (56) (二)参考规范标准 (56) (三)测量方法及仪器操作 (56) (四)外业测量 (58) 五、频率测量仪器作业指导书 (59) (一)适用对象 (59) (二)参考规范标准 (59) (三)测量方法及仪器操作(SSC-102型振弦读数仪) (59) 第四篇 (69) 计算公式及原理篇 (69)

深基坑工程地下水控制

深基坑工程地下水控制 一、概述 在影响基坑稳定性的诸多因素中,地下水的作用占有突出位置。历数各地曾发生的基坑工程事故,多数都和地下水的作用有关。因此,妥善解决基坑工程的地下水控制问题就成为基坑工程勘察、设计、施工、监测的重大课题。地下水对基坑工程的危害,除了水土压力中水压力对支护结构的作用之外,更重要的是基坑涌水、渗流破坏(流砂、管涌、坑底突涌)引起地面沉陷和抽(排)水引起地层不均匀固结沉降。基坑工程地下水控制的目的,就是要根据场地的工程地质、水文地质及岩土工程特点,采取可靠措施防止因地下水的不良作用引起基坑失稳及其对周边环境的影响。基坑工程地下水控制的方法分为降(排)水和隔渗(帷幕)两大类,这两种方法各自又包括多种形式。根据地质条件、周边环境、开挖深度和支护形式等因素的组合,可分别采用不同方法或几种方法的合理组合,以达到有效控制地下水的目的。 充分掌握场地的水文地质特征,预测基坑施工中可能发生的地下水危害类型,如基坑涌水、渗流破坏(流砂、管涌、坑底突涌)或渗流固结不均匀沉降,是选择正确、合理方法,实现有效控制地下水的前提和基础。对基坑工程而言,水文地质特征主要是指场地存在的地下水类型(上层滞水、潜水、承压水)和含水层、隔水层的分布规律及主要水文地质参数(地下水位或承压水头深度、含水层渗透系数和影响半径等)。水文地质参数是需要通过专门的水文地质勘探、测试、试验来取得的。比如,不同含水层的地下水位或水头必须用分层止水、分层观测得到,而不能用混合水位代替。渗透系数和影响半径则必须进行现场抽水来确定。这些专门水文地质工作的方法和技术要求,在相关的规程、规范和手册中均有详尽的论述,本文

深基坑施工工程监测方案

深基坑施工工程监测方案_secret 深基坑施工工程监测方案 1 一、工程概况 二、监测依据 三、监测目的 四、监测项目 五、监测方法 六、监测点布置及埋设要求 七、监测点布置示意附图 八、监测频率及报警值 九、监测点的保护措施. 十、监测仪器 十一、监测数据记录、分析及信息反馈. 十二、监测质量保证措施. 2 一、工程概况 (一)设计概况 按设计要求,***站主体基坑围护结构采用地连墙,安全等级为一级;控制周边地面最大沉降量≤0.1%H,地连墙最大水平位移≤0.14%H(H为基坑开挖深度),且不大于30mm。出入口及风亭基坑围护结构采用SMW 工法桩,安全等级为二级;控制周边地面最大沉降量≤0.2%H,围护结构

最大水平位移≤0.3%H(H为基坑开挖深度)。本次监测的主要内容包括围护结构的变形、受力情况及基坑周边环境的监测。 (二)工程地质及水文地质情况 根据图纸及地质报告提供的资料,站区地表普遍分布第四系全新统人工填土层(Qm1),岩性为杂填土,土质不均,结构松散,密实程度差。本车站(含折返段)主体结构基底位于(⑥1)粉质粘土。出入口、风道结构基底位于(④ 5)淤泥质粉质粘土。 基坑开挖范围内土体主要为填土、粘性土、粉土及淤泥质土,土质松软,直立性差。 基坑主体围护结构采用地下连续墙,主体结构标准段及大小里程盾构井连续墙底插入⑦6粉土层以下的⑦5⑧1粉质粘性土中。风亭及出入口围护结构为SMW工法桩。 本场地内表层地下水类型为第四系孔隙潜水,其地下水位埋深较浅,勘测期间水位埋深1.3m~2.1m(高程-0.3m~0.4m),赋存于第Ⅱ陆相层及以下粉砂及粉土中的地下水具有微承压性,为微承压水。 勘测期间微承压水稳定水位埋深约为1.45m~2.2m(高程约-0.3m~0.5m)。 (三)现场条件 ***站(含折返线段)位于**市**区**道与**路交口以北、***道东侧,站址以西主要为**东里六层住宅(砖混结构),距基坑最近处约15m;站址东北边为**小区六层住宅,距基坑最近处约20m。车站范围内的地下管

