当前位置:文档之家› PCS液位单元PID控制器参数自寻优

PCS液位单元PID控制器参数自寻优

PCS液位单元PID控制器参数自寻优
PCS液位单元PID控制器参数自寻优

电信学院毕业设计任务书

题目PCS液位单元PID控制器参数自寻优

学生姓名班级学号

题目类型技术开发指导教师李二超系主任李炜

一、毕业设计的技术背景和设计依据

在大多数的工业过程控制中,被控对象通常具有严重的滞后、时变、非线性的特性,使得传统PID控制难以获得满意的动、静态效果。由于常规PID控制器的结构和参数一旦确定则无法改变,这必然影响控制系统的动态品质和稳态性能。为了优化基本PID控制器的性能,必须在线进行参数的实时调整,使PID控制器向自适应、自学习的方向发展。

本实验室具有德国FESTO公司研制生产的PCS实验装置,集成了目前工业控制中较为典型的四种控制系统:液位控制、流量控制、压力控制、温度控制,分为四个独立站。在往届毕业设计中,开发了基于OPC的PCS平台独立单元控制算法,数据采集方便,利于PID控制器自寻优方法的实施。故本设计拟通过对PCS平台液位控制单元研发,进行基于PCS液位单元的自寻优PID控制。

二、毕业设计的任务

1、查阅相关科技文献,掌握控制、检测、通讯等技术要求;

2、基于液位控制单元的控制平台方案论证;

3、分析PID控制算法性能;

4、基于目标函数对PID控制器参数进行寻优;

5、利用OPC进行通讯完成对液位控制单元的实时控制;

6、进行系统调试;

7、撰写毕业设计说明书;

8、完成指定内容的外文资料翻译。

三、毕业设计的主要内容、功能及技术指标

1、毕业设计的主要内容

1)设计说明书正文主要内容要求

① PCS液位单元控制硬件;

②总体方案论证

③分析PID控制算法性能;

④PID控制器参数自寻优;

⑤MA TLAB、OPC之间的通讯步骤。

全文要求逻辑严密、条理清晰,文字流畅,理论联系实际,符合科技写作规范。

2)设计说明书装订及外文阅读翻译要求

毕业设计说明书由以下各部分组成,共100页左右,其顺序为:封面、前言、目录、中文摘要(约200字)和关键词(3-5个)、英文摘要(约200字)和关键词(3-5个)、正文、外文原文(2-3万字符)和译文、参考文献、设计总结、致谢、封底等。

2、设计实现的主要功能及技术指标

1)通过校园局域网和相应的通信协议,实现PCS液位单元和MATLAB/Simulink的半

实物网络化控制系统的连接,为后续研究建立相应的平台。

2)在开发的实验平台上对PID控制器参数进行寻优。

3、其它需要说明的问题

设计过程要求

1) 根据设计题目要求,充分利用所学基础理论知识,自学所需的相关知识,提高知

识的综合应用能力和创新能力;

2) 遵守学校有关毕业设计的规章制度;

3) 按时、独立、创新地完成设计任务。

四、毕业设计提交的成果

1、设计说明书(约3万字左右)

2、中、英文摘要(中文摘要约200字,3—5个关键词)

3、毕业设计简介(按11春教务处要求)

4、外文资料翻译(约5000汉字)

五、毕业设计的主要参考文献和技术资料

1、PCS手册(英文版)FESTO

2、深入浅出西门子S7--300PLC 北京航空航天大学出版社

3、精通MATLAB6.5 张志涌北京航空航天大学出版社

4、西门子S7—300手册西门子公司

5、严平,陶正苏,赵忠华. 基于改进单纯形法寻优的步进电动机PID控制系统[J].微特电

机,2008,8:49-51

6、刘建新,谌海霞. 基于MATLAB的结晶器液位模糊控制器的设计与仿真[J].长沙通信

职业技术学院学报,2010,9(2):84-86

7、杨磊,李擎. 一种基于单纯形法的参数自寻优模糊控制器[J].北京机械工业学院学

报,2006,21(2):48-51

8、赵燕云, 马宪民. 基于ITAE 自寻优模糊直接转矩控制的煤矿电机车驱动系统[J].

西安科技大学学报,2006,26(1):100-103

9、唐志航,虞金有,俞立. 基于MA TLAB 环境下模糊控制参数的优化设计与仿真[J].计

算机仿真,2003,20(9):101-103

六、毕业设计加选专题部分

七、毕业设计各阶段安排

Hadoop平台参数寻优的分布式SVM算法研究

目录 目录 摘要...............................................................................................................................................I Abstract...............................................................................................................................................III 目录....................................................................................................................................................I 1绪论 (1) 1.1研究背景与意义 (1) 1.2支持向量机研究现状 (2) 1.3论文的研究内容与章节安排 (6) 1.3.1研究内容 (6) 1.3.2章节安排 (7) 2机器学习与Hadoop平台 (9) 2.1机器学习与分类算法 (9) 2.1.1机器学习概述 (9) 2.1.2分类算法 (9) 2.2Hadoop平台 (10) 2.2.1Hadoop概述 (10) 2.2.2HDFS介绍 (12) 2.2.3MapReduce框架 (14) 2.3本章小结 (16) 3支持向量机 (17) 3.1SVM概述 (17) 3.1.1线性可分SVM (17) 3.1.2KKT条件与SMO算法 (19) 3.1.3非线性SVM与核函数 (20) 3.1.4软间隔 (21) 3.2本章小结 (22) 4参数寻优的分布式SVM (25) 4.1单机SVM (25) 4.1.1LIBSVM包使用 (25) 4.1.2样本数据与预处理 (26) 4.2Hadoop平台分布式SVM (28) 4.2.1分布式SVM (28) 4.2.2Hadoop平台分布式SVM实现 (29) 4.3SVM参数寻优 (34) 4.3.1网格法参数寻优 (34) I

