当前位置:文档之家› 第一章1.3-1.3.1第2课时函数的最大(小)值 答案

第一章1.3-1.3.1第2课时函数的最大(小)值 答案

第一章1.3-1.3.1第2课时函数的最大(小)值 答案
第一章1.3-1.3.1第2课时函数的最大(小)值 答案

1.3 函数的基本性质

1.3.1 单调性与最大(小)值

第2课时 函数的最大(小)值

A 级 基础巩固

一、选择题

1.解析:作出图象可知y =

1x -3

在区间[4,5]上是减函数,(图略)所以其最小值为15-3

=12. 答案:B

2.解析:f (x )在[-1,2]上单调递增,所以最大值为f (2)=8,最小值为f (-

1)=4.

答案:A

3.解析:因为1-x (1-x )=x 2-x +1=? ????x -122+34≥34,所以11-x (1-x )≤43,得f (x )的最大值为43.

答案:C

4.解析:a >0时,由题意得2a +1-(a +1)=2,即a =2;a <0时,a +1-(2a +1)=2,所以a =-2,所以,a =±2.

答案:C

5.解析:因为f (0)=3,f (1)=2,函数f (x )图象的对称轴为x =1,结合图象可得1≤t ≤2.

答案:D

二、填空题

6.解析:f (x )=(x -2)2-2,作出其在[-4,4]上的图象知f (x )min =f (2)=-2;f (x )max =f (-4)=34.

答案:-2 34

7.解析:观察可知y >0,当|x |取最小值时,y 有最大值,所以当x =0时,y 的最大值为2,即0

答案:(0,2]

8.解析:令x +1=t ,则x =t 2-1(t ≥0),所以g (x )=f (t )=2(t 2-1)-t =2t 2

-t -2=2? ??

??t -142-178,因为t ≥0,所以当t =14时,f (t )取得最小值-178,所以g (x )的值域为????

??-178,+∞. 答案:????

??-178,+∞ 三、解答题

9.(1)证明:任取x 1,x 2∈(1,+∞),且x 1

2x 1-1-2x 2-1

=2(x 2-x 1)(x 1-1)(x 2-1)

. 由于10,x 1-1>0,x 2-1>0,

则f (x 1)-f (x 2)>0,即f (x 1)>f (x 2),

所以函数f (x )在区间(1,+∞)上为减函数.

(2)解:由(1)可知,f (x )在区间[2,4]上递减,则f (2)最大,为2,f (4)最小,为23.

10.解:f (x )=x 2-2ax +2=(x -a )2+2-a 2的图象开口向上,且对称轴为直线x =a .

图① 图② 图③

当a ≥1时,函数图象如图①所示,函数f (x )在区间[-1,1]上是减函数,最小值为f (1)=3-2a ;

当-1

当a ≤-1时,函数图象如图③所示,函数f (x )在区间[-1,1]上是增函数,最小值为f (-1)=3+2a .

综上,当a ≥1时,f (x )min =3-2a ;

当-1

当a ≤-1时,f (x )min =3+2a .

B 级 能力提升

1.解析:画图得到F (x )的图象:射线AC 、抛物线AB 及射线BD 三段,联

立方程组???y =2x +3,y =x 2-2x ,

得x A =2-7,代入得F (x )的最大值为7-27,由图可得F (x )无最小值,从而选C.

答案:C

2.解析:y =-(x -3)2+18,因为a

答案:-2 0

3.解:(1)因为f (-2)=-32,

所以-2a +12=-32,

所以a =1,所以f (x )=x -1x .

(2)f (x )在(0,+∞)上是增函数. 证明:任取x 1,x 2∈(0,+∞),且x 1

则f (x 1)-f (x 2)=x 1-1x 1

-x 2+1x =x 1-x 2+x 1-x 2x 1x 2

=(x 1-x 2)? ??

??1+1x 1x 2 =(x 1-x 2)(x 1x 2+1)x 1x 2

, 因为0

所以x 1-x 2<0,x 1x 2>0,x 1x 2+1>0, 所以f (x 1)-f (x 2)<0,即f (x 1)

(3)由(2)知f (x )在(0,+∞)上是增函数,

所以f (x )在????

??12,2上是增函数, 所以f (x )max =f (2)=32

, f (x )min =f ? ??

??12=-32.

3课时函数的最值

函数的最值 学习目标: 会用定义法证明一些简单函数在给定区间上的单调性. 重点: 用定义法证明单调性的步骤. 难点: 证明过程中符号的判断. 自学指导:7679P P 1. 集合的概念; 2. 集合中元素的特征; 3. 元素与集合的关系; 4. 常用数集与记法. 时间:10分钟 知识点: 1. 12121212()(),D ,,()(),D f x f x x x D x x f x f x ?若则f(x)为上的增函数对任意的实数且,若则f(x)为上的减函数 ; 12121212 ()()0,D ,,()()0,D f x f x x x D x x f x f x -?若则f(x)为上的增函数对任意的实数且,若则f(x)为上的减函数. 2.步骤:(1)任取12,x x D ∈,且12x x <; (2)比较12()()f x f x 和的大小;(第一步:作差;第二步:变形;第三步:断号.) (3)下结论. 课堂检测: 1. 求函数23y x =-+的值域. 2. 求函数41y x = -在[2,4]x ∈上的值域.

