当前位置:文档之家› 486什么叫超声多普勒测速法

486什么叫超声多普勒测速法

486什么叫超声多普勒测速法
486什么叫超声多普勒测速法

4.86什么叫超声多普勒测速法

多普勒(效应)法USF是利用在静止(固定)点检测从移动源发射声波多产生多普勒频移现象。

(1)流速方程式

如图5所示,超声换能器A向流体发出频率为fA的连续超声波,经照射域内液体中散射体悬浮颗粒或气泡散射,散射的超声波产生多普勒频移fd,接收换能器B收到频率为fB 的超声波,其值为

(9)

式中v-散射体运动速度。

多普勒频移fd正比于散射体流动速度

(10)

测量对象确定后,式(10)右边除v外均为常量,移行后得

(11)

(2)流量方程式

多普勒法USF的流量方程式形式上与式(6)相同,只是所测得的流速是各散射体的速度v(代替式中的vm),与载体液体管道平均流速数值并不一致;方程式中流速分布修正系数Kd以代替K0 Kd是散射体的“照射域”在管中心附近的系数;其值不适用于在大管径或含较多散射体达不到管中心附近就获得散射波的系数。

(3)液体温度影响的修正

式(11)中又流体声速c,而c是温度的函数,液体温度变化会引起测量误差。由于固体的声速温度变化影响比液体小一个数量级,即在式(11)中的流体声速c用声楔的声速c0取代,以减小用液体声速时的影响。因为从图6可知cosθ=sinφ,再按斯纳尔定律sinφ/c=sinφ0/c0,式(11)便可得式(12),其中c0/sinφ0可视为常量。

(12)

(4)散射体的影响

实际上多普勒频移信号来自速度参差不一的散射体,而所测得各散射体速度和载体液体平均流速间的关系也有差别。其他参量如散射体粒度大小组合与流动时分布状况,散射体流速非轴向分量,声波被散射体衰减程度等均影响频移信号。

优缺点:

USF可作非接触测量。夹装式换能器USF可无需停流截管安装,只要在既设管道外部安装换能器即可。这是USF在工业用流量仪表中具有的独特优点,因此可作移动性(即非定点固定安装)测量,适用于管网流动状况评估测定

USF为无流动阻挠测量,无额外压力损失。

流量计的仪表系数是可从实际测量管道及声道等几何尺寸计算求得的,既可采用干法标定,除带测量管段式外一般不需作实流校验。

USF适用于大型圆形管道和矩形管道,且原理上不受管径限制,其造价基本上与管径无关。对于大型管道不仅带来方便,可认为在无法实现实流校验的情况下是优先考虑的选择方案。

多普勒USF可测量固相含量较多或含有气泡的液体。

USF可测量非导电性液体,在无阻挠流量测量方面是对电磁流量计的一种补充。

因易于实行与测试方法(如流速计的速度-面积法,示踪法等)相结合,可解决一些特殊测量问题,如速度分布严重畸变测量,非圆截面管道测量等。

某些传播时间法USF附有测量声波传播时间的功能,即可测量液体声速以判断所测液体类别。例如,油船泵送油品上岸,可核查所测量的是油品还是仓底水。

多普勒测速仪开题报告

1.结合毕业设计课题情况,根据所查阅的文献资料,撰写2000字左右的文献综述: 文献综述 一、本课题的研究背景及意义 随着我国经济建设的高速发展,人民生活的不断提高,道路上各式各样的车辆数目也在大幅上升,也使得交通违章不断增加,给道路交通和人民的生活带来了极大的威胁。由于汽车工业的不断进步,行驶在道路上的车辆速度越来越快,交通事故发生的频率也不断增加。众所周知,交通事故的发生大部分是由驾驶员的超速驾驶造成的。为提高汽车运行的安全性,减少交通事故的发生以及快速检测车辆行驶中的速度,所以有了测速仪的问世。 随着科技的进步,由雷达传感器制作的测速仪已经广泛应用于车辆测速的行业中,实现对车辆速度准确,快速的测量。该测速仪结构简单,可靠性高,操作方便,可广泛应用于摩托车、汽车等机动车辆的速度测量中。测速仪的发展动向是把测速仪的准确性,稳定性和可靠性作为重要的质量指标。 二、本课题国内外研究现状 我国测速仪的应用和研究起源于八十年代,伴随着我国经济发展,由最初的简单雷达测速仪发展到现在的超声波,激光等多种测速仪,同时在误差补偿,超速报警,便捷等多个方面的研究和发展取得了长足的进步,由以前的单一,简单,笨重的测速仪演变为如今的多样,复杂,小巧,为我国的交通做出了巨大贡献,同时涌现了广州科能,西安光伟等一大批骨干测速仪制造企业,基本上形成了中国测速仪目前的发展格局。 雷达测速仪是根据接收到反射波频移量的计算而得出物体的运动速度,雷达测速易于捕捉目标,无须精确瞄准,可以采用手持的方式,在车辆的运动中进行测速。在中国的雷达测速仪发展中,雷达测速仪越来越向着高精度,高智能,高便捷的方向快速发展。 面对风起云涌的国内外市场及日新月异的中国经济,我国测速仪的发展和应用依然存在着非常严峻的问题。在2010年的国家测速仪调查报告中,我们可以看到我国的测速仪采用国外进口的测速仪占很大的比例,其中居多来自美国,日本。主要是因为我国的测速仪在质量,测量误差,报警设计方面离国外的测速仪还有一定的差距,但在近年的研究中,我国的测速仪发展还是取得了好大的进步。