支持向量机的基本原理及其参数寻优

2.2 支持向量机 支持向量机(SVM)算法是由前苏联数学家Vapnik等首先提出的,这种算法的基本定义是一个在特征空间上的间隔最大的分类器。支持向量机技术具有坚实的数学理论作为支撑[37],根据支持向量机学习算法的难易程度[38],可以将支持向量机模型简单的分为线性支持向量机和非线性支持向量机。简单的SVM模型是理解和设计复杂SVM模型的基础,支持向量机自诞生以来,展现出了大有可为的应用前景,在解决现实问题的算法中,支持向量机总是留到最后的算法之一,尤其是针对小样本、高维度的数据。在深度学习技术没有出现之前,支持向量机的研究热度一直较高,即使在深度学习出现之后,支持向量机也在一些特定的问题下有着良好的表现。 2.2.1 支持向量机的基本原理 支持向量机按照分类是有监督学习,本节阐述一下基础的支持向量机原理,也就是线性可分的支持向量机算法原理。因为是有监督学习,所以训练模型需要有样本特征以及样本目标值。样本特征所在的集合称之为输入空间,对应的目标值所在的集合称为特征空间。支持向量机算法的核心是将输入空间的样本数据,映射为对应的特征空间中的特征向量。所以可以知晓支持向量机的特征学习发生在特征空间中。 (1)分类面 假设有一个特征空间上的训练数据集,是一个可以进行二分类的数据集T,其组成如式2.10所示: T={(x1,y1),(x2,y2),?,(x N,y N)}式(2.10) 其中x i∈R n,y i∈Y={+1,?1},i=1,2,?,N 。x i表示第i个特征向量,也称为样本,y i为x i对应的类标记,(x i,y i)为样本实例。模型学习的目标是在特征空间中找到一个可用于分割两类的超平面,将为正例和负例能够尽可能远的分开。分类超平面的函数方程为:ωx+b=0,其中ω为求解出的超平面的法向量,b为与坐标轴的截距,方程简单表示可用(ω,b)来表示。当数据是线性可分的时候,会存在无数个这样的平面来分割两类数据,感知机采取的方法是将误差分类最小,求得分类面,此时模型的解有无限个。线性支持向量机利用间隔最大化方法求解时,结果是唯一的。在有了分类平面的函数之后,对应的分类决策函数也就很容易得出,即为:

常用塑料注塑工艺参数表

常用塑料注塑工艺参数表:

常用塑料注塑工艺参数(2) 2010-06-16 20:02:13| 分类:个人日记| 标签:|字号大中小订阅 聚甲醛加工参数聚甲醛的成型收缩率聚甲醛的后收缩九、PC注塑工艺特性与工艺参数的设定1、聚集态特性属于无定型塑料,Tg 为149~150℃;Tf为215~225℃;成型温度为250~310℃; 2、热稳定性较好,并随分子量的增大而提高。但PC高温下遇水易降解,成型时要求水分含量在0.02%以下。高温下水分对PC特别有害。在成型前,PC树脂必须进行充分干燥(并且应当充分注意防止干燥过的物料再吸湿)。干燥效果的快速检验法,是在注塑机上采用“对空注射”。 3、熔体粘度高,流动性较差,其流动特性接近于牛顿流体,熔体粘度受剪切速率影响较小,而对温度的变化十分敏感,在适宜的成型加工温度范围内调节加工温度,能有效地控制PC的粘度。4、由于粘度高,注射压力较高,一般控制在80~120MPa。对于薄壁长流程、形状复杂、浇口尺寸较小的制品,为使熔体顺利、及时充模,注射压力要适当提高至120~150MPa。保压压力为80~100MPa。 5、成型时,冷却固化快,为延迟物料冷凝,需控制模温为80~120℃。6、PC分子主链中有大量苯环,分子链的刚性大,注塑中易产生较大的内应力,使制品开裂或影响制品的尺寸稳定性;(在100℃以上作长时间热处理,它的刚硬性增加,内应力降低)。PC的典型干燥曲线台湾奇美典型牌号加工参数:十、PA及玻纤增强PA注塑工艺特性与工艺参数设定 1、常用品种及其熔点:q 品种:尼龙-66;尼龙-610;尼龙-1010;尼龙-1212;尼龙-46尼龙-6;尼龙-7;尼龙-9;尼龙-11;尼龙-12;尼龙-66/6、尼龙-66/610;尼龙-6∕66∕1010;尼龙-66/6/610q 熔点:尼龙n系列:尼龙-6 215~220℃;尼龙-12为178℃;尼龙m,n系列:尼龙-46 295 ℃;尼龙-66 255~265℃;尼龙-610 215~223℃;尼龙-1010 200℃;共缩聚尼龙:由于分子链的规整性较差,结晶性和熔点一般较低,如尼龙-6∕66∕1010的熔点仅为155~175℃,但其有较好的透明性和弹性。2、熔点高,熔化范围窄(约10℃)。考虑到PA熔点高、热稳定性较差,故加工温度不宜太高,一般高于熔点30℃左右即可。3、吸湿性大,且酰胺基易于高温水解,引起分子量严重降低;(须严格干燥至含水量低于0.05%,尤其是回料使用时更应严格干燥,必要时可添加“增粘剂”。)4、熔体粘度低,表观粘度对温度敏感,由于熔体的冷却速率快,要防止塑料堵塞喷孔、流道、浇口等。为阻止熔体逆流,螺杆头应装有止逆环;另外,为防止喷嘴处熔体的“流涎”现象,应选用自锁式喷嘴。5、注射PA时不需高的注射压力,一般选取范围为70~100MPa,通常不超过120MPa。注射速率宜略快些,这样可防止因冷却速率快而造成波纹及充模不足等问题。 6、模具温度一般控制在40~90℃。模具温度对制品的性能影响较大。 7、酰胺基在高温下对氧敏感,容易发生氧化变色(必要时可添加尼龙专用的热稳定剂); 8、高结晶性,成型收缩率大,易产生结晶应力,并且明显随制品的厚度增大而增加;9、成型后制品的缓慢吸湿易引起尺寸精度的较大变化。这点也被利用来进行调湿处理,通常可在沸水或醋酸钾水溶液(醋酸钾与水的比例为1.25∶1,沸点为121℃)中进行。 10、熔体着色所适用的有机颜料品种较少(酰胺基具有还原性,加之成型温度高)。尼龙吸水率尼龙及玻纤增强尼龙成型温度PA46安全加工温度-时间组合图玻璃纤维增强尼龙(GF-PA)工艺特性1、GF-PA中由于含大量玻纤,注塑中存在四大问题:(1)流动性差。(2)收缩率小,且各向异性明显。(3)制品性能易出现波动。(4)制品表面粗糙度数值大。 2、由于流动性差,且加入玻纤后的熔体冷凝硬化快,需要比未加玻纤时提高温度约10-30 ℃;3、应采用较大的注射速率和较高的注射压力; 4、由于大量玻纤引起的高粘度,增强尼龙可用通用喷嘴;5、对机筒的磨损大;6、为使增强尼龙制品有较高的强度,需要注意尽可能地保护玻纤的长度,减少玻纤损伤;(从螺杆、喷嘴、浇口等装备因素到注塑工艺条件)7、玻纤增强料成型加工中最常有缺陷:“浮纤”或称“玻纤外露”;玻纤取向引起的各向异性;熔接痕处强度特低;纤维取向不同厚度处的取向状况皮-芯效应与熔接痕前锋料遇到障碍后分流-合流-熔接玻纤含量与熔接痕强度十一、PMMA注塑工艺特性与工艺参数的设定 PMMA树脂俗称“压克力”,国内著名商品牌号有372#(实为MS)1、PMMA无定形聚合物,Tg为105℃,熔融温度大于160℃,而分解温度高达270℃以上,成型的温度范围较宽;2、PMMA树脂颗粒易吸收水份,而这些水分的存在,在成型过程中由于受热挥发,导致熔体起泡、膨胀、使制品出现银丝、气泡、透明度变差、有糊斑等问题。PMMA在热风循环干燥设备上的干燥,其干燥工艺参数:温度为70~80℃,时间为2~4h;3、 PMMA熔体粘度对温度变化比较敏感。注射温度的改变对熔体流动长度的影响要比注射压力与比注射速率明显些,更比模具温度显著得多。故在成型时改变PMMA的流动性主要是从注射温度着手。但选用高料温时易受其它工艺参

