大学物理_上海交通大学_第四版-下册课后题全部答案
- 格式:doc
- 大小:4.79 MB
- 文档页数:57
大学物理第四版下册课后题答案习题1111-1.直角三角形ABC 的A 点上,有电荷C 108.191-⨯=q ,B 点上有电荷C 108.492-⨯-=q ,试求C 点的电场强度(设0.04m BC =,0.03m AC =)。
解:1q 在C 点产生的场强:11204ACq E irπε=, 2q 在C 点产生的场强:22204BCq E j r πε=,∴C 点的电场强度:4412 2.710 1.810E E E i j =+=⨯+⨯;C 点的合场强:22412 3.2410VE E E m =+=⨯,方向如图: 1.8arctan33.73342'2.7α===。
11-2.用细的塑料棒弯成半径为cm 50的圆环,两端间空隙为cm 2,电量为C 1012.39-⨯的正电荷均匀分布在棒上,求圆心处电场强度的大小和方向。
解:∵棒长为2 3.12l r d m π=-=, ∴电荷线密度:911.010q C m l λ--==⨯⋅可利用补偿法,若有一均匀带电闭合线圈,则圆心处的合场强为0,有一段空隙,则圆心处场强等于闭合线圈产生电场再减去m d 02.0=长的带电棒在该点产生的场强,即所求问题转化为求缺口处带负电荷的塑料棒在O 点产生的场强。
解法1:利用微元积分:21cos 4O x Rd dE Rλθθπε=⋅,∴2000cos 2sin 2444O dE d R R R ααλλλθθααπεπεπε-==⋅≈⋅=⎰10.72V m -=⋅;解法2:直接利用点电荷场强公式:由于d r <<,该小段可看成点电荷:112.010q d C λ-'==⨯, 则圆心处场强:1191220 2.0109.0100.724(0.5)O q E V m R πε--'⨯==⨯⨯=⋅。
方向由圆心指向缝隙处。
11-3.将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB 的半径为R ,试求圆αi2cm O R x αα心O 点的场强。
大学物理第四版课后习题答案
《大学物理第四版课后习题答案:探索自然规律的奥秘》
在大学物理第四版课后习题答案中,我们不仅可以找到对各种物理问题的解答,更可以感受到探索自然规律的乐趣和奥秘。
物理作为自然科学的一门重要学科,通过研究物质和能量的运动规律,揭示了世界的奥秘,为人类社会的发展进步
做出了巨大贡献。
在课后习题答案中,我们可以看到许多经典物理问题的解答,比如力学、热学、电磁学等各个领域的问题都有详细的解析。
这些问题不仅考察了我们对物理知
识的理解和掌握,更重要的是让我们通过解题的过程,深入思考自然规律的本
质和规律的应用。
通过这些问题,我们可以更加深入地理解物理学的基本原理,培养我们的逻辑思维能力和问题解决能力。
除了习题答案,大学物理第四版还提供了丰富的案例分析和实验设计,让我们
更加直观地感受物理规律的应用和实验方法的设计。
这些案例和实验不仅可以
帮助我们更好地理解物理理论,还可以培养我们的实践能力和创新思维,为我
们今后的科学研究和工程实践打下坚实的基础。
通过学习大学物理第四版课后习题答案,我们可以更加深入地了解物理学的世界,感受到自然规律的奥秘和美妙。
希望广大学生能够在学习物理的过程中,
不仅能够掌握知识,更能够培养批判性思维和创新能力,为未来的科学研究和
社会发展做出更大的贡献。
习题 11-1.已知质点位矢随时间变化的函数形式为(cos sin )r =R ωt i ωt j + 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。
解:(1) 由(cos sin )r =R ωt i ωt j +,知:cos x R t ω= ,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在(0,0)处,半径为R 的圆;(2)由d rv dt=,有速度:sin Rcos v R t i t j ωωωω=-+ 而vv =,有速率:1222[(sin )(cos )]v R t R t R ωωωωω=-+=。
1-2.已知质点位矢随时间变化的函数形式为24(32)r t i t j =++,式中r 的单位为m ,t 的单位为s 。
求:(1)质点的轨道;(2)从0=t到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。
解:(1)由24(32)r t i t j =++,可知24x t = ,32y t =+消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线。
(2)由d rv dt=,有速度:82v t i j =+从0=t到1=t 秒的位移为:11(82)42r v d t t i j d t i j ∆==+=+⎰⎰(3)0=t和1=t 秒两时刻的速度为:(0)2v j =,(1)82v i j =+ 。
