当前位置:文档之家› 光谱仪基础知识

光谱仪基础知识

光谱仪基础知识
光谱仪基础知识

第1章衍射光栅:刻划型和全息型

衍射光栅由下列两种方法制成:一种是用带钻石刀头的刻划机刻出沟槽的经典方法,另一种是用两束激光形成干涉条纹的全息方法。(更多信息详见Diffraction Gratings Ruled & Holographic Handbook).

经典刻划方法制成的光栅可以是平面的或者是凹面的,每道沟槽互相平行。全息光栅的沟槽可以是均匀平行的或者为优化性能而特别设计的不均匀分布。全息光栅可在平面、球面、超环面以及很多其他类型表面生成。

本书提到的规律、方法等对各类不同表面形状的经典刻划光栅和全息光栅均适用,如需区分,本书会特别给出解释。

1.1 基础公式

在介绍基础公式前,有必要简要说明单色光和连续谱。

提示:单色光其光谱宽度无限窄。常见良好的单色光源包括单模激光器和超低压低温光谱校正灯。这些即为大家所熟知的“线光源”或者“离散线光源”。

提示:连续谱光谱宽度有限,如“白光”。理论上连续谱应包括所有的波长,但是实际中它往往是全光谱的一段。有时候一段连续谱可能仅仅是几条线宽为1nm的谱线组成的线状谱。

本书中的公式适用于空气中的情况,即m0=1。因此,l=l0=空气中的波长。

定义单位

α - (alpha) 入射角度

β - (beta) 衍射角度

k - 衍射阶数整数

定义单位

n - 刻线密度刻线数每毫米

D

V

- 分离角度

μ

- 折射率无单位

λ - 真空波长纳米

λ0 - 折射率为μ0介质中的波长

其中λ

0 = λ/μ

1 nm = 10-6 mm; 1 mm = 10-3 mm; 1 A = 10-7 mm

最基础的光栅方程如下:

(1-1)

在大多数单色仪中,入口狭缝和出口狭缝位置固定,光栅绕其中心旋转。因此,分离角D V成为常数,由下式决定,

(1-2)

对于一个给定的波长l,如需求得a和b,光栅方程(1-1)可改写为:

(1-3)

假定D V值已知,则a和b可通过式(1-2)、(1-3)求出,参看图1.1、1.2和第2.6节。

图 1.1 单色仪结构示意

图 1.2 摄谱仪结构示意

L

= 入射臂长度

A

L

= 波长l n处出射臂长度

B

b

=光谱面法线和光栅面法线的夹角

H

L

=光栅中心到光谱面的垂直距离

H

表1.1给出了a和b如何随分离角改变,是以图1.1中单色仪为例,在光栅刻线数1200gr/mm的,衍射波长500nm的条件下计算得到的。

表1.1 1200gr/mm光栅的一阶衍射波长500nm处入射角、衍射角随分离角DV的变化

DV αβ

0 17.458 17.458 (Littrow)

10 12.526 22.526

20 7.736 27.736

24 5.861 29.861

30 3.094 33.094

40 -1.382 38.618

50 -5.670 44.330

1.2 角色散

rad/nm (1-4)

dβ = 两个不同波长衍射后角度的差值(弧度)

dλ = 两个波长的差值(nm)

1.3 线色散

线色散定义为聚焦平面上沿光谱展开方向单位长度对应的光谱宽度,单位是nm/mm,?/mm,cm-1/mm。以两台线色散不同的光谱仪为例,其中一台将一段0.1nm宽的光谱衍射展开为1mm,而另一台则将10nm宽的光谱衍射展开为1mm。

很容易想象,精细的光谱信息更容易通过第一台光谱仪得到,而非第二台。相比于第一台的高色散,第二台光谱仪只能被称为低色散仪器。线色散指标反映了光谱仪分辨精细光谱细节的能力。

中心波长l在垂直衍射光束方向的线色散可表示为:

nm/mm (1-5)

式中L B为等效出射焦距长度,单位mm,而dx是单位间隔,单位mm。参见图1.1。

单色仪中,L B为聚焦镜到出口狭缝的距离,或者当光栅为凹面型时光栅到出口狭缝的距离。因此,线色散与cos b成正比,而与出射焦长L B、衍射级数k以及刻线密度n这些参数成反比。

对于摄谱仪而言,任一波长的线色散可通过衍射方向垂直光谱面的波长l

其色散值经倾斜角(g)的余弦修正得到。图1.2给出了“平场”摄谱仪的结构,n

通常它同线阵二极管配合使用。

线色散:

(1-6)

(1-7)

(1-8)

1.4 波长和衍射阶次

图1.3给出了摄谱仪中聚焦光谱面上光谱范围从200nm到1000nm的一级衍射谱。

当光栅刻槽密度n、a以及b均已知的情况下,根据式(1-1)得到:

kλ=常数 (1-9) 即当衍射级数k值变为两倍原值时, l减半。依此类推。

1.3 色散和衍射级数

以一台可产生波长范围从20nm到1000nm的连续谱光源为例,这一连续谱进入光谱仪分光后,在光谱面上波长800nm的一阶衍射位置上(参看图1.3),其他三个波长400nm、266.6nm、200nm也会出现,从而能够被探测器测得。为了仅仅对波长800nm进行测量,必须采用滤色片来消除高阶衍射。

波长范围从200nm到380nm的一阶衍射测量通常不需要滤色片,原因在于波长数值小于190nm的光均被空气吸收。但是如果光谱仪内部为真空或者填充氮气,这种情况下高阶滤色片又必不可少。

1.5 分辨“能力”

分辨能力是一个理论概念,由下式给出

(无单位) (1-10)

式中,dl为两个强度相等的光谱线之间的波长间距。因此,分辨率指标代表光谱仪甄别相邻谱线的能力。如果两条谱线谱峰之间的距离满足其中一条谱线谱峰位于另一条谱线谱峰的最近极小值处,即认为两个谱峰被很好的分辨出来,这一规则被称为瑞利判据(“Rayleigh criterion”)。

R可进一步表示为:

(1-11)

λ = 待检测谱线的中心波长

= 光栅上光照射区域的宽度

W

g

N = 为光栅的刻槽总数

不要将分辨能力“R”这一数值量与光谱仪的分辨率或者光谱带宽这些参数混淆(参看第2章)。

理论上讲,一片刻线密度为1200gr/mm、宽度110mm的光栅,当采用它的一级衍射光时,分辨能力的数值通过计算得到R=1200×110=132,000。因此,在波长为500nm处,光谱带宽等于

然而,实际情况中仪器的几何尺寸由式(1-1)决定。改写为k的表达

(1-12)

光栅上刻线的总宽度W g为

,因此,(1-13)

式中,(1-14)

将式(1-12)和(1-13)代入式(1-11)中,得到分辨能力亦可以表示为:

(1-15)

因此,光栅的分辨能力取决于:

?光栅上刻线区域的总宽度

?所关注的中心波长

?工作时的几何值(入射角、衍射角)

由于光谱带宽还取决于光谱仪的狭缝宽度以及系统的校正,因此上述情况是100%的理论情况,即系统的衍射极限 (更深入的讨论请参看第2章 )。

1.6 闪耀光栅

闪耀定义为将一段光谱的衍射最大转移到其他衍射阶次而非零阶。通过特殊设计,闪耀光栅能够实现在特定波长的最大衍射效率。因此,一片光栅的闪耀波长可以是250nm或者1mm等等,这取决于刻槽几何尺寸的选择。

闪耀光栅其刻槽断面为直角三角形,其中一个锐角为闪耀角w,如图1.4所示。然而,110°的顶角在闪耀全息光栅中同样可能出现。选择不同的顶角大小能够优化光栅的整个效率曲线。

1.6.1 Littrow条件

闪耀光栅的几何尺寸可以通过满足Littrow条件的情况下计算得到。Littrow条件是指入射光和衍射光处于自准直状态(如a=b),即入射光线和出

.

