当前位置:文档之家› 华理概率论习题7答案

华理概率论习题7答案

华理概率论习题7答案
华理概率论习题7答案

华东理工大学

概率论与数理统计 作业簿(第五册)

学 院 ____________专 业 ____________班 级 ____________ 学 号 ____________姓 名 ____________任课教师____________

第十九次作业

一.填空题:

1.在一批垫圈中随机抽取10个,测得它们的厚度(单位: mm)如下:

1.23, 1.24, 1.26, 1.29, 1.20, 1.32, 1.23, 1.23, 1.29, 1.28

用矩估计法得到这批垫圈的数学期望μ的估计值μ

?=__257.1=x ____, 标准差σ的估计值σ?=___037.01=-n s __。

二.计算题:

1.设总体X 服从泊松分布)(λP ,)(21n X X X ,,

, 为样本,分别用矩估计法和极大似然法求参数λ的估计量λ

?。 解:

矩估计法,因为)(~λP X ,所以总体平均值λ=EX ,

而样本平均值∑==n i i X n X 11, 所以∑===n

i i X n X 1

1?λ;

极大似然法,设),(21n X X X ,,

的一组观测值为),(21n x x x ,, , 似然函数∏===n i i x X P L 1

)()(λλ

λ-=∏

=e

x n

i i x

i

1

!

∏=-=n

i i

x

n x e

i

1

!λλ

,

取对数, 得∑=-+-=n

i i i x x n L 1

)!ln ln ()(ln λλλ,

01)(ln 1

=+-=∑=n i i x n d L d λλλ, 解得:x x n n

i i ==∑=11?λ, 故?的极大似然估计量为:X =λ

?。

2.设总体ξ服从几何分布

),2,1()1()(1

=-==-x p p x X P x ,),,,(21n X X X 为X 的样本。

(1)求未知参数p 的矩法估计;(2)求未知参数p 的极大似然估计。 解:

(1)由于()Ge p ξ~, 因此1E p ξ=

, 由矩法原则可知E X ξ=, 故1

?p

X

=. (2)设样本12(,,,)n X X X 的一组观测值为12(,,,)n x x x , 由于总体为离散型,

因此似然函数 11()()(1)n

i i n

x n

n

i i i L p P X x p p =-=∑===-∏,

取对数, 得()

1ln ()ln ln(1)n

i

i L p n p x n p ==+

--∑

,

上式两端关于p 求导, 令

1ln ()01n

i i x n

d L p n dp p p

=-=+=-∑, 解上式, 得

111?01X p

p p X

-+=?=-。 3.设总体总体X 的密度函数为?

?

?<<+=其他

,010,

)1()(x x x f θθ, 其中1->?是

未知参数, ),(21n X X X ,, 是来自总体的样本,分别用矩估计法和极大似然法求

?的估计量。

解:

总体X 的数学期望为2

1

)1()(1++=

+==?

?+∞∞∞

-++∞

∞-θ?θ?dx x dx x xf EX , 设∑==n i i X n X 11为样本均值, 则应有:2

1

++=??X ,

解得?的矩法估计量为: X

X --=112??

; 设),(21n x x x ,,

是样本),(21n X X X ,, 的观察值, 则似然函数为: ∏==n

i i x f L 1

)()(?∏=-=n

i i

n

x

1

1??

?

??=<

i x x x x i n n ??,

当),2,1(10n n i x i =<<时, ,0)(>?L

,ln )1ln()(ln 1

∑=++=n

i i x n L θ??

令0ln 1)(ln 1

=++=∑=n

i i x n d L d ??? , 解得?的极大似然估计值:

∑=--=n

i i

x

n

1

ln 1??

, 故?的极大似然估计量为:∑=--=n

i i

X

n

1

ln 1??

第二十次作业

一.选择题:

1.设总体X 的数学期望为μ,),,,(21n X X X 是取自总体的样本,则下列命题中正确的是( A )

A. 1X 是μ的无偏估计量;

B. 1X 是μ的极大似然估计量;

C. 1X 是μ的一致(相合)估计量;

D. 1X 不是μ估计量。

2.设),,,(21n X X X 为总体),(~2σμN X (μ已知)的一个样本, X 为样本均值, 则总体方差2σ的下列估计量中, 为无偏估计量的是( C ).

A. 2

1

)(1∑=-n i i X X n ; B. 211)(11∑-=--n i i X X n ; C. 2

1)(1∑=-n i i X n μ; D. 21

)(11∑=--n i i X n μ;

二.计算证明题:

1.设总体)1,(~μξN ,),,(321X X X 是ξ的样本,

(1)证明: 3211414121X X X ++=

μ 321231

3131X X X ++=∧μ

32135

1

5252X X X ++=∧μ

都是μ的无偏估计。

(2)∧

1μ,∧

2μ,∧

3μ这三个估计中,哪一个估计最有效?

证明: (1)

112312321231233123123111111111?,244244244111111111?,333333333221221221?,555555555E E X X X EX EX EX E E X X X EX EX EX E E X X X EX EX EX μ

μμμ

μμμ

μμ????

=++=++=++= ? ?????????

=++=++=++= ? ?????????

=++=++=++= ? ?????

所以, 123???,,μ

μμ都是μ的无偏估计. (2)由于样本12,,,n X X X 独立同分布,那么

1123123212312331231231111

113?,2

444161681

111111?,33399932

214419?,

55525252525D D X X X DX DX DX D D X X X DX DX DX D D X X X DX DX DX μ

μ

μ??=++=++= ?????=++=++= ?????=++=++= ???

可知132???D D D μ

μμ>>,故2?μ最有效.