1-3.已知质点位矢随时间变化的函数形式为22r t i t j =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
解:(1)由d r v dt =,有:22v t i j =+,d va dt=,有:2a i =; (2)而vv =,有速率:12222[(2)2]21v t t =+=+∴t dv a dt ==222t n a a a =+有: n a ==1-4.一升降机以加速度上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。
习 题1-1. 已知质点位矢随时间变化的函数形式为)ωt sin ωt (cos j i +=R r其中ω为常量.求:(1)质点的轨道;(2)速度和速率。
解:1) 由)ωt sin ωt (cos j i +=R r 知 t cos R x ω= t sin R y ω=消去t 可得轨道方程 222R y x =+2) j rv t Rcos sin ωωt ωR ωdtd +-==i R ωt ωR ωt ωR ωv =+-=2122])c o s ()s i n [(1-2. 已知质点位矢随时间变化的函数形式为j i r )t 23(t 42++=,式中r 的单位为m ,t 的单位为s .求:(1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。
解:1)由j i r )t 23(t 42++=可知2t 4x =t 23y +=消去t 得轨道方程为:2)3y (x -=2)j i rv 2t 8dtd +==j i j i v r 24)dt 2t 8(dt 11+=+==⎰⎰Δ3) j v 2(0)= j i v 28(1)+=1-3. 已知质点位矢随时间变化的函数形式为j i r t t 22+=,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
解:1)j i rv 2t 2dt d +== i va 2dtd ==2)212212)1t (2]4)t 2[(v +=+= 1t t 2dtdv a 2t +==n a ==1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。
解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为20121at t v y += (1) 图 1-420221gt t v h y -+= (2)21y y = (3) 解之t =初速度0v 水平抛出,求:1-5. 一质量为m 的小球在高度h 处以(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的t d d r ,t d d v ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2)j i r )gt 21-h (t v (t)20+=(2)联立式(1)、式(2)得 22v 2gx h y -=(3)j i rgt -v t d d 0= 而 落地所用时间 gh 2t = 所以j i r 2gh -v t d d 0= j v g td d -= 2202y 2x )gt (v v v v -+=+=212220[()]g t dvdt v gt ==+1-6. 路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走。
第十六章相对论题16.1:设'S 系以速率v = 0.60c 相对于S 系沿'xx 轴运动,且在t ='t = 0时,0'==x x 。
(1)若有一事件,在 S 系中发生于t = 2.0×10-7 s ,x = 50 m 处,该事件在 'S 系中发生于何时刻?(2)如有另一事件发生于 S 系中 t = 3.0×10-7 s ,x = 10 m 处,在 S ′系中测得这两个事件的时间间隔为多少?题16.1解:(1)由洛伦兹变换可得S ′系的观察者测得第一事件发生的时刻为s 1025.1/1'7221211-⨯=--=c v x c v t t(2)同理,第二个事件发生的时刻为s 105.3/1'7222222-⨯=--=c v x c v t t所以,在S ′系中两事件的时间间隔为s 1025.2'''721-⨯=-=∆t t t题16.2:设有两个参考系S 和S ′,它们的原点在t = 0和t ′ = 0时重合在一起。
有一事件,在 S ′系中发生在 t ′ = 8.0×10-8 s ,x ′ = 60 m ,y ′ = 0,z ′ = 0处,若S ′系相对于S 系以速率v = 0.6c 沿xx ′轴运动,问该事件在S 系中的时空坐标各为多少?题16.2解:由洛伦兹逆变换得该事件在S 系的时空坐标分别为m 93/1''22=-+=c v vt x x 0'==y y0'==z zs 105.2/1''7222-⨯=-+=c v x c v t t题16.3:一列火车长 0.30 km (火车上观察者测得),以 100 km/h 的速度行驶,地面上观察者发现有两个闪电同时击中火车的前后两端。