射光线沿同一路径。在这一条件下,假定“闪耀”波长为λ

B

(1-16)

比如, 1200gr/mm光栅闪耀波长为250nm且衍射阶次为一阶时,闪耀角(w)等于8.63°。

图1.4 闪耀光栅的刻槽断面示意图,“Littrow条件”

1.6.2 效率曲线

除非特别声明,衍射光栅的效率在Littrow条件下某一已知波长处测得。

绝对效率(%)=输出能量/输出能量*100%(1-17)

相对效率(%)=光栅效率/反射效率*100%(1-18)

相对效率测量需要将反射镜表面镀膜(膜层材料与光栅表面反射膜层材料相同),并且采用与光栅相同的角度设置。

图5a和5b分别给出了闪耀刻线光栅和非闪耀全息光栅的典型效率曲线。

一般而言,闪耀光栅的效率在2/3闪耀波长处和1.8倍闪耀波长处减小为最大值的一半。

(a)刻线闪耀光栅的典型效率曲线

(b)非闪耀全息光栅的典型效率曲线

1.6.3 效率和阶次

一片闪耀光栅不仅有一阶闪耀角,而且也有高阶闪耀角。比如,一片一阶闪耀波长为600nm的光栅,同样也有二阶闪耀波长300nm,以此类推更高阶次。

高阶衍射效率通常与一阶衍射效率趋势相同。对一片一阶闪耀的光栅而言,每个阶次的最大效率值随着阶次k的增加而减小。

衍射效率也随着光栅使用时偏离Littrow条件(a≠b)程度的增加而逐渐减小。

全息光栅能够通过设计刻槽的形状来消除高阶衍射的影响。根据这一性质,通过离子刻蚀工艺制作的浅槽(laminar)光栅其效率曲线在紫外(UV)和可见(VIS)波段能够显著改善。

提示:光栅是非闪耀的并不意味着它的效率较低。参见图1.5b,图中给出了一片1800gr/mm正弦型刻槽全息光栅的衍射效率曲线。

1.7 衍射光栅的杂散光

除被测波长外探测器接收到的其他波长(通常包括一种或者多种“杂散光”)统称为杂散光。

1.7.1 散射光

散射光可能由于下列原因造成:

?由于光学元件表面的缺陷造成的随机散射光

?由于刻划光栅刻槽时的非周期失误造成的聚焦散射光

1.7.2 鬼线

如果衍射光栅上存在周期性刻划失误,那么鬼线(并非散射光)将聚焦在衍射平面上。鬼线强度由下式给出:

(1-19)

其中,

I

= 鬼线强度

G

= 母光强度

I

P

n = 刻线强度

k = 阶次

e = 刻槽中失误的位置

鬼线在单色仪的色散平面上聚焦并成像。

全息光栅的杂散光水平一般比经典刻线光栅的1/10还要小。杂散光通常是非聚焦的,并且出现在2p 全角度各个方向。

全息光栅没有鬼线,因为它不可能出现周期性的刻划失误。因此,它是克服鬼线问题最好的解决方案。

1.8 光栅的选择

1.8.1 什么时候选择全息光栅

1.当光栅是凹面的。

2.当用到激光时,比如拉曼光谱、激光激发荧光光谱等。

3.刻线密度必须不小于1200gr/mm(最高可到6000gr/mm,尺寸可达120mm×

140mm)而且光谱范围为近紫外、可见和近红外的任何时候。

4.当光谱工作范围在紫外波段,波长小于200nm甚至到3nm时。

5.实现高分辨率的方法中,高刻线密度光栅优于高衍射阶次的低刻线密度光

栅。

6.离子刻蚀全息光栅能够适用的任何场合。

1.8.2 什么时候选择刻线光栅

1.工作波长高于1.2mm的红外波段,且无法选用离子刻蚀全息光栅。

2.需要低刻槽密度的场合,如刻槽密度小于600gr/mm。

请记住,鬼线及相应的杂散光强度正比于阶次和刻槽密度乘积的平方(式(1-19)中的n2和k2)。尽量避免使用高刻线密度或者高衍射阶次的刻线光栅。

第2章单色仪和摄谱仪

2.1 基本组成

在光源的所有波长上,单色仪和摄谱仪系统在出口平面上形成入口狭缝的像。实现这一功能有很多种配置设计,在这里仅仅讨论最常见包含平面光栅系统(PGS)和像差修正全息光栅(ACHG)系统。

定义

L

入射臂的长度

A

LB 出射臂的长度

h 入射狭缝的高度

h' 入射狭缝的像高度

a入射角

b衍射角

w 入射狭缝的宽度

w' 入射狭缝的像宽度

D

圆形光栅的半径

g

W

矩形光栅的宽度

g

H

矩形光栅的高度

g

2.2 Fastie-Ebert型配置

Fastie-Ebert型仪器主要由一片面积很大的球面反射镜和一片衍射光栅组成(参看图2.1)。

首先,反射镜的一部分收集并准直将要入射到平面光栅上的光。然后,反射镜的另一部分将衍射分光后的光线聚焦并使之在出射平面上成入口狭缝的像。

这是一类造价低廉、非常常见的设计,但是由于系统偏差如球面偏差(spherical aberration)、彗差(coma)、散光偏差(astigmatism)以及非平面焦平面等,它在离轴光线的成像质量方面能力有限。

图2.1 Fastie-Ebert 型配置

2.3 Czerny-Turner型配置

Czerny-Turner(CZ)型单色仪由两片凹面反射镜和一片平面衍射光栅组成(参看图2.2)。

虽然这两片反射镜各自的功能与Fastie-Ebert型配置中的单片球面反射镜的功能相同,如首先准直入射光线(反射镜1),然后聚焦从光栅反射的色散分离光线(反射镜2),但是Czerny-Turner型配置中反射镜的尺寸却可以根据需要改变。

采用非对称几何学,Czerny-Turner型配置能够设计实现平面光谱面以及在特定波长上良好的彗差修正。但球面偏差和散光偏差在所有波长上依然存在。

采用CZ配置,也能够设计与大通量光学相匹配的系统。

图2.2 Czerny-Turner 型配置

2.4 Czerny-Turner/Fastie-Ebert型的PGS偏差

PGS摄谱仪存在某些偏差,降低了光谱分辨率、空间分辨率以及信噪比等指标。最突出的偏差有散光偏差、彗差、球面偏差以及散焦(defocusing)。

PGS仪器常常离轴使用,因此偏差在每个平面上都有所不同。本书并不打算详细回顾这些偏差的概念和细节1,但是在考虑这些偏差产生的效应时,理解光路差(OPD)的概念是很有帮助的。

本质上,光路差(OPD)是实际产生的波前和没有偏差的条件下应该得到的“参考波前”之间的差别。这一参考波前是以像为中心的球面或者成像在无穷远处时的平面。比如:

散焦是指光线在探测器表面外的另一个平面上聚焦,从而造成不清晰成像,降低了光谱带宽、空间分辨率和光信号的信噪比等参数。最常见的一个实例就是球面波前入射到图2.2中的反射镜M1上。当PGS单色仪采用一套单出口狭缝和一支光电倍增管(PMT)探测器时,散焦不会造成影响。然而,未修正的PGS 仪器其聚焦面为曲面,从而采用平面线性二极管阵列时在探测器的两端会受到散焦的影响。如图2.2所示的几何修正CZ配置几乎消除了这一问题。散焦带来的OPD随数值孔径的平方改变。

彗差是PGS仪器的离轴特性导致的结果,如图2.3所示由于光线在色散平面上扭曲从而表现为谱线的扩张变形。彗差是造成光学带宽和光信号信噪比这些参数降低的原因。彗差带来的OPD随数值孔径的立方变化。在CZ配置中如图2.2所示,可以通过计算一个合适的几何尺寸从而在波长上修正彗差的影响。

图2.3 彗差效应

球面偏差是指非光学平面中心出射的光线聚焦在光学平面中心出射光线的焦点上这一情况(参看图2.4)。球面偏差导致的OPD随数值孔径的4次方变化,而且不使用非球面光学是无法修正的。

