当前位置:文档之家› 温度控制系统设计

温度控制系统设计

温度控制系统设计
温度控制系统设计

温度控制系统

摘要:随着微机测量和控制技术的迅速发展与广泛应用,以单片机为核心的温度采

集与控制系统的研发与应用在很大程度上提高了生产生活中对温度的控制水平。本

设计论述了一种以STC89C52单片机为主控制单元,以DS18B20为温度传感器的温度

控制系统。该控制系统可以实时存储相关的温度数据并记录当前的时间。系统设计

了相关的硬件电路和相关应用程序。硬件电路主要包括STC89C52单片机最小系统,

测温电路、实时时钟电路、LCD液晶显示电路以及通讯模块电路等。系统程序主要

包括主程序,读出温度子程序,计算温度子程序、LCD显示程序以及数据存储程序

等。

关键词:STC89C52, DS18B20,LCD

Abstract:Along with the computer measurement and control technology of the rapid development and wide application, based on singlechip temperature gathering and control system development and application greatly improve the production of temperature in life level of control. This design STC89C52 describes a kind of mainly by MCU control unit, for temperature sensor DS18B20 temperature control system. The control system can real-time storage temperature data and record related to the current time. System design related hardware circuit and related applications. STC89C52 microcontroller hardware circuit include temperature detection circuit smallest system, and real-time clock circuit, LCD display circuit, communication module circuit, etc. System programming mainly include main program, read temperature subroutine, the calculation of temperature subroutines, LCD display procedures and data storage procedures, etc.

Keywords: STC89C52, DS18B20,LCD

目录

1前言 (1)

2总体方案设计 (2)

2.1方案设计 (2)

2.2方案论证 (3)

2.3方案选择 (3)

3单元模块的设计 (4)

3.1单片机模块 (4)

3.2 18B20温度模块 (5)

3.3显示器模块 (6)

4软件设计 (7)

4.1 系统总框图 (7)

4.2温度采集子程序 (8)

5系统功能与调试方法介绍 (9)

5.1系统功能 (9)

5.2系统指标................................................................ . (9)

5.3系统调试 (9)

6参考文献 (10)

附录1: 相关设计图 (11)

附录2:元器件清单 (13)

附录3:源程序............................................. (14)

1前言

工业控制是计算机的一个重要应用领域,计算机控制系统正是为了适应这一领域的需要而发展起来的一门专业技术,它主要研究如何将计算机技术、通过信息技术和自动控制理论应用于工业生产过程,并设计出所需要的计算机控制系统。随着微机测量和控制技术的迅速发展与广泛应用,以单片机为核心的温度采集与控制系统的研发与应用在很大程度上提高了生产生活中对温度的控制水平。本设计就是基于单片机STC89C52温度控制系统的设计,通过本次课程实践,我们更加的明确了单片机的广泛用途和使用方法,以及其工作的原理。

2总体方案设计

2.1方案设计

方案一: 采用热敏电阻作为温度检测模块,热敏电阻是半导体材料,随着温度的改变,其阻值也不一样,因此可作为温度检测传感器。

方案二:采用DS18B20作为温度传感器采集温度,18B20是总线结构,结构简单精度高。其原理如下图:

图2.1数字温度计原理图

2.2方案论证

方案一:这种方法电路设计比较困难,电阻值的改变要通过电压反映,电压要用AD 采集,输出的数字量再转化成温度,设计较复杂。

方案二:这种方法实现起来比较容易,传感器可以和单片机直接进行通信,将电压采集回来,电路简单,精度较高。

2.3方案选择

通过上述论证比较,我们最终选择方案二。方案二通过单片机输出通过简单可行的时序指令给18B20,18B20将温度采样量化后直接传给单片机,单片机再做简单的处理后将温度计算出来,最后将温度显示出来。通过简单可行的方法完成了设计,不仅成本低廉,而且可以方便的显示当前工作状态。本方案较圆满的完成了设计的要求。

3单元模块的设计

3.1单片机模块

本次设计选用的单片机芯片是STC89C52单片机。STC89C52是STC公司生产的一种低功耗、高性能CMOS8位微控制器,具有 8K 在系统可编程Flash存储器。STC89C52

使用经典的MCS-51内核,但做了很多的改进使得芯片具有传统51单片机不具备的功能。在单芯片上,拥有灵巧的8 位CPU 和在系统可编程Flash,使得STC89C52为众多嵌入式控制应用系统提供高灵活、超有效的解决方案。

STC89C52中有一个用于构成内部振荡器的高增益反相放大器,引脚XTAL1和XTAL2分别是该放大器的输入端和输出端。这个放大器与作为反馈元件的片外石英晶休或陶瓷谐振器一起构成自激振荡器。外接石英晶体(或陶瓷诺振器)及电容C1, C2接在放大器的反馈回路中构成并联振荡电路。对外接电容C1, C2虽然没有十分严格的要求,但电容容量的大小会轻微影响振荡频率的高低、振荡器工作的稳定性、起振的难易程序及温度稳定性,这里选择使用石英晶休,我们的电容使用22pF。如使用陶瓷谐振器的话,应选择40pF士10pF的容值的电容。也可以采用外部时钟。采用外部时钟的电路的情况时,外部时钟脉冲接到XTAL1端,即内部时钟发生器的输入端,XTAL2则悬空。

图3.1单片机最小系统

(1)主电源引脚(2根)

VCC(Pin40):电源输入,接+5V电源

GND(Pin20):接地线

(2)外接晶振引脚(2根)

XTAL1(Pin19):片内振荡电路的输入端

XTAL2(Pin20):片内振荡电路的输出端

(3)控制引脚(4根)

RST/VPP(Pin9):复位引脚,引脚上出现2个机器周期的高电平将使单片机复位。

ALE/PROG(Pin30):地址锁存允许信号

PSEN(Pin29):外部存储器读选通信号

EA/VPP(Pin31):程序存储器的内外部选通,接低电平从外部程序存储器读指令,如果接高电平则从内部程序存储器读指令。

(4)可编程输入/输出引脚(32根)

AT89S51单片机有4组8位的可编程I/O口,分别位P0、P1、P2、P3口,每个口有8位(8根引脚),共32 根。每一根引脚都可以编程。

PO口(Pin39~Pin32):8位双向I/O口线,名称为P0.0~P0.7

P1口(Pin1~Pin8):8位准双向I/O口线,名称为P1.0~P1.7

P2口(Pin21~Pin28):8位准双向I/O口线,名称为P2.0~P2.7

P3口(Pin10~Pin17):8位准双向I/O口线,名称为P3.0~P3.7

3.2 18B20温度模块

本次试验选择的温度传感器是DS18B20,DS18B20温度传感器是美国达拉斯(DALLAS)半导体公司推出的应用单总线技术的数字温度传感器。该器件将半导体温敏器件、A/D 转换器、存储器等做在一个很小的集成电路芯片上。本设计中温度传感器之所以选择单线数字器件DS18B20,是在经过多方面比较和考虑后决定的,主要有以下几方面的原因:(1)系统的特性:测温范围为-55℃~+125℃,测温精度为士0.5℃;温度转换精度9~12位可变,能够直接将温度转换值以16位二进制数码的方式串行输出;12位精度转换的最大时间为750ms;可以通过数据线供电,具有超低功耗工作方式。