PID参数整定 经验(DOC)

PID参数的工程整定方法培训教材 2005年12月20日

目录 第一节基本控制规律及其作用效果 (1) 第二节实用的控制规律 (2) 第三节PID参数的工程整定方法 (3) 第四节复杂调节系统的参数整定 (8) 附录一各厂家DCS系统PID相关数据统计 (8) 附录二相关的名词解释 (9)

第一节基本控制规律及其作用效果 在工业生产过程控制中,常用的基本调节规律大致可分为: 1 位式调节 也就是常说的开/关式调节,它的动作规律是当被控变量偏离给定值时,调节器的输出不是最大就是最小,从而使执行器全开或全关。在实际应用中,常用于机组油箱恒温控制、水塔以及一些储罐的液位控制等。在实施时, 只要选用带上、下限接点的检测仪表、位式调节器或PLC、再配一些继电器、电磁阀、执行器、磁力起动器等即可构成位式控制系统。因此,位式控制的过渡过程必然是一个持续振荡的过程。如图0所示。 图0 位式控制的过渡过程 2 比例调节 它依据“偏差的大小”来动作。它的输出与输入偏差的大小成比例,调节及时,有力,但是有余差。用比例度δ来表示其作用的强弱,用%表示。例如比例度60%,即表示当偏差为量程的60%时,输出变化值为量程的100%。δ越小,调节作用越强,调节作用太强时,会引起振荡。比例调节作用适用于负荷变化小,对象纯滞后不大,时间常数

较大而又允许有余差的控制系统中,常用于塔和储罐的液位控制以及一些要求不高的压力控制中。使用时应注意,当负荷变化幅度较大时,为了平衡负荷变化所需的调节阀开度变化也将较大,待稳定后,被控变量的余差就可能较大。比例控制规律的动态方程为: 其中:y(t)——输出变化量。 e(t)——输入变化量。 Kp ——比例增益。 δ——比例度,它是Kp的倒数。 3 积分调节 它依据“偏差是否存在”来动作。它的输出与偏差对时间的积分成比例,只有当余差完全消失,积分作用才停止。其实质就是消除余差。但积分作用使最大动偏差增大,延长了调节时间。用积分时间Ti 表示其作用的强弱,单位用分(或秒)表示。Ti越小,积分作用越强,积分作用太强时,也会引起振荡。积分控制规律的动态方程为: 其中:TI ——积分时间。 4 微分调节 它依据“偏差变化速度”来动作。它的输出与输入偏差变化的速度成比例,其实质和效果是阻止被调参数的一切变化,有超前调节的作用。对滞后较大的对象有很好的效果。使调节过程动偏差减少,余差也减少(但不能消除)。用微分时间Td表示作用的强弱,单位用分