3.函数245 =--,求: y x x (1)当x R ∈时函数的值域;(2)当{1,0,1,2,3,4} x∈-时函数的值域; (3)当[2,1] x∈-时函数的值域. 课堂小结: 通过本节课,我们学习了几种函数解析式的求法. 作业: 1. P习题3.2A组1,2,3; 80 2.设A={2,4,6,8,10},B={1,9,25,49,81,100},下面的对应关系f能构成A到B的映射的 有() A. 2 :21 :(21) →-- D. 2 →- C. 2 f x x x f x x f x x →- B. 2 :(23) →- f x x :(1) 3. 设集合A和B都是自然数集,映射f:A→B把A中的元素n映射到B中的元素2n+n, 则在映射f下,A中的元素-------对应B中的元素3?则在映射f:A→B下,A中的元素3对应B中的元素--------? 教后反思:

2019精品教育4.示范教案(2.1函数的概念第1课时)

1.2 函数及其表示 1.2.1 函数的概念 整体设计 教学分析 函数是中学数学中最重要的基本概念之一.在中学,函数的学习大致可分为三个阶段.第一阶段是在义务教育阶段,学习了函数的描述性概念,接触了正比例函数、反比例函数、一次函数、二次函数等最简单的函数,了解了它们的图象、性质等.本节学习的函数概念与后续将要学习的函数的基本性质、基本初等函数(Ⅰ)和基本初等函数(Ⅱ)是学习函数的第二阶段,这是对函数概念的再认识阶段.第三阶段是在选修系列的导数及其应用的学习,这是函数学习的进一步深化和提高. 在学生学习用集合与对应的语言刻画函数之前,学生已经把函数看成变量之间的依赖关系;同时,虽然函数概念比较抽象,但函数现象大量存在于学生周围.因此,课本采用了从实际例子中抽象出用集合与对应的语言定义函数的方式介绍函数概念. 三维目标 1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;通过学习函数的概念,培养学生观察问题、提出问题的探究能力,进一步培养学习数学的兴趣和抽象概括能力;启发学生运用函数模型表述思考和解决现实世界中蕴涵的规律,逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识. 2.掌握构成函数的三要素,会求一些简单函数的定义域,体会对应关系在刻画函数概念中的作用,使学生感受到学习函数的必要性的重要性,激发学生学习的积极性. 重点难点 教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数. 教学难点:符号“y=f(x)”的含义,不容易认识到函数概念的整体性,而将函数单一地理解成对应关系,甚至认为函数就是函数值. 课时安排 2课时 教学过程 第1课时函数的概念 导入新课 思路1.北京时间2005年10月12日9时整,万众瞩目的“神舟”六号飞船胜利发射升空,5天后圆满完成各项任务并顺利返回.在“神舟”六号飞行期间,我们时刻关注“神舟”六号离我们的距离y随时间t是如何变化的,本节课就对这种变量关系进行定量描述和研究.引出课题. 思路2.问题:已知函数y=1,x请用初中所学函数的定义来解释y与x的函数关系?先让学生回答后,教师指出:这样解释会显得十分勉强,本节将用新的观点来解释,引出课题. 推进新课 新知探究 提出问题 (1)给出下列三种对应:(幻灯片) ①一枚炮弹发射后,经过26 s落到地面击中目标.炮弹的射高为845 m,且炮弹距地面的高度为h(单位:m)随时间t(单位:s)变化的规律是h=130t-5t2. 时间t的变化范围是数集A={t|0≤t≤26},h的变化范围是数集B={h|0≤h≤845}.则有对应 f:t→h=130t-5t2,t∈A,h∈B. ②近几十年来,大气层的臭氧迅速减少,因而出现了臭氧洞问题.图1-2-1-1中的曲线显示了南极上空臭氧层空洞的面积S(单位:106 km2)随时间t(单位:年)从1991~2001年的变化情况.

第14课时 二次函数及其应用

x ⑴ , ⑵ , ⑶ ,(4) . a >0 口 4. 二次函数c bx ax y ++=2用配方法可化成()k h x a y +-=2 的形式, 其中h = , k = . 5. 二次函数2()y a x h k =-+的图像和2ax y =图像的关系. 6.二次函数c bx ax y ++=2通过配方可得2 2 4(24b ac b y a x a a -=+ + ,其抛物线关于直线x = 对称,顶点坐标为( , ). ⑴ 当0a >时,抛物线开口向 ,有最 (填“高”或“低”)点, 当 x = 时,y 有最 (“大”或“小”)值是 ; ⑵ 当0a <时,抛物线开口向 ,有最 (填“高”或“低”)点, 当x = 时, y 有最 ( “大”或“小”)值是 . 【典型例题】 【例1】. 二次函数y =2x 2-4x +5的对称轴方程 是x =___;当x = 时,y 有最小值是 . 【例2】. 请写出一个开口向上,对称轴为直线x =2,且与y 轴的交点坐标为(0,3)的抛物线的解 c bx ax y ++=2 的图象如 图所示,则在“① a <0,②b >0,③c < 0,④b 2-4ac >0”中,正确的判断是( ) A 、①②③④ B 、④ C 、①②③ D 、①④