(2)系统成本:由于计算机技术和微电子技术的发展,新型大规模集成电路功能越来越强大,体积越来越小,而价格也越来越低。一支DS18B20的体积与普通三极管相差无几,价格只有十元人民币左右。

(3)系统复杂度:由于DS18B20是单总线器件,微处理器与其接口时仅需占用1个I/O端口且一条总线上可以挂接几十个DS18B20,测温时无需任何外部元件,因此,与模拟传感器相比,可以大大减少接线的数量,降低系统的复杂度,减少工程的施工量。

(4)系统的调试和维护:由于引线的减少,使得系统接口大为简化,给系统的调试带来方便。同时因为DS18B20是全数字元器件,故障率很低,抗干扰性强,因此,减少了系统的日常维护工作。

DS18B20温度传感器只有三根外引线:单线数据传输总线端口DQ ,外供电源线VDD,共用地线GND。DS18B20有两种供电方式:一种为数据线供电方式,此时VDD接地,它是通过内部电容在空闲时从数据线获取能量,来完成温度转换,相应的完成温度转换的时间较长。这种情况下,用单片机的一个I/O口来完成对DS18B20总线的上拉。另一种是外部供电方式(VDD接+5V),相应的完成温度测量的时间较短。电路如图3.2。

图3.2温度传感器接口

3.3显示器模块

显示模块采用LCD1602液晶显示器。

LCD1602液晶模块内部的字符发生存储器已经存储了160个不同的点阵字符图形,每一个字符都有一个固定的代码,因此使用简单,显示效果良好。电路如图3.3。

图3.3 1602显示接口

4软件设计

4.1 系统总框图

N

图4.1 系统总框图

4.2温度采集子程序

5系统功能与调试方法介绍

5.1系统功能

该系统能够准确的检测到环境温度,精度达到两位小数,反应迅速,测量范围广泛,出错率低。

5.2系统指标

5.3系统调试

单片机发送初始化时序,使传感器初始化,然后再发送温度采集指令,采集完毕后给单片机返回结束信号,单片机开始读取温度信息,进行转换后显示出来。

硬件调试时,主要是给单片机上电,检查各部分电路是否正常,是否存在虚焊的情况。各器件逻辑连接是否正确。

软件调试时先搭建程序框架,先写ds18b20程序,检测其是否能够将温度采集出来,调试该部分可用串口将数据传送到电脑上来,观察是否正确。温度采集正确后,调试LCD1602显示模块,将数据显示到该显示器上。最后将判断语句加上,其运行状态显示到1602上。

6参考文献

[1] 徐爱钧,智能化测量控制仪表原理与设计,北京航空航天大学出版社,2004

[2] 徐爱钧,Keil Cx51 V7.0单片机高级语言编程与u Vision2应用实践,电子工业出版社,2004.

[3] 刘乐善.微型计算机接口技术及应用[M].北京:北京航空航天大学出版社,2001.258~264.

[4] 童诗白.模拟电路技术基础[M].北京:高等教育出版社,2000.171~202.

[5] 杜华.任意波形发生器及应用[J].国外电子测量技术,2005.1:38~40.

[6] 张友德.单片微型机原理、应用与实践[M].上海:复旦大学出版社,2004.40~44.

[7] 程朗.基于8051单片机的双通道波形发生器的设计与实现[J].计算机工程与应用,2004.8:

100~103.

[8] 张永瑞.电子测量技术基础[M].西安:西安电子科技大学出版社,2006.61~101.

[9] 李叶紫. MCS-51单片机应用教程[M].北京:清华大学出版社,2004.232~238.

[10] 周润景等,基于PROTEUS的电路的及单片机系统设计与仿真,北京航空航天大学出版社,2006

附录1:相关设计图

附录2:元器件清单表

附录3:源程序

#include

#include "1602.h"

#include "18b20.h"

#define uchar unsigned char

#define uint unsigned int

sbit tem_high=P1^0;

sbit tem_low=P1^1;

uchar code table1[]={"Temp:"}; //LCD第一行显示uchar code table2[]={"zhaungtai:"};//LCD第二行显示

uchar code table3[]={'0','1','2','3','4','5','6','7','8','9'};

uchar code high[]={"high!"};

uchar code low[]={"low!!"};

uchar code suit[]={"suit!"};

uint sdate;//测量到的温度的整数部分

uint gewei,shiwei;

uchar xiaoshu1;//小数第一位

uchar xiaoshu2;//小数第二位

int i;

void main()

{

init(); //初始化18b20函数

SET_int(); //初始化1602;

xianshi(table1,5,table2,10);

while(1)

{

readtemp();

SET_code(0x80+6);

SET_data('+');

SET_code(0x80+7);

SET_data(table3[shiwei]);

SET_code(0x80+8);

SET_data(table3[gewei]);

SET_code(0x80+9);

SET_data('.');

SET_code(0x80+10);

SET_data(table3[xiaoshu1]); SET_code(0x80+11);

SET_data(table3[xiaoshu2]);

if(sdate>40)

{

SET_code(0x80+0x40+11);

for(i=0;i<5;i++)

SET_data(high[i]);

tem_high=0;

tem_low=1;

}

else if(sdate<30)

{

SET_code(0x80+0x40+11);

for(i=0;i<5;i++)

SET_data(low[i]);

tem_low=0;

tem_high=1;

}

else

{

SET_code(0x80+0x40+11);

for(i=0;i<5;i++)

SET_data(suit[i]);

tem_low=1;

tem_high=1;

}

}

}

#include

#include "1602.h"

/****************************************/ void _delay_ms(int ms)

{

int i,j;

for(i=111;i>0;i--)

for(j=0;j

}

/*********写指令***********************

参数为l602指令查数据手册

***/

void SET_code(int com)//写指令

{

W_code();

P2=com;

_delay_ms(5);

EN=1;// LCDEN();

_delay_ms(5);

NLCDEN;

}

void SET_data(int mydata)//写数据

{

W_data();

P2=mydata;

_delay_ms(5);

LCDEN;

_delay_ms(5);

NLCDEN;

}

void SET_int() //初始化1602;

{

LCDEN;

SET_code(0x38); //设置显示模式

SET_code(0x0C); //设置开显示不显光标

SET_code(0x06); //写一个字符后地址指针自动加1 SET_code(0x01); // 清屏

}

/*********显示函数***********************

参数:X,Y为第一行和第二行要显示字符串首地址

m,n为字符串长度

***/

void xianshi(char *X,int m,char *Y,int n )