PID参数整定方法就是确定调节器的比例带PB

PID参数整定方法就是确定调节器的比例带PB、积分时间Ti和和微分时间Td。一般可以通过理论计算来确定,但误差太大。目前,应用最多的还是工程整定法:如经验法、衰减曲线法、临界比例带法和反应曲线法。各种方法的大体过程如下: (1)经验法又叫现场凑试法,即先确定一个调节器的参数值PB和Ti,通过改变给定值对控制系统施加一个扰动,现场观察判断控制曲线形状。若曲线不够理想,可改变PB或Ti,再画控制过程曲线,经反复凑试直到控制系统符合动态过程品质要求为止,这时的PB和Ti就是最佳值。如果调节器是PID三作用式,那么要在整定好的PB和Ti的基础上加进微分作用。由于微分作用有抵制偏差变化的能力,所以确定一个Td值后,可把整定好的PB和Ti值减小一点再进行现场凑试,直到PB、Ti和Td取得最佳值为止。显然用经验法整定的参数是准确的。但花时间较多。为缩短整定时间,应注意以下几点:①根据控制对象特性确定好初始的参数值PB、Ti和Td。可参照在实际运行中的同类控制系统的参数值,或参照表3-4-1所给的参数值,使确定的初始参数尽量接近整定的理想值。这样可大大减少现场凑试的次数。②在凑试过程中,若发现被控量变化缓慢,不能尽快达到稳定值,这是由于PB过大或Ti过长引起的,但两者是有区别的:PB过大,曲线漂浮较大,变化不规则,Ti过长,曲线带有振荡分量,接近给定值很缓慢。这样可根据曲线形状来改变PB或Ti。③PB过小,Ti过短,Td太长都会导致振荡衰减得慢,甚至不衰减,其区别是PB过小,振荡周期较短;Ti 过短,振荡周期较长;Td太长,振荡周期最短。④如果在整定过程中出现等幅振荡,并且通过改变调节器参数而不能消除这一现象时,可能是阀门定位器调校不准,调节阀传动部分有间隙(或调节阀尺寸过大)或控制对象受到等幅波动的干扰等,都会使被控量出现等幅振荡。这时就不能只注意调节器参数的整定,而是要检查与调校其它仪表和环节。 (2)衰减曲线法是以4:1衰减作为整定要求的,先切除调节器的积分和微分作用,用凑试法整定纯比例控制作用的比例带PB(比同时凑试二个或三个参数要简单得多),使之符合4:1衰减比例的要求,记下此时的比例带PBs和振荡周期Ts。如果加进积分和微分作用,可按表3-4-2给出经验公式进行计算。若按这种方式整定的参数作适当的调整。对有些控制对象,控制过程进行较快,难以从记录曲线上找出衰减比。这时,只要被控量波动2次就能达到稳定状态,可近似认为是4:1的衰减过程,其波动一次时间为Ts。 (3)临界比例带法,用临界比例带法整定调节器参数时,先要切除积分和微分作用,让控制系统以较大的比例带,在纯比例控制作用下运行,然后逐渐减小PB,每减小一次都要认真观察过程曲线,直到达到等幅振荡时,记下此时的比例带PBk(称为临界比例带)和波动周期Tk,然后按表3-4-3给出的经验公式求出调节器的参数值。按该表算出参数值后,要把比例带放在比计算值稍大一点的值上,把Ti和Td放在计算值上,进行现场观察,如果比例带可以减小,再将PB 放在计算值上。这种方法简单,应用比较广泛。但对PBk很小的控制系统不适用。 (4)反应曲线法,前三种整定调节器参数的方法,都是在预先不知道控制对象特性的情况下进行的。如果知道控制对象的特性参数,即时间常数T、时间

PID-采样周期及参数整定方法

数字PID控制器控制参数的选择,可按连续-时间PID参数整定方法进行。 在选择数字PID参数之前,首先应该确定控制器结构。对允许有静差(或稳态误差)的系统,可以适当选择P或PD控制器,使稳态误差在允许的范围内。对必须消除稳态误差的系统,应选择包含积分控制的PI或PID控制器。一般来说,PI、PID和P控制器应用较多。对于有滞后的对象,往往都加入微分控制。 控制器结构确定后,即可开始选择参数。参数的选择,要根据受控对象的具体特性和对控制系统的性能要求进行。工程上,一般要求整个闭环系统是稳定的,对给定量的变化能迅速响应并平滑跟踪,超调量小;在不同干扰作用下,能保证被控量在给定值;当环境参数发生变化时,整个系统能保持稳定,等等。这些要求,对控制系统自身性能来说,有些是矛盾的。我们必须满足主要的方面的要求,兼顾其他方面,适当地折衷处理。 PID控制器的参数整定,可以不依赖于受控对象的数学模型。工程上,PID控制器的参数常常是通过实验来确定,通过试凑,或者通过实验经验公式来确定。 采样周期的选择 采样周期: 采样一数据控制系统中,设采样周期为T S,采样速率为1/T S,采样角频率为 采样周期T S是设计者要精心选择的重要参数,系统的性能与采样周期的选择有密切关系。需要考虑的因素: 采样周期的选择受多方面因素的影响,主要考虑的因素分析如下。 (1)香农(Shannon)采样定理 (Wmax--被采样信号的上限角频率) 给出了采样周期的上限。满足这一定理,采样信号方可恢复或近似地恢复为原模拟信号,而不丢失主要信息。在这个限制范围内,采样周期越小,采样-数据控制系统的性能越接近于连续-时间控制系统。 (2)闭环系统对给定信号的跟踪,要求采样周期要小。 (3)从抑制扰动的要求来说,采样周期应该选择得小些。

控制回路PID参数整定方法精

Honeywell DCS 控制回路PID参数整定方法 鉴于目前一联合装置仪表回路自控率比较低,大部分的回路都是手动操作,这样不但增加了操作员的工作量,而且对产品质量也有一定的影响,特编制了此PID参数整定方法。 一、修改PID参数必须有“SUPPERVISOR”及以上权限权限,用键盘钥匙可以切换权限,钥匙已送交一联合主任陈胜手中; 二、打开要修改的控制回路细目画面,翻到下图所示的页面,修改PID控制回路整定的三个参数K,T1,T2; 三、PID参数代表的含义 K:比例增益(放大倍数),范围为0.0~240.0; T1:积分时间,范围为0.0~1440.0,单位为分钟,0.0代表没有积分作用; T2:微分时间,范围为0.0~1440.0,单位为分钟,0.0代表没有微分作用。 四、PID参数的作用 (1)比例调节的特点:1、调节作用快,系统一出现偏差,调节器立即将偏差放大K倍输出; 2、系统存在余差。 K越小,过渡过程越平稳,但余差越大;K增大,余差将减小,但是不能完

全消除余差,只能起到粗调作用,但是K过大,过渡过程易振荡,K太大时,就可能出现发散振荡。 (2)积分调节的特点:积分调节作用的输出变化与输入偏差的积分成正比,积分作用能消除余差,但降低了系统的稳定性,T1由大变小时,积分作用由弱到强,消除余差的能力由弱到强,只有消除偏差,输出才停止变化。 (3)微分调节的特点:微分调节的输出是与被调量的变化率成正比,在引入微分作用后能全面提高控制质量,但是微分作用太强,会引起控制阀时而全开时而全关,因此不能把T2取的太大,当T2由小到大变化时,微分作用由弱到强,对容量滞后有明显的作用,但是对纯滞后没有效果。 五、如果要知道控制回路的作用方式,可以进入控制回路的细目画面,进入下图所示页面: 其中“CTLACTN”代表控制器作用方式,“REVERSE”表示反作用,“DIRECT”代表正作用。 六、控制器的选择方法 (1)P控制器的选择:它适用于控制通道滞后较小,负荷变化不大,允许被控量在一定范围内变化的系统; (2)PI控制器的选择:它适用于滞后较小,负荷变化不大,被控量不允许有余差的控制系统;