问火车上的观察者测得两闪电击中火车前后两端的时间间隔为多少?题16.3解:设地面为S 系,火车为S ′系,把闪电击中火车前后端视为两个事件(即两组不同的时空坐标)。
大学物理(下册)答案第十一章 静电场【例题精选】例11-1 如图所示,在坐标(a ,0)处放置一点电荷+q ,在坐标(-a ,0)处放置另一点电荷-q .P 点是x 轴上的一点,坐标为(x ,0).当x >>a 时,该点场强的大小为:(A)x q 04επ. (B) 30x qa επ. (C) 302x qa επ. (D) 204x qεπ. [ B ]例11-2半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r的关系曲线为:[ B ]例11-3 半径为R 的“无限长”均匀带电圆柱面的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为:[ B ]例11-4一半径为R 的带有一缺口的细圆环,缺口长度为 d (d<<R)环上均匀带有正电,电荷为q ,如图所示.则圆心O 处的场强大小E = ;场强方向为 .()30220824Rqdd R R qd εεπ≈-ππ 从O 点指向缺口中心点. 例11-5 均匀带电直线长为d ,电荷线密度为+λ,以导线中点O 为球心,R 为半径(R >d )作一球面,如图所示,则通过该球面的电场强度通量为______。
带电直线的延长线与球面交点P 处的电场强度的大小为_____,方向________。
0/ελd ; ()2204d R d-πελ ;沿矢径OP例11-6 有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,EO r(A) E ∝1/r有一电荷为q 的正点电荷,如图,则通过该平面的电场强度通量为 (A)03εq . (B) 04επq (C) 03επq . (D) 06εq [ D ] 例11-7 两块“无限大”的均匀带电平行平板,其电荷面密度分别 为σ( σ>0)及-2 σ,如图所示。
试写出各区域的电场强度E 。
Ⅰ区E 的大小__________________,方向____________。
大学物理第四版下册答案【篇一:大学物理(上海交通大学)课后习题答案(第四版)】已知质点位矢随时间变化的函数形式为其中?为常量.求:(1)质点的轨道;(2)速度和速率。
消去t可得轨道方程x?y?r 2)v?222dr1-2. 已知质点位矢随时间变化的函数形式为r?4ti?(3?2t)j,式中r的单位为m,t的单位为s.求:(1)质点的轨道;(2)从t?0到t?1秒的位移;(3)t?0和t?1秒两时刻的速度。
解:1)由r?4ti?(3?2t)j可知22x?4t2 y?3?2t消去t得轨道方程为:x?(y?3) 2)v?2dr?8ti?2j dt113)v(0)?2jv(1)?8i?2j1-3. 已知质点位矢随时间变化的函数形式为r?ti?2tj,式中r的单位为2(1)任一时刻的速度和加速度;(2)任一时刻的切向加速m,t的单位为s.求:度和法向加速度。
解:1)v?dr?2ti?2j dta?dv?2i dt22)v?[(2t)?4]?2(t2?1)at?dv?dt2tt?12an??1-4. 一升降机以加速度a上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d,求螺钉从天花板落到底板上所需的时间。
解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为 12at(1)图 21y2?h?v0t?gt2 (2)2y1?v0t?1-4y1?y2 (3)解之t?1-5. 一质量为m的小球在高度h处以水平抛出,求:(1)小球的运动方程;(2)小球在落地之前的轨迹方程;(3)落地前瞬时小球的初速度v0drdvdv,,. dtdtdt解:(1) x?v0t 式(1)1y?h?gt2 式(2)21r(t)?v0ti?(h-gt2)j2gx2(2)联立式(1)、式(2)得 y?h?22v0(3)dr?v0i-gtj而落地所用时间t?dt2h g所以drdv?v0i-2ghj??gj dtdt22v?v2v0?(?gt)2 x?vy?g2tdv??[v2?(gt)2]01-6. 路灯距地面的高度为h1,一身高为h2的人在路灯下以匀速v1沿直线行走。
习题11-1.已知质点位矢随时间变化的函数形式为(cos sin )r =R ωt i ωt j + 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。