n x ++5经过点)0,1(A (1)求抛物线的解析式; (2)P 是y 轴正半轴上一点,且△PAB 是等腰三角形,试求点P 的坐标. 【例5】例2 橘子洲头要建造一个圆形的喷水池, 并在水池中央垂直安装一个柱子OP ,柱子顶端P 处装上喷头,由P 处向外喷出的水流(在 各个方向上)沿形状相同的抛物线路径落下(如图所示).若已知OP =3米,喷出的水流的最高点A 距水平面的高度是4米,离柱子OP 的距离为1米. (1)求这条抛物线的解析式; (2)若不计其它因素,水池的半径至少要多 少米,才能使喷出的水流不至于落在池 外? 【例6】近年来,“宝胜”集团根据市场变化情况,采用灵活多样的营销策略,产值、利税逐年大幅度增长.第六销售公司2004年销售某型号电缆线达数万米,这得益于他们较好地把握了电缆售价与销售数量之间的关系.经市场调研,他们发现:这种电缆线一天的销量y (米)与售价x (元/米)之间存在着如图所示的一次函数关系,且40≤x ≤70. (1) 根据图象,求y与x之间的函数解析式; (2) 设该销售公司一天销售这种型号电缆线的收入为w元. ① 试用含x 的代数式表示w; ② 试问当售价定为每米多少元时,该销售公司一天销售该型号电缆的收入最高?最高是多少元?

高中数学《对数函数(第二课时)》说课稿

高中数学《对数函数(第二课时)》说课稿高中数学《对数函数(第二课时)》说课稿 作为一位无私奉献的人民教师,可能需要进行说课稿编写工作,说课稿有助于学生理解并掌握系统的知识。我们应该怎么写说课稿呢?以下是小编收集整理的高中数学《对数函数(第二课时)》说课稿,欢迎阅读,希望大家能够喜欢。 一、教材的本质、地位与作用 对数函数(第二课时)是20xx人教版高一数学(上册)第二章第八节第二课时的内容,本小节涉及对数函数相关知识,分三个课时,这里是第二课时复习巩固对数函数图像及性质,并用此解决三类对数比大小问题,是对已学内容(指数函数、指数比大小、对数函数)的延续和发展,同时也体现了数学的实用性,为后续学习起到奠定知识基础、渗透方法的作用,因此本节内容起到了一种承上启下的作用。 二、教学目标 根据教学大纲的要求以及本节课的地位与作用,结合高一学生的认知特点确定教学目标如下: 学习目标: 1、复习巩固对数函数的图像及性质 2、运用对数函数的性质比较两个数的大小

能力目标: 1、培养学生运用图形解决问题的意识即数形结合能力 2、学生运用已学知识,已有经验解决新问题的能力 3、探索出方法,有条理阐述自己观点的能力 德育目标: 培养学生勤于思考、独立思考、合作交流等良好的个性品质 三、教材的重点及难点 对数比大小发挥的是承上启下的作用,对前一是复习巩固对数函数的图像和性质,二是对指数中比大小问题的数学思想及方法的再次体现和应用,对后为解对数方程及对数不等式奠定基础。所以确定本节课重点:运用对数函数图像性质比较两数的大小 教学中将在以下2个环节中突出教学重点: 1、利用学生预习后的心得交流,资源共享,互补不足 2、通过适当的练习,加强对解题方法的掌握及原理的理解 另一方面,学生在预习后上课的情况下,对于课本上知识有了一定的认识,但本节课教师要补充第三类比大小

《变量与函数》第2课时 教学设计

《变量与函数》教学设计 第2课时 进一步研究运动变化过程中变量之间的对应关系,在观察具体问题中变量之间对应关系的基础上,抽象出函数的概念. 1.进一步体会运动变化过程中的数量变化; 2.从典型实例中抽象概括出函数的概念,了解函数的概念. 概括并理解函数概念中的对应关系. 多媒体:PPT课件、电子白板. 一、观察思考,分析变化 问题1 下面变化过程中,是否包含两个变量?同一问题中的变量之间有什么联系? (1)汽车以60 km/h 的速度匀速行驶,行驶的时间为t h,行驶的路程为s km; (2)每张电影票的售价为10 元,设某场电影售出 x张票,票房收入为y 元; (3)圆形水波慢慢地扩大,在这一过程中,圆的半径为 r ,面积为 S ; (4)用10 m 长的绳子围一个矩形,当矩形的一边长为 x,它的邻边长为 y. [活动说明与建议]说明:本问题主要是给出具体事例让学生认识并抽象得到函数的概◆教材分析 ◆教学目标 ◆教学重难点 ◆ ◆课前准备 ◆ ◆教学过程

念,函数概念的抽象应循序渐进,首先让学生知道这些事例是一个变换的过程,其次这些变换过程中都含有两个变量,这两个变量之间存在着某种联系,最后由教师引导通过具体的数据,发现当给定一个变量的值时,有唯一的另一个变量的值与之对应,这种对应关系每个问题都不同. 建议:在教师的引导下,充分的让学生通过实例感知函数,感知这种对应关系. 【归纳】上面每个问题中的两个变量相互联系,当其中一个变量取定一个值时,另一个变量就有唯一的值与之对应. 二、观察思考,再次概括 问题2:一些用图或表格表达的问题中,也能看到两个变量之间存在上面那样的关系. (1)下面是中国代表团在第23 届至30 届夏季奥运会上获得的金牌数统计表,届数和金牌数可以分别记作 x 和 y,对于表中每一个确定的届数 x,都对应着一个确定的金牌数y 吗? (2)如图是北京某天的气温变化图,你能根据图象说出某一时刻的气温吗? 问题3:综合以上这些现象,你能再次归纳出上面所有事例的变量之间关系的共同特点吗?函数的定义: 一般地,在一个变化过程中,如果有两个变量x 与y,并且对于x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说 x 是自变量,y 是 x 的函数.如果当 x =a 时,对应的 y =b,那么 b 叫做当自变量的值为 a 时的函数值. 三、初步应用,巩固知识:

中考数学复习 第14课时 二次函数的实际应用测试

第三单元函数 第十四课时二次函数的实际应用 1. (8分)(xx眉山)东坡某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元. (1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品; (2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件,若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品? 2. (8分)(xx济宁)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元,市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系: y=-x+60(30≤x≤60). 设这种双肩包每天的销售利润为w元. (1)求w与x之间的函数解析式; (2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元? (3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元? 3. (8分)(xx成都)随着地铁和共享单车的发展,“地铁+单车”已成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫的距离为x(单位:千米),乘坐地铁的时间y1(单位:分钟)是关于x的一次函数,其关系如下表: (1)求y1关于x的函数表达式;

(2)李华骑单车的时间y 2(单位:分钟)也受x 的影响,其关系可以用y 2=1 2x 2-11x +78来描 述.请问:李华应选择在哪一站出地铁,才能使他从文化宫站回到家所需要的时间最短?并求出最短时间. 4. (8分)(xx 青岛)青岛市某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨1 3 .下表是去年该酒店豪华间某两天的相关记录: (1)该酒店豪华间有多少间?旺季每间价格为多少元? (2)今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元? 5. (9分)(xx 河北)某厂按用户的月需求量x (件)完成一件产品的生产,其中x >0.每件的售价为18万元,每件的成本y (万元)是基础价与浮动价的和,其中基础价保持不变,浮动价与月需要量x (件)成反比.经市场调研发现,月需求量x 与月份n (n 为整数,1≤n ≤12)符合关系式 x =2n 2-2kn +9(k +3)(k 为常数),且得到了表中的数据. (1)求y 与x 满足的关系式,请说明一件产品的利润能否是12万元; (2)求k ,并推断是否存在某个月既无盈利也不亏损;

课时过关检测(十八) 导数与函数的极值、最值

课时过关检测(十八) 导数与函数的极值、最值 A 级——夯基保分练 1.函数y =f (x )导函数的图象如图所示,则下列说法错误的是( ) A .(-1,3)为函数y =f (x )的递增区间 B .(3,5)为函数y =f (x )的递减区间 C .函数y =f (x )在x =0处取得极大值 D .函数y =f (x )在x =5处取得极小值 解析:选C 由函数y =f (x )导函数的图象可知,f (x )的单调递减区间是(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞),所以f (x )在x =-1,5取得极小值,在x =3取得极大值,故选项C 错误. 2.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,则f (2)等于( ) A .11或18 B .11 C .18 D .17或18 解析:选C ∵函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,∴f (1)=10,且f ′(1)=0,又f ′(x )=3x 2+2ax +b , ∴????? 1+a +b +a 2=10,3+2a +b =0, 解得??? ?? a =-3, b =3 或????? a =4, b =-11. 而当??? ?? a =-3, b =3 时,函数在x =1处无极值,故舍去. ∴f (x )=x 3+4x 2-11x +16,∴f (2)=18. 3.函数f (x )=x 2 2x +1在?? ??-13,1上的最小值与最大值的和为( ) A.13 B.23 C .1 D .0 解析:选A f ′(x )=2x (2x +1)-2x 2(2x +1)2=2x (x +1) (2x +1)2 ,

新课程2021高考数学一轮复习第二章第11讲第2课时利用导数研究函数的极值最值课时作业含解析2021

第2课时 利用导数研究函数的极值、最值 组 基础关 1.(2020·赤峰摸底)设函数f (x )在定义域R 上可导,其导函数为f ′(x ),若函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( ) A .函数f (x )有极大值f (2)和极小值f (1) B .函数f (x )有极大值f (-2)和极小值f (1) C .函数f (x )有极大值f (2)和极小值f (-2) D .函数f (x )有极大值f (-2)和极小值f (2) 答案 D 解析 由函数的图象可知,f ′(-2)=0,f ′(2)=0,并且当x <-2时,f ′(x )>0,当-22时,f ′(x )>0,故函数 f (x )有极小值f (2). 2.函数f (x )=1 3x 3-4x +4的极大值为( ) A.283 B .6 C.26 3 D .7 答案 A 解析 f ′(x )=x 2-4,令f ′(x )=0,得x =±2,当x ∈(-∞,-2)时,f ′(x )>0;当x ∈(-2,2)时,f ′(x )<0;当x ∈(2,+∞)时,f ′(x )>0,所以f (x )的极大值为f (-2)=1 3 ×(-2)3-4×(-

2)+4=28 3 . 3.函数f (x )=ln x -x 在区间(0,e]上的最大值为( ) A .1-e B .-1 C .-e D .0 答案 B 解析 f ′(x )=1 x -1,由f ′(x )=0得x =1.当x ∈(0,1)时,f ′(x )>0,f (x )单调递增,当x ∈(1, e)时,f ′(x )<0,f (x )单调递减,所以f (x )max =f (1)=-1. 4.已知函数f (x )=x 3+ax 2+bx -a 2-7a 在x =1处取得极大值10,则a b 的值为( ) A .-23 B .-2 C .-2或-2 3 D .2或-2 3 答案 A 解析 由题意知,f ′(x )=3x 2+2ax +b ,f ′(1)=0, f (1)=10,即????? 3+2a +b =0, 1+a +b -a 2 -7a =10, 解得????? a =-2,b =1或????? a =-6, b =9, 经检验????? a =-6, b =9, 满足题意,故a b =-23. 5.已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是( ) A .-37 B .-29 C .-5 D .-13