激光多普勒测速实验报告

.\ 研究生专业实验报告 实验项目名称: LDV激光多普勒测速实验 学号: 20141002042 姓名:张薇 指导教师:唐经文 动力工程学院

.\ LDV激光多普勒测速实验 一、实验目的 应用激光测量流体的流速,是六十年代迅速发展起来的一种新的测速方法。它和过去应用的传统的测速仪器,如皮托管、旋浆式流速仪、热线式风速仪等相比,有如下几个主要优点:无接触测量,不干扰流场;测速范围广(4秒 米 10 104 5- ?-);空间分辨率高;动态响应快。特别是对高速流体、恶性(如:酸性、碱性、高温等)流体、狭窄流场、湍流、紊流边界层等的测量方面,显示出传统方法无法比拟的优点。 本实验要求在熟悉激光测速光学系统和信号处理基本原理的基础上,应用实验室的频移型二维激光测速仪测量一个具有分离、再附、旋涡和高湍流度的复杂流场,了解这种流场中平均速度、速度直方图、湍流度和雷诺应力等湍流参数在主流区、回流区、剪切层和边界层等区域的不同特征,以及激光测速在测量复杂湍流流动方面的功能和优点有着重要的实验意义。 二、实验设备 图1:激光多普勒测速仪 图2:实验模型结构尺寸

图3:实验系统图 三、实验原理和方法 激光多普勒测速仪,英文缩写是流体流速测量的光学方法之一,是利用光学多普勒效应。即当激光照射运动着的流体时,激光被跟随流体运动的粒子所散射,散射光的频率将发生变化,它和入射激光的频率之差称为多普勒频差或多普勒拍频。这个频差正比于流速,所以测出多普勒频差,就测得了流体的速度。 实际接收到的多普勒信号,是包含有各种各样噪声的信号。例如光电倍增管带来的信号散粒噪声,暗电流散粒噪声,背景光噪声,热噪声,以及其他测量仪器带来的噪声等。同时,多普勒信号还是一个调制信号,由于各种原因,使多普勒频带加宽。例如,振幅调制,散射粒子受布朗运动影响,散射粒子通过探测体积所需要的渡越时间,多粒子进入探测体积初位相的不同,激光束的角扩散及速度梯度等原因,都会引起多普勒频带的加宽。为了尽量减小噪声和带宽,以及从具有一定的噪声和带宽的信号中,取出反映流速的“有用”信号,必须选择合适的信号处理装置,对多普勒信号进行处理。 一种信号处理装置,是利用高分辨率的法布里-珀罗干涉仪,直接跟踪光学信号。此种干涉仪调整比较简单,在大散射角工作时空间分辨率较高,但在测低速 厘米。另一种信号处理装置是频谱分析时受到限制,一般能测的下限速度为25秒 仪,它实际上是通过调谐窄带滤波器,把信号用示波器器显示出来,其中心频率在频谱范围内缓慢地扫描。由于使用滤波器,在任一瞬间时只能观察到全部信号的很少一部分,浪费了有用的信息和时间。进来信号处理装置都采用能跟踪可变频率的振荡器,称为自动跟踪可变频率跟踪器,简称频率跟踪器。 四、实验内容 在熟悉激光测速光学系统和信号处理基本原理的基础上,应用频移型二维激光测速仪测量复杂流场的速度。

激光多普勒测速

南京理工大学 课程考核论文 课程名称:图像传感与测量 论文题目:激光多普勒测速技术 姓名:陈静 学号: 314101002268 成绩: 任课教师评语: 签名: 年月日

激光多普勒测速技术 一、引言 激光多普勒测速技术即LDV(Laser Doppler Velocimetry)是伴随着激光器的诞生而产生的一种新的测量技术,它是利用激光的多普勒效应来对流体或固体速度进行测量的一种技术,广泛应用于军事、航空航天、机械、能源、冶金、水利、钢铁、计量、医学、环保等领域[1]。 激光测速技术的发展大体上可分为三个阶段。 第一个阶段是1964至1972年,这是激光测速发展的初期。在此期间,大多数的光学装置都比较简单,用各种元件拼搭而成,光学性能和效率不高,使用调准也不方便[2]。 第二个阶段是1973至1980年,在此期间,激光测速在光学系统和信号处理器方面有了很大的发展。光束扩展,空间滤波,偏振分离,频率分离,光学频移等近代光学技术相继应用到激光测速仪中。 第三个阶段是1981年至今。在此期间,应用研究得到快速发展[3]。 在发表的论文中,有关流动研究的论文急剧增加。多维系统,光纤传输技术以及数字信号处理和微机数据处理技术等的出现把激光多普勒技术推向更高水平,使用调整更加方便。此外,半导体激光器的应用是其小型化成为可能,推动激光多普勒测速走出实验室,迈向工业和现场应用。 二、主要内容 激光的多普勒效应是激光多普勒测速技术的重要理论基础,当光源和运动物体发生相对运动时,从运动物体散射回来的光会产生多普勒频移,这个频移量的