{

int i;

SET_code(0x80); //第一行首地址

for(i=0;i

SET_data(X[i]);

SET_code(0x80+0x40); //第二行首地址

for(i=0;i

SET_data(Y[i]);

}

/*********显示函数***********************

参数:X,为第一行要显示字符串首地址

m为字符串长度n为显示到第几格的位置***/

void xianshi_one(char *X,int m,int n )

{

int i;

SET_code(0x80+n); //第一行首地址for(i=0;i

SET_data(X[i]);

}

void xianshi_two(char *X,int m,int n )

{

int i;

SET_code(0x80+40+n); //第二行首地址

for(i=0;i

SET_data(X[i]);

}

#include

#include "18b20.h"

uchar tempL=0; //设全局变量

uchar tempH=0;

extern uint sdate;//测量到的温度的整数部分

extern uint gewei,shiwei;

extern uchar xiaoshu1;//小数第一位

extern uchar xiaoshu2;//小数第二位

uchar xiaoshu;//两位小数

sbit ds=P1^3; //连接DS18B20

void delay_18b20(uchar i)//这个延时程序的具体延时时间是time=i*8+10,适用于小于2ms的延时

{

for(i;i>0;i--);

}

void init() //初始化函数

{

uchar x=0;

ds=1;

delay_18b20(8);

ds=0;

delay_18b20(80);

智能温度控制系统设计

目录 一、系统设计方案的研究 (2) (一)系统的控制特点与性能要求 (2) 1.系统控制结构组成 (2) 2.系统的性能特点 (3) 3.系统的设计原理 (3) 二、系统的结构设计 (4) (一)电源电路的设计 (4) (二)相对湿度电路的设计 (6) 1.相对湿度检测电路的原理及结构图 (6) 3.对数放大器及相对湿度校正电路 (7) 3.断点放大器 (8) 4.温度补偿电路 (8) 5.相对湿度检测电路的调试 (9) (三)转换模块的设计 (9) 1.模数转换器接受 (9) 2.A/D转换器ICL7135 (9) (四)处理器模块的设计 (11) 1.单片机AT89C51简介及应用 (11) 2.单片机与ICL7135接口 (14) 3.处理器的功能 (15) 4.CPU 监控电路 (15) (五)湿度的调节模块设计 (15) 1.湿度调节的原理 (15) 2.湿度调节的结构框图 (16) 3.湿度调节硬件结构图 (16) 4.湿度调节原理实现 (16) (六)显示模块设计 (17) 1.LED显示器的介绍 (17) 2.单片机与LED接口 (17) (七)按键模块的设计 (18) 1.键盘接口工作原理 (18) 2.单片机与键盘接口 (19) 3.按键产生抖动原因及解决方案 (19) 4.窜键的处理 (19) 三、软件的设计及实现 (19) (一)程序设计及其流程图 (20) (二)程序流程图说明 (21) 四、致谢 (22) 参考文献: (22)

智能温度控制系统设计 摘要: 此系统采用了精密的检测电路(包刮精密对称方波发生器、对数放大及半波整流、温度补偿及温度自动校正及滤波电路等几部分电路组成),能够自动、准确检测环境空气的相对湿度,并将检测数据通过A/D转换后,送到处理器(AT89C51)中,然后通过软件的编程,将当前环境的相对湿度值转换为十进制数字后,再通过数码管来显示;而且,通过软件编程,再加上相应的控制电路(光电耦合及继电器等部分电路组成),设计出可以自动的调节当前环境的相对湿度:当室内空气湿度过高时,控制系统自动启动抽风机,减少室内空气中的水蒸气,以达到降低空气湿度的目的;当室内空气湿度过低时,控制系统自动启动蒸汽机,增加空气的水蒸气,以达到增加湿度的目的,使空气湿度保持在理想的状态;键盘设置及调整湿度的初始值,另外在设计个过程当中,考虑了处理器抗干扰,加入了单片机监视电路。 关键词: 湿度检测; 对数放大; 湿度调节; 温度补偿 一、系统设计方案的研究 (一)系统的控制特点与性能要求 1.系统控制结构组成 (1)湿度检测电路。用于检测空气的湿度[9]。 (2)微控制器。采用ATMEL公司的89C51单片机,作为主控制器。 (3)电源温压电路。用于对输入的200V交流电压进行变压、整流。 (4)键盘输入电路。用于设定初始值等。 (5)LED显示电路。用于显示湿度[10]。 (6)功率驱动电路(湿度调节电路)

温度控制系统设计毕业设计论文Word版

目录 第一章设计背景及设计意义 (2) 第二章系统方案设计 (3) 第三章硬件 (5) 3.1 温度检测和变送器 (5) 3.2 温度控制电路 (6) 3.3 A/D转换电路 (7) 3.4 报警电路 (8) 3.5 看门狗电路 (8) 3.6 显示电路 (10) 3.7 电源电路 (12) 第四章软件设计 (14) 4.1软件实现方法 (14) 4.2总体程序流程图 (15) 4.3程序清单 (19) 第五章设计感想 (29) 第六章参考文献 (30) 第七章附录 (31) 7.1硬件清单 (31) 7.2硬件布线图 (31)

第一章设计背景及研究意义 机械制造行业中,用于金属热处理的加热炉,需要消耗大量的电能,而且温度控制是纯滞后的一阶惯性环节。现有企业多采用常规仪表加接触器的断续控制,随着科技进步和生产的发展,这类设备对温度的控制要求越来越高,除控温精度外,对温度上升速度及下降速度也提出了可控要求,显而易见常规控制难于满足这些工艺要求。随着微电子技术及电力电子技术的发展,采用功能强、体积小、价格低的智能化温度控制装置控制加热炉已成为现实。 自动控制系统在各个领域尤其是工业领域中有着及其广泛的应用,温度控制是控制系统中最为常见的控制类型之一。随着单片机技术的飞速发展,通过单片机对被控对象进行控制日益成为今后自动控制领域的一个重要发展方向。在现代化的工业生产中,电流、电压、温度、压力、流量、流速和开关量都是常用的主要被控参数。例如:在冶金工业、化工生产、电力工程、造纸行业、机械制造和食品加工等诸多领域中,人们都需要对各类加热炉、热处理炉、反应炉和锅炉中的温度进行检测和控制。对工件的处理温度要求严格控制,计算机温度控制系统使温度控制指标得到了大幅度提高。采用MCS-51单片机来对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量和数量。因此,单片机对温度的控制问题是一个工业生产中经常会遇到的问题。 ,

基于单片机的温度控制系统设计文献综述

文献综述 题目基于单片机的温度控制 系统设计 学生姓名 X X X 专业班级自动化07-2 学号20070x0x0x0x 院(系) xxxxxxxxxxxxxxxx 指导教师 x x x 完成时间 2011年06月10日