2.设从均值为μ,方差为02>σ的总体中,分别抽取容量为1n 和2n 的两个独立样本,1X 和2X 分布是这两个样本的均值,试证:对于任意常数)1(=+b a b a 、,

21X b X a Y +=都是μ的无偏估计,并确定常数b a 、,使得DY 达到最小。

证明:

因为1212()()EY E aX bX aEX bEX a b μμ=+=+=+=,

故对于任意常数,(1)a b a b +=,12Y aX bX =+都是μ的无偏估计. 由于两个样本独立, 因此12,X X 相互独立, 那么由定理6.2.1,可知

2222

2

1212

()a b DY E aX bX n n σσ=+=+,将1b a =-代入, 得

222222

12111212

()2(1)n n a n a n a a DY n n n n σσσ+-+-=+=, 求其最小值,

22212111211

121212()22()20n n a n a n n n a n n a n n n n n n σσ'??+-++-==?=??

+??

, 2121n b a n n =-=

+, 即当12

1212

,n n a b n n n n ==++时, DY 最小。

3.设随机变量X 服从区间)1,(+??上的均匀分布, 其中?为未知参数,

n X X X ,,,21 是来自于X 的一个样本, 是样本均值, },,,min{21)1(n X X X X =.

证明: (1)21?1-=X ?和1

1?)

1(2+-=n X ?都是?无偏估计量(1>n ). (2)比较1??和2

??哪个更有效? 证明:

(1)因为X 服从区间)1,(+??上的均匀分布, 所以2

1

2+=

=?EX EX i , ????=-+=-+=-=-=∑∑==2

121221212121)(1)21(?111n i n i i n X E n X E E , 所以2

1?1

-=X ?是?无偏估计量. 再证2

??是?无偏估计量, 先求)1(X 的概率分布, X 的分布函数??

?

??+≥+<<-≤=≤=1,11,,

0}{)(?????x x x x x X P x F ,

X 的密度函数?

?

?+<<='=其它,01

,1)()(??x x F x p , n X X X ,,,21 与X 独立且同分布, 故)1(X 的分布函数为: n x F x X P x F )](1[1}{)()1()1(--=≤=, )()]

(1[)()(1

)1()1(x p x F n x F x f n --='=?

??+<<-+=-其它,01,)1(1???x x n n ,

于是, ?

?+-+∞

--+==1

1)1()1()1()(??

?dx x nx dx x xf EX n

???????

??

++=

-+++-+-+-=?

?

+-+-1

1

)1()1()

1)(1(111

1

n dx x n dx x x n n n ,

???=+-++=+-=1

111)11(?)

1(2n n n X E E , 所以1

1?)

1(2+-=n X ?也是?无偏估计量; (2)因为X 服从区间)1,(+??上的均匀分布, 所以12

1

=

DX , n

DX n X D X D D 1211)21(?1

===-=?, dx x nx X E n 11

22

)

1()1()(-+-+=?

???2

)1(12)1(2++

++-

+=n n

n n ??, 22

2)

1(2)1()1()1

1(2)1(12)1()()()(???-+-++++-+=-=n n n n n EX X E X D )

2()1(2

++=

n n n

, )

1()1(2)1

1(?DX n X D D =+-=?)2()1(2++=n n n , 当8≥n 时,

n

n n n 121)2()1(2

<++, )?(?12??D D <,2??比1??更有效; 当71≤

n n n 121)2()1(2

>++, )?(?21??D D <, 1??比2??更有效。

第二十一次作业

一、填空题

1.置信区间的可信度由置信水平α-1; 控制,而样本容量可用来调整置信区间的 精确度 。

2.有一大批糖果,先从中随机地取16袋,称的重量(单位:g )如下: 506 508 499 503 504 510 497 512 514 505 493 496 506 502 509 496 设袋装糖果的重量近似地服从正态分布),(2σμN ,则总体均值μ的置信水平为95%的置信区间为 [500.4,507.1] ,总体标准差σ的置信水平为95%的置信区间为 [4.582,9.599] 。

二、选择题

1.设从总体),(~211σμξN 和总体),(~2

22σμηN 中分别抽取容量为9,16的独

立样本,以x ,y ,2

x S ,2y S 分别表示两个独立样本的样本均值和样本方差,

若已知1σ=2σ,则21μμ-的95%的置信区间为(C ) A. 16

9

(2

2

2

1975.0σσ+

--u y x ,)16

9

22

2

1975

.0σσ+

+-u y x

B. 16

9(22

975

.0y x

S S u y x +--,)16922975

.0y x S S u y x ++- C. 5)23((975.0w

S t y x --,)5

)23(975.0w S t y x +-,其中231692

2y x w S S S +=

D. 5)25((975.0w

S t y x --,)5

)25(975.0w S t y x +-,其中251692

2y x w S S S +=

2.关于“参数μ的95%的置信区间为),(b a ”的正确理解的是(A )。

A. 至少有95%的把握认为),(b a 包含参数真值μ;

B. 有95%的把握认为),(b a 包含参数真值μ;

C. 有95%的把握认为参数真值μ落在区间),(b a 内;

D. 若进行100次抽样,必有95次参数真值μ落在区间),(b a 内。

三、计算题

1.设某地旅游者日消费额服从正态分布),(2σμN ,且标准差12=σ,今对该地

旅游者的日平均消费额进行估计,为了能以95%的置信水平相信这种估计误差小于2(元),问至少需要调查多少人? 解:由于总体为正态分布,且标准差(12)σ=已知,又由10.95α-=,即0.05α=,

查表可得0.97512

1.96U

U α

-

==,

误差小于2

即12

2 1.962138.2976U

n α-

, 故至少要调查139人。

2.某厂生产一批长为5mm 的药片,已知药片长2~(,)X N μσ,随机抽取16粒药片,测得样本均值 4.87x =mm,样本标准差0.32s =mm ,求总体的方差2σ在置信水平为0.95下的置信区间。