1.3.1.第二课时_函数的最大(小)值

1.3.1. 第二课时 函数的最大(小)值 1、函数f (x )=9-ax 2 (a >0)在[0,3]上的最大值为( ) A .9 B .9(1-a ) C .9-a D .9-a 2 2、函数y =x +1-x -1的值域为( ) A .(-∞, 2 ] B .(0, 2 ] C .[2,+∞) D .[0,+∞) 3、函数f (x )=x 2-2ax +a +2在[0,a ]上取得最大值3,最小值2,则实数a 为( ) A .0或1 B .1 C .2 D .以上都不对 4、函数f (x )=x 2在[0,1]上的最小值是( ) A .1 B .0 C.14 D .不存在 5、函数f (x )=? ?? 2x +6,x ∈[1,2]x +7,x ∈[-1,1],则f (x )的最大值、最小值分别为( ) A .10,6 B .10,8 C .8,6 D .以上都不对 6、函数y =-x 2+2x 在[1,2]上的最大值为( ) A .1 B .2 C .-1 D .不存在 7、函数y =1x -1 在[2,3]上的最小值为( ) A .2 B.12 C.13 D .-12 8、某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x ,其 中销售量(单位:辆).若该公司在两地共销售15辆,则能获得的最大利润为( ) A .90万元 B .60万元 C .120万元 D .120.25万元 9、已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )有最小值-2,则f (x )的最大值为( ) A .-1 B .0 C .1 D .2 10、已知x ,y ∈R +,且满足x 3+y 4 =1.则xy 的最大值为________. 11、函数y =2x 2+2,x ∈N *的最小值是________. 12、已知函数f (x )=x 2-6x +8,x ∈[1,a ],并且f (x )的最小值为f (a ),则实数a 的取值范围是________. 13、函数f (x )=x x +2在区间[2,4]上的最大值为________;最小值为________. 14、已知函数f (x )=????? x 2 -12≤x ≤11x 1<x ≤2,求f (x )的最大、最小值. 15、某租赁公司拥有汽车100辆,当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元. (1)当每辆车的月租金为3600元时,能租出多少辆车? (2)当每辆车的月租金为多少元时,租赁公司的月收益最大?最大月收益是多少?

第二章 第十一节 第二课时 导数与函数的极值、最值

课时规范练 A 组 基础对点练 1.设a ∈R ,若函数y =e x +ax ,x ∈R 有大于零的极值点,则( ) A .a <-1 B .a >-1 C .a >-1e D .a <-1e 解析:∵y =e x +ax ,∴y ′=e x +a . ∵函数y =e x +ax 有大于零的极值点, 则方程y ′=e x +a =0有大于零的解, ∵x >0时,-e x <-1,∴a =-e x <-1.选A. 答案:A 2.已知函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,则f (2)等于( ) A .11或18 B .11 C .18 D .17或18 解析:∵函数f (x )=x 3+ax 2+bx +a 2在x =1处有极值10,∴f (1)=10,且f ′(1)=0,f ′(x )=3x 2+2ax +b , 即????? 1+a +b +a 2=10,3+2a +b =0,解得????? a =-3,b =3,或????? a =4, b =-11. 而当????? a =-3, b =3 时,f ′(x )=3x 2-6x +3=3(x -1)2,x ∈(-∞,1),f ′(x )>0,x ∈(1,+∞),f ′(x )>0, 故舍去. ∴f (x )=x 3+4x 2-11x +16,∴f (2)=18.选C. 答案:C 3.(2019·岳阳模拟)下列函数中,既是奇函数又存在极值的是( ) A .y =x 3 B .y =ln(-x )

C.y=x e-x D.y=x+2 x 解析:A、B为单调函数,不存在极值,C不是奇函数,故选D. 答案:D 4.若a>0,b>0,且函数f(x)=4x3-ax2-2bx+2在x=1处有极值,若t=ab,则t的最大值为() A.2 B.3 C.6 D.9 解析:∵f(x)=4x3-ax2-2bx+2,∴f′(x)=12x2-2ax-2b,又∵f(x)在x=1处有极值,∴f′(1)=12-2a-2b=0?a+b=6,∵a>0,b>0,a+b≥2ab,∴ab≤9,当且仅当a=b=3时等号成立.故选D. 答案:D 5.已知f(x)=2x3-6x2+m(m为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是() A.-37 B.-29 C.-5 D.以上都不对 解析:f′(x)=6x2-12x=6x(x-2), 所以f(x)在[-2,0]上单调递增,在(0,2]上单调递减. 所以x=0为极大值点,也为最大值点. 所以f(0)=m=3,所以m=3.所以f(-2)=-37,f(2)=-5. 所以最小值是-37. 答案:A 6.设函数f(x)=ax2+bx+c(a,b,c∈R).若x=-1为函数f(x)e x的一个极值点,则下列图象不可能为y=f(x)图象的是()

对数函数(第二课时)