地下工程和深基坑安全监测预警系统

地下工程和深基坑安全监测预警系统 监测设备数据采集接口说明 1.概述 地下工程和深基坑安全监测预警系统(以下简称监测系统)于2013年3月启动,现已基本完成主系统设计开发并进入试运行阶段。根据系统平台设计要求,监测系统的现场监测数据实时采集有数据接口中间件(使用中间件需要第三方软件商编写接口软件)及数据采集专用客户端两种接入模式。除倾斜监测、裂缝监测等个别项目是手工录入数据外,其余项目均采用数据自动采集上传数据(详见下表)。监测项目、监测设备及对应的采集方式如下表:

2.数据流程 监测系统数据传输流程如下图: ?数据接口中间件 由系统技术支持单位提供数据接口中间件(Dll动态库)及调用说明,由监测单位自行完成各监测设备的实时数据上传工作。 ?第三方接口软件 各监测机构自行或委托专业单位编写接口软件以实现各监测设备的数据实时上传的工作。 ?数据采集专用客户端 自行开发或委托专业单位开发并提供技术支持。 基坑监测设备在满足一定技术要求后,方可接入基坑监测系统,否则不允许进行数据传 输。设备技术和操作主要要求包含以下几点: 1)设备具有通讯输出功能。 监测设备具备串口输出功能,并有明确的协议,提供同一监测工程五次规范测试的串口输出数据文件。通讯参数统一设置为“9600,n,8,1”。 2)设备支持测点号编辑功能。 监测时,设备操作软件支持测点号手工编辑功能(字符和数字)。

监测设备采集的数据,通过串口或USB口直接接入电脑,经由监测客户端软件上传原始数据。通过设备厂商提供的软件系统计算或修正后再导出的监测数据不能作为原始数据,监管系统不予接收。 4)满足自动采集原则。 除裂缝和倾斜监测项目外,其余项目均需实现自动采集。水位、应力监测设备应实现电子化,进行监测操作时,采集到的数据自动记录在设备内存中,每次监测结束后接入电脑,通过监测客户端自动上传数据。 5)满足数据输出规则。 监测设备输出的数据以文件包的形式通过串口与监测客户端交互。除深层水平位移(含支护桩和土体)项目按测点输出外,其余监测项目均按每次监测所有测点一并输出。

建筑深基坑工程检测要求

附件2: 建筑深基坑工程检测要求 基坑类型 检测项目 检测方法及数量 检测单位 排桩 灌注桩 完整性检查 抽取总桩数的30%,且不少于20根进行小应变检 测 检测单位 小应变检测结果影响受力时,采用钻芯法进行补充检测,其检测数量为总桩数的 2%,不少于3根 对于直径大于800mm 的灌注桩应抽取 10%进行超 声波或取芯检测 成孔的垂直度 钻孔桩采用测斜仪测量,其数量为总桩数的10%, 且不少于10根 检测或施工单位 孔径钻孔桩采用井径仪测量,其数量为总桩数的10%, 且不少于10根预制桩焊缝探伤检测 对焊接接头抽取总桩数的10% 检测单位 完整性检查 抽取总桩数的30%,且不少于20根进行小应变检 测 钢桩焊缝探伤检测抽取总桩数的20% 检测单位地下连续墙 混凝土质量检验 抽取大于总槽段数 20%的槽段,且不少于 3个槽段 进行声波透射法检查墙身混凝土结构内在质量检测单位 成槽的垂直度、倾斜度、沉渣采用井径仪等,其数量为总槽段数的 20% 检测或施工单位 水泥土墙 (SMW 支护) 成桩质量检查 成桩三天内,轻便动力触探不少于总桩数的2%,且 不少于5根 施工或检测单位 完整性及其强度 水泥土达到28天后,采用钻芯法检测完整性及其强度,其钻芯数量不少于总桩数的2%,且不少于5 根 检测单位 土钉墙 承载力 采用抗拉试验检测承载力。在同一条件下,试验数量不少于土钉总数的 1%,且不应少于6根 检测单位 喷射混凝土厚度检测 喷射混凝土的厚度采用钻孔检测,钻孔数为每100m2墙面1组,每组不少于3点 锚杆锚杆抗拔力不应少于锚杆总数的 1%,且不应少于3根 检测单位支撑体系焊缝探伤检测钢支撑的焊缝应抽取总数的 20%进行探伤检测 检测单位 基坑土体加固 同水泥土墙