图2.4 球面偏差效应

散光偏差是离轴几何的特性。在这种情况下,平面波以一定的入射角照射在球面反射镜上(如图2.2中的反射镜M2),这时反射镜出现两个焦点:切面(tangential)焦点F t和矢面(sagittal)焦点F s。散光偏差带来的效应是入口狭缝处的点光源在出口处成垂直于色散平面的线型像(参看图2.5),从而阻止了空间分辨率的提高并且由于狭缝高度的增加而降低了光信号的信噪比。散光偏差导致的OPD随数值孔径的平方和离轴角度的平方变化,并且不使用非球面光学是无法修正的。

图2.5 “离轴”使用凹面反射镜时的散光偏差效应

2.4.1 像差校正平面光栅

全息光栅的最新进展使得球面反射镜CZ型光谱仪中特定波长上的所有偏差能够被完全修正,并且在一个较宽的波长范围内能够最大程度地缓解偏差的影响。

2.5 凹面像差校正全息光栅

这一类型的单色仪和摄谱仪都仅仅使用一单片全息光栅,而没有其他辅助光路。

在这一类仪器中,光栅不仅分离不同波长的光,而且对入射光进行聚焦。

由于设计中仅仅采用了一个光学元件,这类仪器造价低廉、而且外形紧凑。图2.6a给出了ACHG单色仪的结构,而图2.6b给出了ACHG摄谱仪的结构。其中,焦平面的位置由下列参数来决定:

βH - 垂直光谱面方向和光栅法线方向的夹角

- 从光栅中心到光谱面的垂直距离

L

H

(a) ACHG单色仪

(b) ACHG摄谱仪

2.6 单色仪配置中计算α和β

从式(1-2)得到,

(为常数)

根据此式和式 (1-3),

(2-1)

根据式(2-1)和(1-2)能够分别决定a和b。参看表2.2中的实例。

提示:实际中,可实现的最大波长受光栅的机械旋转范围决定。这意味着光栅的刻线密度增加一倍时,相应的光谱仪光谱范围减小一半。(参看第2.14节).

2.7 单色仪的光学部分

要理解如何评价整套单色仪系统,有必要从传输光学部分开始,从光源到出射狭缝(见图2.7)。这里我们给出“不折叠”的系统示意图,以直线光路的形式展示。

图2.7 典型单色仪系统

AS - 光开口阻挡

L1 - 透镜1

M1 - 反射镜1

M2 - 反射镜2

G1 - 光栅

p - 透镜L1的物距

q - 透镜L1的像距

F - 透镜L1的焦距(物体无穷远处时的像距)

d - 透镜的光开口直径 (图中L1)

Ω - 半角

分布光度计测试报告解读资料

培训资料 配光曲线报告的解读 ——分布光度计测试 柳昌 2015-8-14

1. 保护角:灯具结构对光线的约束角,又叫遮光角。 2. 光通量:光源单位时间内发出的光量的总和,单位LM(流明) 说明:人眼对蓝绿光的敏感度最大,因此,波长为555nm 的黄蓝光的单色光源,其辐射功率达到1W 时,其所发出光的光通量就为680 lm 3. 光强(发光强度):光源在特定方向单位立体角内的光通量,单位cd (坎德拉) 4. CIE 分类:CIE 是国际照明委员会 灯具按光通量在其上下空间的分布比例,分为五类,直接型、半直接型、间接型 半间接型、全漫射型。 90%以上的光通量照射下方空间——直接型 60%以上90%以下光通量照射下方空间——半直接型 间接型与半间接型与以上相反。 漫射型:灯具的上下光通量几乎相同 5. S/MH 距高比: 注意:此处烦的“光束角”是广义不精确的(光束角定义见后续阐述) S/M(C0/180): C0-C180一边的距高比 S/M(C90/270): C90-C270一边的距高比 一个衡量左右,一个衡量前后。 n UP,DN(C0-180): C0-C180一边的上下光通比 n UP,DN(C180-360): C180-C360一边的上下光通比 俯视图

6.光束角: 一般意义上的光束角,指光照边缘与光中心线的夹角。 然而,如下情况,光照边缘很难确定,因此光束角需要更科学的定义。 CIE(国际照明委员会,欧洲)规定:光强达到法线光强的50%处,两边形成的夹角IES (国际照明学会,美国)规定:光强达到法线光强的10%处,两边形成的夹角以上标准中规定的定义,是各自为便的人为定义。 7.关于灯具配光曲线: ①c-y/②B-?两种测试支架 C平面: y平面:每个C角度上的平面, 俯 视 图 C0 C90 C-90 C±180

荧光光谱分析仪工作原理

X 荧光光谱分析仪工作原理 用x 射线照射试样时,试样可以被激发出各种波长得荧光x 射线,需要把混合得x 射线 按波长(或能量)分开,分别测量不同波长(或能虽:)得X 射线得强度,以进行左性与定疑 分析,为此使用得仪器叫X 射线荧光光谱仪。由于X 光具有一泄波长,同时又有一立能量, 因此,X 射线荧光光谱仪有两种基本类型:波长色散型与能量色散型。下图就是这两类仪器 得原理图. 用X 射线照射试样时,试样可以被激发出各种波长得荧光X 射线,需要把混合得X 射 线按波长(或能疑)分开,分别测量不同波长(或能量)得X 射线得强度,以进行定性与左疑 分析,为此使用得仪器叫X 射线荧光光谱仪。由于X 光具有一左波长,同时又有一左能量, 因此,X 射线荧光光谱仪有两种基本类型:波长色散型与能量色散型。下图就是这两类仪器 得原理图。 (a )波长色散谱仪 (b )能虽色散谱仪 波长色散型和能量色散型谱仪原理图 现将两种类型X 射线光谱仪得主要部件及工作原理叙述如下: X 射线管 酥高分析器 分光晶体 计算机 再陋电源

丝电源 灯丝 电了悚 X则线 BeiV 輪窗型X射线管结构示意图 两种类型得X射线荧光光谱仪都需要用X射线管作为激发光源?上图就是X射线管得结构示意图。灯丝与靶极密封在抽成貞?空得金属罩内,灯丝与靶极之间加高压(一般为4OKV), 灯丝发射得电子经高压电场加速撞击在靶极上,产生X射线。X射线管产生得一次X射线, 作为激发X射线荧光得辐射源.只有当一次X射线得波长稍短于受激元素吸收限Imi n时,才能有效得激发出X射线荧光?笥?SPAN Ian g =EN-U S >lmin得一次X射线其能量不足以使受激元素激发。 X射线管得靶材与管工作电压决立了能有效激发受激元素得那部分一次X射线得强度。管 工作电压升高,短波长一次X射线比例增加,故产生得荧光X射线得强度也增强。但并不就是说管工作电压越髙越好,因为入射X射线得荧光激发效率与苴波长有关,越靠近被测元素吸收限波长,激发效率越髙。A X射线管产生得X射线透过彼窗入射到样品上, 激发岀样品元素得特征X射线,正常工作时,X射线管所消耗功率得0、2%左右转变为X 射线辐射,其余均变为热能使X射线管升温,因此必须不断得通冷却水冷却靶电极。 2、分光系统 第?准讥器 平面晶体反射X线示意图 分光系统得主要部件就是晶体分光器,它得作用就是通过晶体衍射现彖把不同波长得X射线分开.根据布拉格衍射左律2d S in 0 =n X ,当波长为X得X射线以0角射到晶体,如果晶面间距为d,则在出射角为0得方向,可以观测到波长为X =2dsi n 0得一级衍射及波长为X/2, X /3 ------ ―等髙级衍射。改变()角,可以观测到另外波长得X

