当前位置:文档之家› Mining Subsidence Paper_Ren_Li_Buckeridge_rev4_Jan2010

Mining Subsidence Paper_Ren_Li_Buckeridge_rev4_Jan2010

Mining Subsidence Paper_Ren_Li_Buckeridge_rev4_Jan2010
Mining Subsidence Paper_Ren_Li_Buckeridge_rev4_Jan2010

Calculation of Mining Subsidence and Ground Principal Strains Using a Generalized Influence Function Method

G. Ren*, J. Li and J. Buckeridge

School of Civil, Environmental and Chemical Engineering, RMIT University

GPO Box 2476V, Melbourne 3001, Australia

___________________________________________________________________________

Abstract

A generalized influence function method is introduced using tabulated influence weighting factors in subsidence calculation. Tabulated influence weighting factors have the advantage of being more flexible than having to find a mathematical influence function. The values of weighting factors can be readily adopted either using a local observational database if available, or a published data source. The flexibility and adoptability of the method is demonstrated through a case study with subsidence contours, movement vectors and principal strains. It is also demonstrated that the method is a valuable tool in assessing subsidence effects on surface structures and utilities.

* Corresponding author : Tel.: 613 9925 2409 Fax: 613 9639 0138

E-mail address: gang.ren@https://www.doczj.com/doc/2514835448.html,.au

1. Introduction

The accurate prediction of ground movements associated with underground mining is essential for assessing surface damage and effective damage prevention. Various methods can be used for

predicting mining subsidence and horizontal movements, including physical and numerical modeling methods, profile function and influence function methods [1]. Of these numerous prediction methods, the influence function method is increasingly favoured due to its flexibility and

adoptability with computer programming [2]. Various mining configurations including irregular

shaped panels, multiple extraction seams, inclined coal deposits and sloping ground can be taken into account using the influence function method [3 & 4]. The influence function method can be calibrated to suit local mining conditions to achieve better analytical results as demonstrated by Sheorey et al. [5]. Ren et al. [6] suggested that the angle of draw, inter alia , is influenced by the strength of the overburden strata. The angle of draw defines the extent of the underground extraction at the ground surface.

In the application of the conventional influence function method, it is usually necessary to use a predefined influence function, which is a mathematical expression, to define the weighting factors. This paper presents a generalized influence function approach which makes use of influence factors in a tabular form for subsidence calculations.

2. Mining Subsidence Prediction using Influence Function Method

The influence function method used in subsidence prediction is based on the assumption that the effect of an underground extraction on the surface follows a prescribed mathematical expression, i.e. the influence function depends on the spatial relationship between the locations of the underground extraction and the surface point in question. This is illustrated in Figure 1, where an underground extraction element creates a subsidence trough at the surface. The profile for the subsidence trough can be prescribed by an influence function (Figure 2), which can be expressed mathematically. A general form of an influence function may be expressed as: )(x f k z =, where x can be either the zone angle θ or as the radial distance r from the centre of the subsidence trough (see Figure 2).

A number of influence functions have been proposed by researchers, such as Bals, Sann, Ehrhardt and Sauer which were summarized by Kratzsch [7]:

Bals’ influence function: θ2cos =z k (1)

where θ is the zone angle (see Figures 2) Sann’s influence function: 241256.2r z e r

k ?= (2) Ehrhardt and Sauer’s influence function: 2

5.01392.0r z e k ?= (3)

where r is radial distance from centre of subsidence trough (see Figure 2). Influence functions are generally derived analytically from observations or based on assumptions. In general, these functions are mathematical expressions that are used to describe the effect of the removal of an underground element on the ground surface.

A stochastic influence function that has been derived from statistical assumptions was adopted in computer programs for subsidence computation [3]. Application of this type of influence function assumes that the ground will achieve the most probable state of static equilibrium following the

underground extraction. Based on this probabilistic approach, the trough profile is assumed to follow the stochastic function (Whittaker and Reddish [2], p477): 2221

R r z e R k ??=π (4)

where R is the radius of influence circle on surface (Figure 2).

All influence functions, in essence, define the extent of influence of an underground extraction element on a surface point using a mathematical expression.

Extensive studies have been conducted ([2], [3] & [4]) and the application of the stochastic influence function method to practical subsidence analysis has been well demonstrated in these literatures. In a relatively recent publication [5], Sheorey et al . proposed a new modified influence function based on the observational data obtained from a specific coal field in India: )cos 1(5352

.02R r

R k z ?+=π

(5) This modified influence function gave generally much improved predictive results for the specific coal field in India [5].

As noted, the influence function method used in mining subsidence prediction and analysis has become a powerful tool when it was programmed for personal computers. Complex extraction

geometries and topography can now be readily analysed and the output can be presented in graphical format [3 & 4].

3.

Generalized Influence Function Method 3.1 Subsidence Weighting Factors

The conventional influence function method generally makes use of zone area or grid integration approach. Peng [1] has summarised the methodology of application of the influence function to subsidence calculation in detail. It is demonstrated that the influence function method is a flexible tool in subsidence analysis and prediction. However, all the presented influence function methods involve mathematical expressions to describe the effect of an underground extraction on the ground surface, such as the functions listed in Equations (1) to (5). Mathematical functions can be derived either from statistics or from curve fitting based on observation data obtained from specific coal fields. For example, if the influence area is evenly divided into 10 rings, the stochastic influence function at Equation (4) gives the following subsidence weighting factors (Table 1) [3]:

Table 1: Weighting factors based on stochastic function Ring (i)* 1 2 3 4 5 6 7 8 9 10 ∑ Weight factor

S(i)** 0.035 (0.031) 0.091 (0.087) 0.132 (0.128) 0.153 (0.149) 0.154 (0.149) 0.137 (0.133) 0.112 (0.108) 0.085 (0.081) 0.058 (0.055) 0.039 (0.035) 1 0.957 *Ring number counted from inter to outer

** Values in brackets - weighting factors directly computed based on stochastic function without normalization The modified influence function (5) by Sheorey et al. gives the following weighting factors: Table 2: Weighting factors based on Equation (5) (after Sheorey, et al . [5])

Ring (i) 1 2 3 4 5 6 7 8 9 10 ∑ Weight factor S(i) 0.030 0.085 0.131 0.161 0.171 0.160 0.129 0.086 0.040 0.007 1 Generally, in calculating the subsidence weighting factors, an infinitesimal extraction element dA will result in an amount of subsidence dS at the surface:

dS = S 0 k z dA (6)

where S 0 is the maximum possible subsidence

An underground extraction panel of area “A ” will produce surface subsidence “S”, defined by:

S = S 0dA k A z ∫∫

(7)

When the influence circle is divided into a number of rings (e.g. i=1 to n ), the subsidence weighting factors S(i) for an individual ring can be determined from:

S(i) = S/S 0 = dA k A z ∫∫

(8)

For instance, if the stochastic influence function at (4) is used, we have:

dA e R dA k i S A R r A z ∫∫∫∫??==221)(π (9) Ren et al. [3] suggested the solving of the above intergration. After change to a polar system, the weighting factor for a specific ring can be calculated by: -

2)(2)1()(R i r R i r e e i S ππ????= (10)

Where r i (i=1 to n ) is the radii of rings when the influence circle is devided into n number of rings. If the influence circle is evenly divided, i.e. ,00=r ,1011R r = ,1022R r =… R R r ==10

1010 (where R is the radius of influence circle), and S(i) values can be computed using Equation (10) for each of the 10 rings.