地下工程监测

地下工程监测 地下工程施工是在地层内部进行,施工不可避免扰动地层,引起的地层变形会导致地表建筑和既有的管线设施破坏。因此,地铁隧道施工要考虑对城市环境的影响。隧道施工引起的地层变形,特别是在地面建筑设施密集、交通繁忙、地下水丰富的城市中进行地铁隧道施工,对于地铁开挖过程引起地层的力学响应在时间和空间上的规律,不同施工方法的不同力学响应可以通过施工监测实现,并及时预测地层变形的发展,反馈施工,控制地下工程施工对环境的影响程度。 1 量测目的 施工监测在施工中有着极其重要的作用。其监测的目的包括: (1)保证施工安全。浅埋暗挖法施工的地铁区间隧道会不同程度地对周边环境产生一定的影响,因此,通过及时、准确的现场监测结果判断地铁隧道结构的安全及周边环境的安全,并及时反馈施工,调整设计、施工参数,减小结构及周边环境的变形,保证工程安全。 (2)预测施工引起的地表变形。根据地表变形的发展趋势决定是否采取保护措施,并为确定经济、合理的保护措施提供依据。 (3)控制各项监测指标。根据已有的经验及规范要求,检查施工中的各项环境控制指标是否超过允许范围,并在发生环境事故时提供仲裁依据。 (4)验证支护结构设计,指导施工。地下结构设计中采用的设计原理与现场实测的结构受力、变形情况往往有一定的差异,因此,施工中及时的监测信息反馈对于设计方案的完善和修正有很大的帮助。 (5)总结工程经验,提高设计、施工技术水平。地下工程施工中结构及周边环境的受力、变形资料对于设计、施工总结经验有很大帮助。 2 量测项目 监控量测可分为必测项目和选测项目两类。监测的主要范围是:区间结构物中线外缘两侧30m范围内的地下、地面建(构)筑物管线、地面及道路。各项观测数据相互验证,确保监测结果的可靠性,为合理确定各项施工参数提供依据,达到反馈指导施工的目的,真正做到信息化施工。 (1)必测项目应包括下列项目:①洞内外观察;②水平相对净空变化量测; ③浅埋地段地表下沉量测;④拱顶相对下沉量测。 (2)选测项目应包括下列项目:①围岩内部变形量测;②锚杆轴力量测; ③围岩压力量测;④支护、衬砌应力量测;⑤钢架内力及所承受的荷载量测;⑥围岩弹性波速度测试。 3 监测方法

深基坑施工监测技术

镇江万达广场 十项新技术应用总结之11 深基坑施工监测技术

二0一一年八月 目录 一、工程简况2 二、监测目的、依据、原则3 三、监测内容及代表照片4 四、监测实施5 五、测量精度6 六、仪器设备7 七、测量周期7 八、预警报告7 九、预防措施、应急措施以及质量安全措施8 十、经济和社会效益以及应用体会12 一、工程简况 镇江万达广场位于镇江市润州区,地处庄泉路东侧,庄泉东路西侧,北府路北侧,黄山南路西。镇江万达广场地块总面积约为8万平方M,总建筑面积约38.88万平方M,地上面积约30万平方M,地下面积约8.88万平方M,分为写字楼、公寓、商业及酒店等。公寓由3栋酒店式公寓和商业用房组成,其中公寓31层,面积7.47万平方M,框剪结构;商业用房2—3层,面积4.17万平方M,结构埋深约4M;商务区由2栋写字楼及购物广场构成,2栋写字楼26层,面积5.07万平方M,均为框剪结构;裙房购物广场5层,面积8.57万