解:(1)由(cos sin )r =R ωt i ωt j +,知:cos x R t ω=,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在(0,0)处,半径为R 的圆; (2而v v =,有速率:cos )]v t R ωω==。
1-2.已知质点位矢随时间变化的函数形式为2(32)i t j ++,式中r 的单位为m ,t 0=t 和1=t 解:(消去t 3),∴质点的轨道为抛物线。
(2d r,有速度:82v t i j =+ 从0=t 秒的位移为:1100(82)42r v d t t i j d t i j ∆==+=+⎰⎰(3)和秒两时刻的速度为:1-3.已知质点位矢随时间变化的函数形式为22r t i t j =+,式中r 的单位为,t )任一时刻的速度和加速度;(2)任一时刻的切向加速度和 解:由d r v dt =,有:22v t i =+d (2)而v v =,有速率:2[(2)2]21v t t =+=+dtt 1-4a 机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。
解法一:以地面为参照系,坐标如图,设同一时间内螺钉下落的距离为1y ,升降机上升的高度为2y ,运动方程分别为21012y v t gt =-(1)22012y v t at =+(2)12y y d +=(3)2(注意到1y 为负值,有11y y =-)联立求解,有:t ='g g a =+,利用21'2d g t =,有:t ==1-5.一质量为m h 0v 水平抛出,求:解:()如图,可建立平抛运动学方程: 0x v t =21()t i h g t j +-;(2)联立上面两式,消去t 得小球轨迹方程:2y v =-;(30r v i g t j =-, 即:0v v i g t j -,g j d t=- 在落地瞬时,有:2ht =,∴02d r v i gh j =- 又∵v 12g gh g t dv==1-6∴112x =两边对时间求导有:11212d x h d x d t h h d t =-,考虑到:21d x v d t=, 知人影中头的速度:21112d x hv v d t h h ==-影(常数)。
习题11-1.已知质点位矢随时间变化的函数形式为(cos sin )r =R ωt i ωt j + 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。
解:(1) 由(cos sin )r =R ωt i ωt j +,知:cos x R t ω= ,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在(0,0)处,半径为R 的圆;(2)由d rv dt =,有速度:sin Rcos v R t i t j ωωωω=-+而v v =,有速率:1222[(sin )(cos )]v R t R t R ωωωωω=-+=。
1-2.已知质点位矢随时间变化的函数形式为24(32)r t i t j =++,式中r 的单位为m ,t 的单位为s 。
求:(1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。
解:(1)由24(32)r t i t j =++,可知24x t = ,32y t =+消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线。
(2)由d rv dt =,有速度:82v t i j =+从0=t 到1=t 秒的位移为:11(82)42r v d t t i j d t i j ∆==+=+⎰⎰(3)0=t 和1=t 秒两时刻的速度为:(0)2v j =,(1)82v i j =+ 。
1-3.已知质点位矢随时间变化的函数形式为22r t i t j =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
解:(1)由d r v dt =,有:22v t i j =+,d va dt =,有:2a i =;(2)而v v =,有速率:12222[(2)2]21v t t =+=+∴t dv a dt==,利用222t n a a a =+有: n a ==1-4.一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。
习题1111-1.直角三角形ABC的A点上,有电荷C108.191-⨯=q,B点上有电荷C108.492-⨯-=q,试求C点的电场强度(设0.04mB C=,0.03mA C=)。
解:1q在C点产生的场强:1124A CqE irπε=,2q在C点产生的场强:2224B CqE jrπε=,∴C点的电场强度:44122.710 1.810E E E i j=+=⨯+⨯;C点的合场强:43.2410VEm==⨯,方向如图:1.8arctan33.73342'2.7α===。