曲线运动测试题及答案完整版

曲线运动测试题及答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

曲线运动单元测试 一、选择题(总分41分。其中1-7题为单选题,每题3分;8-11题为多选题,每题5分,全部选对得5分,选不全得2分,有错选和不选的得0分。)1.关于运动的性质,以下说法中正确的是() A.曲线运动一定是变速运动 B.变速运动一定是曲线运动 C.曲线运动一定是变加速运动 D.物体加速度大小、速度大小都不变的运动一定是直线运动 2.关于运动的合成和分解,下列说法正确的是() A.合运动的时间等于两个分运动的时间之和 B.匀变速运动的轨迹可以是直线,也可以是曲线 C.曲线运动的加速度方向可能与速度在同一直线上 D.分运动是直线运动,则合运动必是直线运动 3.关于从同一高度以不同初速度水平抛出的物体,比较它们落到水平地面上的时间(不计空气阻力),以下说法正确的是() A.速度大的时间长 B.速度小的时间长 C.一样长 D.质量大的时间长 4.做平抛运动的物体,每秒的速度增量总是() A.大小相等,方向相同 B.大小不等,方向 不同 C.大小相等,方向不同 D.大小不等,方向 相同 5.甲、乙两物体都做匀速圆周运动,其质量之比为1∶2 ,转动半径之比为1∶2 ,在相等时间里甲转过60°,乙转过45°,则它们所受外力的合力之比为() A.1∶4 B.2∶3 C.4∶9 D.9∶16 6.如图所示,在不计滑轮摩擦和绳子质量的条件下,当小车匀速向右运动时,物体A的受力情况是()Array A.绳的拉力大于A的重力 B.绳的拉力等于A的重力 C.绳的拉力小于A的重力 D.绳的拉力先大于A的重力,后变为小 于重力

GBT 22907-2008 灯具的光度测试和分布光度学

GB/T22907-2008 灯具的光度测试和分布光度学 1 介绍 1.1 范围 本标准包含了大部分类型灯具光度测试的通用要求。 本标准规定了光度测试的标准条件,并推荐了测试程序,使所确定的灯具光度特性及其陈述报告有足够的准确度和复现性,这些规定为统一国家标准提供基础,并为光度实验室的试验和灯具性能数据的表达提供指导。对于实际测试条件不同于标准测试条件的灯具,标准给出了修正系数的测量要求。 对手实验室人员和工程师来说,光度测量方法的详细描述是最重要的,对于数据使用者来说这同样重要。对数据的适当解释通常依赖于对所涉及测量过程的充分了解,同时,本标准也提供给使用者理解光度测量程序和表达的数据。 为极其专业的设施设计的特殊灯具类型,对测量和数据表达要求相关的特殊推荐有需求时,此类通用标准不能覆盖其特性,应以许多补充标准来满足这种需要,这些补充标准将本标准适当章节内引用,并在必要时定义特殊要求和测量条件。 对于没有特定标准覆盖的灯具,可以使用最适合的标准和本通用标准的要求来指导实际的测量程序。 1.2光度特性 光度特性可以被分为测量到的特性,即那些用实验设备直接测量到的,以及推导出的特性,即由测量数据计算得到的。推导的特性更接近相关的照明应用。本标准主要涉及被测量的光度特性。 2术语 仅包含了直接相关的定义。本标准中列出的一些术语可能会在其他标准中以不同的名称(在方括号内给出)出现。 其他的相关定义见CIE/IEC 17. 4-1987 [1]。 2.1 灯具的术语 2.1.1 灯具 luminaire

凡是能分配、透出或转变一个或多个光源发出光线一种器具,并包括支承、固定和保护光源必需的所有部件(但不包括光源本身),以及必需的电路辅助装置和将它们与电源连接的装置。 2.1.2 (灯具)设计姿态[通常应用中也可以倾斜]design attitude (of luminaire) [also.tilt normal in application] 灯具设计的工作姿态(参考制造商的使用说明或常用方式来确定)。 2.1.3 (灯具)测试姿态[测量中也可以倾斜]measurement attitude (of lummaire) [also tilt normal in measurement] 灯具被测试时的姿态。 注:如果没有特别指出,采取与设计一致的姿态。 2.1.4 (光源)光中心 light center (of a source) 用作光度测试和计算的原点。

HORIBAFL-3000FM4荧光光谱仪操作说明解读

设备名称荧光光谱仪 设备型号HORIBA FL-3000/FM4-3000 设备操作规范: 一、开机前准备: 1、实验室温度应保持在15℃~30℃之间,空气湿度应低于75%。 2、确认样品室内无样品后,关上样品室盖。 二、开机 3、打开设备电源开关(氙灯自动点亮,预热20min; 4、打开计算机,双击桌面上的荧光光谱软件,进入工作站,等待光谱仪自检。 三、装样: 5、将样品处理为粉末状,装入样品槽,为防止样品脱落,可加盖载玻片;将样品槽装入样品室,盖好样品室盖子。 四、测试发射光谱: 6、点击菜单中的“Menu”按钮,选择“Spectral”项目中的“Emission”。 7、设置单色器(M:设置激发光波长(如460nm、发射波长扫描范围(如470nm-700nm和狭缝宽度(一般可设置1-5nm,荧光强度强,狭缝宽度要调小。 8、设置检测器(Detector:Formulars选择公式S1。 9、点击右下角“RUN”开始测量; 五、测试激发光谱:

10、点击菜单中的“Menu”按钮,选择“Spectral”项目中的“Excitation”。 11、设置单色器(M:设置监测波长(如625nm、发射波长扫描范围(如380nm-500nm和狭缝宽度(一般可设置1-5nm,荧光强度强,狭缝宽度要调小。 12、设置检测器(Detector:Formulars选择公式S1/R1。 13、点击右下角“RUN”开始测量。 六、测试量子产率: 14、线缆连接积分球:将积分球有指示箭头的一端连接激发口,另一端连接发射。 15、装样:将样品处理为粉末状,装入标准白板样品槽,并加盖石英片;将样品槽装入积分球样品台,先推上层样品台,卡好后,推入下层样品台。 16、点击软件菜单中的“Menu”按钮,选择“Spectral”项目中的“Emission”。 17、设置单色器(M:设置激发光波长(如460nm、扫描范围(如380nm-700nm和狭缝宽度(一般设置1nm。 18、设置检测器(Detector:选中暗电流选项和Correction S1选项,Formulars选择公式S1c,积分时间设置为1s(时间设置越大,扫描越慢。 19、点击右下角“RUN”开始扫描。 20、测试空白样品。测试方法如16-19,样品台内放置标准白板。 21、计算量子产率:点击“QY”按钮,在出现的对话框中设置如下参数:○1找校正谱(在D盘下“校正谱图”,选择固体校正谱;○2导入将要计算的样品谱图;○3导入空白样品谱图;○4输入需计算的激发与发射光谱起始与终止波长。 22、点击确定开始计算。