平方M,框架结构,结构埋深约10M。酒店区由五星级酒店及商务酒店和独立酒楼及裙房组成,五星级酒店主楼20层,主楼面积为2.14万平方M,酒店裙房为4层,面积1.41万平方,地下二层,商务酒楼为9层,0.78万平方M,独立酒楼为5层,面积为0.42万平方。整体地下室为两层,局部一层,面积约8.88万平方M。以上拟建工程基坑面积约为54840平方M左右,周长约为1173.8M。基坑开挖深度在4.5到13.7M之间不等,基坑南侧采用悬臂桩的支护形式,基坑北侧采用放坡土钉和支护桩加两层锚索相结合的支护桩形式,桩间挂网喷浆。两侧采用排桩加两层支撑的支护形式,两侧CD、CM、NO及PQ段采用自然放坡的支护形式,其余两段均采用放坡支护形式。 二、监测目的、依据、原则 2.1监测目的 在基坑开挖期间,随着取土的深入,围护结构由于受到土压力和周围道路动载力作用,会产生比较明显的变形。如果超过一定的范围,会引起基坑的倒塌和对周围道路及管线的破坏。因此应对基坑在开挖期间进行必要的监测,及时提供基坑及周围附属物的变形数据,指导施工的顺利进行,保证施工的安全。 2.2监测依据

浅谈深基坑支护工程中的地下水防治

浅谈深基坑支护工程中的地下水防治 孟春波 苏州中业工程管理有限公司江苏苏州 215000 摘要:本文总结了工程实践经验,分析了高层建筑深基坑地下水防治工程中存在的一些主要问题,并提出了一些建议性的预防措施。 关键词:深基坑;地下水;主要问题;预防措施 Brief Talk on Prevention and Cure of Ground Water in Bracing Project of Deep Foundation Pit Jiang Hong--xingLiLong Jiangsu chang—Jiang Mechanize Foundation Engineering Project Company Abstract:After summarizing practical experiences,this paper analyzes some major problems in prevention and cure project of ground water in deep foundation pit of high rise building and puts forward some recommendable prevenient measures. Key Words:deep foundation; ground water; major problems; prevenient measures 中图分类号:TV551.4文献标识码:A文章编号:2095-2104(2012)08-0026-2 1 引言 目前高层建筑和人防工程都包含了部分的地下工程,深基坑施工质量,直接影响工程建设的效益与成败。在深基坑工程中,一项事关全局的工作就是地下水防治,地下水是深基坑工程的天敌,是导致工程事故最直接的因素之一,从实际统计资料来看,约有70%的基坑事故与地下水有关。在长江中下游地区地下水位高,若对基坑中地下水处理不当,造成基坑坍塌、地面沉降等工程事故时有发生,致使工期延误,给经济上带来重大损失。因此,对深基坑工程中的地下水问题必须引起足够的重视。 2 地下工程中存在的主要问题 2.1 工程勘察方面 场地勘察资料是深基坑工程设计、施工的重要依据,而其中的工程地质资料和水文地质资料是降水设计的主要依据。如果对深基坑所涉及范围内的地层,勘察资料不详细、不准确,依据此资料设计出来的降水方案就势必会给深基坑工程带来事故隐患。 2.2 设计方面 2.2.1 对工程地质条件和水文地质条件认识不够 降水设计的主要依据是工程地质资料和水文地质条件,在进行降水设计时,若不弄清楚场内地层分布、地下水的类型、含水层的渗水性和含水量,不对地下水的性质、补给和排泄条件、动态特征及其与区域地下水的关系作深入地分析和研究,则难以设计出安全可靠、经济合理的方案。 2.2.2 设计人员的技术水平参差不齐