Thus, S(1) = 0.031, S(2) = 0.087, … S(10) = 0.035. Table 1 lists the original weighting factor values as shown in brackets. We note the sum of the original S(i) does not equal to 1. This is because mathematically the weighting factor will never converge to nil even if the r i is outside the influence circle R. To ensure that the maximum subsidence is reached under total extraction condition, the following condition must be met [7]:

1)(,1=∑=n i i S (11)

This necessitates the requirement of a normalization process, where all weighting factor values (as shown in brackets in Table 1) were adjusted so that the sum of all weighting factors equals a unity. This normalization process involves spreading the difference between the original sum of S(i) and 1 to each individual rings. In this case, )957.01(10

1?× is added to each weighting factor, so that the sum of normalized S(i) equals 1 (see Table 1). It is noted that only fractional amount of adjustment is required in the case of stochastic influence function. Similar normalization process may be adopted for any other influence functions.

From the above, it can be seen that the weighting factors S(i) can be mathematically calculated based on the influence function adopted. The disadvantage of this approach is the tedious mathematical procedure involved and its inability to be calibrated to suit a specific subsidence profile once an influence function is adopted.

In fact, the calculation of weighting factors does not necessarily require a mathematical expression.

A table listing the influence weighting factors will suffice to facilitate the calculation of subsidence and displacement. This leads to the assumption of the generalized influence function method as briefly described below.

Instead of finding a mathematical expression for the weighting factor S(i), the values of S(i) can be expressed in a tabular form, as long as the condition at (11) is satisfied. The tabulated values can then be implemented in a computer program using the computational approach as outlined by Ren et al . [3]. It should be noted that the total sum of all weighting should equal to a unity for the case of a total extraction, i.e. all elements within the influence circle are extracted and the maximum possible subsidence value S 0 is reached.

This generalized approach eliminates the need for having to find a mathematical function in order to work out the weighting factors in subsidence calculation. The weighting factor S(i) values that give reasonably good agreement with the observed data by a calibration process should be used. In practice, the calibration process would involve the following steps:

(1)

Use one of the influence functions (1) to (5) to establish initial base values for all weighting factors in Ring 1 to Ring 10; (2) Adjust the values of weighting factors, ensuring condition at (11), and observe the

following effects:

(a) Increasing the weightings towards the centre of the influence zones and reducing

the weightings near the outer zones will result in a subsidence profile that is more

concentrated in the centre of the trough.

(b) Reducing the weightings in the centre of the influence zones and increasing the

weightings near the outer zones will result in a flatter subsidence profile.

(3) Repeat step (2) by trial and error until satisfactory results are obtained that fit well

with the observed profile.

Table 3 shows the weighting factors for the case study discussed in Section 4, where observed

subsidence profiles were available. In this case, the weighting factors were initially determined using the stochastic function as shown in Table1, and later were calibrated using the above mentioned steps to achieve better agreement with the measured profile.

Table 3: Weighting factors for a case study Ring (i) 1 2 3 4 5 6 7 8 9 10 ∑ Weight factor S(i) 0.051 0.107 0.145 0.158 0.148 0.129 0.102 0.077 0.051 0.032 1 The weighting factor values for Tables 1, 2 and 3 are plotted in Figure 3 for comparison. Note that for the generalized approach, the influence of inner-rings is weighted more than outer rings. This will result in a “deep” and “narrow” subsidence profile as often observed in a typical longwall mining coal field.

3.2 Effect of Angle of Draw in Influence Function Method

The influence function method uses a number of important subsidence parameters such as the angle of draw ξ (Figure 2) in calculating subsidence values. The angle of draw determines the extent of influence of an underground extract element on the ground surface and demarcates the boundary of the influence circle [6]. The values of the angle of draw vary principally due to the geological settings, mass of overburden and mining configurations.

For inclined extraction panels, the angle of draw is observed to have different characteristics between the rise-side of the panel and the low-side of the panel [2]. The angles at both sides determine the influence area on the surface.

Direct application of the influence function method can give a subsidence value over the rib-side half of the maximum subsidence value produced by the whole extraction. Calibration is normally required to adjust this edge effect. The seam dip also has influence on the subsidence and train distribution. The method in which seam dip is accounted for in the influence function method was discussed by Ren et al.[4].

3.3 Use of the Influence Function Method to Calculate Horizontal Movements and Strains Application of the influence function method will initially produce ground movement vectors which tend towards the extraction element (Figure 1), and this permits calculation of the magnitude of the vertical component V z . The horizontal component V h can then be calculated by expression: βtan z h V V = (12)

Where β is the angle between the movement vector V at “Surface Point P” and the vertical in relation to the extraction element (see Figure 1).

The relation between V h and V z at Equation (12) was established based on the assumption that the “Surface Point P” within the “Elementary Trough” (see Figure 1) would be displaced towards the

extraction element. The vector of the movement is denoted by V in Figure 1, where V h = V sin β and V z = V cos β , hence Equation (12).

Thus, by applying the principle of superposition [7], the overall influence of an extraction panel can be calculated for a surface point, including vertical and horizontal components.

The computerized influence function method is able to perform calculations for series of surface points specified by grids at any specified intervals and the vertical components of subsidence can be presented with profiles and contours. The horizontal movements induced by underground mining are best presented using principal strains. The horizontal movements and vertical settlements are calculated for all surface points defined by the regular surface grids. Once the magnitudes of horizontal movements at four points on a grid are known, the following formulae can be used to calculate the principal strains and directions [8]:

)2cos 11()2cos 11(21

3111A e A e E +++= (13)

1312E e e E ?+= (14) 2

31221223212sin )()cos sin (22tan v e e v e v e e A ???= (15) Where e 1 and e 3 are strains along the two grid directions, the e 2 being the strain along the diagonal direction in the grid. The E 1 and E 2 are principal strains; A 1 is the angle of between E 1 and e 1 and v 2 is the angle between e 1 and e 2 (Figure 4).

Equations (13) and (14) can be used to calculate the magnitudes of the principal strains over an extraction panel and Equation (15) can be used to define the orientations of the principal strains. Subsidence and principal strain calculations for each surface points specified by regular grids along with the subsidence contours can then be plotted as illustrated in the case study in Section 4.

3.4 Presentation of Veridical Subsidence, Horizontal Movements

and Ground Strain Patterns

With the generalized influence function method discussed above, it is relatively straightforward to generate a series of grid data over the whole area affected by subsidence. Vertical subsidence values can be readily plotted as subsidence contours and presented by subsidence contours. The horizontal displacement vectors can be presented with a movement vector plot showing the magnitude and direction as shown in the case study in Section 4 (Figure 6). The principal strains induced by the subsidence at the surface can be plotted by a computer program using two vectors at 90° to each other to represent the magnitudes and directions (see Figures 7a & 7b). The advantage of this type of strain presentation is that it gives principal strain distribution patterns over the whole subsidence affected area with both magnitude and direction shown in a single plot. The tensile and compressive strains are also shown on the same plot. The potential subsidence effects on buildings, bridges,

pipelines and transportation networks can be assessed from the principal strain plots as illustrated in the case study in Section 4 below.

4 A Case Study using the Generalized Influence Function Method

This case study involves an abandoned 1940 coal working that had been worked by the room-and-pillar method. Because the case may be sub judice, the location of the working can not be disclosed. As the condition of the supporting pillars gradually deteriorated over the years, signs of subsidence effect appeared at the surface with both vertical and horizontal movements observed. A number of residential buildings and public structures are adjacent to the old mine working (Figure 5). The relevant local authority sought prediction of the subsidence effects if the remaining mine pillars completely collapse.

A subsidence analysis was performed using the generalized influence function method based on the assumption that the roof collapse would create a series of equivalent uniform extractions as shown in Figure 5. The mine working geometry was rather irregular and dipped at 25o towards the south. The average depth of the working was about 100 m and the seam thickness was 2 m. Earlier subsidence records and observational data were collected and the generalized influence function method was employed. The influence weighting factors in Table 3 were found to give reasonable concurrence with the observed data and were used for the subsidence calculations. Figure 6 shows the output of vertical subsidence represented by contours and horizontal displacement vectors over the mine workings. The general principal strain vectors are presented in Figure 7a, and Figure 7b shows the zoomed plot in the vicinity of the hospital building. The patterns and the magnitudes of the principal strain distributions are demonstrated in relation to the mining layout and the surface building. It is interesting to note that in Figure 7b, the hospital building would be subjected to mainly tensile strains, whilst near the corner of the mine working; the ground surface will be subjected to both tensile and compressive strains and within the mine working area the principal strains are mainly compressive in both directions.