基于单片机的温度控制 系统设计文献综述 1.前言 温度是日常生活、工业、医学、环境保护、化工、石油等领域最常遇到的一个物理量。而且随着现代工业的发展,人们需要对工业生产中有关温度系统进行控制,如钢铁冶炼过程需要对刚出炉的钢铁进行热处理,塑料的定型及各种加热炉、热处理炉、反应炉和锅炉中温度进行实时监测和精确控制。而有很多领域的温度可能较高或较低,现场也会较复杂,有时人无法靠近或现场无需人力来监控。如加热炉大都采用简单的温控仪表和温控电路进行控制, 存在控制精度低、超调量大等缺点, 很难达到生产工艺要求。且在很多热处理行业都存在类似的问题,所以,设计一个较为通用的温度控制系统具有重要意义。这时我们可以采用单片机控制,这些控制技术会大大提高控制精度,不但使控制简捷,降低了产品的成本,还可以和计算机通讯,提高了生产效率. 单片机是指芯片本身,而单片机系统是为实现某一个控制应用需要由用户设计的,是一个围绕单片机芯片而组建的计算机应用系统,这是单片机应用系统。单片机自问世以来,性能不断提高和完善,其资源又能满足很多应用场合的需要,加之单片机具有集成度高、功能强、速度快、体积小、功耗低、使用方便、价格低廉等特点,因此,应用日益广泛,并且正在逐步取代现有的

多片微机应用系统。 2.历史研究与现状 在工业生产温控系统中采用的测温元件和测量方法不相同,产品的工艺不同,控制温度的精度也不相同,因此对数据采集的精度和采用的控制方法也不相同。 通常由位式或时间比例式温度调节仪控制的工业加热炉温度控制系统,其主回路由接触器控制时因为不能快速反应,所以控温精度都比较低,大多在几度甚至十几度以上。随着电力电子技术及元器件的发展,出现了以下几种解决的方案: (1)主回路用无触点的可控硅和固态继电器代替接触器,配以PID或模糊逻辑控制的调节仪构成的温度控制系统,其控温精度大大提高,常在±2℃以内,优势是采用模糊控制与PID 控制相结合,对控制范围宽、响应快且连续可调系统有巨大的优越性。 (2)采用单片机温度控制系统。用单线数字温度传感器采集温度数据,打破了传统的热电阻、热电偶再通过A/D 转换采集温度的思路。用单片机对数字进行处理和控制,通过RS - 232 串口传到PC 机对温度进行监视与报警,设置温度的上限和下限。其优势是结构简单,编程不需要用专用的编程器,只需点击电脑鼠标就可以把编好的程序写到单片机中,很方便且调试、修改和升级很容易。 (3)ARM(Advanced RISC Machine)嵌入式系统模糊温度控制。利用ARM处理器的强大功能,通过读取温度传感器数据,并与设定值进行比较,然后对温度进行控制。通过内嵌的操作系统μCLinux获得极好的实时性,并且通过TCP/IP协议能与PC机

单片机课程设计(温度控制系统)

温度控制系统设计 题目: 基于51单片机的温度控制系统设计姓名: 学院: 电气工程与自动化学院 专业: 电气工程及其自动化 班级: 学号: 指导教师:

2015年5月31日 摘要: (3) 一、系统设计 (3) 1.1 项目概要 (3) 1.2设计任务和要求: (4) 二、硬件设计 (4) 2.1 硬件设计概要 (4) 2.2 信息处理模块 (4) 2.3 温度采集模块 (5) 2.3.1传感器DS18b20简介 (5) 2.3.2实验模拟电路图 (7) 2.3.3程序流程图 (6) 2.4控制调节模块 (9) 2.4.1升温调节系统 (9) 2.4.2温度上下限调节系统 (8) 2.43报警电路系统 (9) 2.5显示模块 (12) 三、两周实习总结 (13) 四、参考文献 (13) 五、附录 (15)

5.1原理图 (15) 摘要: 在现代工业生产中,温度是常用的测量被控因素。本设计是基于51单片机控制,将DS18B20温度传感器实时温度转化,并通过1602液晶对温度实行实时显示,并通过加热片(PWM波,改变其占空比)加热与步进电机降温逐次逼近的方式,将温度保持在设定温度,通过按键调节温度报警区域,实现对温度在0℃-99℃控制的自动化。实验结果表明此结构完全可行,温度偏差可达0.1℃以内。 关键字:AT89C51单片机;温控;DS18b20 一、系统设计 1.1 项目概要 温度控制系统无论是工业生产过程,还是日常生活都起着非常重要的作用,过低或过高的温度环境不仅是一种资源的浪费,同时也会对机器和工作人员的寿命产生严重影响,极有可能造成严重的经济财产损失,给生活生产带来许多利的因素,基于AT89C51的单片机温度控制系统与传统的温度控制相比具有操作方便、价价格便宜、精确度高和开展容易等优点,因此市场前景好。

(完整word版)基于51单片机的温度控制系统设计

基于51单片机的水温自动控制系统 0 引言 在现代的各种工业生产中 ,很多地方都需要用到温度控制系统。而智能化的控制系统成为一种发展的趋势。本文所阐述的就是一种基于89C51单片机的温度控制系统。本温控系统可应用于温度范围30℃到96℃。 1 设计任务、要求和技术指标 1.1任务 设计并制作一水温自动控制系统,可以在一定范围(30℃到96℃)内自动调节温度,使水温保持在一定的范围(30℃到96℃)内。 1.2要求 (1)利用模拟温度传感器检测温度,要求检测电路尽可能简单。 (2)当液位低于某一值时,停止加热。 (3)用AD转换器把采集到的模拟温度值送入单片机。 (4)无竞争-冒险,无抖动。 1.3技术指标 (1)温度显示误差不超过1℃。 (2)温度显示范围为0℃—99℃。 (3)程序部分用PID算法实现温度自动控制。 (4)检测信号为电压信号。 2 方案分析与论证 2.1主控系统分析与论证 根据设计要求和所学的专业知识,采用AT89C51为本系统的核心控制器件。AT89C51是一种带4K字节闪存可编程可擦除只读存储器的低电压,高性能CMOS 8位微处理器。其引脚图如图1所示。 2.2显示系统分析与论证 显示模块主要用于显示时间,由于显示范围为0~99℃,因此可采用两个共阴的数码管作为显示元件。在显示驱动电路中拟订了两种设计方案: 方案一:采用静态显示的方案 采用三片移位寄存器74LS164作为显示电路,其优点在于占用主控系统的I/O口少,编程简单且静态显示的内容无闪烁,但电路消耗的电流较大。 方案二:采用动态显示的方案 由单片机的I/O口直接带数码管实现动态显示,占用资源少,动态控制节省了驱动芯片的成本,节省了电 ,但编程比较复杂,亮度不如静态的好。 由于对电路的功耗要求不大,因此就在尽量节省I/O口线的前提下选用方案一的静态显示。