复杂环境下深基坑地下水综合控制分析_陆建生_付军

第9卷第6期地下空间与工程学报Vol.9 2013年12月Chinese Journal of Underground Space and Engineering Dec.2013复杂环境下深基坑地下水综合控制分析* 陆建生1,付军2 (1.上海广联建设发展有限公司,上海200438,2.上海隧道工程股份有限公司,上海200093) 摘要:上海长江西路隧道浦西工作井紧邻地铁3号线和逸仙路高架,其周边环境及水文地质条件复杂,在其基坑开挖期间,地下水控制难度极大。为消除或减弱该基坑地下水引起的基坑安全风险及环境风险问题,开展了专项水文地质试验,进行了基坑环境水文地质评价,评估了相应水文地质条件及地下水引起的环境变形问题,分析了基坑地下水控制的难点及风险,进而提出了基坑地下水控制的建议措施。本文为类似基坑的基坑工程地下水控制分析提供了借鉴意义。 关键词:环境水文地质;地下水控制;环境变形;抽水试验;基坑安全;风险控制 中图分类号:TU473文献标识码:A文章编号:1673-0836(2013)06-1433-06 Analysis of Comprehensive Control of Groundwater in Foundation Pit under Complex Environment Condition Lu Jiansheng1,Fu Jun2 (1.Shanghai Guanglian Construction Development Co.,Ltd.,Shanghai200438,China;2.Shanghai Tunnel Engineering Company.Co.Ltd.,Shanghai200072,China) Abstract:The Puxi working well of west Yangtze road tunnel in Shanghai is adjacent to subway line No.3and Yixianlu viaduct,the surrounding environment and hydro-geological conditions are complex.The control of groundwa-ter is difficult during the excavation of foundation pit.In order to eliminate or reduce risk of foundation and environ-ment safety caused by groundwater,special hydro-geological test is carried out,a hydro-geological evaluation is con-ducted,the corresponding hydro-geological conditions and environmental deformation caused by groundwater are eval-uated,the difficulty and risk of groundwater control is analyzed and the measures of groundwater control are proposed.This article provided reference to analysis of groundwater control in similar foundation pit engineering.Keywords:environmental hydrogeology;groundwater control;environmental deformation;pumping test;safety of excavation;risk control 1引言 目前因地下水控制不当而引发的基坑工程安全及环境事故屡有发生[1 4],这些事故不仅造成了巨大的经济损失,而且带来了恶劣的社会影响,给基础工程的建设带了巨大的困扰。 解决这一问题首先需要加强对地下水的认识与分析[5 9]。目前基坑建设中对于地下水的认识多来源于工程勘察资料,其深度及精度受到很大的制约,远不能满足基坑工程地下水控制分析的要求,已成为深基坑工程承压水风险源之一[10]。 为有效防治基坑建设过程中因地下水控制不 *收稿日期:2013-05-16(修改稿) 作者简介:陆建生(1981-),男,江苏昆山人,硕士,工程师,主要从事水文地质勘察、地下水综合治理方面的咨询及科研。E-mail:lujest@sina.com 基金项目:上海市科学委员会资助项目(08201201302)

地下工程和深基坑安全监测预警系统作业指导书.

地下工程和深基坑安全监测预警系统标准化作业指导书 https://www.doczj.com/doc/2b15788741.html,/ 广州市建设工程质量安全检测中心 目录 第一篇网络平台操作篇 (1) 一、登录页面 (2) 二、系统页面 (2) 三、机构管理 (3)

(一信息登 记 (3) (二行为管 理 (4) 四、监测管理 (5) (一工程项目登 记 (5) (二巡检记录登 记 (17) (三简报信息登 记 (18) (四原始数据查 询 (19) (五监测情况查 询 ....................................................................................................................... 20第二篇监测点保护篇 . (28) 一、目 的 . ......................................................................................................................................... .. 29 二、适用对 象 (29) 三、工作职 责 (29)

四、质量标 准 (30) 五、保护方法及措 施 (30) (一监测基准 点 (30) (二围护结构水平位移观测 墩 . (31) (三围护结构顶部位移(水平和垂直位移监测点 . ................................................... 32 (四围护结构深层水平位移监测 点 (33) (五内支撑、外拉锚的应力、应变及轴力监测 点 . (34) (六周边建(构筑物位移监测 点 (36) (七地下水位监测 点 . (36) (八测点保护标 示 ....................................................................................................................... 38第三篇仪器现场操作篇 ........................................................................ 39一、全站仪测量外业指导书 .. (40)