大小与运动物体的速度,入射光和速度方向的夹角都有关系。 由于其有许多潜在的独特功能,激光多普勒技术吸引了大量的实验流体力学和其他学科的研究工作者去研究和解决这些问题,使激光测速技术得到飞速发展,成为流动测量实验的有力工具[4]。 1.激光多普勒测速原理 激光测速的原理大致是这样:激光束射向流动着的粒子,粒子发出的散射光的频率改变了,通过光电装置测出频率的变化,就测得了粒子的速度,也就是流动的速度 [5]。 设一束散射光与另一束参考光的频率分别为12,s s f f ,它们到达光探测器阴极 表面的电场强度分别为: 1210112022cos(2) cos(2)s s E E f t E E f t π?π?=+=+ 式中,0102,E E 分别为两束光在光阴极表面处的振幅,12,??分别为两束光的初始相位。两束光在光阴极表面混频,其合成的电场强度为: 1212011022cos(2)cos(2)s s E E E E f t E f t π?π?=+=+++ 光强度与光的电场强度的平方成正比: 1222212010201021(t)()()cos[2()]2 s s I k E E k E E kE E f f t π?=+=++-+ 式中为k 常数,?为两束光初始相位差,12???=-。其中第一项为直流分量,可用电容器隔去,第二项为交流分量,其中12s s f f -是得到的多普勒频移。 多普勒频移与物体运动速度V 的关系为: 12[cos(,)cos(,)]s s i s V f f K K υυλ -=- 式中:i K 是激光的传播矢量,s K 为散射光传播矢量,υ是物理运动速度方

多普勒测速仪工作原理

浏览次数:110次悬赏分:0|解决时间:2011-8-24 19:30|提问者:匿名 最佳答案 从开过来的机车所听到的声波间的距离被压缩了,就好像一个人正在关手风琴。这个动作的结果产生一个明显的较高的音调。当火车离去时,声波传播开来,就出现了较低的声音--这种现象被称为“多普勒”效应。 检查机动车速度的雷达测速仪也是利用这种多普勒效应。从测速仪里射出一束射线,射到汽车上再返回测速仪。测速仪里面的微型信息处理机把返回的波长与原波长进行比较。返回波长越紧密,前进的汽车速度也越快--那就证明驾驶员超速驾驶的可能性也越大。 多普勒测速仪仪器介绍 TSI的LDV/PDPA系统 LDV/PDPA的主要装置和原理 激光多普勒测速仪是测量通过激光探头的示踪粒子的多普勒信号,再根据速度与多普勒频率的关系得到速度。由于是激光测量,对于流场没有干扰,测速范围宽,而且由于多普勒频率与速度是线性关系,和该点的温度,压力没有关系,是目前世界上速度测量精度最高的仪器。 LDV/PDPA测速工作原理可以用干涉条纹来说明。当聚焦透镜把两束入射光以?角会聚后,由干激光束良好的相干性,在会聚点上形成明暗相间的干涉条纹,条纹间隔正比干光波波长,而反比干半交角的正弦值。当流体中的粒子从条纹区的方向经过时,会依次散射出光强随时间变化的一列散射光波,称为多普勒信号。这列光波强度变化的频率称为多普勒频移。经过条纹区粒子的速度愈高,多普勒频移就愈高。将垂直于条纹方向上的粒子速度,除以条纹间隔,考虑到流体的折射率就能得到多普勒频移与流体速度之间线性关系。LDV/PDPA系统就是利用速度与多谱勒频移的线性关系来确定速度的。各个方向上的多普勒频率的相位差和粒子的直径成正比,利用监测到的相位差可以来确定粒径。 LDV/PDPA系统从功能上分为:光路部分、信号处理部分。光路部分:采用He-Ni激光器或Ar离子激光器,是因为它们能够提供高功率的514.5nm,488nm,476.5nm三种波长的激光。带有频移装置的分光器将激光分成等强度的两束,经过单模保偏光纤和光纤耦合器,将激光送到激光发射探头,调整激光在光腰部分聚焦在同一点,以保证最小的测量体积,这一点就是测量体即光学探头。接受探头将接受到的多普勒信号送到光电倍增管转化为电信号以及处理并发大,再至多普勒信号分析仪分析处理后至计算机记录,配套系统软件可以进行数据处理工作。在流场中存在适当示踪粒子的倩况下,可同时测出流动的三个方向速度及粒子直径。 TSI公司在国际上第一个生产商业化的LDV/PDPA系统,现在的TSI公司的LDV/PDPA系统已经拥有4项专利设计,并且在流场、湍流、传质、传热、流型、燃烧研究上有广泛的使

激光多普勒测速系统

激光多普勒测速系统 一、概述: 项目背景: 该项目主要通过激光器和激光接收机实时检测目标的XYZ方向上的相对速度,并将3个方向的速度值矢量合成后,通过串口上报给主机。 系统原理如下: ●通过特殊的调制信号激励激光器,发射连续波激光。 ●同时在不同阶段接收从目标反射回的信号并通过高速ADC采集这些信号。 ●FPGA实时进行FFT计算,根据FFT结果比较不同阶段的频偏和符号。 ●根据多普勒效应,通过频偏大小和频偏方向,就能计算出目标的相对速度和方向。 ●3个通道通过不同角度的合成,可以最终计算出目标的相对矢量速度。 ●通过串口将速度数据传到上位机。