单片机温度控制系统毕业设计论文.doc

题目基于单片机的温度控制系统 英文题目Temperature control system based on single chip 学生姓名: 学号: 专业: 指导老师: 职称 系别:机械与电子工程系 2012年5月1日

摘要 温度是日常生活中无时不在的物理量,温度的控制在各个领域都有积极的意义。很多行业中都有大量的用电加热设备,如用于热处理的加热炉,用于融化金属的坩锅电阻炉及各种不同用途的温度箱等,采用单片机对它们进行控制不仅具有控制方便、简单、灵活性大等特点,而且还可以大幅度提高被控温度的技术指标,从而能够大大提高产品的质量。因此,智能化温度控制技术正被广泛地采用。 本温度设计采用现在流行的AT89S51单片机,配以DS18B20数字温度传感器,该温度传感器可自行设置温度上下限。单片机将检测到的温度信号与输入的温度上、下限进行比较,由此作出判断是否启动继电器以开启设备。 本设计还加入了常用的数码管显示及状态灯显示灯常用电路,使得整个设计更加完整,更加灵活。 关键字:单片机温度控制继电器

ABSTRACT The temperature is constantly in the daily life of physical and temperature controls in various fields have a positive meaning. A lot of businesses have a lot of power heating equipment, such as that used for the heat treatment furnace, for melting metal crucible resistance heaters and the various uses of temperature bins, SCM using their right to control not only easy to control, simple, such as the characteristics of flexibility, but can also significantly increase the temperature was charged with the technical indicators, which can greatly enhance the quality of the products. Therefore, intelligent temperature control technology is being widely adopted. The temperature was designed with the now popular AT89S51 SCM, and with DS18B20 digital temperature sensor, The temperature sensor can set up their own temperature collars. SCM will detect that the temperature of the input signal and temperature, the lower comparisons this judgment whether to activate the relay to open the equipment. The design also includes commonly used digital display and control state lights commonly used circuit, making the whole design more complete, more flexible. Key words:Single chip microcomputer Temperature control SSR

模电课设—温度控制系统的设计

目录 1.原理电路的设计 (1) 1.1总体方案设计 (1) 1.1.1简单原理叙述 (1) 1.1.2设计方案选择 (1) 1.2单元电路的设计 (3) 1.2.1温度信号的采集与转化单元——温度传感器 (3) 1.2.2电压信号的处理单元——运算放大器 (4) 1.2.3电压表征温度单元 (5) 1.2.4电压控制单元——迟滞比较器 (6) 1.2.5驱动单元——继电器 (7) 1.2.6 制冷部分——Tec半导体制冷片 (8) 1.3完整电路图 (10) 2.仿真结果分析 (11) 3 实物展示 (13) 3.1 实物焊接效果图 (13) 3.2 实物性能测试数据 (14) 3.2.1制冷测试 (14) 3.2.2制热测试 (18) 3.3.3性能测试数据分析 (20) 4总结、收获与体会 (21) 附录一元件清单 (22) 附录二参考文献. (23)

摘要 本课程设计以温度传感器LM35、运算放大器UA741、NE5532P及电压比较器LM339N 为电路系统的主要组成元件,扩展适当的接口电路,制作一个温度控制系统,通过室温的变化和改变设定的温度,来改变电压传感器上两个输入端电压的大小,通过三极管开关电路控制继电器的通断,来控制Tec制冷片的工作。这样循环往复执行这样一个周期性的动作,从而把温度控制在一定范围内。学会查询文献资料,撰写论文的方法,并提交课程设计报告和实验成品。 关键词:温度;测量;控制。

Abstract This course is designed to a temperature sensor LM35, an operational amplifier UA741, NE5532P and a voltage comparator LM339N circuit system of the main components. Extending the appropriate interface circuit, make a temperature control system. By changing the temperature changes and set the temperature to change the size of the two input ends of the voltage on the voltage sensor, an audion tube switch circuit to control the on-off relay to control Tec cooling piece work. This cycle of performing such a periodic motion, thus controlling the temperature in a certain range. Learn to query the literature, writing papers, and submitted to the curriculum design report and experimental products. Key words: temperature ; measure ;control

温度控制系统的设计

前言 随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的。单片机在测控领域中具有十分广泛的应用,它既可以测量电信号,又可以测量温度湿度等非电信号。由单片机构成的温度检测、温度控制系统可广泛应用于很多领域。单片机在工业控制、尖端武器、通信设备、信息处理、家用电器等各测控领域的应用中独占鳌头。今天,我们的生活环境和工作环境有越来越多称之为单片机的小电脑在为我们服务。时下,家用电器和办公设备的智能化、遥控化、模糊控制化己成为世界潮流,而这些高性能无一不是靠单片机来实现的。 温度控制系统广泛应用于社会生活的各个领域 ,如家电、汽车、材料、电力电子等 ,常用的控制电路根据应用场合和所要求的性能指标有所不同 , 在工业企业中,如何提高温度控制对象的运行性能一直以来都是控制人员和现场技术人员努力解决的问题。这类控制对象惯性大,滞后现象严重,存在很多不确定的因素,难以建立精确的数学模型,从而导致控制系统性能不佳,甚至出现控制不稳定、失控现象。传统的继电器调温电路简单实用 ,但由于继电器动作频繁 ,可能会因触点不良而影响正常工作。控制领域还大量采用传统的PID控制方式,但PID控制对象的模型难以建立,并且当扰动因素不明确时,参数调整不便仍是普遍存在的问题。而采用数字温度传感器DS18B20,因其内部集成了A/D转换器,使得电路结构更加简单,而且减少了温度测量转换时的精度损失,使得测量温度更加精确。数字温度传感器DS18B20只用一个引脚即可与单片机进行通信,大大减少了接线的麻烦,使得单片机更加具有扩展性。

1.总体设计方案 1.1 总方案设计与选择 实现温度的测量,我们要考虑的主要是以下三个方面的内容: ◆ 温度随时都在变化,要做到对温度的时时监控。 ◆ 温度的精度很重要,要做到高精度。 ◆ 测量温度时系统的稳定性要好才行。 本设计是以这三个部分为核心内容。为了实现温度的时时测量,提供以下方案以供参考: 方案一、按照系统设计的功能要求,主控芯片使用51系列STC89C52单片机。显示模块采用MAX7219驱动数码管显示。初步确定系统由主控模块、MAX7219驱动显示模块以及DS18B20接口模块共三个模块组成,电路系统构成框图如图1所示。 图1 基于STC89C52单片机的温度测试设计框图 方案二、按照系统设计的功能要求,主控芯片使用Cortex-M3系列lm3s615单片机。显示模块采用数码管显示。初步确定系统由主控模块、显示模块以及DS18B20接口模块共三个模块组成,电路系统构成框图2所示。 图2 基于lm3s615单片机的温度测试设计框图 DS18B20接口电路 晶振电路 单 片机STC89C52 复位电路 数码管显示电路 Lm3s615 数码管显示电路 复位电路 DS18B20接口电 路 晶振电路