The surface subsidence (Figure 6) and ground strains (Figures 7a & 7b) associated with the old mine working represent the possible effect when the mine pillars completely collapse. A three-dimensional view of an exaggerated subsidence trough induced by the old mine is shown in Figure 8. Horizontal strains provide a good indicator for the effect of ground movement on surface structures.

A demarcation line for a certain strain level can be manually plotted based on the principal strain plots (Figures 7a & 7b). In this case study, a demarcation line denoting 3mm/m principal strain (mainly tensile) was drawn around the underground extraction (Figure 7a). It can be seen that part of the hospital building falls within the 3 mm/m demarcation line, and would be affected by the ground movements should the mine pillars collapse. Furthermore, the subsidence effects in terms of ground strain and vertical settlement, spread significantly from the edge of the panel at the lower side of the seam due to the dip of the seam at 25 degrees.

In the same case, the local transport authority was planning to construct a traffic road in the vicinity of the old mine (see Figure 7a). Technical advice was provided to the transport authority based on the findings of the subsidence analysis pertaining to the road alignment. It is deduced that if the road can not be designed to sustain 3 mm/m strain, it should be realigned away from the 3 mm/m strain demarcation line to avoid potential subsidence damages. In most cases, the 3 mm/m principal strain demarcation line can be used for preliminary assessment of the potential mining subsidence effects on surface structures. Any other values of strain demarcation lines can be produced for relevant analysis. Furthermore, it is demonstrated from Figure 7a that the pattern of principal strains induced by mining subsidence is rather complex. Depending on locations in relationship to the mine workings, the strains can be tensile in one direction and compressive in the perpendicular direction. Generally, within the mine working area the strains are predominantly compressive in both directions.

It should be noted that the complete collapse of all mine pillars as illustrated in this study case may not necessarily represent the worst possible scenario in terms of subsidence effect on the surface structures. The pillars may fail randomly and create an irregular pattern of extraction which would give rise to strain concentrations at the surface. Therefore partial collapse of pillars with a resultant irregular pattern of subsidence may be more damaging to buildings, although it is difficult to quantify.

5Discussion and Conclusion

The generalized influence function method is easy to use because it eliminates the need to find a mathematical expression for subsidence calculations. All subsidence weighting factors can be expressed in a tabulated form, which can be programmed in the subsidence calculations. In practice, it is not necessary to be bound to a mathematically defined function in order to establish the weighting factors. The generalized approach can be adopted to calibrate against observational data by assigning various values of weighting factors, thus to achieve accurate subsidence prediction results. The method is also capable of producing a principal strain pattern and distribution plots over the whole mining area, which can be used as a powerful tool for subsidence effect assessment and future development planning.

Almost any values of weighting factors can be adopted so long as the sum of all weighting factors equals a unity. It is recommended to use weighting factors that are consistent with local observational subsidence data. This can be achieved by a trial and error calibration process. In essence, the generalized approach using influence factor in a tabular form without having to establish a mathematical function make the calibration process more flexible, thus to achieve better analytical results.

It should be noted that there is a major difference between subsidence profile function method and the aforementioned generalized influence function method, although both methods can be expressed in tabular forms. The subsidence profile function method is used to directly define the subsidence profile and deformation characteristics by either tables or mathematical functions. For example, Peng [1] proposed a number of tables for predicting final and dynamic subsidence basins and he also found that a negative exponential function was applicable to the US coalfields. The generalized influence function approach indirectly affects the subsidence profile by making use of allocation of weighting factors. The advantage of such approach over the conventional profile function method is that it can be applied to all types of underground openings including multiple seams, irregular shaped-extractions, and inclined panels [4]. As demonstrated the case study in Section 4, a complex mining configuration can be analysed using the generalised influence function approach and in doing so, it can provide useful results for assessing potential mining effects on existing structures and future developments.

6 Acknowledgement

The authors wish to thank the anonymous reviewers of the journal for their constructive critiques and valuable comments which helped to improve this paper.

7 References

[1] Peng S S, Surface Subsidence Engineering, Society for Mining, Metallurgy and Exploration inc., Littleton, Colorado 1992.

[2] Whittaker B N and Reddish D J, Subsidence occurrence, prediction and control. Elsevier, Amsterdam 1989.

[3] Ren G, Reddish D J, and Whittaker B N, Mining subsidence and displacement prediction using influence function methods. Mining Science and Technology, 5(1987) 89-104.

[4] Ren G, Reddish D J, and Whittaker B N, Mining subsidence and displacement prediction for inclined seams. Mining Science and Technology, 8(1989) 235-252.

[5] Sheorey P R, Loui J P, Singh K B, and Singh S K, Ground subsidence observation and a modified influence function method for complete subsidence prediction. International Journal of Rock Mechanics and Mining Sciences, 37 (2000) 801-818.

[6] Ren G and Li J, A Study of Angle of Draw in Mining Subsidence Using Numerical Modeling Techniques, Electronic Journal of Geotechnical Engineering, Vol. 13, Bund. F, 2008.

[7] Kratzsch H, Mining Subsidence Engineering, Springer-Verlag Berlin 1983, p206-207.

[8] Whittaker B N, Reddish D J and Fitzpatrick D, Calculation by computer program of mining subsidence ground strain patterns due to multiple longwall extractions, Mining Science and Technology, 3 (1985) 21-33.

Figure 1: 3D illustration of the influence function

K z

m i t l i n e

Figure 2: 2D illustration of the influence function

Figure 3. Influence factor distributions from various influence functions

Regular calculation grid

e1

e2

v2

A1

e3

E1

E2

Figure 4. Determination of principal strains from regular grids (Reproduced after Whittaker et al. 1985 [8])

Figure 5: Equivalent uniform extraction panel in relation to a surface structure.

(m)

Figure 6: Contours showing the vertical subsidence in metre, and horizontal movement vectors in relationship to the old mine working

Figure 7a: Case Study showing the vertical subsidence and principal strains in relationship to the old mine working, existing structures and proposed developments

(Strains in the inserts are not to scale)

Figure 8: Subsidence trough shown in 3D (Subsidence magnified by a factor of 500)

力 扣 数 据 结 构 与 算 法

前端如何搞定数据结构与算法(先导篇) 「观感度:?」 「口味:锅包肉」 「烹饪时间:20min」 本文已收录在Github? 为什么要学习数据结构与算法? 在0202年的今天,由于每天被无数的信息轰炸,大多数人已经变得越来越浮躁了,并且丧失了独立思考的能力。 你可能会经常听到这样的感慨: 技术人究竟能走多远?我遇到了天花板 35岁的程序员要如何面对中年危机? 技术更新太快,好累,学不动了 然后,你也变得焦虑起来。那你有没有静下心来想过,如何才能抵御年龄增长并且使自己增值呢? 无非是终身学习,持续修炼自己的内功。内功也就是基础知识和核心概念,这些轰轰烈烈发展的技术本质,其实都是基础知识,也就是我们在大学里学过的基础课-程。 操作系统 计算机组成原理 计算机网络 编译原理

设计模式 数据结构与算法 这也就是为什么越靠谱的面试官越注重你基础知识的掌握程度,为什么越牛的的企业越重视你的算法能力。因为当你拥有了这些,你已经比大多数人优秀了。你的天花板由你自己来决定,大家口中的中年危机可能并不会成为你的危机。新技术来临时,你对它的本质会看得更加透彻,学起来会一通百通。这样的人才,公司培养你也会花费更少的成本。 (不过,一辈子做个开开心心的 CRUD Boy 也是一种选择。) 数据结构与算法之间的关系 Rob Pikes 5 Rules of Programming中的第五条是这样说的: Data dominates. If youve chosen the right data structures and organized things well, the algorithms will almost always be self-evident. Data structures, not algorithms, are central to programming. 数据占主导。如果您选择了正确的数据结构并组织得当,那么这些算法几乎总是不言而喻的。数据结构而非算法是编程的核心。 瑞士计算机科学家,Algol W,Modula,Oberon 和 Pascal 语言的设计师 Niklaus Emil Wirth 写过一本非常经典的书《Algorithms + Data Structures = Programs》,即算法 + 数据结构 = 程序。 我们可以得出结论,数据结构与算法之间是相辅相成的关系。数据结构服务于算法,算法作用于特定的数据结构之上。 数据结构与算法好难,怎么学?