系统原理框图如下: 我们面临的挑战: ●由于物体相对速度较快,达到125m/s;对应的信号带宽为DC-250MHz左右, 需要1GHz进行高速采集。 ●同时对1Gsps的数据量进行最大32K点FFT时,数据覆盖率达50%上。此时单 一的FFT模块在FPGA中计算时间不够,需要4路FFT并行计算;逻辑设计难 度较大。 ●要求测试距离在3KM以上。由于激光在大气中的衰减比较严重,同时受到大气 的干扰也比较严重。致使回波信号比较弱,同时不稳定。 示波器捕获的原始数据

解决方案: 根据实际系统和算法处理精度要求,硬件系统采用如下设计: ?10bit1GSPS ADC,三通道同步采集。 ?低噪声模拟前端,支持程控增益放大,50Ω阻抗SMA接口。 ?模拟带宽DC-250MHz。 ?板载1024MB DDR3内存。 ?高稳定度,超低低抖动时钟发生器。 ?低噪声电源设计。 ?采用Xilinx XC5VSX95T FPGA,FPGA实现实时FFT和信号检测算法功能。 ?TI C6455DSP,工作频率1GHz,用于3波束速度合成算法和FPGA控制。 ?两个RS422/RS485接口。 二、系统整体框图如下: 系统整机的实物图如上

雷达测速仪有哪些特点

我国河流湖泊众多,水网密布,而要测量水流的流速,记录水文数据资料,就需要用到测速仪。雷达测速仪就是众多测速仪中的一种,雷达测流运用的原理是多普勒效应。多普勒效应是为纪念奥地利物理学家克里斯琴约翰.多普勒而命名的。在声学领域中,当声源与接收体(即探头和反射体)之间有相对运动时,回声的频率将有所变化,此种频率的变化称之为频移,即多普勒效应。如下图所示,当雷达流速仪与水体以相对速度V发生对运动时,雷达流速仪所收到的电磁波频率与雷达自身所发出的电磁波频率有所不同, 此频率差称为多普勒频移。通过解析频移与V的关系,得到流体表面流速。 雷达测速仪被广泛应用在河道、灌渠、防汛等水文测量;江河、水资源监测;环保排污、地下水道管网监测;城市防洪、山区暴雨性洪水监测;地质灾害预警监测等诸多领域。 今天我们主要来看看雷达测速仪的特点,主要有如下几个特点: 1、非接触、安全低损、少维护、不受泥沙影响; 2、能胜任洪水期高流速条件下的测量; 3、具有防反接、防雷保护功能; 4、系统功耗低,一般太阳能供电即可满足测流需要; 5、多种接口方式,既有数字接口又具有模拟接口,方便接入系统; 6、无线传输功能(可选),可将数据无线传输到3.5km以外;

7、测速范围宽,测量距离远达40m; 8、多种触发模式:周期、触发、查询、自动; 9、安装特别简单,土建量很少; 10、全防水设计,适合野外使用。 非接触雷达测流方式测速时设备不受污水腐蚀,不受泥沙影响,少受水毁影响,土建简单,便于维护,保障人员安全,特殊的天线设计使得功耗超低,大大降低了供电需求。不仅可用于平时流速监测,而且特别适合承担急难险重观测任务。 航征科技是目前国内具有自主知识产权的雷达方案提供商, 拥有多项专利和软件著作权。航征面向水文、水利、环境保护、城市排水管网等行业用户, 提供雷达流速流量在线监测解决方案。航征分别在上海、无锡建立了运营和研发测试中心,拥有完整的技术研发体系和阵容强大的科研队伍,与清华大学、国防科技大学、上海交通大学等知名院校达成长期战略合作,有多位业内专家作为公司的技术后盾,立志成为全球优秀的智能传感解决方案提供商。

DSP多普勒雷达测速测距

DSP 实验课大作业设计 一 实验目的 在DSP 上实现线性调频信号的脉冲压缩、动目标显示(MTI )和动目标检测(MTD),并将结果与MATLAB 上的结果进行误差仿真。 二 实验内容 2.1 MATLAB 仿真 设定带宽、脉宽、采样率、脉冲重复频率,用MATLAB 产生16个脉冲的LFM ,每个脉冲有4个目标(静止,低速,高速),依次做 2.1.1 脉压 2.1.2 相邻2脉冲做MTI ,产生15个脉冲 2.1.3 16个脉冲到齐后,做MTD ,输出16个多普勒通道 2.2 DSP 实现 将MATLAB 产生的信号,在visual dsp 中做脉压,MTI 、MTD ,并将结果与MATLAB 作比较。 三 实验原理 3.1 脉冲压缩原理及线性调频信号 雷达中的显著矛盾是:雷达作用距离和距离分辨率之间的矛盾以及距离分辨率和速度分辨率之间的矛盾。雷达的距离分辨率取决于信号带宽。在普通脉冲雷达中,雷达信号的时宽带宽积为一常量(约为1),因此不能兼顾距离分辨率和速度分辨力两项指标。脉冲压缩(PC )采用宽脉冲发射以提高发射的平均功率,保证足够的最大作用距离,而在接收时则采用相应的脉冲压缩法获得窄脉冲,以提高距离分辨率,因而能较好地解决作用距离和分辨能力之间的矛盾。 一个理想的脉冲压缩系统,应该是一个匹配滤波系统。它要求发射信号具有非线性的相位谱,并使其包络接近矩形;要求压缩网络的频率特性(包括幅频特性和相频特性)与发射脉冲信号频谱(包括幅度谱和相位谱)实现完全的匹配。 脉冲压缩按信号的调制规律(调频或调相)分类,可分为以下四种: (1)线性调频脉冲压缩 (2)非线性调频脉冲压缩 (3)相位编码脉冲压缩 (4)时间频率编码脉冲压缩 本实验采用的是线性调频脉冲压缩。 线性调频信号是指频率随时间的变化而线性改变的信号。线性调频可以同时保留连续信号和脉冲的特性,并且可以获得较大的压缩比,有着良好的距离分辨率和径向速度分辨率,所以将线性调频信号作为雷达系统中一种常用的脉冲压缩信号。 接收机输入端的回波信号是经过调制的宽脉冲,所以在接收机中应该设置一个与发射信号频率匹配的滤波器,使回波信号变成窄脉冲,同时实现了宽脉冲的能量和窄脉冲的分辨能力。解决了雷达发射能量及分辨率之间的矛盾。 匹配滤波器是指输出信噪比最大准则下的最佳线性滤波器。根据匹配理论, 匹配滤波器的传输特性: 0)()(*t j e KS H ωωω-=