数据通信基本知识

数据通信基本知识 -------------------------------------------------------------------------- 所有计算机之间之间通过计算机网络的通信都涉及由传输介质传输某种形式的数据编码信号。传输介质在计算机、计算机网络设备间起互连和通信作用,为数据信号提供从一个节点传送到另一个节点的物理通路。计算机与计算机网络中采用的传输介质可分为有线和无线传输介质两大类。 一、有线传输介质(Wired Transmission Media) 有线传输介质在数据传输中只作为传输介质,而非信号载体。计算机网络中流行使用的有线传输介质(Wired Transmission Media)为:铜线和玻璃纤维。 1. 铜线 铜线(Copper Wire)由于具有较低的电阻率、价廉和容易安装等优点因而成为最早用于计算机网络中的传输介质,它以介质中传输的电流作为数据信号的载体。为了尽可能减小铜线所传输信号之间的相互干涉(Interference),我们使用两种基本的铜线类型:双绞线和同轴电缆。 (1)双绞线 双绞线(Twisted Pair)是把两条互相绝缘的铜导线纽绞起来组成一条通信线路,它既可减小流过电流所辐射的能量,也可防止来自其他通信线路上信号的干涉。双绞线分屏蔽和无屏蔽两种,其形状结构如图1.1所示。双绞线的线路损耗较大,传输速率低,但价格便宜,容易安装,常用于对通信速率要求不高的网络连接中。 (2)同轴电缆 同轴电缆(Coaxial Cable)由一对同轴导线组成。同轴电缆频带宽,损耗小,具有比双绞线更强的抗干扰能力和更好的传输性能。按特性阻抗值不同,同轴电缆可分为基带(用于传输单路信号)和宽带(用于同时传输多路信号)两种。同轴电缆是目前LAN局域网与有线电视网中普遍采用的比较理想的传输介质。 2.玻璃纤维 目前,在计算机网络中十分流行使用易弯曲的石英玻璃纤维来作为传输介质,它以介质中传输的光波(光脉冲信号)作为信息载体,因此我们又将之称为光导纤维,简称光纤(Optical Fiber)或光缆(Optical Cable)。 光缆由能传导光波的石英玻璃纤维(纤芯),外加包层(硅橡胶)和保护层构成。在光缆一头的发射器使用LED光发射二极管(Light Emitting Diode)或激光(Laser)来发射光脉冲,在光缆另一头的接收器使用光敏半导体管探测光脉冲。 模拟数据通信与数字数据通信 一、通信信道与信道容量(Communication Channel & Channel Capacity) 通信信道(Communication Channel)是数据传输的通路,在计算机网络中信道分为物理信道和逻辑信道。物理信道指用于传输数据信号的物理通路,它由传输介质与有关通信设备组成;逻辑信道指在物理信道的基础上,发送与接收数据信号的双方通过中间结点所实现的逻?quot;联系",由此为传输数据信号形成的逻辑通路。逻辑信道可以是有连接的,也可以是无连接的。物理信道还可根据传输介质的不同而分为有线信道和

曲线运动综合测试题

曲线运动综合测试题 1、对于曲线运动中的速度方向,下述说法中正确的是: A、曲线运动中,质点在任一位置处的速度方向总是通过这一点的切线方向。 A、在曲线运动中,质点的速度方向有时也不一定沿着轨迹的切线。 C、旋转的雨伞,伞面上水滴由内向外做螺旋运动,故水滴速度方向不是沿其轨迹切线方向。 D、旋转的雨伞,伞面上水滴由内向外做螺旋运动,故水滴速度方向总是沿其轨迹切线方向。 2、下面说法中正确的是: A、物体在恒力作用下不可能做曲线运动。 B、物体在变力作用下有可能做曲线运动。 B、做曲线运动的物体,其速度方向与加速度的方向不在同一直线上。 C、物体在变力作用下不可能做曲线运动。 3、物体受到几个外力作用而做匀速直线运动,如果撤掉其中的一个力,保持其它力不变,它可能做:①匀速直线运动;②匀加速直线运动;③匀减速直线运动;④匀变速曲线运动。下列组合正确的是: A、①②③ B、②③ C、②③④ D、②④ 4、关于互成角度的一个匀速直线运动和一个匀变速直线运动的合运动,下列说法正确的是: A、一定是直线运动。 B、一定是曲线运动。 C、可能是直线运动。 D、可能是曲线运动。 5、质量为m i的子弹在h=10m的高度以800m/s的水平速度射出枪口,质量为m2 (m2>m i) 的物体也在同一高度同时以10m/s的水平速度抛出(不计空气阻力)则有: A、子弹和物体同时落地。 B、子弹落地比物体迟。 B、子弹水平飞行距离较长。D、子弹落地速率比物体大。 6、一飞机以150m/s的速度在高空某一水平面上做匀速直线运动,相隔is先后从飞机上落下 A、B两个物体,不计空气阻力,在运动过程中它们所在的位置关系是: A、A在B之前150m处。 B、A在B之后150m处。 C、正下方4。9m处。 D、A在B的正下方且与B的距离随时间而增大。 7、以速度v在平直轨道上匀速行驶的车厢中,货架上有一个小球,货架距车厢底面的高度为h,当车厢突然以加速度a做匀速加速直线运动时,这个小球从货架上落下,小球落到车厢面上的距货架的水平距离为: ah 8、在高度为h的同一位置向水平方向同时抛出两个小球A和B,若A球的初速度大于B 球的初速度,则下列说法中正确的是:

分布光度计与光谱仪总光通量测试的利弊对比_CN

分布光度计与光谱仪总光通量测试的利弊对比 根据IESNA-LM-79-08,SSL 产品的总光通量(流明)应该使用积分球系统或测角光度计进行测量。具体的选用方法取决于还需要测量其它哪些测量值(颜色,强度分布)以及SSL 产品尺寸和其它要求。 积分球系统适合用于集成LED 灯具和相对较小的LED 光源测量总光通量和色度,积分球系统具有测量速度快和无须暗室的优点。空气流动达到最小,球体内温度不易受温度控制室内潜在的气流影响。注意安装在积分球内部或表面的SSL 产品散发的热量可能会集聚并增加所测产品的环境温度。积分球有两种使用方法,一种采用的是V(λ)校正的光度探头,另一种采用光谱分析仪作为探测器。由于积分球光度计存在V(λ)光谱响应偏差,所以使用第一种方法会产生光谱非匹配误差,而第二种方法理论上没有光谱非匹配误差。 分光辐射仪是SSL 产品测量的首选方法,因为采用光度探头产生的光谱非匹配误差非常严重而不仅仅只对于LED 发射光和校正很重要,它需要用到系统光谱响应以及被测装置频谱方面的知识。另外,采用测角光度计同时也可以测出色度和总光通量。 测角光度计可以测量光强分布以及总光通量。测角光度计在测量小型SSL 产品的同时,还能测 量尺寸相对较大的SSL 产品(相对于传统荧光灯照明)的总光通量。测角光度计通常安装在有温度控制的暗室内,不易从被测光源吸收热量。但要注意通风装置可能影响对温度敏感的SSL 产品的测量。使用测角光度计测量比球体光度计更耗时。使用宽带光探测器的测角光度计易受上述光谱非匹配误差的影响。事实上,如果在颜色和角度方面改变很大,校正光谱非匹配误差就更难。 一般积分球系统和测角光度计测试裸光源的时候,数据相差不大。如果测试灯具,以分布光度计的测试结果为准,当然这个是要确保分布光度计的校准是准确的。按照正规测试要求来说,积分球是用于测试光源的,测角光度计是用于测试灯具的。 力汕LSG-2000旋转反光镜立式分布式光度计是一款自动测试3D光强分布曲线的旋转反光镜立式分布光度计系统,可实现C-γ、A-α和B-β测量方案,完全满足CIE,IESNA,GB等国际国内标准。测试距离要求5-30米不等,可满足各种光源的测试要求,如LED光源,HID光源,室内外照明,路灯,格栅灯等各种照明灯具。 力汕电子推出的LSG-2000已被广泛应用于生产企业和实验室,如Sharp Electronics in Memphis TN(USA), CS TECH MEXICO, S.A. DE C.V. (Mexico),DORADO Praha s.r.o.(Czech)等。力汕之所以能赢得如此多的客户,是源于我们始终实践着正确的产品,正确的价格和正确的服务,未来力汕将始终以高质量的产品和优质的售后来服务广大客户,同时也欢迎各位新老客户的咨询。

稳态瞬态荧光光谱仪(FLS 920)操作说明书

稳态/瞬态荧光光谱仪(FLS 920)操作说明书 中级仪器实验室 一、仪器介绍 1.FLS 920稳态/瞬态荧光光谱仪具有两种功能 稳态测量:激发光谱(荧/磷光强度~激发波长)、发射光谱(荧/磷光强度~发射波长)、同步扫描谱(固定波长差、固定能量差、可变角)。 瞬态测量:荧光(磷光)寿命(100ps—10s)。 适合各类液体和固体样品的测试。 2.主要应用 高分子和天然高分子自然荧光的研究 溶液中大分子分子运动的研究 固体高分子取向的研究 高聚物光降解和光稳定的研究 光敏化过程的研究 3.主要性能指标 光谱仪探测范围:(光电倍增管, 190-870nm;Ge探测器,800-1700nm) 荧光寿命测量范围:100ps-10s 信噪比:6000:1(水峰Raman) 可以配用制冷系统,为样品提供变温环境 液氮系统(77K-320K) 使用Glan棱镜,控制激发光路、发射光路的偏振状态 使用450W氙灯和纳秒、微秒脉冲闪光灯做激发光源 F900系统软件:控制硬件,包括变温系统,数据采集、分析