主要工序工艺参数表

主要工序工艺参数表表一、

喷粉:其它要求:工件表面温度<47度、粉房最佳温度15-25度、湿度<75%、粉房空气含尘量<1.5mg/m3、粉房附近横向风速≤0.3m/s、照明≥300克勒斯,压缩空气含水量<1PPM、含油量<0.1PPM、压力4.0-7.0kgf/cm2。 表二、主要工序常见问题及解决方法表

对基材进行检验按《铝型材检验规程》检验,发现问题及时反馈到上道工序。 2.上排绑挂 4.1按生产计划备料,看每筐料的随行卡片并认真核对型号数量, 做好上料记录。 4.2根据型材种类选择合适的吊架,将型材主要装饰面向上用铝丝 固定在吊架上,要求固定牢固稳定、型材与型材之间留有足够的空隙。尽量将型材平面向下以防止气泡发生。 4.3上排绑挂过程中注意复查型材外观有无缺陷。例如油斑、水锈、 胶迹。 4.4将外观有缺陷的型材进行返修,变形用钳子矫正、胶迹用信那 水擦除、其它用180-600#砂纸打磨。返修后合格的允许上排绑挂。 5. 脱脂 5.1型材进入脱脂槽前要注意观察其表面状态,灰尘和铝屑较多时 先水洗再脱脂,根据油渍和斑点情况合理调整脱脂工艺参数。 5.2正常情况按表一中脱脂工艺参数操作。 5.3根据化验分析结果、生产量和型材脱脂效果及时补加药剂,加 药时应缓慢均匀地添加到槽面各处,用吊架上下搅拌均匀后使

用。 5.4槽液使用一段时间后效果差时应及时倒槽,清除槽底铝粉和沉 淀。 5.5脱脂完毕从脱脂槽吊起后应使型材倾斜并保持1-2分钟,至型 材表面槽液基本滴干为止,以节省药剂和利于后续清洗。注意观察脱脂效果,发现问题及时处理。 5.6常见问题参照表二中规定的方法处理,仍不能处理时及时通知 技术人员解决。 6. 水洗 6.1进入水洗槽先使型材上下摆动2-3次,再浸泡1-2分钟。 6.2型材从水洗槽吊起后应注意观察其表面除油状况(水膜是否连 续、有无斑点残留、背面有无泡沫残留),发现异常及时处理。 6.3生产时应保证水洗槽的溢流,发现水质浑浊时及时清槽换水。 6.4水洗完毕从水洗槽吊起后应使型材倾斜并保持1-2分钟,至型 材表面水分基本滴干为止。 7. 铬化 7.1按表一中铬化工艺参数操作 7.2根据生产量、化验分析结果和型材铬化效果及时补加药剂,液 体药品直接加入,回休药品先用槽液充分溶解后再加入。要求加药时缓慢均匀地添加到槽面各处,用吊架上下搅拌均匀后使用。 7.3槽液使用一段埋单后铬化效果变差时应及时倒槽,清除槽底铝 粉和沉淀。 7.4铬化完毕从铬化槽吊起后应使型材倾斜并保持1-2分钟,至型

如何进行PID参数整定

如何进行PID参数整定 如何进行PID参数整定在工程实际中,应用最为广泛的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它以其结构简单、稳定性好、工作可靠、调整方便而成为产业控制的主要技术之一。当被控对象的结构和参数不能完全把握,或得不到精确的数学模型时,控制理论的其它技术难以采用时,系统控制器的结构和参数必须依靠经验和现场调试来确定,这时应用PID控制技术最为方便。即当我们不完全了解一个系统和被控对象﹐或不能通过有效的丈量手段来获得系统参数时,最适适用PID控制技术。PID控制,实际中也有PI和PD控制。PID控制器就是根据系统的误差,利用比例、积分、微分计算出控制量进行控制的。 比例(P)控制 比例控制是一种最简单的控制方式。其控制器的输出与输进误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差(Steady-state error)。 积分(I)控制 在积分控制中,控制器的输出与输进误差信号的积分成正比关系。对一个自动控制系统,假如在进进稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统

(System with Steady-state Error)。为了消除稳态误差,在控制器中必须引进“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到即是零。因此,比例+积分(PI)控制器,可以使系统在进进稳态后无稳态误差。 微分(D)控制 在微分控制中,控制器的输出与输进误差信号的微分(即误差的变化率)成正比关系。自动控制系统在克服误差的调节过程中可能会出现振荡甚至失稳。其原因是由于存在有较大惯性组件(环节)或有滞后(delay)组件,具有抑制误差的作用,其变化总是落后于误差的变化。解决的办法是使抑制误差的作用的变化“超前”,即在误差接近零时,抑制误差的作用就应该是零。这就是说,在控制器中仅引进“比例”项往往是不够的,比例项的作用仅是放大误差的幅值,而目前需要增加的是“微分项”,它能猜测误差变化的趋势,这样,具有比例+微分的控制器,就能够提前使抑制误差的控制作用即是零,甚至为负值,从而避免了被控量的严重超调。所以对有较大惯性或滞后的被控对象,比例+微分(PD)控制器能改善系统在调节过程中的动态特性。 在PID参数进行整定时假如能够有理论的方法确定PID 参数当然是最理想的方法,但是在实际的应用中,更多的是