温度控制器课程设计要点

郑州科技学院 《模拟电子技术》课程设计 题目温度控制器 学生姓名 专业班级 学号 院(系)信息工程学院 指导教师 完成时间 2015年12月31日

郑州科技学院 模拟电子技术课程设计任务书 专业 14级通信工程班级 2班学号姓名 一、设计题目温度控制器 二、设计任务与要求 1、当温度低于设定温度时,两个加热丝同时通电加热,指示灯发光; 2、当水温高于设定温度时,两根加热丝都不通电,指示灯熄灭; 3、根据上述要求选定设计方案,画出系统框图,并写出详细的设计过程; 4、利用Multisim软件画出一套完整的设计电路图,并列出所有的元件清单; 5、安装调试并按规定格式写出课程设计报告书. 三、参考文献 [1]吴友宇.模拟电子技术基础[M]. 清华大学出版社,2009.52~55. [2]孙梅生.电子技术基础课程设计[M]. 高等教育出版社,2005.25~28. [3]徐国华.电子技能实训教程[M]. 北京航空航天大学出版社,2006.13 ~15. [4]陈杰,黄鸿.传感器与检测技术[M].北京:高等教育出版社,2008.22~25. [5]翟玉文等.电子设计与实践[M].北京:北京中国电力出版社,2005.11~13. [6]万嘉若,林康运.电子线路基础[M]. 高等教育出版社,2006.27 ~29. 四、设计时间 2015 年12月21 日至2015 年12 月31 日 指导教师签名: 年月日

本设计是一种结构简单、性能稳定、使用方便、价格低廉、使用寿命长、具有一定的实用性等优点的温度控制电路。本文设计了一种温度控制器电路,该系统采用模拟技术进行温度的采集与控制。主要由电源模块,温度采集模块,继电器模块组成。 现代社会科学技术的发展可以说是突飞猛进,很多传统的东西都被成本更低、功能更多、使用更方便的电子产品所替代,本课程设计是一个以温度传感器采用LM35的环境温度简易测控系统,用于替代传统的低精度、不易读数的温度计。但系统预留了足够的扩展空间,并提供了简单的扩展方式供参考,实际使用中可根据需要改成多路转换,既可以增加湿度等测控对象,也能减少外界因素对系统的干扰。 首先温度传感器把温度信号转换为电流信号,通过放大器变成电压信号,然后送入两个反向输入的运算放大器组成的比较器电路,让电位器来改变温度范围的取值,最后信号送入比较器电路,通过比较来判断控制电路是否需要工作。此方案是采用传统的模拟控制方法,选用模拟电路,用电位器设定给定值,反馈的温度值与给定的温度值比较后,决定是否加热。 关键词:温度传感器比较器继电器

基于单片机的智能温控系统的设计与实现

课程设计报告设计名称基于单片机的智能温控系统的设计与实现 学校陕西电子科技职业学院 学院电子工程学院 学生姓名王一飞 班级1507 指导教师聂弘颖 时间2017年10月23日

一、概述 随着嵌入式技术、计算机技术、通信技术的不断发展与成熟。控制系统以其直观、方便、准确、适用广泛而被越来越广泛地应用于工业过程、空调系统、智能楼宇等。恒温控制系统,控制对象是温度。温度控制在日常生活及工作领域应用的相当广泛,比如温室、水池、发酵缸、电源等场所的温度控制,而以往温度控制是由人工完成的而且不够重视,其实在很多场所温度都需要监控以防止发生意外。针对此问题,本系统设计的目的是实现一种可连续高精度调温的温度控制系统,它应用广泛,功能强大,小巧美观,便于携带,是一款既实用又廉价的控制系统。 本项目设计是对温度进行实时监测与控制,设计的温度控制系统实现了基本的温度控制功能:被控温度范围可以调整,初始范围25<=T<=35。如果被测温度在25度到35度之间,则既不加热,又不报警;如果被测温度小于25度,则既加热,又报警;如果被测温度大于35度,则报警,不加热。 数码管显示温度,温度精确到整数。 二、方案设计 采用单片机+单总线DS18B20的方案,其中单片机采用51兼容系列 三、详细硬件设计及原件介绍 3.1 单片机最小系统 在基于单片机的应用系统中,其核心是单片机的最小系统,而单片机又是最小系统的核心,为了方便起见,采用的单片机型号是:STC89C52RC,内部资源有:8KB FLASH ,512B SRAM,4个8位I/O,2个TC,1个UART,带ISP和IAP功能。是近年来流行的低端51单片机。时钟电路采用12.0M晶体,复位电路采用简单的RC复位电路。R=10K,C=10uF,详细电路见总体原理图 3.2 DS18B20简介 DS18B20是采用“1-wire”一线总线传输数据的集成温度传感器,信息经过单线接口送入DS18B20或从DS18B20送出,因此从中央处理器到DS18B20仅需连接一条线。可采用外部电源供电,也可采用总线供电方式,此时,把VDD连接在一起作为数字电源。 因为每一个DS18B20有唯一的系列号(silicon serial number),因此多个DS18B20可以存在于同一条单线总线上,这允许在许多地方放置温度灵敏器件。此特性的应用范围包括HVAC环境控制,建筑物、设备或机械内的温度检测。 3.2 DS18B20与单片机接口

温度控制系统设计论文资料(经典)

摘要 :本设计采用直接数字控制(DDC)对加热炉进行控制,使其温度稳定在在某一个值上。 并且具有键盘输入温度给定值,LED数码管显示温度值和温度达到极限时提醒操作人员注意的功能。 一.概述 温度是工业生产中常见的工艺参数之一,任何物理变化和化学反应过程都与温度密切相关,因此温度控制是生产自动化的重要任务。对于不同生产情况和工艺要求下的温度控制,所采用的加热方式,燃料,控制方案也有所不同。例如冶金、机械、食品、化工等各类工业生产中广泛使用的各种加热炉、热处理炉、反应炉等;燃料有煤气、天然气、油、电等;控制方案有直接数字控制(DDC),推断控制,预测控制,模糊控制(Fuzzy),专家控制(Expert Control),鲁棒控制(Robust Control),推理控制等。 本设计的控制对象为一电加热炉,输入为加在电阻丝两断的电压,输出为电加热炉内的温度。输入和输出的传递函数为:G(s)=2/(s(s+1))。控温范围为100~500℃,所采用的控制方案为直接数字控制(DDC)中的最少拍控制。 二.温度控制系统的组成框图 采用典型的反馈式温度控制系统,组成部分见下图。其中数字控制器的功能由微型机算机实现。 三.温度控制系统结构图及总述 图中由4~20mA变送器,I/V,A/D转换器构成输入通道,用于采集炉内的温度信号。其中,变送器选用XTR101,它将热电偶信号(温度信号)变为4~20mA电流输出,再由高精密电流/电压变换器RCV420将4~20mA电流信号变为0~5V标准电压信号,以供A/D转换用。转换后的数字量与与炉温的给定值数字化后进行比较,即可得到实际炉温和给定炉温的偏差。炉温的设定值由键盘输入。由微型计算机构成的数字控制器按最小拍进行运算,计算出所需要的控制量。数字控制器的输出经标度变换后送给8253,由8253定时计数器转变8086 CPU 定时计数器SCR触发回路SCR主回路 电 加 热 炉 4~20mA变送器 I/V A/D 数字滤波