4. 仪器主要部分结构图

5.仪器光路图 二、仪器测试原理(SPC) 时间相关单光子计数原理是FLS920测量荧光寿命的工作基础。 时间相关单光子计数法(time-correlated single photon counting)简称“单光子计数(SPC)法”,其基本原理是,脉冲光源激发样品后,样品发出荧光光子信号,每次脉冲后只记录某特定波长单个光子出现的时间t,经过多次计数,测得荧光光子出现的几率分布P(t),此P(t)曲线就相当于激发停止后荧光强度随时间衰减的I(t)曲线。这好比一束光(许多光子)通过一个小孔形成的衍射图与单个光子一个一个地通过小孔长时间的累计可得完全相同的衍射图的原理是一样的。

通信原理基础知识整理

通信常识:波特率、数据传输速率与带宽的相互关系 【带宽W】 带宽,又叫频宽,是数据的传输能力,指单位时间能够传输的比特数。高带宽意味着高能力。数字设备中带宽用bps(b/s)表示,即每秒最高可以传输的位数。模拟设备中带宽用Hz表示,即每秒传送的信号周期数。通常描述带宽时省略单位,如10M实质是10M b/s。带宽计算公式为:带宽=时钟频率*总线位数/8。电子学上的带宽则指电路可以保持稳定工作的频率围。 【数据传输速率Rb】 数据传输速率,又称比特率,指每秒钟实际传输的比特数,是信息传输速率(传信率)的度量。单位为“比特每秒(bps)”。其计算公式为S=1/T。T为传输1比特数据所花的时间。 【波特率RB】 波特率,又称调制速率、传符号率(符号又称单位码元),指单位时间载波参数变化的次数,可以以波形每秒的振荡数来衡量,是信号传输速率的度量。单位为“波特每秒(Bps)”,不同的调制方法可以在一个码元上负载多个比特信息,所以它与比特率是不同的概念。 【码元速率和信息速率的关系】 码元速率和信息速率的关系式为:Rb=RB*log2 N。其中,N为进制数。对于二进制的信号,码元速率和信息速率在数值上是相等的。 【奈奎斯特定律】 奈奎斯特定律描述了无噪声信道的极限速率与信道带宽的关系。 1924年,奈奎斯特(Nyquist)推导出理想低通信道下的最高码元传输速率公式:理想低通信道下的最高RB = 2W Baud。其中,W为理想低通信道的带宽,单位是赫兹(Hz),即每赫兹带宽的理想低通信道的最高码元传输速率是每秒2个码元。对于理想带通信道的最高码元传输速率则是:理想带通信道的最高RB= W Baud,即每赫兹带宽的理想带通信道的最高码元传输速率是每秒1个码元。 符号率与信道带宽的确切关系为: RB=W(1+α)。 其中,1/1+α为频道利用率,α为低通滤波器的滚降系数,α取值为0时,频带利用率最高,但此时因波形“拖尾”而易造成码间干扰。它的取值一般不小于0.15,以调解频带利用率和波形“拖尾”之间的矛盾。 奈奎斯特定律描述的是无噪声信道的最大数据传输速率(或码元速率)与信道带宽之间的关系。 【香农定理】 香农定理是在研究信号经过一段距离后如何衰减以及一个给定信号能加载多少数据后得到了一个著名的公式,它描述有限带宽、有随机热噪声信道的最大数据传输速率(或码元速率)与信道带宽、信噪比(信号噪声功率比)之间的关系,以比特每秒(bps)的形式给出一个链路速度的上限。

高中物理-曲线运动单元测试(1)

高中物理-曲线运动单元测试 班级____________姓名___________成绩_____________ 一.共7小题;每小题4分,共28分。在每小题给出的四个选项中只有一项是正确的。选出答案后填入下面答题栏中。 1 A.曲线运动一定是变速运动 B.变速运动一定是曲线运动 C.曲线运动一定是变加速运动 D.物体加速度大小、速度大小都不变的运动一定是直线运动 2.关于互成角度的两个初速度不为零的匀加速直线运动的合运动,下列说法正确() A、一定是直线运动 B、可能是直线运动,也可能是曲线运动 C、一定是曲线运动 D、以上都不对 3.关于平抛运动,下列说法正确的是() A.平抛运动是非匀变速运动B.平抛运动是匀速运动 C.平抛运动是匀变速曲线运动D.平抛运动的物体落地时速度方向一定是竖直向下的4、做平抛运动的物体,在水平方向通过的最大距离取决于() A.物体的高度和所受重力 B. 物体的高度和初速度 C.物体所受的重力和初速度 D. 物体所受的重力、高度和初速度 5、一个物体以初速度V0水平抛出,经过时间t时其竖直方向的位移大小与水平方向的位移大小相等,那么t为

A.g V 0 B.g V 02 C.g V 20 D.g V 02 6、一物体作匀速圆周运动,在其运动过程中,不发生变化的物理量是( ) A .线速度 B . 角速度 C .向心加速度 D .合外力 7.火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定。若在某转弯处规定行驶的速度为v ,则下列说法中正确的是( ) ① 当以v 的速度通过此弯路时,火车重力与轨道面支持力的合力提供向心力 ② 当以v 的速度通过此弯路时,火车重力、轨道面支持力和外轨对轮缘弹力的合力提供向心力 ③ 当速度大于v 时,轮缘挤压外轨 ④ 当速度小于v 时,轮缘挤压外轨 A. ①③ B. ①④ C. ②③ D. ②④ 二.本题共4小题;每小题5分,共20分。在每小题给出的四个选项中至少有一项是正确的,全部选对的得5分,选对但不全的得2分,有选错或不答的得零分。选出答案后填入下面答题栏中。 8.下列叙述正确的是( ) A .物体在恒力作用下不可能作曲线运动 B .物体在变力作用下不可能作直线运动 C .物体在变力或恒力作用下都有可能作曲线运动 D .物体在变力或恒力作用下都可能作直线运动 9. 一个物体以初速度v 0水平抛出,落地时速度为v ,则( ) A. 物体在空中运动的时间是 g v v /)(0

远方GO-NR1000近场分布光度计

传统的远场分布光度计 1 远场测量: 光源发光表面的尺寸和探测器接收表面尺寸与测量距离比足够小时,被测光源将被视为点光源,此时光强的测量遵循照度平方反比定律。 2 传统分布光度计局限: 传统分布光度计只能够测量光源在远场条件下的光分布,当发光体距离被照工作面较近(近场条件)时,其光分布与远场光分布可能会存在很大差异。如下图所示,由多颗具有一定光束角的LED组成的LED灯具在近场各个距离下的光分布就存在很大差别。 LED灯具不同距离被照面的光线 同时在实际的不少应用中也需要了解发光体的近场空间光分布特征,即近场配光性能,例如:LED灯具/模组的二次光学设计,间接照明,洗墙灯等。因此迫切需要一种能够测量光源的近场空间光分布的新型分布光度计,近场分布光度计应运而生。 近场分布光度计