PID参数的工程整定方法

PID参数的工程整定方法 班级: 姓名:侯泉宇 学号:52 PI D 调节器从问世至今已历经了半个多世纪, 在这几十年中, 人们为它的发展和推广作出了巨大的努力, 使之成为工业过程控制中主要的和可靠的技术工具。即使在微处理技术迅速发展的今天, 过程控制中大部分控制规律都未能离开 PI D, 这充分说明 P I D 控制仍具有很强的生命力。PI D 控制中一个至关重要的问题, 就是控制器三参数( 比例系数、积分时间、微分时间) 的整定。整定的好坏不但会影响到控制质量, 而且还会影响到控制器的鲁棒性。此外, 现代工业控制系统中存在着名目繁多的不确定性, 这些不确定性能造成模型参数变化甚至模型结构突变, 使得原整定参数无法保证系统继续良好的工作, 这时就要求 PI D 控制器具有在线修正参数的功能, 这是自从使用 PI D 控制以来人们始终关注的重要问题之一。本文在介绍 PI D 参数自整定概念的基础上, 对 P I D 参数自整定方法的发展作一综述。 PID 参数自整定概念PI D 参数自整定概念中应包括参数自动整定(auto tuning) 和参数在线自校正( self tuning onli ne) 。具有自动整定功能的控制器, 能通过一按键就由控制器自身来完成控制参数的整定, 不需要人工干预,它既可用于简单系统投运, 也可用于复杂系统预整定。运用自动整定的方法与人工整定法相比, 无论是在时间节省方面还是在整定精度上都得以大幅度提高, 这同时也就增进了经济效益。目前, 自动整定技术在国外已被许多控制产品所采用, 如 Lee d s &N or th r o p 的 El ec t r o ma x V、 Sa tt Con tr ol r 的 ECA40 等等, 对其研究的文章则更多。 自校正控制则为解决控制器参数的在线实时校正提供了很有吸引力的技术方案。自校正的基本观点是力争在系统全部运行期间保持优良的控制性能, 使控制器能够根据运行环境的变化, 适时地改变其自身的参数整定值, 以求达到预期的正常闭环运行, 并有效地提高系统的鲁棒性。 早在 20 世纪 7 0 年代, As tr o m 等人首先提出了自校正调节器, 以周期性地辨识过程模型参数为基础, 并和以最小方差为控制性能指标的控制律结合起来, 在每一采样周期内根据被控过程特性的变化, 自动计算出一组新的控制器参数。20 世纪 80 年代, Fo x bo r o 公司发表了它的 EX AC T 自校正控制器, 使用模式识别技术了解被控过程特性的变化, 然后使用专家系统方法去确定适当的控制器参数。这是一种基于启发式规则推理的自校正技术。20 世纪 90 年代, 神经网络的概念开始应用于自校正领域。具有自动整定功能和具有在线自校正功能的控制器被统称为自整定控制器。一般而言, 如果过程的动态特性是固定的, 则可以选用固定参数的控制器, 控制器参数的整定由自动整定完成。对动态特性时变的过程, 控制器的参数应具有在线自校正的能力, 以补偿过程时变。 2 P ID 参数自整定方法 要实现 PI D 参数的自整定, 首先要对被控制的对象有一个了解, 然后选择相应的参数计算方法完成控制器参数的设计。据此, 可将 PI D 参数自整定分成两大类: 辨识法和规则法。基于辨识法的 PI D 参数自整定,被控对象的特性通过对被控对象数学模型的分析来得到, 在对象数学模型的基础上用基于模型的一类整定法计算 PI D 参数。基于规则的 PI D 参数自整定, 则是运用系统临界点信息或系统响应曲线上的一些特征值来表征对象特性, 控制器参数由基于规则的整定法得到。 2. 1 辨识法 这类方法的本质是自适应控制理论与系统辨识的结合。为解决被控对象模型获取问题,

迪宝技术参数表格

技术参数表格:1.清风劲风 全中文点阵形式 吊钩秤

劲风

G系列

软件方面 产品特点 ●量程与分度值: ●显屏: 单量程:15kg-5g ,12kg-2g ,30kg-5g. 两种显屏均可显示重量,皮重,价格,总计以及货品名称。 双量程:6kg-2g & 15kg-5g ,15kg-5g & 30kg-10g. 汉字显示屏可显示图标,盈利代码(销售员侧显屏),动态 变化广告等。 ●独特的性能: 最多可储存8,000个商品,70×2组预设键,999个PLU (可直接通过输入PLU 代码进行快速查找)。 5或10个销售助理键(根据型号不同)。 每个PLU 资料的完整信息,包括:原价与优惠价格,称重价格,每千克与每100克价格,品名(24个字×2行),自由信息,盈利代码等。 配料文档,由用户自行编辑。 销售与管理报表:销售,利润,钱箱报表,最后一次PLU 修改等。 ●打印: “清风”和“劲风”电子秤采用了高速(100mm/s )高分辨率的打印机。 根据不同型号,电子秤配有收银条打印机,标签打印机(同样可打印收银条)。

更换标签纸,步骤极其简单,特有的盒式标签打印机,十分有个性(“清风”除外) 收银条:标签: - 3种不同格式-3种不同格式 - 图标- 标签尺寸从30×30到60×100mm - 积分- 图标 - 赊账客户- 溯源性 - 9种付款方式- 预装模式 - 总计金额显示为欧元,旧版货币(欧元区国家),- 3种总计(按预装,按盒装,按容 人民币货币以及2种添加货币器…) - 单品打折及总计打折等- 自助模式 - 可按设置连续打印选定标签 ●条码: “清风”和“劲风”可在收银条和标签上打印零售和工业常用的条码:13码,128码,25码和GS1资料条码。部分型号还可以连接扫描枪读取条码信息。已连接的扫描枪由电子秤驱动。 GS1 资料条码暂时不可用 ●通讯: 电子秤与电脑间可实现高速通讯,可通过TCP/IP网卡,无线网络(Wi-Fi802.11n RF)或电线网络实现通讯。根据不同型号,可同时连接10台以上的电子秤,主机+子主机+从机系统。 ●库存管理: 该系统需在秤内操作,包括: - 入库 - 销售记录,从库存中扣除 - 通过PLU显示并且打印库存报表 - 盘点后进行库存调整 - 将信息传送到电脑 ●普通溯源性: 包含欧盟牛肉管理条例并且拥有溯源的2种可设类别(针对肉食,鱼类,水果,蔬菜等),对于越来越严格的中国市场,该功能也非常实用。 ●电脑软件:

S7 200的PID参数整定方法

PID控制器参数整定的一般方法: PID控制器的参数整定是控制系统设计的核心内容。它是根据被控过程的特性确定PID控制器的比例系数、积分时间和微分时间的大小。PID控制器参数整定的方法很多,概括起来有两大类: 一是理论计算整定法。它主要是依据系统的数学模型,经过理论计算确定控制器参数。这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改; 二是工程整定方法,它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际中被广泛采用。PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。但无论采用哪一种方法所得到的控制器参数,都需要在实际运行中进行最后调整与完善。 现在一般采用的是临界比例法。利用该方法进行 PID控制器参数的整定步骤如下:(1)首先预选择一个足够短的采样周期让系统工作;(2)仅加入比例控制环节,直到系统对输入的阶跃响应出现临界振荡,记下这时的比例放大系数和临界振荡周期;(3)在一定的控制度下通过公式计算得到PID控制器的参数。 PID参数的设定:是靠经验及工艺的熟悉,参考测量值跟踪与设定值曲线,从而调整P、I、D的大小。 书上的常用口诀: 参数整定找最佳,从小到大顺序查; 先是比例后积分,最后再把微分加; 曲线振荡很频繁,比例度盘要放大; 曲线漂浮绕大湾,比例度盘往小扳; 曲线偏离回复慢,积分时间往下降; 曲线波动周期长,积分时间再加长; 曲线振荡频率快,先把微分降下来; 动差大来波动慢。微分时间应加长; 理想曲线两个波,前高后低4比1; 一看二调多分析,调节质量不会低。 个人认为PID参数的设置的大小,一方面是要根据控制对象的具体情况而定;另一方面是经验。P是解决幅值震荡,P大了会出现幅值震荡的幅度大,但震荡频率小,系统达到稳定时间长;I是解决动作响应的速度快慢的,I大了响应速度慢,反之则快;D是消除静态误差的,一般D设置都比较小,而且对系统影响比较小。 PID控制原理: 1、比例(P)控制:比例控制是一种最简单的控制方式。其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳态误差。 2、积分(I)控制:在积分控制中,控制器的输出与输入误差信号的积分成正比关系。对一个自动控制系统,如果在进入稳态后存在稳态误差,则称这个控制系统是有稳态误差的或简称有差系统。为了消除稳态误差,在控制器中必须引入“积分项”。积分项对误差取决于时间的积分,随着时间的增加,积分项会增大。这样,即便误差很小,积分项也会随着时间的增加而加大,它推动控制器的输出增大使稳态误差进一步减小,直到等于零。因此,比例+积分(PI)控制器,可以

PID控制参数整定方法

●专家论谈  PID控制参数整定方法 清华大学热能系(100084) 刘 镇 姜学智 李东海 过程工业控制中多采用PID控制算法,PID控制器只有在参数得到良好整定的前提下才能达到令人满意的控制效果。P ID控制器参数整定,是指在控制器的形式已经确定(PI、PID调节规律)的情况下,通过调整控制器参数,达到要求的控制目标。几十年来人们致力于研究P ID控制器参数的整定方法,提出了各种各样的方法。按应用条件分为在线整定算法、离线整定算法;按计算方式分为一次算法、反复迭代算法;本文将整定方法分为基于被控对象特性的整定方法和不依赖于对象动态特性的整定方法两大类。 1 基于被控对象特性的整定方法 控制参数整定的目标是使得由控制对象、控制器等组成的控制回路的动态特性满足性能指标要求,因此,若能得到被控对象的动态特性,就可通过各种手段来整定控制器参数。被控对象的特性可用不同的模型表征,常用的是对象的参数模型(如微分方程、传递函数)、非参数模型(如阶跃响应曲线)、输出响应特征值。 1.1 基于对象参数模型的整定方法 基于被控对象参数模型的整定方法是利用辨识算法得出对象的数学模型,在此基础上用整定算法对控制器参数进行整定。对象参数模型辨识方法(亦称现代的辨识方法)是在假定一种模型结构的基础上,通过极小化模型与过程之间的误差准则函数来确定模型的参数,比较常用的方法有最小二乘法、梯度校正法、极大似然法。若模型结构无法事先确定,则必须利用结构辨识方法先确定模型的结构参数(如阶次、纯迟延等)。在辨识得到对象的参数模型后,可用的参数整定方法有:极点配置整定法、相消原理法、内模控制法(IM C)、增益、相角裕量法(G PM)、基于二次型性能指标(I T A E/ IT E/ISE)的参数优化方法。这类方法对特性分明的被控对象的控制参数整定是十分有效的,但这种方法比较复杂,要得到精确的数学模型,需要较复杂的试验手段和数学手段,并且这种方法对被控过程模型有较强的限制,因而对不能或难以用精确数学模型描述的复杂过程难以奏效。 若采用对象参数离线辨识,则整定为一离线的计算过程;若采用在线辨识,则整定为一在线的迭代优化过程。1.2 基于对象非参数模型的整定方法 非参数模型辨识方法(亦称经典辨识方法)获得的模型是对象的非参数模型,即对象的阶跃响应、脉冲响应、频率响应等,其表现形式是以时间或频率为自变量的实验曲线。这种方法在假定过程是线性的前提下,不必事先确定模型的具体结构,因而可适用于任意复杂的过程。其所得的非参数模型经适当的数学处理,可转变为参数模型——传递函数形式,而后应用适当的整定方法或计算公式可得控制器参数。 目前工程上常用测取过程对象的阶跃响应,然后由阶跃响应曲线确定过程的近似传递函数。当阶跃响应曲线比较规则时,近似法、半对数法、切线法和两点法都能比较有效地导出近似传递函数。当对象的阶跃响应曲线呈现不规则形状时,上述方法就不能获得满意的效果,这时可采用面积法来获取所需数据。面积法计算量较大,且必须正确选择传递函数阶次。阶跃响应法的局限性在于对含有积分作用的对象来说,开环阶跃响应会无限增大。对象的非参数模型辨识方法除了阶跃响应法以外,还有脉冲响应法、频率响应法、相关分析法和谱分析法等。在取得了对象的近似模型后,可应用很多整定方法和公式进行控制器参数整定,其中最著名的是Z—N整定公式[1]及Coh en—Co on整定公式[2]。 基于对象非参数模型的整定方法只可用于离线整定。 1.3 基于对象输出响应特征值的控制参数整定方法 对于整定来说,传统对象模型中含有的冗余信息量往往很大,这些冗余信息并不影响控制器的参数整定,且控制器参数往往具有不确定性和不唯一性,一个经合理整定的控制器应能容忍对象模型的某些摄动而保持系统稳定。由此可见,可以压缩对象模型的信息量,而抽取其主要特征进行参数整定。目前,基于对象输出响应特征值来进行PID参数整定的方法较多,比较常用的是基于开环对象N yquist曲线上的一个特征点的知识来进行控制器参数整定。比较著名的有闭环Z—N方法、继电整定法等。 闭环Z—N方法(也称临界比例度法、稳定边界法)是Zieg ler和N ichlos在1942年提出的,方法是将