对数函数(第二课时) 【学习目标】 1.巩固对数函数的概念、图象和性质. 2.掌握与对数函数有关的复合函数的性质,如奇偶性、单调性、值域等的求解方法. 【学习障碍】 1.应用图象和性质解题时忽略对底数的分类讨论. 2.研究复合函数的有关性质时忽略对定义域的考查. 【学习策略】 Ⅰ.学习导引 1.阅读课本P83~85页. 2.本课时的重点是应用对数函数的图象和性质去解决综合性问题,难点是有关复合函 数有关单调性、奇偶性的判断,求证. 3.本课时用到的主要知识及方法. (1)利用图象法研究对数函数的有关性质. 对数函数的图象要分底数a>1及0<a<1讨论.对于几个底数都大于1的对数函数,底数越大,函数图象向右的方向越接近x轴;对于几个底数都大于0而小于1的对数函数,底数越大,函数图象向右的方向越远离x轴.以上规律可总结成“底大头低”四个字来理解.实际上,作出直线y=1与各图象交点的横坐标即各函数的底数的大小. 如图2—14所示: 利用图象法研究不同底的两个对数函数的有关性质时特别方便.(2)利用“同增异减”性的方法求复合函数的单调区间时,一定要先考查定义域.如y=log2(x2-2x)先要考查x2-2x>0,即x<0或x>2,然后再“同增异减”. 利用定义法判断复合函数的奇偶性时,也要先考查函数的定义域,若关于原点对称,

则应用定义,否则为非奇非偶函数. 关于复合函数的研究还常用换元法等方法. [例]已知log a 2>log b 2>0,判断a 、b 的大小. 分析:用图象法. 解析:由两个函数值均大于0知a 、b 都大于1,作出两个底数大于1的对数函数y =log a x 、y =log b x 的图象,找出横坐标2对应的两个函数值.由log a 2>log b 2确定两个图象对应的解 析式.由“底大头低”的规律知b >a >1.如2—15所示: 4.在学习中,应继续充分运用互为反函数的两个函数的图象和性质的对应关系,由已掌握的指数函数的图象和性质,帮助学习理解对数函数的图象和性质,结合本节的学习, 要进一步培养数形结合、分类讨论等数学思想方法的应用能力. Ⅱ.知识拓宽 在前面我们已经学过原函数与反函数性质的一些对应关系,如: ①原函数的定义域、值域、对应法则,分别是其反函数的值域,定义域,逆对应法则. ②原函数的图象与其反函数的图象关于y =x 对称. ③原函数增,反函数增;例y =2x ,y =log 2x 原函数减,反函数减;例y =(21)x ,y =x 21log 原函数是奇函数,反函数是奇函数;例y =x 3是奇函数,y =3 1x 是奇函数. 原函数是偶函数,反函数不存在(f (x )=a ,x ∈{0}除外) (以上所说,函数都在各自定义域上) 如1.y =1212-+x x 的反函数是y =log 211 -+x x (x >1或x <1) y =1212-+x x 是奇函数,y =log 211-+x x 也为奇函数,证明f (x )=log 211 -+x x 为奇函数. 证明:f (x )=log 211-+x x ,f (-x )=log 211--+-x x =log 211 +-x x =log 2(11 -+x x ) -1=-f (x )

高中数学第三章函数的概念与性质3.1函数的概念及其表示3.1.2第2课时分段函数分层演练

第2课时分段函数 分层演练 综合提升 A 级 基础巩固 1.德国数学家狄利克雷在数学上有着重大贡献,函数D (x )={0,x ?Q ,1,x ∈Q 是以他的名字命名的函数,则D (D (π))= ( ) A.1 B.0 C.π D.-1 答案:A 2.若f (x )={2x ,x >0, f (x +1),x ≤0,则f (43)+f (-43)= ( ) A.-2 B.4 C.2 D.-4 答案:B 3.若函数f (x )={1-x 2,x ≤1,x 2+x -2,x >1,则f (1 f (2))的值为 ( ) A.1516 B.-2716 C.89 D.18 答案:A 4.函数f (x )={x 2-x +1,x <1, 1x ,x >1的值域是 ( ) A .34,+∞ B .(0,1) C .3 4,1 D .(0,+∞) 答案:D 5.已知函数f (x )={x +2,x <0, x 2,0≤x <2, 12x ,x ≥2. (1)求f (f (f (-1 2)))的值; (2)若f (x )=2,求x 的值. 解:(1)因为f (-12)=-12+2=3 2, 所以f (f (-12))=f (32)=(32)2=9 4, 所以f (f (f (-1 2)))=f (94)=12×94=9 8. (2)当f (x )=x +2=2时,解得x =0,不符合题意,舍去;

当f (x )=x 2 =2时,解得x =±√2,其中x =√2符合要求; 当f (x )=12x =2时,解得x =4,符合要求. 综上,x 的值是√2或4. B 级 能力提升 6.某市出租车起步价为5元(起步价内行驶里程为3 km),以后每增加1 km,加收1.8元(不足1 km 按1 km 计价),则乘坐出租车的费用y (单位:元)与行驶的里程x (单位:km)之间的函数图象大致为下图中的 ( ) A B C D 解析:由已知得y ={5,03 = {5,00时,1-a <1,1+a >1,所以2(1-a )+a =-1-a -2a ,解得a =-32(舍去). 当a <0时,1-a >1,1+a <1,所以-1+a -2a =2+2a +a ,解得a =-34. 8.如图,△OAB 是边长为2的等边三角形,记△OAB 位于直线x =t (t >0)左侧的图形的面积为f (t ),试求函数f (t )的解析式. 解:过点B 作BE 垂直x 轴于点E ,可得OE =12OA =1,BE =√3. 当0