高层建筑深基坑地下水控制

龙源期刊网 https://www.doczj.com/doc/2b15788741.html, 高层建筑深基坑地下水控制 作者:杨艳 来源:《城市建设理论研究》2012年第29期 摘要:长白县地区工程地质中地下水含量丰富,这使得在地区深基坑工程施工中必须采取有效的地下水控制措施。本文简要论述了在本地区深基坑地质勘探和设计施工中一些地下水控制方法的选择和措施,如动水压力和流砂的防止措施以及基坑涌水量的计算等。 关键词:高层建筑;深基坑;地下水控制 Abstract: Changbai County regional engineering geology in underground water content, which makes effective groundwater control measures, must be taken in the deep foundation construction. This article briefly discusses the deep foundation pit in the region some of the geological exploration and the design and construction method of groundwater control options and measures, such as hydrodynamic pressure and flow of sand prevention measures as well as the calculation of the amount of water Pit.Key words: high-rise buildings; deep foundation; groundwater control 中图分类号:[TU208.3]文献标识码:A文章编号: 长白县城区位于长白向斜的东端鸭绿江大断裂上,向东与朝鲜的惠山—利源坳陷相接,断裂构造发育,褶皱复杂,向斜核部由石炭、二叠系地层组成。向南依次出现奥陶系、寒武系、震旦系地层。向北翼多被中生代、新生代地层覆盖。城区内主要河流为鸭绿江,地下水资源丰富。这使得高层建筑深基坑中经常会遇到地下水,由于地下水的存在,给深基坑施工带来很多问题,如基坑开挖,边坡稳定,基底隆起与突涌、浮力及防渗漏等。为了确保高层建筑深基坑工程施工正常进行,必须对地下水进行有效治理,若处理不当会发生严重的工程事故,造成极大的危害。因此,地下水的控制工作已越来越受到重视,成为本地区深基坑施工中的重要组成部分。要治理好地下水,就必须了解场地的地层结构,查明含水层厚度,渗透性和水量,研究地下水的性质、补给和排水条件,分析地下水的动态特征及其与区域地下水的关系,寻找人工降水的有利条件,从而制定出切实可行的最佳降水方案。一、动水压力和流砂粒径很小的非黏性土,在动水压力作用下,土颗粒极易失去稳定,而随地下水一起流动涌入坑内,这种现象成为流砂[1]。产生流砂的原因主要外因取决于外部水位条件,而内因取决于土的性质。1.产生流砂的外因地下水的渗流对单位土体的土颗粒产生的压力称为动水压力,用表示,它与单位土体内渗流水受到土颗粒的阻力T大小相等、方向相反。如图1-1所示,水在土体内从A向B流动,沿水流方向任取一土柱体AB,其长度为L,横断面积为S,两端点A、B之间的水头差为。计算动水压力时,考虑地下水的渗流加速度很小,因而忽略惯性力。 作用于AB土体上的力有:,其中g为重力加速度, 为水的密度,S为断面积;土柱体内水的重量;为土柱体中的土颗粒对渗流水的总阻力, T为土体的阻力。 根据静力平衡条件,得

深基坑工程安全检查表

深基坑工程安全检查表 项目名称检查时间年月日建设单位设计单位 施工单位监理单位 支护结构 简介 序号检查 项目 检查内容检查方法检查情况(存在问题) 深度超过5m 的基坑是否委托专项 查是否有设计图纸 基坑支护设计 建 设是否委托具有资质的单位施工查施工单位资质 参 单是否委托具有资质的单位监理查监理单位资质 建 位是否委托具有资质的第三方单位 各查监测单位资质 监测 方 设 行 1 计基坑支护设计方案是否经过咨询查基坑支护设计专家论证为 单论证意见 责 位 任 是否对专项方案进行审批查方案审批表主 监 是否执行监督、检查、见证取样及 体 理查监理日记及相关资料 隐蔽验收;关键工序是否旁站 单 是否对第三方变形监测成果进行 位查监理日记及相关资料 分析