解:由样本值得0.32s =,16=n ,05.0=α,自由度为151=-n 。

查表得262.6)15(2025.0=χ,488.27)15(2975.0=χ。所以,

0559.0488.2732.015)15()1(22

975.02

=?=-χS n , 2453.0262.632.015)15()1(22

025.02

=?=-χS n . 即2σ的置信水平为0.95的置信区间为:[]2453.0,0559.0。

3.假设人体身高服从正态分布,今抽测甲、乙两地区18岁~25岁女青年身高得

数据如下:甲地区抽取10名,样本均值m 64.11,样本标准差m 4.0, 乙地区抽取10名,样本均值m 62.11,样本标准差m 5.0,求 (1)两正态总体方差比的95%的置信区间 (2)两正态总体均值差的95%的置信区间。 解:(1)根据题意,得10,0.2,0.4x y m n S S ====,

对于0.05α=查表得:0.9750.0250.97511

(9,9) 4.03,(9,9)(9,9) 4.03

F F F ===,

计算置信下限和上限:

22

220.97522

22

0.0250.20.40.062,

(9,9) 4.03

0.20.4

1.0075,

(9,9)

14.03

x y

x

y

S S F S

S

F ===

=

即两正态总体方差比的95%的置信区间为[0.062,1.0075]。

(2)注意到1[0.062,1.0075]∈,故在实际中可以认为221x y σσ=,即22x y σσ=。

对于0.05α=查表得:0.975(18) 2.1009t =, 计算12μμ-的置信上下限:

12

()(2)(1.64 1.62) 2.10090.020.2971,

X Y t

m n S α-

-±+-?=-±=±

即两正态总体均值差的95%的置信区间为[-0.2771,0.3171]。

概率论第6章习题及答案

第六章 数理统计习题 一、填空题 1.若n ξξξ,,,21Λ是取自正态总体),(2 σμN 的样本,则∑==n i i n 1 1ξξ服从分布 )n ,(N 2 σμ 2. 设随机变量ξ与η相互独立, 且都服从正态分布(0,9)N , 而129(,,,) x x x L 和 129(,,,) y y y L 是分别来自总体ξ和η的简单随机样本, 则统计量 129 222129 ~U y y y =+++L (9)t . 3. 设~(0,16),~(0,9),,X N Y N X Y 相互独立, 129,,,X X X L 与1216 ,,,Y Y Y L 分别 为X 与Y 的一个简单随机样本, 则22 2 129222 1216X X X Y Y Y ++++++L L 服从的分布为 (9,16).F 二、选择题 1、设总体ξ服从正态分布,其中μ已知,σ未知,321,,ξξξ是取自总体ξ的 个样本,则非统计量是( D ). A 、)(3 1321ξξξ++ B 、μξξ221++ C 、),,m ax (321ξξξ D 、 )(1 2322212 ξξξσ++ 2、设)2,1(~2 N ξ,n ξξξK ,,21为ξ的样本,则( C ). 221N n ξ?? ???:, A 、 )1,0(~2 1N -ξ B 、)1.0(~41 N -ξ C 、)1,0(~/21N n -ξ D 、 )1,0(~/21 N n -ξ 3、设n ξξξΛ,,21是总体)1,0(~N ξ的样本,S ,ξ分别是样本的均值和样本标准差, 则有( C ) A 、)1,0(~N n ξ B 、)1,0(~N ξ C 、 ∑=n i i n x 1 22)(~ξ D 、)1(~/-n t S ξ 三、计算题 1、在总体)2,30(~2N X 中随机地抽取一个容量为16的样本,求样本均值X 在 29到31之间取值的概率.

(完整版)概率论与数理统计课后习题答案

·1· 习 题 一 1.写出下列随机试验的样本空间及下列事件中的样本点: (1)掷一颗骰子,记录出现的点数. A =‘出现奇数点’; (2)将一颗骰子掷两次,记录出现点数. A =‘两次点数之和为10’,B =‘第一次的点数,比第二次的点数大2’; (3)一个口袋中有5只外形完全相同的球,编号分别为1,2,3,4,5;从中同时取出3只球,观察其结果,A =‘球的最小号码为1’; (4)将,a b 两个球,随机地放入到甲、乙、丙三个盒子中去,观察放球情况,A =‘甲盒中至少有一球’; (5)记录在一段时间内,通过某桥的汽车流量,A =‘通过汽车不足5台’,B =‘通过的汽车不少于3台’。 解 (1)123456{,,,,,}S e e e e e e =其中i e =‘出现i 点’ 1,2,,6i =L , 135{,,}A e e e =。 (2){(1,1),(1,2),(1,3),(1,4),(1,5),(1,6)S = (2,1),(2,2),(2,3),(2,4),(2,5),(2,6) (3,1),(3,2),(3,3),(3,4),(3,5),(3,6) (4,1),(4,2),(4,3),(4,4),(4,5),(4,6) (5,1),(5,2),(5,3),(5,4),(5,5),(5,6) (6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}; {(4,6),(5,5),(6,4)}A =; {(3,1),(4,2),(5,3),(6,4)}B =。 ( 3 ) {(1,2,3),(2,3,4),(3,4,5),(1,3,4),(1,4,5),(1,2,4),(1,2,5) S = (2,3,5),(2,4,5),(1,3,5)} {(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5)}A = ( 4 ) {(,,),(,,),(,,),(,,),(,,),(,,), S ab ab ab a b a b b a =--------- (,,),(,,,),(,,)}b a a b b a ---,其中‘-’表示空盒; {(,,),(,,),(,,),(,,),(,,)}A ab a b a b b a b a =------。 (5){0,1,2,},{0,1,2,3,4},{3,4,}S A B ===L L 。 2.设,,A B C 是随机试验E 的三个事件,试用,,A B C 表示下列事件:

华东理工大学概率论答案-4,5,6

华东理工大学 概率论与数理统计 作业簿(第二册) 学 院 ____________专 业 ____________班 级 ____________ 学 号 ____________姓 名 ____________任课教师____________ 第四次作业 一. 填空题: 1.设事件A,B 相互独立,且5.0)(,2.0)(==B P A P ,则)(B A B P ∪= 4/9 2. 设A 、B 、C 两两独立,且ABC=Φ, P(A)=P(B)=P(C)< 21, 16 9)(=∪∪C B A P 则P(C)= 0.25 3. 已知事件A,B 的概率()0.4,()0.6P A P B ==且()0.8P A B ∪=,则(|)P A B = 13,(|)P B A =1 2 。 4. 已知()0.3,()0.5P A P B ==,(|)0.4P A B =,则()P AB = 0.2,()P A B ∪= 0.6, (|)P B A = 2 3 。 二. 选择题: 1. 设袋中有a 只黑球,b 只白球,每次从中取出一球,取后不放回,从中取两次,则第二次取出黑球的概率为( A );若已知第一次取到的球为黑球,那么第二次取到的球仍为黑球的概率为( B ) A.)(b a a + B.11?+?b a a C. )1)(() 1(?++?b a b a a a D.2 2)(b a a + 2.已知()0.7,()0.6,()0.6,P A P B P B A ===则下列结论正确的为( B )。 A .A B 与互不相容; B .A B 与独立; C .A B ?; D .()0.4P B A =.

华理概率论习题5答案

华东理工大学 概率论与数理统计 作业簿(第五册) 学 院 ____________专 业 ____________班 级 ____________ 学 号 ____________姓 名 ____________任课教师____________ 第十三次作业 一. 填空题: 1. 已知二维随机变量),(ηξ的联合概率分布为 则 ()_______,),max (_______,)(2sin ____,______,==??? ??+==ηξηξπηξE E E E ()_______),m ax (=ηξD 。 2. 设随机变量321,,ξξξ相互独立,1ξ~)6,0(U ,2ξ~)4,0(N ,3ξ~)3(E ,则: )32(321ξξξ+-E = ____4___,)32(321ξξξ+-D = __20_。 二. 选择题: 设),N(10~ξ,)4,0(~N η,ηξ?+=,下列说法正确的是( B )。 A. )5,0(~N ? B. 0=?E C. 5=?D D. 3=?D 05.15.025.02.136.0

三. 计算题: 1. 设二维随机变量),(ηξ的联合概率密度函数为 ?????< <<<+=其他0 2 0,20)(81 ),(y x y x y x p 求)(,,ξηηξE E E 。 解:ηξE y y x x x y x y x xp E D ==+= =????6 7 d )(d 81d d ),(2020 3 4 d )(d 81d d ),()(2020=+= = ????y y x xy x y x y x xyp E D ξη 2. 二维随机变量),(ηξ服从以点(0, 1),(1, 0),(1, 1)为顶点的三角形区域上的均匀分布,试求)(ηξ+E 和)(ηξ+D 。 解: ),(ηξ~2, (,),(,)0, (,),x y G p x y x y G ∈?=? ?? 1 1 014 ()2()3y E dy x y dx ξη-+=+= ??, 11220111 ()2()6 y E dy x y dx ξη-+=+=??, 2211161 ()()[()]6918 D E E ξηξηξη+=+-+=-= 3. 有10个人同乘一辆长途汽车,沿途有20个车站,每到一个车站时,如果没有人下车,则不停车。设每位乘客在各站下车是等可能的,且各乘客是否下车是相互独立的,求停车次数的数学期望。

概率论与数理统计第二版_课后答案_科学出版社_参考答案_

习题2参考答案 X 2 3 4 5 6 7 8 9 10 11 12 P 1/36 1/18 1/12 1/9 5/36 1/6 5/36 1/9 1/12 1/18 1/36 解:根据 1)(0 ==∑∞ =k k X P ,得10 =∑∞ =-k k ae ,即111 1 =---e ae 。 故 1-=e a 解:用X 表示甲在两次投篮中所投中的次数,X~B(2, 用Y 表示乙在两次投篮中所投中的次数, Y~B(2, (1)两人投中的次数相同 P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}= 1 1 2 2 020********* 2222220.70.30.40.60.70.30.40.60.70.30.40.60.3124C C C C C C ?+?+?=(2)甲比乙投中的次数多 P{X>Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}= 1 2 2 1 110220022011222222 0.70.30.40.60.70.30.40.60.70.30.40.60.5628C C C C C C ?+?+?=解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155 ++= (2)P{

解:(1)P{X=2,4,6,…}=246211112222k +++L =11[1()] 14 41314 k k lim →∞-=- (2)P{X ≥3}=1―P{X<3}=1―P{X=1}- P{X=2}=111 1244 --= 解:设i A 表示第i 次取出的是次品,X 的所有可能取值为0,1,2 12341213124123{0}{}()(|)(|)(|)P X P A A A A P A P A A P A A A P A A A A ====18171615122019181719 ???= 1123412342341234{1}{}{}{}{} 2181716182171618182161817162322019181720191817201918172019181795 P X P A A A A P A A A A P A A A A P A A A A ==+++=???+???+???+???= 12323 {2}1{0}{1}1199595 P X P X P X ==-=-==- -= 解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4, 34 314044(3)(3)(4)0.40.60.40.60.1792P X P X P X C C ≥==+==+= (2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5, 3 4 5 324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X C C C ≥==+=+==++= (1)X ~P(λ)=P ×3)= P 0 1.51.5{0}0! P X e -=== 1.5 e - (2)X ~P(λ)=P ×4)= P(2) 0122 222{2}1{0}{1}1130!1! P X P X P X e e e ---≥=-=-==--=-