第2课时函数的单调性与最值.docx

第2课时函数的单调性与最值 【A级】基础训练 1.(原创题)已知函数尸沧)满足/(?2)>A?i)/(?i)</(0),则下列结论正确的是()? A.函数y=/(兀)在区间[-2,-1] h单调递减,在区间卜1,0]上单调递增 B.函数y=/U)在区间1-2,-1]±单调递增,在区间卜1,0]上单调递减 C.函数尹=心)在区间卜2,0]上最小值是/(-I) D.以上的三个结论都不正确 2.(2014?吉林模拟)已知函数心)=(。>0, 且aHl)是R上的减函数,则a的取值范围是 (). A. (0,1) 3.(2014 ?江西模拟)函数J(x)=\x\和g(x)=x(2-x)的递增区间依次是(). A.(?8,0],(?oo,l] B.(?8,0],[l,+8) c. [0,+g),(gl] D. [0,+g),[l,+g) 4.(2014 -河南模拟)已知定义在R上的函数./(x)是增函数,则满足Xx)</(2x-3)的x的取值范围 是_______ . 5.(2014?浙江模拟)已知.心)是定义在R上是奇函数,且当兀>0时金)*+a,若./?在R上是单调函数,则实数d的最小值是 _______ . 6.(2013 ?河南模拟)定义在R上的偶函数/(X)在[0,+oo)上是增函数,则方程.心)=/(2「3)的所有 实数根的和为________ . /(JT)=丄—丄(d>0,JT>0)?

7.己知函数「 a X (1)求证金)在(0, +oo)上是单调递增函数; ⑵若/(X)在上的值域是,求Q的值. & (2014 ?太原模拟)函数/(x)对任意的加,都有/(〃?+〃)=/(〃)并且x>0时,恒有加>1. (1)求证7U)在R上是增函数; (2)若夬3)=4,解不等式加2+/5)V2. 【B级】能力提升 1.(2014 ?山东模拟)已知函数&)=,?2处+5在(?oo,2]上是减函数,且对任意的X]A2e[l^+l], 总有|心)介2)04,则实数G的取值范围为(). A.[l,4] B. [2,3] C.[2,5] D. [3,+oo) 2.(2014 ?丹东模拟)若/(x)=-x2+2av与g(x)二在区间[1,2]上都是减函数,则a的取值范围是( )? A. (-1,0)U(0,1) B. (-l,0)U((),l] C. (0,1) D. (0,1] 3.(2014?陕西模拟)函数y=r-T x是(). A.奇两数,在区间(0,+oc)上单调递增 B.奇函数,在区间(0,+oo)上单调递减 C.偶函数,在区间(4,0)上单调递增 D.偶函数,在区间(a,0)上单调递减 4.(2014?山东模拟)已知一系列函数有如下性质: 函数jr+在(0,1)上是减函数,在[l,+oo)上是增函数; 函数y=x+在(0,)上是减函数,在[,+oo)上是增函数; 函数y=x+在((),)上是减函数,在[,+oo)上是增函数;

高中数学必修1《对数函数(第二课时)》说课稿

高中数学必修1《对数函数(第二课时)》说 课稿 人教版高中数学必修1《对数函数(第二课时)》说课稿 在教学工作者开展教学活动前,就有可能用到说课稿,说课稿有助于提高教师的语言表达能力。说课稿应该怎么写才好呢?以下是小编帮大家整理的人教版高中数学必修1《对数函数(第二课时)》说课稿,欢迎大家分享。 一、教材的本质、地位与作用 对数函数(第二课时)是xxxx人教版高一数学(上册)第二章第八节第二课时的内容,本小节涉及对数函数相关知识,分三个课时,这里是第二课时复习巩固对数函数图像及性质,并用此解决三类对数比大小问题,是对已学内容(指数函数、指数比大小、对数函数)的延续和发展,同时也体现了数学的实用性,为后续学习起到奠定知识基础、渗透方法的作用,因此本节内容起到了一种承上启下的作用。 二、教学目标 根据教学大纲的要求以及本节课的地位与作用,结合高一学生的认知特点确定教学目标如下: 学习目标: 1、复习巩固对数函数的图像及性质

2、运用对数函数的性质比较两个数的大小 能力目标: 1、培养学生运用图形解决问题的意识即数形结合能力 2、学生运用已学知识,已有经验解决新问题的能力 3、探索出方法,有条理阐述自己观点的能力 德育目标: 培养学生勤于思考、独立思考、合作交流等良好的个性品质 三、教材的重点及难点 对数比大小发挥的是承上启下的作用,对前一是复习巩固对数函数的图像和性质,二是对指数中比大小问题的数学思想及方法的再次体现和应用,对后为解对数方程及对数不等式奠定基础。所以确定本节课重点:运用对数函数图像性质比较两数的’大小 教学中将在以下2个环节中突出教学重点: 1、利用学生预习后的心得交流,资源共享,互补不足 2、通过适当的练习,加强对解题方法的掌握及原理的理解 另一方面,学生在预习后上课的情况下,对于课本