11-2.用细的塑料棒弯成半径为cm50的圆环,两端间空隙为cm2,电量为C1012.39-⨯和方向。
解:∵棒长为2 3.12l r d mπ=-=,∴电荷线密度:911.010qC mlλ--==⨯⋅可利用补偿法,若有一均匀带电闭合线圈,则圆心处的合场强为0,有一段空隙,则圆心处场强等于闭合线圈产生电场再减去md02.0=长的带电棒在该点产生的场强,即所求问题转化为求缺口处带负电荷的塑料棒在O点产生的场强。
解法1:利用微元积分:21cos4O xR ddERλθθπε=⋅,∴2000cos2sin2444OdE dR R Rααλλλθθααπεπεπε-==⋅≈⋅=⎰10.72V m-=⋅;解法2:直接利用点电荷场强公式:由于d r<<,该小段可看成点电荷:112.010q d Cλ-'==⨯,则圆心处场强:1191222.0109.0100.724(0.5)OqE V mRπε--'⨯==⨯⨯=⋅。
方向由圆心指向缝隙处。
11-3.将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB的半径为R,试求圆ix心O 点的场强。
解:以O 为坐标原点建立xOy 坐标,如图所示。
①对于半无限长导线A ∞在O 点的场强:有:00(cos cos )42(sin sin )42A x A yE R E R λπππελπππε=-=-⎧⎪⎪⎨⎪⎪⎩②对于半无限长导线B ∞在O 点的场强:有:00(sin sin )42(cos cos )42B x B yE R E R λπππελπππε=-=-⎧⎪⎪⎨⎪⎪⎩③对于AB圆弧在O 点的场强:有:2000200cos (sinsin )442sin (coscos )442AB x AB y E d RRE d RRππλλπθθππεπελλπθθππεπε==-=⎧⎪⎪⎨⎪⎪=--⎩⎰⎰∴总场强:04O x E Rλπε=,04O y E Rλπε=,得:0()4O E i j Rλπε=+ 。
或写成场强:0E ==45 。
11-4.一个半径为R 的均匀带电半圆形环,均匀地带有电荷,电荷的线密度为λ,求环心处O 点的场强E 。
解:电荷元dq 产生的场为:204d q d E Rπε=;根据对称性有:0yd E=⎰,则:20sin sin 4xR d E dEd E R πλθθθπε===⎰⎰⎰02Rλπε=,方向沿x 轴正向。
即:02E iR λπε=。
11-5.带电细线弯成半径为R 的半圆形,电荷线密度为0sin λλϕ=,式中0λ为一常数,ϕ为半径R 与x 轴 所成的夹角,如图所示.试求环心O 处的电场强度。
解:如图,0200sin 44d d ldE RRλϕϕλπεπε==,λxyEcos sin x y dE dE dE dE ϕϕ==⎧⎪⎨⎪⎩考虑到对称性,有:0=xE ;∴200000sin (1cos 2)sin 4428yd d E d EdE RRR ππλϕϕλλϕϕϕπεπεε-=====⎰⎰⎰⎰, 方向沿y 轴负向。
11-6.一半径为R 的半球面,均匀地带有电荷,电荷面密度为σ,求球心O 处的电场强度。
解:如图,把球面分割成许多球面环带,环带宽为d l R d θ=,所带电荷:2dq r d l πσ=。
利用例11-3结论,有:332220024()4x dqr x d ld E x r σππεπε⋅==+∴322202cos sin 4[(sin )(cos )]R R Rd dE R R σπθθθπεθθ⋅⋅⋅=+,化简计算得:20001sin 2224E d πσσθθεε==⎰,∴04E σε= 。
11-7.图示一厚度为d 的“无限大”均匀带电平板,电荷体密度为ρ。
求板内、外的场强分布,并画出场强随坐标x 变化的图线,即x E -图线(设原点在带电平板的中央平面上,Ox 轴垂直于平板)。
解:在平板内作一个被平板的中间面垂直平分的闭合圆柱面1S 为高斯面,当2d x ≤时,由12S E dS E S ⋅=⋅∆⎰和2q x S ρ=∆∑,有:0x E ρε=;当2d x >时,由22S E dS E S⋅=⋅∆⎰和2q d S ρ=∆∑,有:02dE ρε=。
图像见右。
11-8.在点电荷q 的电场中,取一半径为R 的圆形平面(如图所示),平面到q 的距离为d ,试计算通过该平面的E 的通量.解:通过圆平面的电通量与通过与A 为圆心、AB 为半径、圆的平面 为周界的球冠面的电通量相同。
x【先推导球冠的面积:如图,令球面的半径为r ,有球冠面一条微元同心圆带面积为:2sin dSr rd πθθ=⋅ ∴球冠面的面积:200cos 2sin 2cos d rS r rd r θθπθθπθ==⋅=⎰22(1)d r rπ=-】∵球面面积为:24S rπ=球面,通过闭合球面的电通量为:qεΦ=闭合球面,由:S S Φ=Φ球冠球面球面球冠,∴1(1)(122d qq r εεΦ=-⋅=-球冠。
11-9.在半径为R 的“无限长”直圆柱体内均匀带电,电荷体密度为ρ,求圆柱体内、外的场强分布,并作E ~r 关系曲线。