几种排序算法分析

《几种排序算法的分析》 摘要: 排序算法是在C++中经常要用到的一种重要的算法。如何进行排序,特别是高效率的排序是是计算机应用中的一个重要课题。同一个问题可以构造不同的算法,最终选择哪一个好呢?这涉及如何评价一个算法好坏的问题,算法分析就是评估算法所消耗资源的方法。可以对同一问题的不同算法的代价加以比较,也可以由算法设计者根据算法分析判断一种算法在实现时是否会遇到资源限制的问题。排序的目的之一就是方便数据的查找。在实际生活中,应根据具体情况悬着适当的算法。一般的,对于反复使用的程序,应选取时间短的算法;对于涉及数据量较大,存储空间较小的情况则应选取节约存储空间的算法。本论文重点讨论时间复杂度。时间复杂度就是一个算法所消耗的时间。算法的效率指的是最坏情况下的算法效率。 排序分为内部排序和外部排序。本课程结业论文就内部排序算法(插入排序,选择排序,交换排序,归并排序和基数排序)的基本思想,排序步骤和实现算法等进行介绍。 本论文以较为详细的文字说明,表格对比,例子阐述等方面加以比较和总结,通过在参加数据的规模,记录说带的信息量大小,对排序稳定的要求,关键字的分布情况以及算法的时间复杂度和空间复杂度等方面进行比较,得出它们的优缺点和不足,从而加深了对它们的认识和了解,进而使自己在以后的学习和应用中能够更好的运用。

1.五种排序算法的实例: 1.1.插入排序 1.1.1.直接插入排序 思路:将数组分为无序区和有序区两个区,然后不断将无序区的第一个元素按大小顺序插入到有序区中去,最终将所有无序区元素都移动到有序区完成排序。 要点:设立哨兵,作为临时存储和判断数组边界之用。 实现: Void InsertSort(Node L[],int length) { Int i,j;//分别为有序区和无序区指针 for(i=1;i=1)//直到增量缩小为1 { Shell(L,d); d=d/2;//缩小增量 } } Void Shell(Node L[],int d) {

特色课程简介

明亮幼儿园园本特色课程简介 ——浅谈肢体律动在孩子学习成长中的作用奥尔夫音乐教育体系是当今世界最著名、影响最广的音乐教育体系之一。在奥尔夫音乐课堂中,它用儿童最喜欢的方式,比如在说儿歌、拍手、做游戏、唱歌等教学活动中,按韵律、节拍描摹事物形态、动作特点等做动作,培养儿童的节奏感和记忆力,使儿童通过感受韵律、节拍引导动作带来学习的兴趣。我校从08春开始尝试推广奥尔夫音乐教育体系——把肢体律动融入在课堂教学活动中。通过快乐大天使林永哲教授的音乐律动培训,结合我园实际课堂教学情况,在语言、健康、艺术、英语等课程的学习中运用最广泛的就是肢体律动。通过律动在各个课程领域的拓展,在日常的每节课的学习中使右脑潜能得到最大限度的开发。 “左右脑分工理论”认为:人的左脑从事逻辑思维,右脑从事形象思维,右脑是创造力的源泉,是艺术和经验学习的中枢,右脑的存储量是左脑的100万倍,可是在现实生活中,95%的人只使用了自己的左脑,科学家们指出,大多数人终其一生;只运用了大脑潜能的3%——4%,其余的97%都蕴藏在右脑的潜意识之中,这是一个多么令人吃惊和遗憾的事实。由于右脑具有瞬间接受大量刺激的能力,加以训练,不仅可以开发相当一部分潜能,更可促使大脑神经发达,扩大脑容量,进而有助于左脑的发育。肢体律动在日常教学活动过程即起到了刺激右脑潜能发展的作用。 一个6岁以下的孩子,他的动作发展已经成熟,听觉也已成熟,根据奥尔夫音乐课堂理论,我园利用肢体律动可以培养幼儿想象力、创造力,激发幼儿的学习兴趣,充分调动幼儿参与课堂的积极性,加深幼儿对所学内容的理解、记忆,增强幼儿自信心的特点,从而有效提高教学质量,使孩子终身受益。 下面我从四个方面浅谈肢体律动在教学活动中的作用 一、利用肢体律动,培养幼儿的想象力。 因为孩子天性好动,在课堂教学活动中有大量机会让幼儿去动、去玩、去

数据结构经典例题

数据结构例题(及答案) 项目一习题(答案) 一选择题 1. 算法的计算量的大小称为计算的(B )。 A( 效率 B. 复杂性 C. 现实性 D. 难度 2.算法的时间复杂度取决于(C ) A(问题的规模 B. 待处理数据的初态 C. A和B 3(从逻辑上可以把数据结构分为(C )两大类。 A(动态结构、静态结构 B(顺序结构、链式结构 C(线性结构、非线性结构 D(初等结构、构造型结构 4(连续存储设计时,存储单元的地址(A )。 A(一定连续 B(一定不连续 C(不一定连续 D(部分连续,部分不连续 5. 以下属于逻辑结构的是(C )。 A(顺序表 B. 哈希表 C.有序表 D. 单链表 二、判断题 1. 数据元素是数据的最小单位。(×) 2. 记录是数据处理的最小单位。(×) 3. 数据的逻辑结构是指数据的各数据项之间的逻辑关系;(×) 4(程序一定是算法。(×) 5. 在顺序存储结构中,有时也存储数据结构中元素之间的关系。(×) 6. 顺序存储方式的优点是存储密度大,且插入、删除运算效率高。(×) 7. 数据结构的基本操作的设置的最重要的准则是,实现应用程序与存储结构的独立。(?)