华理概率论06-6-B-试卷答案

华东理工大学2005–2006学年第二学期 《概率论与数理统计》课程期末考试试卷 B 2006.06 开课学院: 理学院 ,专业:大面积 ,考试形式:闭卷 , 所需时间:120分钟 考生姓名: 学号: 班级 任课教师 一、 填空题(每题5分,共20分) (1)设 P ( A ) = 0.5 , P ( A B ) = 0.75 , a ) 若A 与 B 独立,则 P(B) = 0.5 ; b). 若A 与B 不相容 ,则 P(B) = 0.25 。 (2)设n X X X ,,21为总体2 ~(,)N ξμσ的样本,211 1,()n n i i i i X X X U n μσ==-==∑∑, 则它们分别服从 2(,)N n μσ 和 2()n χ 分布。 (3)设随机变量,ξη相互独立,且4D D ξη=。记23,23X Y ξηξη=+=-,则 {()()(E XY EX EY -= 725 。 (4) 设随机变量ξ的密度函数为:01 (),120ax x p x b x x ≤

(A )A 与B 互不相容; (B )A 与B 相容; (C )P(AB) = P(A) P(B); (D )()()P A B P A -=。 (2)设随机变量,ξη相互独立,且3, 2.1E D ξξ==;4, 2.4E D ηη==,则 2(2)E ξη-=( A )。 (A )14.8 ; (B ) 4 ; (C )12.4 ; (D )其它 。 (3)设随机变量X ,Y 相互独立,服从相同的两点分布:111212-?? ????,则下列结论中肯定正确的是( C ): (A )X=Y ; (B )P(X=Y) = 0 ; (C )P(X=Y) = 12; (D )P(X=Y) = 1 。 (4)设(,)X Y 服从二维正态分布,则随机变量,U X Y V X Y =+=-独立的充要条件为( B ): (A )EX EY =; (B )2222()()EX EX EY EY -=-; (C )22EX EY =; (D )2222()()EX EX EY EY +=+。 三、(共10分)袋中有5个白球,3个红球,甲先从袋中随机取出一球后,乙再从中随机取出一球。 (1)试求“乙取出的是白球”的概率; (2)若已知“乙取出的是白球”,计算“甲取到红球”的条件概率。 解:(1)设A ={ 甲取出的是白球 };B ={ 乙取出的是白球 };则 B AB AB =+,由全概率公式(或抓阄模型), ()()()()()P B P A P B A P A P B A =+=5435587878 ?+?=。(5分) (2) 利用贝叶斯公式,得 35()()()3 87()5()()78 P A P B A P AB P A B P B P B ?====。 (5分)

概率论与数理统计浙大四版习题答案第六章1

第六章 样本及抽样分布 1.[一] 在总体N (52,6.32)中随机抽一容量为36的样本,求样本均值X 落在50.8到53.8之间的概率。 解: 8293 .0)7 8( )7 12( } 6 3.68.16 3.6526 3.62.1{}8.538.50{),36 3.6, 52(~2 =-Φ-Φ=< -< - =<15}. (3)求概率P {min (X 1,X 2,X 3,X 4,X 5)>10}. 解:(1)??? ???? ?? ?????>-=?????????? ?? ?? > -=>-255412 25415412 }112 {|X P X P X P =2628.0)]2 5(1[2=Φ- (2)P {max (X 1,X 2,X 3,X 4,X 5)>15}=1-P {max (X 1,X 2,X 3,X 4,X 5)≤15} =.2923.0)]2 1215( [1}15{15 5 1 =-Φ-=≤-∏=i i X P (3)P {min (X 1,X 2,X 3,X 4,X 5)<10}=1- P {min (X 1,X 2,X 3,X 4,X 5)≥10} =.5785.0)]1([1)]2 1210( 1[1}10{15 55 1 =Φ-=-Φ--=≥-∏=i i X P 4.[四] 设X 1,X 2…,X 10为N (0,0.32 )的一个样本,求}.44.1{10 1 2>∑=i i X P

概率论第六章课后习题答案

习题六 1.设总体X 的概率密度为(1)01(;)0x x f x θ θθ?+<<=? ?其它 ,其中1θ>-, 12,,X X ,n X 为来自总体X 的样本,求参数θ的矩估计量。 解:总体的一阶原点矩为2 1 )1();()(1 11++= +===??++∞ ∞ -θθθθθdx x dx x xf X E v ,而样本的一阶原点矩为X X n A n i i ==∑=1 11,用样本的一阶原点矩估计总体的一阶 原点矩,即有 X =++21θθ,由此得θ的矩估计量为.112?X X --=θ 3.设总体~(0,)X U θ,现从该总体中抽取容量为10的样本,样本观测值为: 0.5,1.3,0.6,1.7,2.2,1.2,0.8,1.5,2.0,1.6 试求参数θ的矩估计值。 解:总体的一阶原点矩为2 )(1θ = =X E v ,而样本的一阶原点矩为 X X n A n i i ==∑=111,用样本的一阶原点矩估计总体的一阶原点矩,即有X =2θ, 由此得θ的矩估计量为X 2?=θ ,其矩估计值为 68.2)6.10.25.18.02.12.27.16.03.15.0(10 1 22?=+++++++++?==x θ 6.设12,,,n x x x 为来自总体X 的一组样本观测值, 求下列总体概率密度中θ的最大似然估计值。 (1)101(;)0 x x f x θθθ-?<<=??其它(0θ>); (2)10 (;)0x x e x f x α αθθαθ--?>?=? ?? 其它 (α已知); (3)?? ? ??≤>=-000);(2 2 22x x e x x f x θθθ

概率论与数理统计(第三版)课后答案习题1

第一章 事件与概率 1.写出下列随机试验的样本空间。 (1)记录一个班级一次概率统计考试的平均分数(设以百分制记分)。 (2)同时掷三颗骰子,记录三颗骰子点数之和。 (3)生产产品直到有10件正品为止,记录生产产品的总件数。 (4)对某工厂出厂的产品进行检查,合格的记上“正品”,不合格的记上“次品”,如连续查出2个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 (5)在单位正方形内任意取一点,记录它的坐标。 (6)实测某种型号灯泡的寿命, 解 (1) }, 100,,1,0{ n i n i ==Ω其中n 为班级人数(2)}18,,4,3{ =Ω (3)},11,10{ =Ω。 (4)=Ω{00,100,0100,0101,0110,1100,1010,1011,0111,1101,0111,1111},其中0表示次品,1表示正品。 (5)=Ω{(x,y)| 0