温度控制系统毕业设计

摘要 在日常生活及工农业生产中,对温度的检测及控制时常显得极其重要。因此,对数字显示温度计的设计有着实际意义和广泛的应用。本文介绍一种利用单片机实现对温度只能控制及显示方案。本毕业设计主要研究的是对高精度的数字温度计的设计,继而实现对对象的测温。测温系数主要包括供电电源,数字温度传感器的数据采集电路,LED显示电路,蜂鸣报警电路,继电器控制,按键电路,单片机主板电路。高精度数字温度计的测温过程,由数字温度传感器采集所测对象的温度,并将温度传输到单片机,最终由液晶显示器显示温度值。该数字温度计测温范围在-55℃~+125℃,精度误差在±0.5℃以内,然后通过LED数码管直接显示出温度值。数字温度计完全可代替传统的水银温度计,可以在家庭以及工业中都可以应用,实用价值很高。 关键词:单片机:ds18b20:LED显示:数字温度. Abstract In our daily life and industrial and agricultural production, the detection and control of the temperature, the digital thermometer has practical significance and a wide range of applications .This article describes a programmer which use a microcontroller to achieve and display the right temperature by intelligent control .This programmer mainly consists by temperature control sensors, MCU, LED display modules circuit. The main aim of this thesis is to design high-precision digital thermometer and then realize the object temperature measurement. Temperature measurement system includes power supply, data acquisition circuit, buzzer alarm circuit, keypad circuit, board with a microcontroller circuit is the key to the whole system. The temperature process of high-precision digital thermometer, from collecting the temperature of the object by the digital temperature sensor and the temperature transmit ted to the microcontroller, and ultimately display temperature by the LED. The digital thermometer requires the high degree is positive 125and the low degree is negative 55, the error is less than 0.5, LED can read the number. This digital thermometer could

基于单片机的智能温控系统的设计与实现

基于单片机的智能温控系统的设计与实现 文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

课程设计报告设计名称基于单片机的智能温控系统的设计与实现 学校陕西电子科技职业学院 学院电子工程学院 学生姓名王一飞 班级1507 指导教师聂弘颖 时间2017年10月23日

一、概述 随着嵌入式技术、计算机技术、通信技术的不断发展与成熟。控制系统以其直观、方便、准确、适用广泛而被越来越广泛地应用于工业过程、空调系统、智能楼宇等。恒温控制系统,控制对象是温度。温度控制在日常生活及工作领域应用的相当广泛,比如温室、水池、发酵缸、电源等场所的温度控制,而以往温度控制是由人工完成的而且不够重视,其实在很多场所温度都需要监控以防止发生意外。针对此问题,本系统设计的目的是实现一种可连续高精度调温的温度控制系统,它应用广泛,功能强大,小巧美观,便于携带,是一款既实用又廉价的控制系统。 本项目设计是对温度进行实时监测与控制,设计的温度控制系统实现了基本的温度控制功能:被控温度范围可以调整,初始范围25<=T<=35。如果被测温度在25度到35度之间,则既不加热,又不报警;如果被测温度小于25度,则既加热,又报警;如果被测温度大于35度,则报警,不加热。 数码管显示温度,温度精确到整数。 二、方案设计 采用单片机+单总线DS18B20的方案,其中单片机采用51兼容系列 三、详细硬件设计及原件介绍 单片机最小系统 在基于单片机的应用系统中,其核心是单片机的最小系统,而单片机又是最小系统的核心,为了方便起见,采用的单片机型号是:STC89C52RC,内部资源有:8KB FLASH ,512B SRAM,4个8位I/O,2个TC,1个UART,带ISP和IAP功能。是近年来流行的低端51单片机。时钟电路采用晶体,复位电路采用简单的RC复位电路。 R=10K,C=10uF,详细电路见总体原理图

基于51单片机的温度控制系统的设计

基于单片机的温度控制系统设计 1.设计要求 要求设计一个温度测量系统,在超过限制值的时候能进行声光报警。具体设计要求如下: ①数码管或液晶显示屏显示室内当前的温度; ②在不超过最高温度的情况下,能够通过按键设置想要的温度并显示;设有四个按键,分别是设置键、加1键、减1键和启动/复位键; ③DS18B20温度采集; ④超过设置值的±5℃时发出超限报警,采用声光报警,上限报警用红灯指示,下限报警用黄灯指示,正常用绿灯指示。 2.方案论证 根据设计要求,本次设计是基于单片机的课程设计,由于实现功能比较简单,我们学习中接触到的51系列单片机完全可以实现上述功能,因此可以选用AT89C51单片机。温度采集直接可以用设计要求中所要求的DS18B20。报警和指示模块中,可以选用3种不同颜色的LED灯作为指示灯,报警鸣笛采用蜂鸣器。显示模块有两种方案可供选择。 方案一:使用LED数码管显示采集温度和设定温度; 方案二:使用LCD液晶显示屏来显示采集温度和设定温度。 LED数码管结构简单,使用方便,但在使用时,若用动态显示则需要不断更改位选和段选信号,且显示时数码管不断闪动,使人眼容易疲劳;若采用静态显示则又需要更多硬件支持。LCD显示屏可识别性较好,背光亮度可调,而且比LED 数码管显示更多字符,但是编程要求比LED数码管要高。综合考虑之后,我选用了LCD显示屏作为温度显示器件,由于显示字符多,在进行上下限警戒值设定时同样可以采集并显示当前温度,可以直观的看到实际温度与警戒温度的对比。LCD 显示模块可以选用RT1602C。

3.硬件设计 根据设计要求,硬件系统主要包含6个部分,即单片机时钟电路、复位电路、键盘接口模块、温度采集模块、LCD 显示模块、报警与指示模块。其相互联系如下图1所示: 图1 硬件电路设计框图 单片机时钟电路 形成单片机时钟信号的方式有内部时钟方式和外部时钟方式。本次设计采用内部时钟方式,如图2所示。 单片机内部有一个用于构成振荡器的高增益反相放大器,引脚XTAL1和XTAL2分别为此放大器的输入端和输出端,其频率范围为~12MHz ,经由片外晶体振荡器或陶瓷振荡器与两个匹配电容一 起形成了一个自激振荡电路,为单片机提供时钟源。 复位电路 复位是单片机的初始化操作,其作用是使CPU 和系统中的其他部件都处于一个确定的初始状态,并从这个状态开始工作,以防止电源系统不稳定造成CPU 工作不正常。在系统中,有时会出现工作不正常的情况,为了从异常状态中恢复,同时也为了系统调试方便,需要设计一个复位电路。 单片机的复位电路有上电复位和按键复位两种形式,因为本次设计要求需要有启动/复位键,因此本次设计采用按键复位,如图3。复位电路主要完成系统 图2 单片机内部时钟方式电路 图3 单片机按键复位电路