8. 数据的逻辑结构说明数据元素之间的顺序关系,它依赖于计算机的储存结构. (×) 三、填空 1(数据的物理结构包括数据元素的表示和数据元素间关系的表示。 2. 对于给定的n个元素,可以构造出的逻辑结构有集合,线性结构,树形 结构,图状结构或网状结构四种。 3(数据的逻辑结构是指数据的组织形式,即数据元素之间逻辑关系的总体。而 逻辑关系是指数据元素之间的关联方式或称“邻接关系”。 4(一个数据结构在计算机中表示(又称映像) 称为存储结构。 5(抽象数据类型的定义仅取决于它的一组逻辑特性,而与在计算机内部如何表 示和实现无关,即不论其内部结构如何变化,只要它的数学特性不变,都不影响 其外部使用。 6(数据结构中评价算法的两个重要指标是算法的时间复杂度和空间复杂度。 7. 数据结构是研讨数据的逻辑结构和物理结构,以及它们之间的相互 关系,并对与这种结构定义相应的操作(运算),设计出相应的算法。 ( 一个算法具有5个特性: 有穷性、确定性、可行性,有零个或多个输入、 有一个或多个输8 出。 四、应用题 1. 1. 数据结构是一门研究什么内容的学科, 答:数据结构是一门研究在非数值计算的程序设计问题中,计算机的操作对象 及对象间的关系和施加于对象的操作等的学科 2. 2. 数据元素之间的关系在计算机中有几种表示方法,各有什么特点, 答:四 种表示方法

微观经济学课程改革

微观经济学课程改革 微观经济学课程是一门理论性与实践性都较强的课程。微观经济学侧重于基本概念、基本图形、基本理论的教授,使学生对市场运行机制的一般原理和规范行为等方面的内容有比较全面的了解。通过本课程的学习,可以使学生掌握微观经济学的基本原理,并培养经济学直觉,培养运用基本的微观经济学方法分析现实经济问题的能力。在实际教学过程中,要精心设计教学内容,丰富教学手段,注重理论与实践相结合,从而提高微观经济学的教学质量。 《微观经济学》是高等院校经济类核心专业课程之一,对培养学生经济学思维和后续经济学课程的学习具有重要意义。该课程是一门理论性较强的课程,同时实践性也很强。微观经济学侧重于基本概念、基本图形、基本理论的教授,使学生对市场运行机制的一般原理和规范行为等方面的内容有比较全面的了解。通过本课程的学习,学生应掌握微观经济学的基本原理,并培养经济学直觉,运用基本的微观经济学方法分析现实经济问题的能力。但在实际教学过程中,如何让学生在有限的课时中将内容庞杂的微观经济学理论清晰、明确的掌握并做到学有所得就显得尤为重要。本文试图在对教学实践情况进行总结并分析的基础上,结合课程特点,对本科阶段的微观经济学教学改革做一些有益的探讨。 一、微观经济学课程的特点

(一)课程的系统性 高鸿业的《西方经济学—微观部分》(第5版)作为微观经济学的经典教材,十分适合本科生学习。该教材共有11章。首先简单介绍西方经济学,然后介绍了消费者理论,包括需求、供给理论、均衡价格和效用论,生产者理论,包括生产论和成本论。接下来讲述不同市场结构下生产者如何生产和定价,包括完全竞争市场和不完全竞争市场理论,以及生产要素的价格决定。最后,在介绍一般均衡的经济效率的基础上,重点分析了市场失灵和政府应如何行使职能避免这一情况。整个微观经济学理论条理清晰、逻辑严密,体现出很强的系统性和连贯性。 (二)理论的抽象性 作为经济学的基础课程,微观经济学对抽象思维有较高的要求。比如,在课程中广泛使用的弹性这一概念,学生在学习过程中就很难理解其含义且很容易混淆;此外,一些距离现实生活比较远的理论,如寡头垄断理论、市场失灵等在现实中也很难找到合适的案例来解释。再者,属于社会科学的微观经济学课程并非如自然科学一般可以在实验室再现,缺乏社会实践经验的学生对于理论的理解缺乏深度。

几种常见内部排序算法比较

常见内部排序算法比较 排序算法是数据结构学科经典的内容,其中内部排序现有的算法有很多种,究竟各有什么特点呢?本文力图设计实现常用内部排序算法并进行比较。分别为起泡排序,直接插入排序,简单选择排序,快速排序,堆排序,针对关键字的比较次数和移动次数进行测试比较。 问题分析和总体设计 ADT OrderableList { 数据对象:D={ai| ai∈IntegerSet,i=1,2,…,n,n≥0} 数据关系:R1={〈ai-1,ai〉|ai-1, ai∈D, i=1,2,…,n} 基本操作: InitList(n) 操作结果:构造一个长度为n,元素值依次为1,2,…,n的有序表。Randomizel(d,isInverseOrser) 操作结果:随机打乱 BubbleSort( ) 操作结果:进行起泡排序 InserSort( ) 操作结果:进行插入排序 SelectSort( ) 操作结果:进行选择排序 QuickSort( ) 操作结果:进行快速排序 HeapSort( ) 操作结果:进行堆排序 ListTraverse(visit( )) 操作结果:依次对L种的每个元素调用函数visit( ) }ADT OrderableList 待排序表的元素的关键字为整数.用正序,逆序和不同乱序程度的不同数据做测试比较,对关键字的比较次数和移动次数(关键字交换计为3次移动)进行测试比较.要求显示提示信息,用户由键盘输入待排序表的表长(100-1000)和不同测试数据的组数(8-18).每次测试完毕,要求列表现是比较结果. 要求对结果进行分析.

详细设计 1、起泡排序 算法:核心思想是扫描数据清单,寻找出现乱序的两个相邻的项目。当找到这两个项目后,交换项目的位置然后继续扫描。重复上面的操作直到所有的项目都按顺序排好。 bubblesort(struct rec r[],int n) { int i,j; struct rec w; unsigned long int compare=0,move=0; for(i=1;i<=n-1;i++) for(j=n;j>=i+1;j--) { if(r[j].key

市幼儿园特色办园情况介绍分析

融合金昌文化资源,探究特色兴园之路——金昌市幼儿园地方文化特色办园经验介绍 《幼儿园教育指导纲要》指出:城乡各类幼儿园都应从实际出发,因地制宜地实施素质教育,要综合利用各种教育资源,为幼儿的发展创造良好的条件,为幼儿一生的发展打好基础。幼儿园的特色教育也应遵从这一新的教育理念,只有有利于幼儿的,才是我们所需要的,特色教育也是如此。 我园认真分析当前幼儿教育形势,认为目前结合地方资源开展园本教学是本市甚至全省幼教工作的一个薄弱环节,而地方文化资源具有不可多得的课程开发与利用价值,又可以与我市发展旅游业的总体方向紧紧结合。因此,近几年,通过园委会及全园教职工反复论证,决定充分提炼和利用地方化特色教育资源,构建适合本地和本园幼儿发展的课程,办出一所凸显地方文化特色教育的优质幼儿园,这将会使金昌市幼儿园处于学前教育行列的领先地位,也是对国家幼教课程和地方幼教课程的有效补充和完善,具有非常重大的意义。 一、特色办园总体目标 (一)借助金昌市发展旅游文化产业的大背景,充分提炼和利用金昌地方特色文化资源,浓缩成核心教育资源,并

结合本园实际,作为核心特色化办园理念融入到环境创设、教学课程及各类幼儿活动中。 (二)通过特色建设,形成一整套体系化的校园文化,让幼儿自觉、自愿、快乐地从任何一个角落都可以得到潜移默化的熏陶,提升幼儿对金昌的认识,激发幼儿对家乡的关注与热爱,让金昌地方文化得以传承和发扬。 (三)充分利用本地多种教育资源,构建和制定出遵循幼儿身心发展规律、适合本园发展的园本课程和教材,从课程、活动等各方面教育中促进幼儿全面发展。 (四)确立“科研兴园、特色兴园”办园方针,科研为先,贯穿始终,不断进行探讨、论证、完善,积极寻找突破口,深入探寻特色办园可持续发展策略。 (五)通过特色办园,从新的高度发挥示范引领作用,增强辐射力,扩展辐射范围,让周边市、县、区幼教同行来园有可看、可学、可借鉴的文化内涵,将金昌市幼儿园打造成一颗学前教育行业的明珠。 二、我园具体做法(分阶段) 第一阶段:前期可行性研究分析 我园的特色教育是在不断的改革与创新中一步一步走 过来的,地方文化特色的确立既不是为了应付一时的检查,也不是为了迎合家长的兴趣,而是从幼儿的实际为出发点,