概率论第六章习题解答

概率论第六章习题解答 1、在总体2(52,6.3)N 中随机抽取一容量为36的样本,求样本均值X 落在50.8与53.8之间的概率。 解 因为2(52,6.3)N ,所以 3.8 52 {50.853{}6.336 P X << = 10.87.2 ( )()6.3 6.3 -=Φ-Φ(1.71)( 1.14)=Φ-Φ- 0.956410.87290.8293=-+= 2、在总体(12,4)N 中随机抽取一容量为5的样本1X ,2X ,3X ,4X ,5X , (1)求样本均值与总体均值之差的绝对值大于1的概率。 (2)求概率12345{max(,,,,)15}P X X X X X >,12345{min{(,,,,)10}P X X X X X < 解 (1)总体均值为12μ=,,样本均值5114 (12,)55 i i X X N ==∑ 所求概率为 {|12|1}1{|12|1}P X P X ->=--≤ 1{1121}P X =--≤-≤ 1P =-≤≤ 1( ()22 =-Φ+Φ- 22(1.12)=-Φ2(10.8686)0.2628=-= (2)1234512345{max(,,,,)15}1{max(,,,,)15}P X X X X X P X X X X X >=-≤ 123451{15,15,15,15,15}P X X X X X =-≤≤≤≤≤ 51 1{15}i i P X ==- ≤∏5 1 121512 1{ }22 i i X P =--=-≤∏ 51((1.5))=-Φ5 1(0.9332)0.2923=-=. (3) 12345{min{(,,,,)10}P X X X X X <

华东理工大学概率论答案-2

华东理工大学概率论答案-2

华东理工大学 概率论与数理统计 作业簿(第二册) 学 院 ____________专 业 ____________班 级 ____________ 学 号 ____________姓 名 ____________任课教师____________ 第四次作业 一. 填空题: 1. 设事件A,B 相互独立,且5.0)(,2.0)(==B P A P ,则)(B A B P ?= 4/9 2. 设A 、B 、C 两两独立,且ABC=Φ, P(A)=P(B)=P(C)<21, 16 9 )(=??C B A P 则P(C)= 0.25 3. 已知事件A,B 的概率()0.4,()0.6P A P B ==且()0.8P A B ?=,则(|)P A B = 13,(|)P B A =12 。 4. 已知()0.3,()0.5P A P B ==,(|)0.4P A B =,则()P AB = 0.2,()P A B ?= 0.6, (|)P B A = 2 3 。 二. 选择题: 1. 设袋中有a 只黑球,b 只白球,每次从中取出一球,取后不放回,从中取两次,则第二次取出黑球的概率为( A );若已知第一次取到的球为黑球,那么第二次取到的球仍为黑球的概率为( B ) A .)(b a a + B .11-+-b a a C . )1)(()1(-++-b a b a a a D .2 2 )(b a a +

2. 已知()0.7,()0.6,()0.6,P A P B P B A ===则下列结论正确的 为( B )。 A .A B 与互不相容; B .A B 与独立; C . A B ?; D .()0.4P B A =. 3.对于任意两事件A 和B ,则下列结论正确的是( C ) A .一定不独立,,则若 B A AB ?=; B .一定独立,,则若B A AB ?≠; C .有可能独立,,则若B A AB ?≠; D .一定独立,,则若B A AB ?= 4.设事件,,,A B C D 相互独立,则下列事件对中不相互独立的是( C ) )(A A 与BC D ?; )(B AC D ?与BC ; )(C BC 与A D -; )(D C A -与BD . 三. 计算题: 1.设有2台机床加工同样的零件,第一台机床出废品的概率为0.03,第二台机床出废品的概率为0.06,加工出来的零件混放在一起,并且已知第一台机床加工的零件比第二台机床多一倍。 (1) 求任取一个零件是废品的概率 (2) 若任取的一个零件经检查后发现是废品,则它是第二台机床加工 的概率。 解:(1)设B ={取出的零件是废品},1A ={零件是第一台机床生产的}, 2A ={零件是第二台机床生产的},则122 1(),()33 P A P A ==, 由全概率公式得: 112221()(|)()(|)()0.030.060.0433 P B P B A P A P B A P A =+=?+?= (2)222(|)()0.02 (|)0.5()0.04 P B A P A P A B P B === 2.某工厂的车床、钻床、磨床、刨床的台数之比为 1 :2:3:9,它们在一定时间内需要修理的概率 之比为 1:3:2:1,当一台机床需要修理时,求这台

华理概率论习题3答案

概率论与数理统计 作业簿(第三册) 学 院 ____________专 业 ____________班 级 ____________ 学 号 ____________姓 名 ____________任课教师____________ 第七次作业 一.填空题: 1. ξ的分布列为: 则=E ξ 2.7 。 2. ξ的分布列为: 则=E ξ13, (1)-+=E ξ3, 2 =E ξ24 。 二.选择题: 1. 若对任意的随机变量X ,EX 存在,则))((EX E E 等于( C ) 。 A .0 B .X C .EX D .2)(EX 2. 现有10张奖券,其中8张为2元,2张为5元,某人从中随机地无放回地抽取3张,则此人所得奖金的数学期望为 ( C ) (A )6.5 (B )12 (C )7.8 (D )9 三.计算题 1. 设随机变量X 的概率密度为21101()10x x f x θ θ θ--?<1,求 EX 。