远程温度控制系统毕业设计

引言 温度是工业生产中常见的被控参数之一。从食品生产到化工生产,从燃料生产到钢铁生产等等,无不涉及到对温度的控制,可见,温度控制在工业生产中占据着非常重要的地位,而且随着工业生产的现代化,对温度控制的速度和精度也会越来越高。近年来,温度控制领域发生了很大的变化,工业生产中对温度的控制不再局限于近距离或者直接的控制,而是需要进行远距离的控制,这就产生了远程温度控制。 远程温度控制的通信方式有多种,如通过网络,无线电等等。每一种方式都有其优点和缺点。利用无线电通信,方便、灵活,而且经济。它不需要像网络控制耗费巨大的通信资源,也不受网络速度的影响。 在温度控制的方法上,传统的控制方法(包括经典控制和现代控制)在处理具有非线形或不精确特性的被控对象时十分困难。而温度系统为大滞后系统,较大的纯滞后可引起系统不稳定。 在温度采集方法上,通常是利用热电偶把热化为电信号,再通过A/D转换得到温度值。这种方法速度慢,而且精度不是很高。综合上面的考虑以及自己的爱好,设计了基于无线电通信的远程温度控制系统。本文详细的介绍了系统的硬件设计,软件设计,以及调试等,希望它能给初级电子制作爱好者带来一些无线电通信和温度控制的基本常识,以及应该注意的一些事项。 1、温度控制的发展及意义 在人类的生活环境中,温度扮演着极其重要的角色。无论你生活在哪里,从事什么工作,无时无刻不在与温度打着交道。自18世纪工业革命以来,工业发展对是否能掌握温度有着绝对的联系。在冶金、钢铁、石化、水泥、玻璃、医药等等行业,可以说几乎%80的工业部门都不得不考虑着温度的因素。 现代工业设计、工程建设及日常生活中常常需要用到温度控制,早期温度控制主要应用于工厂中,例如钢铁的水溶温度,不同等级的钢铁要通过不同温度的铁水来实现,这样就可能有效的利用温度控制来掌握所需要的产品了。在现代社会中,温度控制不仅应用在工厂生产方面,其作用也体现到了各个方面,随着人们生活质量的提高,酒店厂房及家庭生活中都会见到温度控制的影子,温度控制将更好的服务于社会。 2 总体设计与可行性分析 2.1 设计任务 1、利用所学的知识设计远程温度控制系统。电烤箱温度可在一定范围内由人工设定,温度信号检测方案自行确定,用单片机采用PID控制算法实现温度实时控制,静态误差1度,超调量〈2.5%,系统温度调节时间ts〈4分钟。控制输出采用脉冲移相触发可控硅来调节加热有效功率。控制温度范围室温--125℃,用十进制数码显示箱内的温度。

基于单片机的温度控制系统设计报告

基于单片机的温度控制系统设计报告

智能仪器仪表综合实训 题目基于单片机的温度控制系统设计 学院 专业电子信息工程 班级 (仪器仪表) 学生姓名 学号 指导教师 完成时间:

目录 一、系统设计---------------------------------------------------------第 1 页 (一)系统总体设计方案----------------------------------------------第 1 页 (二)温度信号采集电路选择和数据处理--------------------------------第 3 页 (三)软件设计------------------------------------------------------第 3 页二、单元电路设计-----------------------------------------------------第 5 页 (一)温度信号采集电路----------------------------------------------第 5 页 (二)步进电机电路------------------------------------------------- 第 5 页(三)液晶显示模块---------------------------------------------------------- 第6 页 (四)晶振复位电路--------------------------------------------------第 7 页三、总结体会--------------------------------------------------------------------------------------第 7 页 四、参考文献-------------------------------------------第 8 页 附录:程序清单------------------------------------------第 8 页

智能温控风扇地设计

综合实验报告 实验题目:智能温控风扇 学生班级: 电子14-2 学生姓名: 学生学号: 38 指导教师: 实验时间: 2016-9-15

智能温控风扇的设计 摘要 基于检测技术和单片机控制技术,设计了一种智能温控调速风扇。阐述了智能温控调速风扇的工作原理、硬件设计、软件实现的过程。系统原理简单,工作稳定,成本低,具有一定的节能效果。 通过单片机的控制我们实现了电风扇的主要功能:当按下开关键时,系统初始化默认的设定温度为25度,如果外界温度高于设定温度电风扇进行运转,如果外界温度高于低于设定温度则风页不转动,同时显示外界的温度。可以设置所需的温度,并同时显示所设定的温度,同时按加减键退出设定功能。 电风扇的自动控制,让电风扇这一家用电器变的更智能化。克服了普通电风扇无法根据外界温度自动调节转速困难。智能电风扇的设计具有重要的现实意义。 关键词AT89C52/温度传感器/直流电机/模拟风扇

1.1 引言 生活中,我们经常会使用一些与温度有关的设备。比如,现在虽然不少城市家庭用上了空调,但在占中国大部分人口的农村地区依旧使用电风扇作为降温防暑设备,春夏(夏秋)交替时节,白天温度依旧很高,电风扇应高转速、大风量,使人感到清凉;到了晚上,气温降低,当人入睡后,应该逐步减小转速,以免使人感冒。虽然电风扇都有调节不同档位的功能,但必须要人手动换档,睡着了就无能为力了,而普遍采用的定时器关闭的做法,一方面是定时时间长短有限制,一般是一两个小时;另一方面可能在一两个小时后气温依旧没有降低很多,而风扇就关闭了,使人在睡梦中热醒而不得不起床重新打开风扇,增加定时器时间,非常麻烦,不能两全其美。为解决上述问题,我们设计了这套温控自动风扇系统。本系统采用高精度集成温度传感器,用单片机控制,能显示实时温度,并根据使用者设定的温度自动在相应温度时作出小风、大风、停机动作,精确度高,动作准确。 2 整体方案的设计思路 2.1 系统整体设计 本设计的整体思路是:利用温度传感器DS18B20检测环境温度并直接输出数字温度信号给单片机AT89C52进行处理,在LED数码管上显示当前环境温度值以及预设温度值。其中预设温度值只能为整数形式,检测到的当前环境温度可精确到小数点后一位。同时采用PWM脉宽调制方式来改变直流风扇电机的转速。并通过两个按键改变预设温度值,一个提高预设温度,另一个降低预设温度值。系统结构框图:如图2-1所示。

相关主题
文本预览
相关文档 最新文档