数据结构(C语言)【经典题库】含标准答案

《数据结构与算法》复习题 选择题 1.在数据结构中,从逻辑上可以把数据结构分为 C 。 A.动态结构和静态结构 B.紧凑结构和非紧凑结构 C.线性结构和非线性结构 D.内部结构和外部结构 2.数据结构在计算机内存中的表示是指 A 。 A.数据的存储结构 B.数据结构 C.数据的逻辑结构 D.数据元素之间的关系 3.在数据结构中,与所使用的计算机无关的是数据的 A 结构。 A.逻辑 B.存储 C.逻辑和存储 D.物理 4.在存储数据时,通常不仅要存储各数据元素的值,而且还要存储 C 。A.数据的处理方法 B.数据元素的类型 C.数据元素之间的关系 D.数据的存储方法 5.在决定选取何种存储结构时,一般不考虑 A 。 A.各结点的值如何 B.结点个数的多少 C.对数据有哪些运算 D.所用的编程语言实现这种结构是否方便。 6.以下说法正确的是 D 。 A.数据项是数据的基本单位 B.数据元素是数据的最小单位

C.数据结构是带结构的数据项的集合 D.一些表面上很不相同的数据可以有相同的逻辑结构 7.算法分析的目的是 C ,算法分析的两个主要方面是 A 。(1)A.找出数据结构的合理性 B.研究算法中的输入和输出的关系C.分析算法的效率以求改进 C.分析算法的易读性和文档性(2)A.空间复杂度和时间复杂度 B.正确性和简明性 C.可读性和文档性 D.数据复杂性和程序复杂性 8.下面程序段的时间复杂度是 O(n2) 。 s =0; for( I =0; i

微观经济学教学大纲

《微观经济学》教学大纲 (Microeconomics) 课程代码:(06110170)学分: 3 总学时数:51理论时数:51实验(实践)时数: 先修课程:无开课对象:工商管理、电子商务、会计 一、课程的性质、目的与任务 1.课程的性质 微观经济学是经济类、管理类本科专业必修的基础课程和核心课程。 2.课程的目的 通过本课程的学习,使学生比较系统地掌握现代微观经济学的基本原理和主要方法,了解现代经济学发展的最新动态,联系实际,运用所学理论和方法分析当前国际经济和中国经济发展的重大问题,为继续学习其他经济和管理专业的基础课和专业课打下良好的基础,并为将来从事经济理论和政策研究或经济管理实际工作提供必要的经济学基础知识和经济分析的基本方法。 3.课程的任务 本课程的任务是使学生掌握微观经济学的基本概念、研究方法、基本理论模型和政策主张,了解现代经济社会市场机制的运行和作用,熟悉政府在市场经济中的作用和相应的微观经济政策。并能够将其运用于对现实问题的理解和分析,提出自己的观点并加以论证。 二、课程内容的基本要求 第一讲经济学十大原理(第一章) [教学目的和要求] 1.介绍经济学的研究对象和十大原理,并简要介绍经济学的基本发展脉络,使学生对经济学的研究对象、研究方法和研究内容先有大致的了解,引起学生学习经济学的兴趣。 2.要求学生掌握经济学研究的典型问题及提出的相应概念。 [教学内容] 1.1 人们如何作出决策 1.2 人们如何相互影响 1.3 整体经济如何运行 [教学重点与难点] 1.经济学的研究对象

2. 十大经济学原理之间的关系 [教学方法与手段] 1.制作内容丰富全面的课件 2.讲授为主,讨论为辅 第二讲像经济学家一样思考(第2章) [教学目的和要求] 1.理解并掌握经济模型的含义、构建过程和运用方法 2.明确经济学中实证分析与规范分析的联系与区别,并能够对各种不同的观点加以甄别。 [教学内容] 2.1作为经济学家的科学家 2.2作为政策顾问的经济学家 2.3经济学家意见分歧的原因 [教学重点与难点] 1.经济学研究的基本方法 2.构建经济模型的过程和步骤 3.如何运用实证分析和规范分析 [教学方法与手段] 1.制作内容丰富全面的课件 2.讲授为主,讨论为辅 3.当堂完成第一次作业 第三讲供给与需求的市场力量(第4章) [教学目的和要求] 1.掌握需求函数和供给函数 2.了解均衡价格的形成和变动 3.理解市场经济的价格机制

对幼儿园开展特色课程的几点建议

特色办学方向:对幼儿园开展特色课程的几点建议案例: 开学前的一天上午,我在幼儿园值班时接待了一位意向报名的家长,她是一名高学历的全职妈妈,这位妈妈自己也是师范专业毕业的,因此对于教育方面的问题懂得也都比较多。 我陪她参观了一下幼儿园的环境,她很满意,但对我们幼儿园的收费有疑问,她对我说:“你们这里的收费在我们柳市镇算是偏高的,如果我选择让我的孩子到你们这儿入学,我的孩子能得到哪些跟其他幼儿园不一样的教育和收获?”于是,我向她解释了我园的特色游泳课程。 对于我的解释和介绍,这位妈妈颇为怀疑的说:“这些都是你们幼儿园的广告,别的幼儿园也都有什么英语特色啊、书法特色啊之类的噱头,但最后还不都是一样,毕业出来的孩子也没听说有什么明明的特别之处的,这些东西也都学得平平的”。其实,对于这样的疑问我听了不在少数,除了这位家长能直观的表达她的怀疑之外,还有很多家长也对现下普遍的特色课程填塞了质疑甚至抱怨。 分析: 随着我国经济体制改革的不断深入,幼儿园之间的竞争也日益激动,以质量求生存、以特色求发展,已成为现今幼儿教育发展的新趋向。但什么才是真正的“特色课程”?特色课程有什么标准呢?我觉得这是在开展特色课程前首要应考虑的问题之一。幼儿园以特色教学创优势,为幼儿园的发展注入活力,这是好事,也应大力提倡。但在此之前,希望我们能把握好正确的方向和方向。但是,纵观大多数幼儿园所宣传并开展的特色课程,我个人所见所知的只是类似于每周上两三节英语课,或开展颇具有争议的珠心算等“超前”能力课程等这样的状态。这跟我作为一个幼儿教师所理解和感受的“特色课程”相差甚远,于是,我疑惑了,什么才是真正的“特色课程”? 措施: 其实,所谓的特色课程是幼儿园根据自己所拥有的资源优势,以及本园教师和幼儿的特点所建立的带有光鲜特色的课程。幼儿园特色课程的项目选择应

数据结构经典例题

数据结构经典例题 1.设计一个算法将L拆分成两个带头节点的单链表L1和L2。 void split(LinkList *&L,LinkList *&L1,LinkList *&L2) { LinkList *p=L->next,*q,*r1; //p指向第1个数据节点 L1=L; //L1利用原来L的头节点 r1=L1; //r1始终指向L1的尾节点 L2=(LinkList *)malloc(sizeof(LinkList));//创建L2的头节点 L2->next=NULL; //置L2的指针域为NULL while (p!=NULL) { r1->next=p; //采用尾插法将*p(data值为ai)插入L1中 r1=p; p=p->next; //p移向下一个节点(data值为bi) q=p->next; //由于头插法修改p的next域,故用q保存*p的后继节点 p->next=L2->next; //采用头插法将*p插入L2中 L2->next=p; p=q; //p重新指向ai+1的节点 } r1->next=NULL; //尾节点next置空 } 2.查找链表中倒数第k个位置上的节点(k为正整数)。若查找成功,算法输出该节点的data域的值,并返回1;否则,只返回0。 typedef struct LNode {int data; struct LNode *link; } *LinkList; int Searchk(LinkList list,int k) { LinkList p,q; int count=0; p=q=list->link; while (p!=NULL) { if (countlink; p=p->link; } if (count