第2讲 第2课时 导数与函数的极值、最值

第2课时 导数与函数的极值、最值 利用导数解决函数的极值问题(多维探究) 角度一 根据图象判断函数的极值 设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )·f ′(x ) 的图象如图所示,则下列结论中一定成立的是( ) A .函数f (x )有极大值f (2)和极小值f (1) B .函数f (x )有极大值f (-2)和极小值f (1) C .函数f (x )有极大值f (2)和极小值f (-2) D .函数f (x )有极大值f (-2)和极小值f (2) 【解析】 由题图可知,当x <-2时,1-x >3,此时f ′(x )>0;当-22时,1-x <-1,此时f ′(x )>0,由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 【答案】 D 知图判断函数的极值的情况;先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号,最后判断是极大值点还是极小值点. 角度二 求函数的极值 (2020·湖南省五市十校联考)已知函数f (x )=ln x -12 ax 2+x ,a ∈R . (1)当a =0时,求曲线y =f (x )在(1,f (1))处的切线方程; (2)令g (x )=f (x )-(ax -1),求函数g (x )的极值. 【解】 (1)当a =0时,f (x )=ln x +x , 则f (1)=1,所以切点为(1,1), 又f ′(x )=1 x +1, 所以切线斜率k =f ′(1)=2, 故切线方程为y -1=2(x -1), 即2x -y -1=0.

2019-2020学年高中数学 2.2.2课题 对数函数及其性质(第二课时)学案 新人教A版.doc

2019-2020学年高中数学 2.2.2课题对数函数及其性质(第二课 时)学案新人教A版 【学习目标】 1.知识与技能:(1).能够准确描绘出对数函数的图像,并可以利用图像来解决相关问题; (2).能够利用对数函数的相关性质解决相关问题。 2.过程与方法:通过探究对数函数的图像,感受数形结合思想,培养学生分析问题的意识。 3.情感态度价值观:通过学生的相互交流来加深理解对数函数图像的理解,增强学生数学交流能力,培养学生倾听,接受别人建议的优良品质。 课前预习案 【使用说明及学法指导】 1.用15分钟的时间阅读探究课本上的基础知识,自主高效预习,提升自己的阅读理解能力. 2.完成教材助读设置的问题,然后结合课本的基础知识和例题,完成预习自测题. 3.将预习中不能解决的问题标出来,并写到“我的疑惑”处。 一、相关知识 1. 对数函数的图象有什么特点? 2. 对数函数有哪些性质? 学习建议:请同学们回忆上述问题并作出回答。 二、教材助读 1. 对数函数的图象是怎样的?与底数有何联系?

2. 反函数是如何定义的? 3. 函数的图象与、图象之间有什么关系? 三、预习自测 1.函数log (1)(01)a y x a a =->≠且恒过的定点坐标是( ) A. (2,0) B. (1,0) C. (0,1) D. (1,1) 2.比较两个对数的大小. (1)10log 7与10log 12 ; (2)0.5log 0.7与0.5log 0.8 3.求函数的定义域. (1) y =y =y =四、【我的疑问和收获】 ___________________________________________________________________________ 课堂探究案 一.基础知识探究 探究点:反函数 问题:如何由2x y =求出x ? 反思:函数2log x y =由2x y =解出,是把指数函数2x y =中的自变量与因变量对调位置而 得出的. 习惯上我们通常用x 表示自变量,y 表示函数,即写为2log y x =. 新知:当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而 把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function ) 例如:指数函数2x y =与对数函数2log y x =互为反函数. 试试:在同一平面直角坐标系中,画出指数函数2x y =及其反函数2log y x =图象,发现什 么性质? 反思: (1)如果000(,)P x y 在函数2x y =的图象上,那么P 0关于直线y x =的对称点在函数 2log y x =的图象上吗?为什么?

高一数学《函数的单调性与最值》第二课时教案

1 函数的单调性与最值 学习目标: 1. 使学生理解函数的最值是在整个定义域上来研究的,它是函数单调性的应用。 2. 会用单调性求最值。 3. 掌握基本函数的单调性及最值。 知识重现 1、一般地,设函数f(x)的定义域为I ,如果存在实数M 满足: (1) 对于任意的x ∈I ,都有f(x)≤M ; (2) 存在x 0∈I,使得f(x 0)=M. 那么,我们称M 是函数y=f(x)的最大值(maximum value ) 2、一般地,设函数f(x)的定义域为I ,如果存在实数M 满足: (3) 对于任意的x ∈I ,都有f(x)≥ M ; (4) 存在x 0∈I,使得f(x 0)=M. 那么,我们称M 是函数y=f(x)的最小值(minimum value ) 理论迁移 例1 “菊花”烟花是最壮观的烟花之一,制造时一般是期望在它达到最高点时爆裂。如果烟花距地面的高度h 米与时间t 秒之间的关系为h(t )=-4.9t 2+14.7t+18,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少(精确到1米)? 例2 已知函数f(x)= 1 x 2-(x ∈[2,6]),求函数的最大值和最小值。 归纳基本初等函数的单调性及最值 1. 正比例函数:f(x)=kx(k ≠0),当k 0时,f(x)在定义域R 上为增函数;当k 0时,f(x)在 定义域R 上为减函数,在定义域R 上不存在最值,在闭区间[a,b ]上存在最值,当k 0时函数f(x)的最大值为f(b)=kb,最小值为f(a)=ka, 当k 0时, ,最大值为f(a)=ka ,函数f(x)的最小值为f(b)=kb 。 2. 反比例函数:f(x)=x k (k ≠0),在定义域(-∞,0) (0,+∞)上无单调性,也不存在最值。当k 0时,在(-∞,0),(0,+∞)为减函数;当k 0时,在(-∞,0),(0,+∞)

相关主题
文本预览
相关文档 最新文档