解 21 1 111 10011111011----====--??EX x x dx x dx x θθθθθθθθ θ 2. 设随机变量ξ的概率密度函数 ,0 (=0,0 x e x p x x -?>? ≤?) 求 2,(2),()E E E e ξξξξ-+。 解 0 1,x E xe dx ξ+∞-==? (2 )22, E E ξξ== 22204 ()()13 x x E e E E e e e dx ξξξξ+∞ ----+=+=+?= ?。 3. 一台机器由三大部件组成,在运转中各部件需要调整的概率分别为0.1,0.2和0.3。假设各部件的状态相互独立,用ξ表示同时需要调整的部件数,试求ξ的数学期望。 解 设A i ={第i 个部件需要调整}(i=1,2,3),则P(A 1)=0.1,P(A 2)= 0.2,P(A 3)=0.3 。所以 123(0)()0.90.80.70.504P P A A A ξ===??=, 123123123(1)()()()0.389,P P A A A P A A A P A A A ξ==++= 123123123(2)()()()0.092,P P A A A P A A A P A A A ξ==++= 123(3)()0.006.P P A A A ξ=== 从而 00.50410.38920.09330.0060.6E ξ=?+?+?+?=。 4. 设球的直径均匀分布在区间[a , b ]内,求球的体积的平均值。 解 设球的直径长为ξ,且[,]U a b ξ~,球的体积为η,与直径ξ的关系为3 432πξη?? = ???,那 么,3 3223 4()()326 624b a x a b a b E E E dx b a πξπππηξ++??=?=?== ?-???.

华东理工大学概率论答案-15-16

第十五次作业 一. 选择题: 1. 设随机变量ξ密度函数为()p x ,则31ηξ=-的密度函数()p y η为( A )。 A 、11()33y p + B 、13()3y p + C 、1(3(1))3p y + D 、1 3()3 y p - 2. 设随机变量ξ和η相互独立,其分布函数分别为 )(x F ξ与)(y F η,则 ),max(ηξζ= 的分布函数 )(z F ζ等于 ( B ) A .)}(),(max {z F z F ηξ B. )()(z F z F ηξ C .)]()([2 1 z F z F ηξ+ D. )()()()(z F z F z F z F ηξηξ-+ 二. 填空: 已知ξ~)1,0(N ,3 1ξη=, 则η的概率密度为=)(y η? 2 2 6 e 23y y - π 。 三. 计算题 1. 已知随机变量]2,0[~U ξ,求2ξη=的概率密度。 解: ???<≥--=? ? ?<≥≤≤-=≤=0 0)()(00 }{}{)(2y y y F y F y y y y P y P y F ξξηξξ 故() ?? ? ??<≥--=000)()(21 )(y y y p y p y y p ξξ η=??? ??≤≤其他 4041 y y 2. 设随机变量X 的概率分布为: 求)2 sin( X Y π =的概率分布。

解:由于?? ? ??-==-=-=3 41 20 141)2sin(k x k x k x x π Λ,2,1=k 故随机变量Y 的可能取值为:-1,0,1。 随机变量Y 的∑∞ =-==-=1}14{}1{k k X P Y P ∑ ∞ =-=-?==1 4 1 415 212118121k k ; ∑∞ ====1 }2{}0{k k X P Y P ∑ ∞ ==-?==12 23112114121k k ; ∑∞ =-===1 }34{}1{k k X P Y P ∑ ∞ =-=-?= =1 4 3 415 812112121k k , 于是随机变量Y 的分布律为: 3.设~ξ)1,0(U ,求η =ξξ ln 的分布 。 解:对应于η =ξ ξ ln , )(2 )(ln ln x f e x y x x === ,由于 x x e x f x 1 ln 2)(2)(ln '??= 。 当)1,0(∈x 时, 0)('

概率论模拟卷1~6及答案汇总

一、(15分)玻璃杯成箱出售,每箱20只。已知任取一箱,箱中0、1、2只残次品的概率相应为0.8、0.1和0.1,某顾客欲购买一箱玻璃杯,在购买时,售货员随意取一箱,而顾客随机地察看4只,若无残次品,则买下该箱玻璃杯,否则退回。 试求:(1)顾客买下该箱的概率;(2)在顾客买下的该箱中,没有残次品的概率。 二、(12分)设随机变量X的分布列为 .求:(1)参数;(2);(3) 的分布列。 三、(10分)设二维随机变量在矩形上服从均匀分布,(1)求的联合概率密度(2)求关于、的边缘概率密度(3)判断与的独立性。 四、(12分)设 ,,且与相互独立,试求和的相关系数(其中a、b是不全为零的常数)。 五、(12分)设从大批发芽率为0.9的种子中随意抽取1000粒,试求这1000粒种子中至少有880粒发芽的概率。 六、(12分)设总体的概率密度为 是取自总体的简单随机样本。求:(1)的矩估计量;(2)的方差。 七、(12分)设服从,是来自总体的样本,+。试求常数,使得服从分布。 八、(15分)从一批木材中抽取100根,测量其小头直径,得到样本平均数为,已知这批木材小头直径的标准差,问该批木材的平均小头直径能否认为是在以上?(取显著性水平=0.05) 附表一: , , , ,

一、(14分)已知50只铆钉中有3只是次品,将这50只铆钉随机地用在10个部件上。若每 个部件用3只铆钉,问3只次品铆钉恰好用在同一部件上的概率是多少? 二、(14分)已知随机变量X 的概率密度为()? ? ?<<=其他 ,01 0, 2x Ax x f ,求:(1)参数A ; (2)}35.0{<θ。试求θ的最大似然估计量。 八、(14分)已知在正常生产的情况下某种汽车零件的重量(克)服从正态分布)75.0,54(N ,在某日生产的零件中抽取10 件,测得重量如下: 54.0 55.1 53.8 54.2 52.1 54.2 55.0 55.8 55.1 55.3 如果标准差不变,该日生产的零件的平均重量是否有显著差异(取05.0=α)? 附表一: 5871.0)2222.0(=Φ,9495.0)64.1(=Φ,9505.0)65.1(=Φ,9750.0)96.1(=Φ,9826.0)108.2(=Φ,9901.0)33.2(=Φ,9929.0)45.2(=Φ,9950.0)575.2(=Φ.