激光多普勒测速

激光多普勒测速 1.引言 激光多普勒测速技术是伴随着激光器的诞生而产生的一种新的测量技术,它是利用 激光的多普勒效应来对流体或固体速度进行测量的一种技术,广泛应用于军事,航空,航天,机械,能源,冶金,水利,钢铁,计量,医学,环保等领域[1-2]。 激光多普勒测速仪是利用激光多普勒效应来测量流体或固体运动速度的一种仪器,通常由五个部分组成:激光器,入射光学单元,接收或收集光学单元,多普勒信号处理器和数据处理系统或数据处理器,主要优点在于非接触测量,线性特性,较高的空间分辨率和快速动态响应,采用近代光-电子学和微处理机技术的LDV系统,可以比较容易地实现二维,三维等流动的测量,并获得各种复杂流动结构的定量信息。由于上述潜在的独特功能,激光多普勒技术吸引了大量的实验流体力学和其他学科的研究工作者去研究和解决这些问题,使激光测速技术得到飞速发展,成为流动测量实验的有力工具。 激光测速技术的发展大体上可分为三个阶段[1-3]。 第一个阶段是1964 – 1972 年,这是激光测速发展的初期。在此期间,大多数的光学装置都比较简单,用各种元件拼搭而成,光学性能和效率不高,使用调准也不方便; 第二个阶段是1973 – 1980 年,在此期间,激光测速在光学系统和信号处理器方面有了很大的发展。光束扩展,空间滤波,偏振分离,频率分离,光学频移等近代光学技术相继应用到激光测速仪中。 从1980年到现在,激光测速进入了第三个阶段。在此期间,应用研究得到快速发展。在发表的论文中,有关流动研究的论文急剧增加。多维系统,光纤传输技术以及数字信号处理和微机数据处理技术等的出现把激光多普勒技术推向更高水平,使用调整更加方便。此外,半导体激光器的应用是其小型化成为可能,推动激光多普勒测速走出实验室,迈向工业和现场应用。 激光的多普勒效应是激光多普勒测速技术的重要理论基础,当光源和运动物体发生相对运动时,从运动物体散射回来的光会产生多普勒频移,这个频移量的大小与运动物体的速度,入射光和速度方向的夹角都有关系[1]。下文中将详细介绍。 2.激光多普勒测速原理 在激光多普勒测速仪中,依靠运动微粒散射光与照射光之间光波的频差(或称频移)来获得速度信息。这里存在着光波从(静止)光源(运动)微粒(静止)光检测器三者之间的传播关系。

脉冲多普勒雷达测速仿真

任务书 雷达进行PD测速主要是利用了目标回波中携带的多普勒信息,在频域实现目标和杂波的分离,它可以把位于特定距离上、具有特定多普勒频移的目标回波检测出来,而把其他的杂波和干扰滤除。因此要求雷达必须具备很强的抑制杂波的能力,能在较强的杂波背景中分辨出运动目标的回波。 如今,不管是在军用还是民用上,雷达都在发挥着它很早重要的作用,与早期雷达采用距离微分方法测速相比,基于脉冲多普勒理论的雷达测速技术具有实时性好、精度高等优点。特别是现代相控阵技术在雷达领域的应用,实现了波束的无惯性扫描和工作方式的快速切换,更便于应用脉冲多普勒技术进行雷达测速。 本篇课程设计目的在于介绍脉冲多普勒雷达测速的原理,并对这种技术进行介绍和仿真。