查支护及土方开挖专项方 是否编制专项施工方案 施案 工是否按规定对专项方案咨询论证查专项方案专家论证意见 单是否向操作班组和工人进行详细查看交底记录及询问相关 位的安全技术交底人员 是否进行了公司及项目安全检查查检查记录 监是否编制有针对性的监测方案查方案内容及审批程序 测是否按规定频率及项目进行监测查监测成果 单是否及时对监测数据进行分析并 查监测成果 位向相关单位通报 续表 序检查 检查内容检查方法检查情况(存在问题)号项目 坑边查现场坑边材料、机具堆 2 坑边堆放荷载是否小于设计规定 荷载放情况 临边基坑支护周边是否按规定进行临边防查现场基坑安全防护、安 3 防护护;基坑安全通道是否符合要求,全通道 降、排是否按设计要求及现场实际设置有效 检查施工现场 水措的降、排水设施 4 施及是否有防止临近建筑危险沉降的措施检查设计文件 施工是否进行了含沙率测试查测试结果 支护支护结构是否按规定经验收符合规范查支护结构内业验收资料 5 结构及设计要求是否齐全

建筑深基坑工程施工安全技术规范(JGJ311-2013)

建筑深基坑工程施工安全技术规范(JGJ311-2013) Technical Specification for Safety Construction of Deep Building Foundation Pits 1 总则 1.0.1 为了在建筑深基坑工程实施的各个环节中贯彻执行国家有关的技术经济政策,做到保障安全、技术先进、经济适用、保护环境,制定本规范。 1.0.2 本规范适用于建筑深基坑工程的现场勘查与环境调查、设计、施工、风险分析及基坑工程安全监测、基坑的安全使用与维护管理。 1.0.3 建筑深基坑工程应综合考虑深基坑及其周边一定范围内的工程地质、水文地质、开挖深度、周边环境保护要求、降排水条件、支护结构类型及使用年限、施工工期条件等因素,并应结合工程经验制定施工安全技术措施。 1.0.4 建筑深基坑工程安全技术除应符合本规范的规定外,尚应符合国家现行有关标准的规定。 2 术语和符号 2.1 术语 2.1.1 基坑 construction pit 为进行建(构)筑物地下部分的施工由地面向下开挖出的空间。

2.1.2 风险控制 Risk control 为减少或降低深基坑安全风险损失所采取的处置对策、技术措施及应急方案。 2.1.3 基坑支护 retaining of construction pit 为保护地下主体结构施工和基坑周边环境的安全,对基坑采用的临时性支挡、加固、保护与地下水控制的措施。 2.1.4 基坑侧壁 side of foundation pit 构成基坑围体的某一侧面。 2.1.5 基坑周边环境 surroundings around foundation pit 基坑开挖影响范围内包括既有建(构)筑物、道路、地下设施、地下管线、岩土体及地下水体等的统称。 2.1.6 支护结构 retaining structure 支挡或加固基坑侧壁的承受荷载的结构。 2.1.7 设计使用年限 design service life 设计规定的从基坑开挖到预定深度至完成基坑支护使用功能的时段。 2.1.8 支挡式结构 retaining structure 以挡土构件和锚杆或支撑为主要构件,或以挡土构件为主要构件的支护结构。 2.1.9 锚拉式支挡结构 anchored retaining structure 以挡土构件和锚杆为主要构件的支挡式结构。 2.1.10 内撑式支挡结构 strutted retaining structure 以挡土构件和支撑为主要构件的支挡式结构。