概率论(复旦三版) 习题三 答案

概率论与数理统计(复旦第三版) 习题三 答案 1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与 出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 【解】X 的可能取值为:0,1,2,3;Y 的可能取值为:0,1. 222??222 ??2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 【解】X 的可能取值为:0,1,2,3;Y 的可能取值为:0,1,2. 24 7C 3 C 35= 2 4 7C 2C 35= 22 4 7C C 6C 35=1122 4 7C C 12C 35=12 4 7C 2C 35 = 2 4 7C 1C 35 = 2122 4 7C C 6C 35 =224 7C 3 C 35 = 3.设二维随机变量(,)X Y 的联合分布函数为 ππsin sin ,0,0(,)220,x y x y F x y ? ≤≤≤≤ ?=??? 其它 求二维随机变量(,)X Y 在长方形域? ?? ? ??≤<≤<36,40πππy x 内的概率. 【解】如图πππ {0,}(3.2)463 P X Y <≤ <≤公式

ππππππ(,)(,)(0,)(0,)434636 F F F F --+ ππππππ sin sin sin sin sin 0sin sin 0sin 434636 1).=--+= 题3图 说明:也可先求出密度函数,再求概率。 4.设随机变量(,)X Y 的分布密度 (34)e ,0,0 (,)0,x y A x y f x y -+?>>=? ? 其他 求:(1) 常数A ; (2) 随机变量(,)X Y 的分布函数; (3) P {0≤X <1,0≤Y <2}. 【解】(1) 由 -(34)0 (,)d d e d d 112 x y A f x y x y A x y +∞ +∞ +∞ +∞ +-∞ -∞ == =?? ? ? 得 A =12 (2) 由定义,有 (,)(,)d d y x F x y f u v u v -∞-∞ = ?? (34)340012e d d (1 e )(1e )0,0, 0,0, y x u v x y u v y x -+--??-->>?==?? ?????其他 (3) {01,02}P X Y ≤<≤< (34)380102 {01,02} 12e d d (1e )(1e )0.9499.x y x y P X Y x y -+--<≤<≤=<≤<≤= =--≈?? 5.设随机变量(,)X Y 的概率密度为 (6),02,24 (,)0,k x y x y f x y --<<<

概率论习题解答

概率论习题解答文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

概率论第六章习题解答 1、在总体2(52,6.3)N 中随机抽取一容量为36的样本,求样本均值X 落在与之间的概率。 解 因为2(52,6.3)N ,所以 2、在总体(12,4)N 中随机抽取一容量为5的样本1X ,2X ,3X ,4X ,5X , (1)求样本均值与总体均值之差的绝对值大于1的概率。 (2)求概率12345{max(,,,,)15}P X X X X X >,12345{min{(,,,,)10}P X X X X X < 解 (1)总体均值为12μ=,,样本均值5 1 14(12,)55 i i X X N ==∑ 所求概率为 (2)1234512345{max(,,,,)15}1{max(,,,,)15}P X X X X X P X X X X X >=-≤ 51((1.5))=-Φ51(0.9332)0.2923=-=. (3) 12345{min{(,,,,)10}P X X X X X < 3、求总体(20,3)N 的容量分别为10,15的两个独立样本均值差的绝对值不超过的概率。 解 设容量为10的样本均值为X ,样本容量为15的样本均值为Y , 则 3 (20, )10 X ,3 (20, )15 Y ,331()(0, )(0,)10152 X Y N N -+= 4、(1)设126,,,X X X 样本是来自总体(0,1)N , 22123456()()Y X X X X X X =+++++, 试确定常数C ,使CY 服从2χ分布。 (2)设125,, ,X X X 来自总体(0,1)N 样本,121 22 22345 () () C X X Y X X X += ++,试确定常数 C 使Y 服从t 分布。

华东理工大学概率论答案-21,22

第二十一次作业 一、填空题 1. 将合适的数字填入空格,其中:(1)置信水平α,(2)置信水平α-1,(3)精确度,(4)准确度。 置信区间的可信度由 (2) 控制,而样本容量可用来调整置信区间的 (3) 。 2.有一大批糖果,先从中随机地取16袋,称的重量(单位:g )如下: 506 508 499 503 504 510 497 512 514 505 493 496 506 502 509 496 设袋装糖果的重量近似地服从正态分布),(2σμN ,则总体均值μ的置信水平为95%的置信区间为 [500.4,507.1] ,总体标准差σ的置信水平为95%的置信区间为 [4.582,9.599] 。 二、选择题 1.设从总体),(~211σμξN 和总体),(~222σμηN 中分别抽取容量为9,16的独立样本,以x ,y ,2x S ,2y S 分别表示两个独立样本的样本均值和样本方差, 若已知1σ=2σ,则21μμ-的95%的置信区间为( ) A. 169(2221975 .0σσ+--u y x ,)1692221975.0σσ+-+u y x B. 169(22975.0y x S S u y x +--,)16 922975.0y x S S u y x +-+ C. 5)23((975.0w S t y x --,)5)23(975.0w S t y x -+,其中23 16922y x w S S S += D. 5)25((975.0w S t y x --,)5)25(975.0w S t y x -+,其中25 16922y x w S S S += 2.关于“参数μ的95%的置信区间为),(b a ”的正确理解的是( ) A. 至少有95%的把握认为),(b a 包含参数真值μ; B. 有95%的把握认为),(b a 包含参数真值μ; C. 有95%的把握认为参数真值μ落在区间),(b a 内; D. 若进行100次抽样,必有95次参数真值μ落在区间),(b a 内。 三、计算题 1.设某地旅游者日消费额服从正态分布),(2σμN ,且标准差12=σ,今对该地 旅游者的日平均消费额进行估计,为了能以95%的置信水平相信这种估计误差小于2(元),问至少需要调查多少人?

相关主题
文本预览
相关文档 最新文档