摘要 脉冲多普勒(PD)雷达以其卓越的杂波抑制性能受到世人瞩目。现代飞行器性能的改进和导航手段的加强,使其能在低空和超低空飞行,因此防御低空入侵己成重要问题,由此要求机载雷达,包括预警机雷达和机载火控雷达具有下视能力,即要求能在强的地杂波背景中发现微弱的目标信号,所以现代的预警机雷达和机载火控雷达皆采用PD体制。脉冲多普勒雷达包含了连续波雷达和脉冲雷达两方面的优点,它具有较高的速度分辨能力,从而可以更有效地解决抑制极强的地杂波干扰问题;此外,脉冲多普勒雷达能够同时敏感地测定距离和速度信息;能够利用多普勒处理技术实现高分辨率的合成孔径图像;而且亦具有良好的抗消极干扰能力和抗积极干扰能力。 本文介绍了脉冲多普勒雷达测速的原理,信号处理。并用matlab简单的仿真了雷达系统对信号的处理. 关键词:脉冲多普勒雷达恒虚警脉冲压缩线性调频 Abstact Pulse Doppler (PD) radar is famous for it`s outsdanding clutter suppression.Modern aircraft`s function and GPS has been strengthen.now.it makes the aircraft can fly lower and lower.So.nowadays,Defensing.Low altitude invasion has been an important problem.so we require airborne radar. Early warning radar and airborne fire control radar have the ability to look down.That is to say.The radar is be required the ability to find Weak target signal in the strong Groung clutter.So .The modern airborne early warning radar and airborne fire control radar use the PD system.Pulse Doppler (PD) radar concludes two adervantages of Continuous wave radar and impulse radar.It has a higher velocity resolution.thus it can effectively.soveing the problem of strong ground clutter.what`s more.Pulse Dppler (PD) radar can Sensitive text the Distance and speed on the same time.Itcan use Doppler processing technology to realise Synthetic aperture images with high resolution. This article sinply introduced principle of pulse Doppler radar and signal

流量流速的测定及常见流体测速仪

流量流速的测定及常见流体测速仪 如何测定流体的流速和流量对于流体力学来说是一门非常重要的研究,如今,有关流体的测量与我们的生活息息相关。由于实际流动非常复杂,实验研究和流体测量仍然是检验理论分析和数值计算结果最终的具有说服力的方法。那么该如若测定流量及流速呢? 对于流体流量的测定,有以下几种常见的仪器。 1.文丘里管流量计 文丘里管由渐缩管、中间的喉部断面和渐扩管组成,渐缩管内速度增加,压力下降,渐扩管内动能又转变为压力能,速度减小,压力增加。因为压力与流速有关,所以可以用来测流量。如图7.7所示,以管道轴线为基准面,1和2两断面间伯努力方程为 g v p z g v p z 222222211 1++=++γγ 代入连续性方程,得: 2121v A A v = 喉部理想流速为: ??????+-+-=γγ22112 122()(2)(11p z p z g A A v 文丘里管能够精确测量管道内流体流量,除了安装费用外,文丘里管唯一的不足是在管路中增加一个摩擦损失。事实上,所有损失都发生在渐扩管中,即图中2和3断面间,一般为静压差的10%到20%。 为了测量精确,在文丘里管前面应该至少有管道直径的5~10倍的直管段。所需要的直管段长度取决于进口断面的条件。随管径比率增加,进口断面处流动影响增大。压力差测量应该用管道周围的环形测压管,并保证在两个断面处有适当的开孔数。 对于一个给定的文丘里管,除特殊给定外,通常假设雷诺数超过l05,μ值根据实验确定,称为文丘里管系数。它的值约在0.95~0.98之间。文丘里管长期使用后μ可能下降l%~2%。

2.节流式流量计 结构简单,无可动部件;可靠性较高;复现性能好;适应性较广,它适用于各种工况下的单相流体,适用的管道直径范围宽,可以配用通用差压计;装置已标准化。 安装要求严格;流量计前后要求较长直管段;测量范围窄,一般范围度为 3 : 1;压力损失较大;对于较小直径的管道测量比较困难 ;精确度不够高(±1%~ ±2%)。 1-节流元件 2-引压管路3-三阀组 4-差压计 测量原理及流量方程: 2222222111 u p u p +=+ρρ 1u 1ρ24D π =2u 2ρ2 4d 'π 21p p 、—截面1和2上流体的静压力; 21u u 、—截面1和2上流体的平均流速; D 、d '—截面1和2上流束直径; 对于可压缩流体,考虑到节流过程中流体密度的变化而引入流束膨胀系数进行修正,采用节流件前的流体密度,由此流量公式可更一般的表示为:

多普勒雷达测速

多普勒雷达 多普勒雷达测速是一种直接测量速度和距离的方法。在列车上安装多普勒雷达,始终向轨面发射电磁波,由于列车和轨面之间有相对运动,根据多普勒频移效应原理,在发射波和反射波之间产生频移,通过测量频移就可以计算出列车的运行速度,进一步计算出列车运行的距离。克服了车轮磨损、空转或滑行等造成的误差,可以连续测速、测向和定位。 多普勒效应 当发射源(或接收者)相对介质运动时,接收者接收到的电磁波的频率和发射源的频率不同,这种现象被称为多普勒效应。 物体辐射的波长因为光源和观测者的相对运动而产生变化。在运动的波源前面,波被压缩,波长变得较短,频率变得较高(蓝移)。 在运动的波源后面,产生相反的效应。波长变得较长,频率变得较低(红移)。 波源的速度越高,所产生的效应越大。根据光波红/蓝移的程度,可以计算出波源循着观测方向运动的速度。 多普勒效应 假设原有波源的波长为λ,频率为f0,介质中波速为c则 (1)当波源静止不动Vs=0,观察者以V0相对波源移动(向波源方向) (2)当观察者静止不动V0=0,波源以Vs相对观察者移动(向观察者方向) (3)当波源移动速度为Vs,观察者移动速度为V0,相对运动,此时介质中的波长和观察者接收到的波的个数都有变化 多普勒雷达的测速原理 多普勒雷达法利用多普勒效应测量列车运行速度。在车头位置安装多普勒雷达,雷达向地面发送一定频率的信号,并检测反射回来的信号。由于列车的运动会产生多普勒效应,所以检测到的信号其频率与发送的信号频率是不完全相同的。如果列车在前进状态,反射的信号频率高于发射信号频率;反之,则低于发射信号频率。而且,列车运行速度越快,两个信号之间的频率差越大。通过测量两个信号之间的频率差就可以获取列车的运行方向和即时运行速度,对列车的速度进行积分就可得到列车的运行距离。 多普勒雷达的测速原理 雷达发射电磁波的频率为F,在介质中的传播速度为c,发射角为a1,当雷达以速度V平行于反射面运动(反射面静止),则在反射面接收到的波频率为f1 而此时反射面把波反射回去,相当于波源(静止),雷达接收反射回来的波,相当于观察者(平行反射面速度为V),由于雷达的运动,入射角为a2,则雷达接收到的波频率为f2 多普勒雷达的测速原理 发射波与接收波的频移为 由于雷达运动的速度V远远小于电磁波的速度c,可以近似认为入射角a2=a1,则频移将上式展为泰勒级数,并舍去高次项,可得 也就是说,发射波与入射波之间的频移fr与雷达的速度V沿发射波方向的分量的大小成正比。如果发射角a1固定,则频移fr就是与雷达速度V成正比,只要测量出频移fr 的值,就可以计算出雷达的运动速度V 误差来源 ?为了简化计算,减少处理难度,一般都会取简化后的公式来计算,然而,由于简化公式是通过舍入的方法进行简化得,简化公式与原公式之间存在一定误差,这样在使用简化公式之前就要先考虑这个误差对计算的影响。 ?列车运行的过程中,由于轨面不平整或其他原因,列车会产生振动,但列车的振动基本上都是车体的高频上下小幅度运动

用多普勒效应测速的原理及应用论文

用多普勒效应测速的原理及应用 中文摘要:本论文的目的是介绍多普勒效应的测速原理以及在生活中的应用。通过查找资料并且思考的方法,分析和推导出多普勒效应的定义,原理。并且通过对日常生活的观察以及上网的搜索,了解了多普勒效应在日常生活的应用,包括声纳测速、雷达测速以及医学仪器的使用。本论文通过对多普勒效应原理的解说,一步步引导出测速的原理,进一步直观地解释其应用,从而真正解决了对多普勒效应测速的解答。 关键词:多普勒效应测速原理应用 论文: 一、多普勒效应 多普勒效应就是,当声音、光和无线电波等振动源与观测者以相对速度V相对运动时,观测者所收到的振动频率与振动源所发出的频率有所不同。因为这一现象是奥地利科学家多普勒最早发现的,所以称之为多普勒效应。由多普勒效应所形成的频率变化叫做多普勒频移,它与相对速度V成正比,与振动的频率成反比。 二、多普勒测速原理 用波照射运动着的物体,运动物体反射或散射波,由于存在多普勒效应,反射或散射波将产生多普勒频移,利用产生频移的波与本振波进行混频再经过适当的电子电路处理即可得到运动物体的运动速度。我们假设多普勒测速仪静止,运动物体的运动速度为v,运动物体的运动方向与多普勒测速仪的测速方向在同一直线上,为了得到多普勒测速仪所接收到的由于存在多普勒效应而频移的声波频率与运动物体运动速度之间的关系,我们分两步进行讨论。 1、声波测速 第一步,多普勒测速仪发射声波,运动物体接收到其所发射的声波.在这个过程中,多普勒测速仪作为波源是静止的,而运动物体作为波接收器以速度v运动.设多普勒测速仪所发射的声波频率为f,运动物体所接收到的声波频率为f′,声波的传播速度为v0,观测者相对于介质 的运动速度vr。可得: 第二步,运动物体反射或散射声波,多普勒测速仪接收到其所反射或散射的声波.在这个过程中,运动物体作为波源以速度v运动,而多普勒测速仪作为波接收器静止.设多普勒测速仪接收到的声波频率为f″,由第一步我们知道,运动物体所反射或散射的声波频率为f′,于是可得: 代入可得: 即为被测物体的运动速度v与多普勒测速仪所发射的声波频率f、多普勒测速仪所接 收到的由于存在多普勒效应而频移的声波频率f″以及声波的传播速度v0之间的关系 2、光波测速 为了得到多普勒测速仪所接收到的由于存在多普勒效应而频移的光波频率与运动物体运动速度之间的关系,我们同样分两步进行讨论。 第一步,多普勒测速仪发射光波,运动物体接收到其所发射的光波.在这个过程中,多普勒测速仪作为波源是静止的,运动物体作为波接收器是运动的,它们之间的相对速度为v.设多普勒测速仪所发射的光波频率为f,运动物体所接收到的光波频率为f′,光波的传播速度为c,则