深基坑工程检测控制措施

深基坑工程检测控制措施 深基坑工程检测控制措施 一、工程概况 本工程管道施工,管线桩号长度约3.48km,拟分段施工,每段150米,管线基坑设计宽度2米,设计开挖深度最大5.8米。安全等级一级。根据现行规范规程和设计要求,为确保基坑支护结构及周围环境的安全,在基坑施工的全过程中,要求对支护结构及周围环境(三倍基坑开挖深度范围内)作连续监测。 二、监测方案设计依据 (一)本工程监测执行如下规范规程: 1、本项目设计文件; 2、《工程测量规范》GB 50026-2007,国家标准; 3、《建筑基坑支护工程技术规程》DBJ/T 15-20-97,广东省标准; 4、《广州地区建筑基坑支护技术规程》GJB 02-98,广州市标准; 5、《建筑变形测量规程》JGJ8-2009,行业标准。 6、建筑基坑工程监测技术规范GB50497-2009 (GB50497-2009) 根据设计要求,各监测项目及数量详如下: (二)管道监测设置 序号观测项目数量单位备注 1管线基坑支护结构顶部水平位移及沉降350点观测点距20米 2管线基坑支护结构周围土体测斜350孔观测点距20米,深度为15~20米 3管线基坑外地下水位350孔观测点距20米,深度为15米 4民用建筑物沉降12点 525点 6 三、监测技术要求 (一)点位布施 1、平面控制点设置 平面控制网点选在基坑影响范围外(3倍基坑开挖深度以外)已有建筑物或构筑物,每个施工段设置一个平面控制网(3点)。平面控制点做法:埋设反射棱镜。 2、水准基点设置 水准基点即高程起算点,埋设于基坑影响范围之外。 水准基点选在基坑影响范围外(3倍基坑开挖深度以外)已有建筑物或构筑物的首层柱上,被选定的建筑物或构筑物必须采用桩基础,并已建成多年,沉降已经稳定。每个施工段设置一个独立高程网(3点)。水准基点做法见大样图。 3、监测点(孔)埋设 (二)管道部分 1、管线基坑支护结构顶部水平位移及沉降监测点埋设 设置监测点500个。做法:混凝土初凝前埋入Φ18钢筋,在露出地面的钢筋上焊接50×50×3钢板,钢板上粘贴LEICA反射片。并利用顶部突出的钢筋,打磨圆滑后作为沉降观测点。 2、管线基坑支护结构周围土体测斜孔埋设 共设置500孔。孔位距支护结构1~2m,钻孔口径为130mm,孔深约为20m,终孔后,下入测斜管,孔壁回填细砂。做法详见”测斜孔大样图”。 3、管线基坑外地下水位观测孔埋设

2019最新建筑深基坑工程施工安全技术规范(JGJ311-2013)

2019最新建筑深基坑工程施工安全技术规范(JGJ311-2013) Technical Specification for Safety Construction of Deep Building Foundation Pits 1 总则 1.0.1 为了在建筑深基坑工程实施的各个环节中贯彻执行国家有 关的技术经济政策,做到保障安全、技术先进、经济适用、保护环境,制定本规范。 1.0.2 本规范适用于建筑深基坑工程的现场勘查与环境调查、设计、施工、风险分析及基坑工程安全监测、基坑的安全使用与维护管理。 1.0.3 建筑深基坑工程应综合考虑深基坑及其周边一定范围内的 工程地质、水文地质、开挖深度、周边环境保护要求、降排水条件、 支护结构类型及使用年限、施工工期条件等因素,并应结合工程经验 制定施工安全技术措施。 1.0.4 建筑深基坑工程安全技术除应符合本规范的规定外,尚应 符合国家现行有关标准的规定。 2 术语和符号 2.1 术语

2.1.1 基坑 construction pit 为进行建(构)筑物地下部分的施工由地面向下开挖出的空间。 2.1.2 风险控制 Risk control 为减少或降低深基坑安全风险损失所采取的处置对策、技术措施及应急方案。 2.1.3 基坑支护 retaining of construction pit 为保护地下主体结构施工和基坑周边环境的安全,对基坑采用的临时性支挡、加固、保护与地下水控制的措施。 2.1.4 基坑侧壁 side of foundation pit 构成基坑围体的某一侧面。 2.1.5 基坑周边环境 surroundings around foundation pit 基坑开挖影响范围内包括既有建(构)筑物、道路、地下设施、地下管线、岩土体及地下水体等的统称。 2.1.6 支护结构 retaining structure 支挡或加固基坑侧壁的承受荷载的结构。 2.1.7 设计使用年限 design service life 设计规定的从基坑开挖到预定深度至完成基坑支护使用功能的时段。 2.1.8 支挡式结构 retaining structure 以挡土构件和锚杆或支撑为主要构件,或以挡土构件为主要构件的支护结构。 2.1.9 锚拉式支挡结构 anchored retaining structure 以挡土构件和锚杆为主要构件的支挡式结构。

相关主题
文本预览
相关文档 最新文档