十 大 经 典 排 序 算 法 总 结 超 详 细

数据挖掘十大经典算法,你都知道哪些? 当前时代大数据炙手可热,数据挖掘也是人人有所耳闻,但是关于数据挖掘更具体的算法,外行人了解的就少之甚少了。 数据挖掘主要分为分类算法,聚类算法和关联规则三大类,这三类基本上涵盖了目前商业市场对算法的所有需求。而这三类里又包含许多经典算法。而今天,小编就给大家介绍下数据挖掘中最经典的十大算法,希望它对你有所帮助。 一、分类决策树算法C4.5 C4.5,是机器学习算法中的一种分类决策树算法,它是决策树(决策树,就是做决策的节点间的组织方式像一棵倒栽树)核心算法ID3的改进算法,C4.5相比于ID3改进的地方有: 1、用信息增益率选择属性 ID3选择属性用的是子树的信息增益,这里可以用很多方法来定义信息,ID3使用的是熵(shang),一种不纯度度量准则,也就是熵的变化值,而 C4.5用的是信息增益率。区别就在于一个是信息增益,一个是信息增益率。 2、在树构造过程中进行剪枝,在构造决策树的时候,那些挂着几个元素的节点,不考虑最好,不然容易导致过拟。 3、能对非离散数据和不完整数据进行处理。 该算法适用于临床决策、生产制造、文档分析、生物信息学、空间数据建模等领域。 二、K平均算法

K平均算法(k-means algorithm)是一个聚类算法,把n个分类对象根据它们的属性分为k类(kn)。它与处理混合正态分布的最大期望算法相似,因为他们都试图找到数据中的自然聚类中心。它假设对象属性来自于空间向量,并且目标是使各个群组内部的均方误差总和最小。 从算法的表现上来说,它并不保证一定得到全局最优解,最终解的质量很大程度上取决于初始化的分组。由于该算法的速度很快,因此常用的一种方法是多次运行k平均算法,选择最优解。 k-Means 算法常用于图片分割、归类商品和分析客户。 三、支持向量机算法 支持向量机(Support Vector Machine)算法,简记为SVM,是一种监督式学习的方法,广泛用于统计分类以及回归分析中。 SVM的主要思想可以概括为两点: (1)它是针对线性可分情况进行分析,对于线性不可分的情况,通过使用非线性映射算法将低维输入空间线性不可分的样本转化为高维特征空间使其线性可分; (2)它基于结构风险最小化理论之上,在特征空间中建构最优分割超平面,使得学习器得到全局最优化,并且在整个样本空间的期望风险以某个概率满足一定上界。 四、The Apriori algorithm Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法,其核心是基于两阶段“频繁项集”思想的递推算法。其涉及到的关联规则在分类上属于单维、单层、布尔关联规则。在这里,所有支持度大于最小支

幼儿园健康特色课程的开展方案

幼儿园健康体能特色课程的开展方案 ***实验小学幼儿园 一、健康体能课程开展的指导思想: 幼儿的健康不仅能够提高幼儿期的生命质量,而且为一生的健康赢得了时间。儿童教育学家陈鹤琴先生也提出要把健康放在第一位,他认为“健全的身体是一个人做人、做事、做学问 的基础”。“强国必先强种,强种必先强身,要强身必要注意幼年的儿童。”身体健康是幼儿 身心健全的基础,心理适应为幼儿身心健全的关键。幼儿健康既是幼儿身心和谐发展的结果, 也是幼儿身心充分发展的前提。 在幼儿园的课程中,幼儿健康教育是其中的一个重要组成部分,结合我园“玩中学”的办园理念,把“玩出健康”放在幼儿首要的发展目标。其目的是锻炼幼儿身体,达到增强体质, 培养幼儿的走、跑、跳、钻爬、平衡等多项技能,提高幼儿的运动技能。这就要求我们教师时 刻做个有心人,树立正确的健康观念,根据幼儿的生长发展规律和体育活动规律,创设良好的 环境,以游戏化的形式积极开展各种健康体能游戏,增强幼儿的体质,促进其身心全面健康地 发展。 二、健康体能课程的总目标: “幼儿园健康教育”是以实现幼儿的身心健康为目标,全面提高幼儿对健康的认识水 平,培养幼儿的良好习惯所实施的教育,将为幼儿的未来的健康生活奠定坚实的基础。 幼儿健康教育的目标是使幼儿的身心发展达到预期的健康水平。我们将幼儿健康体能教育的目标归纳为三条: 1促进幼儿身体的正常发育,增强幼儿的体质;促进幼儿身心和谐健康的发展。 2、培养幼儿对体育活动的兴趣和积极参加体育锻炼的习惯,发展幼儿的基本动作, 引导幼儿利用各种器械进行运动,同时培养幼儿活泼、开朗、勇敢、不怕困难等心理品质。 3、帮助幼儿获得基本的运动知识和技能,培养良好的活动习惯以及运动能力。 三、健康体能课程开展的具体举措 由于我园环境条件的限制,因此开展大范围的体育锻炼,或者每天增加更多的户外活动时间都无法得到满足,于是,考虑到在有限的条件中,挖掘出更多的幼儿参与健康体能运动的机会,让孩子能享受更多的运动的快乐,习的更多的运动技能,我们把主题中的体育游戏,民间游戏,各年级组的特长技能锻炼等形式的相结合,力争为孩子提供更多健康运动的机会。

微观经济学课程思政教学大纲

****大学 教学大纲 课程代码: 课程名称:微观经济学 授课专业:金融学 授课教师: 职称/学位:副教授 开课时间:二○二○至二○二一学年第一学期《微观经济学》课程教学大纲

一、课程性质与设置目标要求 《西方经济学》是高等院校经济学和管理学两大一级学科下属各专业的专业核心基础课程,在专业课程体系中起承前启后的作用。内容较多,难度较大,是广大学生顺利完成经济学和管理学本科学业和今后继续深造的重要基础。其基本内容包括:微观经济学和宏观经济学两部分。微观经济学主要包括微观经济学概论,供求理论,消费理论,厂商理论,市场理论,分配理论,一般均衡理论,福利经济理论和市场失灵及政府的微观决策理论。运用马克思主义基本观点、立场和方法学习和理解各章节术语指标分析,熟练掌握思考和研究各类经济发展问题的基础和能力,并为进一步的理论学习打下扎实的专业基础。引入我国经济市场化改革和政府参与经济运行取得的成效,把社会主义核心价值观内容融入教学内容,开展课堂教学,增强学生对社会主义制度和国家经济政策实施的认同感,帮助树立学生民族自尊心和自豪感,增强作为社会主义爱国青年责任感、使命感,增强他们的凝聚力和向心力,并为进一步的理论学习打下扎实的专业基础,最终达到专业育人和育才的统一。 通过理论教学和实践活动,达到以下课程目标: 课程目标1:理解和掌握有关微观经济学的基本概念、基本理论和基本分析方法,了解微观经济学的基本架构和分析逻辑; 课程目标2:能够运用经济学原理观察、分析和解释现实生活中比较简单和典型的经济现象和问题;

课程目标3:初步培养学会运用微观经济学的基本方法、思维方式分析和解决我国市场经济运行中存在的各种经济问题的能力,为进一步学习其他专业知识打下一个坚实的基础。 课程目标4:使学生建立起微观经济学的基础知识框架,为进一步学习经济学及其相关课程提供必要的知识和能力储备 课程目标5:运用马克思主义基本观点、立场和方法学习和理解掌握课程内容重点,引入我国经济市场化改革和政府参与经济运行取得的成效,把社会主义核心价值观内容融入教学内容,开展课堂教学,增强学生对社会主义制度和国家经济政策实施的认同感,帮助树立学生民族自尊心和自豪感,增强他们的凝聚力和向心力。 学习本课程的要求是:(1)通过本课程的学习,使学生全面系统地把握微观经济学的总体内容、主要结论和应用条件;(2)了解市场经济运行的基本规律和微观经济主体的行为方式,认清市场机制和政府的作用及其局限;(3)运用马克思主义的基本立场、观点和方法正确地认识微观经济学,吸收微观经济学中科学的分析方法和对市场机制运行的正确看法;(4)培养学生分析问题、解决问题的能力和团结、协作的团队精神。(5)帮助学生树立民族自尊心和自豪感,增强他们的凝聚力和向心力。 选用教材:《西方经济学》上册.《西方经济学》编写组.高等教育出版社,2019年第2版。 二、课程教学环节及基本要求 教学进程安排表、课程教学详细内容与要求如下: 表1 教学进程安排表