与传统分布光度计不同,近场分布光度计采用了基于二维CCD的成像亮度计作为探测元件。 成像亮度计绕被测光源旋转,测量并记录待测光源在各方向的亮度分布,即光源上的各发光点在各方向上的光通量,并可根据光学原理推导出光线模型,即光从哪里来、往哪个方向去、光线光通量是多少。 ●获得光源的空间亮度分布数据,建立真实的光线模型; ●推导任意平面内的照度分布、远场光强分布等光学参数; ●为灯具二次光学设计及照明设计等提供更为详尽的数据; ●紧凑和便携的设计,占地小,大幅节约实验室空间。 远方GO-NR1000近场分布光度计 远方GO-NR1000近场分布光度计具有全自动的计算机控制系统,适用于小型光源(如LED等)的近场光度测量。GO-NR1000使用成像亮度计采集光源多角度面向的亮度分布,能够获得完整精确的光源特性数据,更高效、准确地实现发光体的光学设计和设计评估,同时通过相应算法建立光源完整精确的光线模型,配合Tracepro等光学软件能对照明产品进行精确的二次光学设计和研发。

曲线运动基础练习题(二)

曲线运动基础练习题(二) 一、选择题 1、人造地球卫星离地面的高度等于地球半径R ,卫星以速度v 沿圆轨道运动,设地面的重力加速度为g ,则有 ( ) A . v .v =gR 2 C .v =gR D .v 2、如图所示,汽车以速度v 0匀速向左行驶,则物体物体M A .匀速上升 B .加速上升 C .减速上升 D .先加速后减速 3、如图所示,a 、b 的质量均为m ,a 从倾角为450的光滑固定斜面顶端无初速度下滑,b 同时从斜面顶端以速度v 0水平抛出,对二者运动过程以下说法正确的是( ) A .落地前的瞬间二者速率相同 B .二者加速度始终相同 C .a 、b 都做匀变速运动 D .a 、b 同时落地 4、如图所示,有一皮带传动装置,两轮半径分别为R 和r ,R=2r ,M 为大轮边缘上的一点,N 为小轮边缘上的一点,若皮带不打滑,则M 、N 两点的( ) A .线速度大小相等 B .角速度相等 C .向心加速度大小相等 D .M 点的向心加速度大于N 点的向心加速度 5、如图(俯视图)所示,以速度v 匀速行驶的列车车厢内有一水平桌面,桌面上的B 处有一小球.若车厢中的旅客突然发现小球沿图中虚线由B 向A 运动.则由此可判断列车( ) A .减速行驶,向南转弯 B .减速行驶,向北转弯 C .加速行驶,向南转弯 D .加速行驶,向北转弯 6、一架飞机水平地匀速飞行,从飞机上每隔1秒钟释放一个铁球,先后共释放4个,若不计空气阻力,则四个小球( ) A .在空中任何时刻总是排成抛物线;它们的落地点是等间距的 B .在空中任何时刻总是排成抛物线;它们的落地点是不等间距的 C .在空中任何时刻总在飞机正下方排成竖直的直线;它们的落地点是等间距的 D .在空中任何时刻总在飞机正下方排成竖直的直线;它们的落地点是不等间距的 7、以速度v 0水平抛出一小球,如果从抛出到某时刻小球的竖直分位移与水平分位移大小相等,则以下判断正确的是( ) A .此时小球的竖直分速度大小等于水平分速度大小

荧光光谱仪操作规范

XXX有限公司 荧光光谱仪操作规范文件编号 :WI-ZL-389 版本/版次: A/2 页次:1/1 1.目的 为保证使用者正确的操作,以达成仪器之正确使用维护。提高仪器的使用寿命,特制定此规范。 参考资料:《Ux220 WorkStation V6.0使用说明书》 2.使用环境: 温度:15℃-25℃ 湿度:30-80%RH 3.仪器说明: 荧光光谱仪由测试仪主机,电脑及测试软件,测试结果输出的打印机组成。 4. 荧光光谱仪的操作方法: 4.1打开仪器电源:测试主机电源、电脑电源; 4.2开启操作程序Ux220 v6.4; 4.3开机预热:打开“设置X光管”窗口,勾选“打开高压电源”及“慢速升管压管流”,确定即可; 4.4用银校正片进行校正,校正不成功重新校正; 4.5输入样品信息、选择合适基材; 4.6将样品放入样品室,确认样品信息、测量次数无误后点击开始测量; 4.7测量完成输出报告并把报告存档。 5.注意事项: 5.1本仪器只允许经过专业培训并有上岗证的人员操作。 5.2本仪器只能检测均匀且颜色单一的物质,如导线,必须把铜丝与绝缘外皮分别进行检测;必须确保样 品厚度在2-3mm以上,若厚度不足可堆叠数个样品至适当厚度;若粒状样品其粒径大于5mm可直接进行测量,若粒径小于5mm则将样品放置样品杯中,尽量不要留下空隙且样品厚度要有2-3mm。 5.3银片校正时银片金属面朝下。 5.4关机时先降管流管压,再关程序,最后关电源; 5.5“Running”指示灯亮时,禁止打开仪器样品室的盖,以免X射线辐射对人体造成危害。 5.6测试大件样品样品室盖无法关闭时,仪器附件人员必须远离仪器三米以外,待延时灯闪烁10秒后 仪器开始测试,待延时灯(也叫做测量指示灯)熄灭后,人员方可靠近。

高考物理力学知识点之曲线运动基础测试题及解析(3)

高考物理力学知识点之曲线运动基础测试题及解析(3) 一、选择题 1.一质量为2.0×103kg的汽车在水平公路上行驶,路面对轮胎的径向最大静摩擦力为 1.4×104N,当汽车经过半径为80m的弯道时,下列判断正确的是() A.汽车转弯时所受的力有重力、弹力、摩擦力和向心力 B.汽车转弯的速度为20m/s时所需的向心力为1.4×104N C.汽车转弯的速度为20m/s时汽车会发生侧滑 D.汽车能安全转弯的向心加速度不超过7.0m/s2 2.如图所示,两根长度不同的细绳,一端固定于O点,另一端各系一个相同的小铁球,两小球恰好在同一水平面内做匀速圆周运动,则() A.A球受绳的拉力较大 B.它们做圆周运动的角速度不相等 C.它们所需的向心力跟轨道半径成反比 D.它们做圆周运动的线速度大小相等 3.公路在通过小型水库的泄洪闸的下游时,常常要修建凹形桥,如图,汽车通过凹形桥的最低点时() A.车的加速度为零,受力平衡B.车对桥的压力比汽车的重力大 C.车对桥的压力比汽车的重力小D.车的速度越大,车对桥面的压力越小4.关于物体的受力和运动,下列说法正确的是() A.物体在不垂直于速度方向的合力作用下,速度大小可能一直不变 B.物体做曲线运动时,某点的加速度方向就是通过这一点的曲线的切线方向 C.物体受到变化的合力作用时,它的速度大小一定改变 D.做曲线运动的物体,一定受到与速度不在同一直线上的合外力作用 5.如图所示的皮带传动装置中,轮A和B固定在同一轴上,A、B、C分别是三个轮边缘的质点,且R A=R C=2R B,则三质点的向心加速度之比a A∶a B∶a C等于()

A.1∶2∶4B.2∶1∶2 C.4∶2∶1D.4∶1∶4 6.小船横渡一条两岸平行的河流,水流速度与河岸平行,船相对于水的速度大小不变,船头始终垂直指向河岸,小船的运动轨迹如图中虚线所示。则小船在此过程中() A.无论水流速度是否变化,这种渡河耗时最短 B.越接近河中心,水流速度越小 C.各处的水流速度大小相同 D.渡河的时间随水流速度的变化而改变 7.如图所示,有两条位于同一竖直平面内的水平轨道,轨道上有两个物体A和B,它们通过一根绕过定滑轮O的不可伸长的轻绳相连接,物体A以速率v A=10m/s匀速运动,在绳与轨道成30°角时,物体B的速度大小v B为() A.53 m/s B.20 m/s C. 203 m/s D.5 m/s 8.如图所示,质量为m的物体,以水平速度v0离开桌面,若以桌面为零势能面,不计空气阻力,则当它经过离地高度为h的A点时,所具有的机械能是( ) A.mv02+mg h B.mv02-mg h C.mv02+mg (H-h) D.mv02 9.如图所示,一质量为m的汽车保持恒定的速率运动,若通过凸形路面最高处时对路面的压力为F1 ,通过凹形路面最低处时对路面的压力为F2,则()