解:由高斯定律01iSS E dS qε⋅=∑⎰⎰内,考虑以圆柱体轴为中轴,半径为r ,长为l 的高斯面。
(1)当r R <时,22r l r l E ρππε⋅=,有2E rρε=;(2)当r R >时,22R l r l E ρππε⋅=,则:E =即:020()2()2rr R E R r R r ρερε⎧<⎪⎪=⎨⎪>⎪⎩;图见右。
11-10.半径为1R 和2R (21R R <)的两无限长同轴圆柱面,单位长度分别带有电量λ和λ-,试求:(1)1R r <;(2)21R r R <<;(3)2R r >处各点的场强。
解:利用高斯定律:1iSS E dS qε⋅=∑⎰⎰内。
(1)1r R <时,高斯面内不包括电荷,所以:10E =; (2)12R r R <<时,利用高斯定律及对称性,有:202l r l E λπε=,则:202E rλπε=;Oθr(3)2r R >时,利用高斯定律及对称性,有:320rlE π=,则:30E =;即:112020ˆ20E r R E rR r R r E r R E λπε⎧=<⎪⎪=<<⎨⎪⎪==>⎩。
11-11.一球体内均匀分布着电荷体密度为ρ的正电荷,若保持电荷分布不变,在该球体中挖去半径为r 的一个小球体,球心为O ',两球心间距离d O O =',如图所示。
求:(1)在球形空腔内,球心O '处的电场强度0E ;(2)在球体内P 点处的电场强度E ,设O '、O 、P 三点在同一直径上,且dOP=。
解:利用补偿法,可将其看成是带有电荷体密度为ρ的大球和带有电荷体密度为ρ-的小球的合成。
(1)以O 为圆心,过O '点作一个半径为d 的高斯面,根据高斯定理有: 13043S E d S d ρπε⋅=⋅⎰ ⇒003d E ρε=,方向从O 指向O ';(2)过P 点以O 为圆心,作一个半径为d 的高斯面。
根据高斯定理有:13043S E d S d ρπε⋅=⋅⎰ ⇒103P d E ρε=,方向从O 指向P ,过P 点以O '为圆心,作一个半径为d 2的高斯面。
根据高斯定理有:23043S E d S r ρπε⋅=-⋅⎰⇒32203P r E d ρε=-,∴1232()34P P rE E E d dρε=+=-,方向从O 指向P 。
11-12.设真空中静电场E的分布为E c x i = ,式中c 为常量,求空间电荷的分布。
有:0S E d S c x S⋅=⋅∆⎰⎰由高斯定理:1SS E d S qε⋅=∑⎰⎰内,设空间电荷的密度为()x ρ,有:0000()x x Sd x c x S ρε∆⋅∆=⎰∴000()x x x d x cd xρε=⎰⎰,可见()x ρ为常数⇒0c ρε=。
11-13.如图所示,一锥顶角为θ的圆台,上下底面半径分别为1R 和2R ,在它的侧面上均匀带电,电荷面密度为σ,求顶点O 的电势.(以无穷远处为电势零点)解:以顶点为原点,沿轴线方向竖直向下为x 轴,在侧面上取环面元,如图示,易知,环面圆半径为:t a n2r x θ=,环面圆宽:cos2d x d l θ=22tan2cos2d xdS r d l x θππθ=⋅=⋅⋅,利用带电量为q 的圆环在垂直环轴线上0x 处电势的表达式:14U πε=环有:02tan2cos1tan 422d x x dU d xθσπθσθπεε⋅⋅==⋅,考虑到圆台上底的坐标为:11cot2x R θ=,22cot2x R θ=,∴U =21tan22x x d x σθε⋅⎰21cot 2cot2tan22R R d x θθσθε=⋅⎰210()2R R σε-=。
11-14.电荷量Q 均匀分布在半径为R 的球体内,试求:离球心r 处(r R <)P 点的电势。
解:利用高斯定律:1SS E dS qε⋅=∑⎰⎰内(1)r R <时,32304Qrr E Rπε=⋅内;有:304Q r E R πε=内(2)r R >时,24Qr E πε=外;有:204Q E rπε=外;xcos2dx θ离球心r 处(r R <)的电势:R rrRU E d r E d r∞=⋅+⋅⎰⎰外内,即:320044R r rRQ r Q U d r d r Rrπεπε∞=⋅+⋅⎰⎰2300388Q Q rRRπεπε=-。
11-15.图示为一个均匀带电的球壳,其电荷体密度为ρ,球壳内表面半径为1R ,外表面半径为2R .设无穷远处为电势零点,求空腔内任一点的电势。
解:当1r R <时,因高斯面内不包围电荷,有:1E=,当12R r R <<时,有:203132031323)(4)(34rR r rR r E ερπεπρ-=-=,当2r R >时,有:20313220313233)(4)(34rR R rR R E ερπεπρ-=-=,以无穷远处为电势零点,有:21223R R R U E d r E d r ∞=⋅+⋅⎰⎰⎰⎰∞-+-=2R dr rR R dr rR r R R 203132203133)(3)(21ερερ)(221220R R -=ερ。