十大经典排序算法

.1 算法分类 十种常见排序算法可以分为两大类: ?比较类排序:通过比较来决定元素间的相对次序,由于其时间复杂度不能突破O(nlogn),因此也称为非线性时间比较类排序。 ?非比较类排序:不通过比较来决定元素间的相对次序,它可以突破基于比较排序的时间下界,以线性时间运行,因此也称为线性时间非比较类排序。 0.2 算法复杂度

0.3 相关概念 ?稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面。 ?不稳定:如果a原本在b的前面,而a=b,排序之后a 可能会出现在b 的后面。 ?时间复杂度:对排序数据的总的操作次数。反映当n变化时,操作次数呈现什么规律。 ?空间复杂度:是指算法在计算机 内执行时所需存储空间的度量,它也是数据规模n的函数。 1、冒泡排序(Bubble Sort) 冒泡排序是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果它们的顺序错误就把它们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。

1.1 算法描述 ?比较相邻的元素。如果第一个比第二个大,就交换它们两个; ?对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对,这样在最后的元素应该会是最大的数; ?针对所有的元素重复以上的步骤,除了最后一个; ?重复步骤1~3,直到排序完成。 1.2 动图演示 1.3 代码实现 ?

2、选择排序(Selection Sort) 选择排序(Selection-sort)是一种简单直观的排序算法。它的工作原理:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。 2.1 算法描述 n个记录的直接选择排序可经过n-1趟直接选择排序得到有序结果。具体算法描述如下: ?初始状态:无序区为R[1..n],有序区为空; ?第i趟排序(i=1,2,3…n-1)开始时,当前有序区和无序区分别为R[1..i-1]和R(i..n)。该趟排序从当前无序区中-选出关键字最小的记录R[k],将它与无序区的第1个记录R交换,使R[1..i]和R[i+1..n)分别变为记录个数增加1个的新有序区和记录个数减少1个的新无序区; ?n-1趟结束,数组有序化了。 2.2 动图演示 2.3 代码实现 ?

数据结构经典算法 C语言版

//插入排序法 void InsertSort() { int s[100]; int n,m,j,i=0,temp1,temp2; printf("请输入待排序的元素个数:"); scanf("%d",&n); printf("请输入原序列:"); for (i=0; is[n-1]); s[n]=m; for (i=0; im) { temp1=s[i]; s[i]=m; for (j=i+1; j

//堆排序 static a[8] = {0,25,4,36,1,60,10,58,}; int count=1; void adjust(int i,int n) { int j,k,r,done=0; k = r = a[i]; j = 2*i; while((j<=n)&&(done==0)) { if(j=a[j]) done = 1; else { a[j/2] = a[j]; j = 2* j; } } a[j/2] = r; } void heap(int n) { int i,j,t; for(i =n/2;i>0;i--) adjust(i,n); printf("\n初始化成堆===> "); for(i = 1;i < 8;i++) printf("%5d",a[i]); for(i = n-1;i>0;i--) { t = a[i+1]; a[i+1] = a[1]; a[1] = t; adjust(1,i); printf("\n第%2d步操作结果===>",count++); for(j = 1;j<8;j++) printf("%5d",a[j]); } }

常见的八种经典排序方法

常见经典排序算法 1.希尔排序 2.二分插入法 3.直接插入法 4.带哨兵的直接排序法 5.冒泡排序 6.选择排序 7.快速排序 8.堆排序 一.希尔(Shell)排序法(又称宿小增量排序,是1959年由D.L.Shell提出来的) /* Shell 排序法 */ #include void sort(int v[],int n) { int gap,i,j,temp; for(gap=n/2;gap>0;gap /= 2) /* 设置排序的步长,步长gap每次减半,直到减到1 */ { for(i=gap;i= 0) && (v[j] > v[j+gap]);j -= gap ) /* 比较相距gap远的两个元素的大小,根据排序方向决定如何调换 */ { temp=v[j];

v[j]=v[j+gap]; v[j+gap]=temp; } } } } 二.二分插入法 /* 二分插入法 */ void HalfInsertSort(int a[], int len) { int i, j,temp; int low, high, mid; for (i=1; i temp) /* 如果中间元素比但前元素大,当前元素要插入到中间元素的左侧 */

幼儿园特色课程介绍01演示教学

幼儿园特色课程介绍 01

幼儿园特色课程介绍01 以质量求生存、以特色求发展,已成为现今幼儿教育发展的新趋向。幼儿园以特色教学创优势,为幼儿园的发展注入了新的活力。为了促进孩子们全面发展,培养孩子的特长,我园在五大领域教学的基础上,遵循幼儿身心发展特点和教育规律,围绕促进幼儿全面发展的目标,不断探索、创新,在开展特色教学活动方面做出了许多有益的探索。体现为办学特色之一:注重礼仪教育,办学特色之二:注重情商教育,办学特色之三:注重“养成教育”的培养。 本着“园有特色、教有价值、管有新意、班有亮点”的原则,根据孩子们的兴趣爱好,开办了声乐表演、舞蹈、播音主持特长班,增设了英语、国学启蒙、篮球训练、创意美术等特色课程。我们充分挖掘教师自身特长和能力,注重孩子的参与和体验,使全园师生在幼儿园文化的熏陶下得到共同提升和发展。 一、亲子园 孩子都需要关爱,但我们只有发自内心的爱是不够的,科学的、有经验的、系统的爱护方法,才能塑造健康而清丽的自然心灵。 亲子园中园是专为0——3岁宝宝提供亲子游戏和健康娱乐的场所。良好的亲子游戏不仅有益于家长与孩子的感情交流,密切亲子关系,还有益于儿童各方面的发展。而且儿童会把亲子游戏中获得的对待物体的态度、方式、方法以及人际交往中的态度、方式、方法迁移到自己上午现实生活中去。托班、小班在园幼儿每周六免费

开课。亲子园中园是宝宝的乐园,是家长的课堂,是梦想腾飞的地方。 二、节奏乐 节奏是音乐的基础,也是音乐、舞蹈、诗歌的“呼吸”和生命线,每个孩子都喜欢敲敲打打,对声音具有一种天生的敏感性,节奏乐就很适合幼儿这种与生俱来的本能。 德国音乐教育家卡尔.奥尔夫认为,打击乐器是最早为人类所掌握的乐器之一,也是现代社会中儿童最容易掌握的乐器,幼儿从中易获得音乐享受,开展集体的打击乐活动,可以发展幼儿演奏乐器的兴趣,使幼儿在丰富多彩的乐器演奏活动中获得生理上的快感和心理上的满足,从而提高幼儿对音乐作品的熟悉程度及理解能力、审美能力,达到训练和开发右半脑的功能的目的,培养了自我控制、自我表现以及与他人协调合作的能力,使幼儿从中获得快乐和成功的体验。 三、幼儿舞蹈教育 瑞士音乐教育家达尔克洛兹说过:人类的情感是音乐的来源,而人的情感通常是由人的身体动作表现出来的,在人的身体中,包括发展、感受和分析音乐与情感的各种能力。因此学习音乐的起点,不是钢琴等乐器,而是人的体态活动。幼儿期是人一生中生理、心理发展成熟的重要阶段,开展舞蹈教育不仅可以发展幼儿身体运动的机能,陶冶幼儿性格和品德。而且可以发展幼儿的观察

相关主题
文本预览
相关文档 最新文档