布鲁克XRF荧光光谱仪说明书 11-SampleDef-样品定义

SAMPLEDEF 目录 1 启动 1.1 为什么使用SAMPLEDEF 1.1.1 LOADER 和DEF 文件 1.1.2 使用几个DEF文件 1.1.3 在SPECTRA plus数据里样品定义表的互动1.2 启动SAMPLEDEF 2 使用SAMPLEDEF 2.1 列的管理 2.1.1 创建新列 2.1.2 在列表里工作 2.1.3 设置列的选项 2.2 定义列的类型 2.3 选择数据类型 2.3.1 指定列内容的数据类型 2.3.2 设置为数字数据类型的选项 2.3.3 设置为字符数据类型的选项 2.3.4 设置为组合数据类型的选项 2.3.5 设置为字符串数据类型的选项 3 教材:使用SAMPLEDEF 设置标准样品定义表步骤一启动SAMPLEDEF 步骤二创建位置列 步骤三创建样品列 步骤四创建方法列 步骤五创建SSD-文件列 步骤六创建样品颜色 步骤七创建样品尺寸列 步骤八创建Sample-ID-样品编号列 步骤九创建制样方法列 步骤十创建类型列 步骤十一保存和测试样品定义表 步骤十二从LOADER运行样品定义表 索引

1 启动 1.1 为什么使用SAMPLEDEF 1.1.1 LOADER 和DEF 文件 我们可以通过LOADER程序把样品交付到测量程序。为此,需建立样品与进样器位置、测量程序、样品编号之间的联系,以便日后查询数据。还可以增加其他参数(如样品的稀释比、流水号等等)。在SPECTRA plus,这些样品信息都在SampledDef里定义。 输入界面,即:样品定义表里的各个列,是在扩展名为DEF的文件里定义的。这些DEF文件可以在SAMPLEDEF创建。 1.1.2 使用几个DEF文件 如何建立样品与仪器的联系有很多不同的方法,最简便的方法是接近实验室的实际工作,下面举例说明: 1 样品从不同的工厂送来,并且需要区别,测量方法可以在已建立的方法里选,等等; 2 不同班次的工人用相同的分析方法测量同样的样品,只需要让仪器知道需要测量的样品 在进样器的位置。 当然,很多实验室需要进行上述两样的工作,甚至更多。这就是为什么实验室需要多个样品定义表。 特定的样品定义表(DEF 文件)可以保存选项,从而避免输入错误。如:样品类型强制规定为液体,就可以避免在真空光路测量液体样品。 标准的样品定义表是随SPECTRA plus交付的,(Routine.def 在\Libraries\MeasMethods\)。这个表是通用的表,可以在SAMPLEDEF里进行个性化设定。

分布光度计作业指导书

共8页第1页 2011-09-01 SBC/LP.102-2010 A/1 2011-09-01 1目的 为了对光源及灯具的光分布效果进行量化,而进行的全空间光度、色度、亮度测试。 2适用范围 各类光源及灯具的光度、色度、亮度分布测试。 3设备及附件 3.1 GO-R5000分布光度计自动转台及中场反射镜 LBR-ZL-19-G-003 3.2 1PP42数字功率计 LBR-ZL-19-E-024 3.2 CT400分布光度计控制器 3.3 VPS变频交流电源 3.4 WY12010精密数显直流稳流稳压电源 3.5 电脑主机及显示器 4作业过程 4.1 准备工作 4.1.1操作前确保仪器设备接地良好(定期检查). 4.1.2操作前确保各组件仪器工作状况良好,仪器能正常开机,且能正常待机. 4.1.3灯具安装方面,选择合适的夹具,将灯具安装于夹具上,确保灯具在夹具上的位置稳 定可靠. 4.1.4灯具电气连接准备: 灯具供电参数由送样人填写以委托单形式注明,测试工程师确 定,确保电路连接正确且灯具能正常点亮. 4.1.5确保分布光度计升降装置能正常工作,设备供电后能正常升降即可. 4.2操作步骤 4.2.1打开分布光度计自动转台以及相关仪器供电电源,使各部分都处于待机状态 4.2.2打开控制电脑以及GOSoft软件. 4.2.3安装灯具:用软件控制将转台A轴角度转至120度,用升降车将灯具和夹具升高到灯 臂法兰附近,并将其固定于灯臂法兰上,拧紧四颗固定螺丝.打开十字激光对准器,将 灯具调整到十字激光竖线能平分灯具发光部分,且经过光度中心,横线通过升降灯臂 调制与灯具光度中心等高. 4.2.4用电源给灯具供电,(直流供电灯具选择WY12010直流稳压稳流电源,交流供电灯具 选择VPS1030交流稳压稳流电源)将灯具正常点亮. 4.2.5打开测试软件GOSoft,选择系统类型 (1)配光曲线测试

数据通信基本知识03794

数据通信基本知识 所有计算机之间之间通过计算机网络的通信都涉及由传输介质传输某种形式的数据编码信号。传输介质在计算机、计算机网络设备间起互连和通信作用,为数据信号提供从一个节点传送到另一个节点的物理通路。计算机与计算机网络中采用的传输介质可分为有线和无线传输介质两大类。 一、有线传输介质(Wired Transmission Media) 有线传输介质在数据传输中只作为传输介质,而非信号载体。计算机网络中流行使用的有线传输介质(Wired Transmission Media) 为:铜线和玻璃纤维。 1. 铜线 铜线(Copper Wire)由于具有较低的电阻率、价廉和容易安装等优点因而成为最早用于计算机网络中的传输介质,它以介质中传输的电流作为数据信号的载体。为了尽可能减小铜线所传输信号之间的相互干涉(Interference) ,我们使用两种基本的铜线类型:双绞线和同轴电缆。 (1) 双绞线 双绞线(Twisted Pair) 是把两条互相绝缘的铜导线纽绞起来组成一条通信线路,它既可减小流过电流所辐射的能量,也可防止来自其他通信线路上信号的干涉。双绞线分屏蔽和无屏蔽两种,其形状结构如图 1.1 所示。双绞线的线路损耗较大,传输速率低,但价格便宜,容易安装,常用于对通信速率要求不高的网络连接中。 (2) 同轴电缆 同轴电缆(Coaxial Cable) 由一对同轴导线组成。同轴电缆频带宽,损耗小,具有比双绞线更强的抗干扰能力和更好的传输性能。按特性阻抗值不同,同轴电缆可分为基带(用于传输单路信号)和宽带(用于同时传输多路信号)两种。同轴电缆是目前LAN局域网与有线电视网中普遍采用的比较理想的传输介质。 2. 玻璃纤维目前,在计算机网络中十分流行使用易弯曲的石英玻璃纤维来作为传输介质,它以介质中传输的光波(光脉冲信号)作为信息载体,因此我们又将之称为光导纤维, 简称光纤(Optical Fiber) 或光缆(Optical Cable) 。 光缆由能传导光波的石英玻璃纤维(纤芯),外加包层(硅橡胶)和保护层构成。在光缆一头的发射器使用LED光发射二极管(Light Emitting Diode) 或激光(Laser)来发射光脉冲,在光缆另一头的接收器使用光敏半导体管探测光脉冲。 模拟数据通信与数字数据通信 一、通信信道与信道容量(Communication Channel & Channel Capacity) 通信信道(Communication Channel) 是数据传输的通路,在计算机网络中信道分为物理信道和逻辑信道。物理信道指用于传输数据信号的物理通路,它由传输介质与有关通信设备组成;逻辑信道指在物理信道的基础上,发送与接收数据信号的双方通过中间结点所实现的逻?quot; 联系",由此为传输数据信号形成的逻辑通路。逻辑信道可以是有连接的,也可以是无连接的。物理信道还可根据传输介质的不同而分为有线信道和 无线信道,也可按传输数据类型的不同分为数字信道和模拟信道。信道容量(Channel

相关主题
文本预览
相关文档 最新文档