PID控制最通俗的解释与PID参数的整定方法要点

PID控制最通俗的解释与PID参数的整定方法 [ 2010/6/18 15:15:45 | Author: 廖老师 ] PID是比例、积分、微分的简称,PID控制的难点不是编程,而是控制器的参数整定。参数整定的关键是正确地理解各参数的物理意义,PID控制的原理可以用人对炉温的手动控制来理解。阅读本文不需要高深的数学知识。 1.比例控制 有经验的操作人员手动控制电加热炉的炉温,可以获得非常好的控制品质,PID控制与人工控制的控制策略有很多相似的地方。 下面介绍操作人员怎样用比例控制的思想来手动控制电加热炉的炉温。假设用热电偶检测炉温,用数字仪表显示温度值。在控制过程中,操作人员用眼睛读取炉温,并与炉温给定值比较,得到温度的误差值。然后用手操作电位器,调节加热的电流,使炉温保持在给定值附近。 操作人员知道炉温稳定在给定值时电位器的大致位置(我们将它称为位置L),并根据当时的温度误差值调整控制加热电流的电位器的转角。炉温小于给定值时,误差为正,在位置L的基础上顺时针增大电位器的转角,以增大加热的电流。炉温大于给定值时,误差为负,在位置L的基础上反时针减小电位器的转角,并令转角与位置L的差值与误差成正比。上述控制策略就是比例控制,即PID控制器输出中的比例部分与误差成正比。 闭环中存在着各种各样的延迟作用。例如调节电位器转角后,到温度上升到新的转角对应的稳态值时有较大的时间延迟。由于延迟因素的存在,调节电位器转角后不能马上看到调节的效果,因此闭环控制系统调节困难的主要原因是系统中的延迟作用。 比例控制的比例系数如果太小,即调节后的电位器转角与位置L的差值太小,调节的力度不够,使系统输出量变化缓慢,调节所需的总时间过长。比例系数如果过大,即调节后电位器转角与位置L的差值过大,调节力度太强,将造成调节过头,甚至使温度忽高忽低,来回震荡。 增大比例系数使系统反应灵敏,调节速度加快,并且可以减小稳态误差。但是比例系数过大会使超调量增大,振荡次数增加,调节时间加长,动态性能变坏,比例系数太大甚至会使闭环系统不稳定。 单纯的比例控制很难保证调节得恰到好处,完全消除误差。 2.积分控制 PID控制器中的积分对应于图1中误差曲线与坐标轴包围的面积(图中的灰色部分)。PID控制程序是周期性执行的,执行的周期称为采样周期。计算机的程序用图1中各矩形面积之和来近似精确的积分,图中的TS就是采样周期。

PID参数整定方法

2·2 用试凑法确定PID 控制器参数 试凑法就是根据控制器各参数对系统性能的影响程度,边观察系统的运行,边修改参数,直到满意为止。 一般情况下,增大比例系数KP 会加快系统的响应速度,有利于减少静差。但过大的比例系数会使系统有较大的超调,并产生振荡使稳定性变差。减小积分系数KI 将减少积分作用,有利于减少超调使系统稳定,但系统消除静差的速度慢。增加微分系数KD 有利于加快系统的响应,是超调减少,稳定性增加,但对干扰的抑制能力会减弱。在试凑时,一般可根据以上参数对控制过程的影响趋势,对参数实行先比例、后积分、再微分的步骤进行整定。 2·2·1 比例部分整定。 首先将积分系数KI 和微分系数KD 取零,即取消微分和积分作用,采用纯比例控制。将比例系数KP 由小到大变化,观察系统的响应,直至速度快,且有一定范围的超调为止。如果系统静差在规定范围之内,且响应曲线已满足设计要求,那么只需用纯比例调节器即可。 2·2·2 积分部分整定。 如果比例控制系统的静差达不到设计要求,这时可以加入积分作用。在整定时将积分系数KI 由小逐渐增加,积分作用就逐渐增强,观察输出会发现,系统的静差会逐渐减少直至消除。反复试验几次,直到消除静差的速度满意为止。注意这时的超调量会比原来加大,应适当的降低一点比例系数KP 。 2·2·3 微分部分整定。 若使用比例积分(PI)控制器经反复调整仍达不到设计要求,或不稳定,这时应加入微分作用,整定时先将微分系数KD 从零逐渐增加,观察超调量和稳定性,同时相应地微调比例系数KP 、积分系数KI,逐步使凑,直到满意为止 2·3 扩充临界比例度法 这种方法适用于有自平衡的被控对象,是模拟系统中临界比例度法的扩充。其整定步骤如下: (1)选择一个足够短的采样周期T 。所谓足够短,就是采样周期小于对象的纯之后时间的1 /10。 (2)让系统作纯比例控制,并逐渐缩小比例度 ( =1/KP)是系统产生临界振荡。此时的比例度和振荡周期就是临界比例度 K 和临界振荡周期TK 。 (3)选定控制度。所谓控制度,就是以模拟调节器为基准,将系统的控制效果与模拟调节器的控制效果相比较,其比值即控制度。 对于电机快速跟随调节,一般采用PD 控制算法,积分项的加入会导致系统的滞后,使得电机无法做到快速跟随运动。此外电机为一阶惯性环节为 111+s T k 。小车的传递函数为s e s T s T K s T k s T k s G s G s G τ-++=++==)1)(1(1*1)()()(212211 21 T1和T2 为小车两电机的时间常数。

相关主题
文本预览
相关文档 最新文档