多普勒雷达测速

多普勒雷达测速 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

多普勒雷达多普勒雷达测速是一种直接测量速度和距离的方法。在列车上安装多普勒雷达,始终向轨面发射电磁波,由于列车和轨面之间有相对运动,根据多普勒频移效应原理,在发射波和反射波之间产生频移,通过测量频移就可以计算出列车的运行速度,进一步计算出列车运行的距离。克服了车轮磨损、空转或滑行等造成的误差,可以连续测速、测向和定位。 多普勒效应 当发射源(或接收者)相对介质运动时,接收者接收到的电磁波的频率和发射源的频率不同,这种现象被称为多普勒效应。 物体辐射的波长因为光源和观测者的相对运动而产生变化。在运动的波源前面,波被压缩,波长变得较短,频率变得较高(蓝移)。 在运动的波源后面,产生相反的效应。波长变得较长,频率变得较低(红移)。 波源的速度越高,所产生的效应越大。根据光波红/蓝移的程度,可以计算出波源循着观测方向运动的速度。 多普勒效应 ,介质中波速为c则 假设原有波源的波长为λ,频率为f (1)当波源静止不动Vs=0,观察者以V0相对波源移动(向波源方向) (2)当观察者静止不动V0=0,波源以Vs相对观察者移动(向观察者方向) (3)当波源移动速度为Vs,观察者移动速度为V0,相对运动,此时介质中的波长和观察者接收到的波的个数都有变化 多普勒雷达的测速原理 多普勒雷达法利用多普勒效应测量列车运行速度。在车头位置安装多普勒雷达,雷达向地面发送一定频率的信号,并检测反射回来的信号。由于列车的运动会产生多普勒效应,所

以检测到的信号其频率与发送的信号频率是不完全相同的。如果列车在前进状态,反射的信号频率高于发射信号频率;反之,则低于发射信号频率。而且,列车运行速度越快,两个信号之间的频率差越大。通过测量两个信号之间的频率差就可以获取列车的运行方向和即时运行速度,对列车的速度进行积分就可得到列车的运行距离。 多普勒雷达的测速原理 雷达发射电磁波的频率为F,在介质中的传播速度为c,发射角为a1,当雷达以速度V平行于反射面运动(反射面静止),则在反射面接收到的波频率为f1 而此时反射面把波反射回去,相当于波源(静止),雷达接收反射回来的波,相当于观察者(平行反射面速度为V),由于雷达的运动,入射角为a2,则雷达接收到的波频率为f2 多普勒雷达的测速原理 发射波与接收波的频移为 由于雷达运动的速度V远远小于电磁波的速度c,可以近似认为入射角a2=a1,则频移将上式展为泰勒级数,并舍去高次项,可得 也就是说,发射波与入射波之间的频移fr与雷达的速度V沿发射波方向的分量的大小成正比。如果发射角a1固定,则频移fr就是与雷达速度V成正比,只要测量出频移fr的值,就可以计算出雷达的运动速度V 误差来源 ?为了简化计算,减少处理难度,一般都会取简化后的公式来计算,然而,由于简化公式是通过舍入的方法进行简化得,简化公式与原公式之间存在一定误差,这样在使用简化公式之前就要先考虑这个误差对计算的影响。 ?列车运行的过程中,由于轨面不平整或其他原因,列车会产生振动,但列车的振动基本上都是车体的高频上下小幅度运动

基于测速雷达的多目标检测算法

基于测速雷达的多目标检测算法 (合肥工业大学计算机与信息学院,安徽合肥20009) 摘要:近些年了来随着科技的进步、人们生活水平的提高,为满足生产和生活的需求各种交通工具应用而生。车型和车速的不断提高给道路交通管制带来了许多的不便和麻烦,因此基于交通测速雷达的多目标分辨领域的研究至关重要,能更好的对道路交通进行管理,在跟踪目标,对超速车辆的查找以及统计各类型车辆数量、缓解交通压力等方面有很大的用途。 本文在多普勒雷达的基础上研究发展而来的基于测速雷达的多目标分辨算法。首先介绍了雷达测速的研究背景及意义,多普勒雷达的测速原理,目前的发展状况以及传统雷达的不足之处。接着介绍了多目标分辨的理论依据,也就是本论文主要讲解的超速雷达的多目标分辨。 关键词:多普勒雷达、多目标分辨、频谱分析、幅度比较 一、研究背景 21世纪以来,人类生产力大解放。科技的蓬勃发展,工业革命的不断推进,无论是生产还是生活人类发生了翻天覆地的变化。其中最明显的便是交通运输工具的变化。随着道路基础设施建设水平的提高,人们生活质量的提高促使家庭小汽车的不断增加,同时为满足生产力发展的需求,各种交通工具应用而生。公路交通运输业是推动国民经济发展,促进经济社会繁荣的主动力。为实现对道路交通的有效管制以及行车速度测量及对超速车辆的实时监测控制对道路上的多目标进行分辨至关重要。 从雷达早期出现用于对空中金属物体的探测,到二战以来出现的雷达对空对地的火力控制等,雷达主要应用于军事领域。随着科技的进步,雷达技术的不断发展,雷达不再是一种单纯的军事雷达,其应用领域不断增加,功能不断增强出现了各种各样的雷达,比如气象雷达,道路交通测速雷达等。雷达测速是利用多普勒效应,通过多普勒频移计算目标的速度。雷达测速因其准确性高,速度快,稳定性好,探测距离远,可移动测速,能更好的抑制地无干扰等优点,得到广泛应用,但是由于雷达波束较宽,在多车并行行驶时,无法分辨出超速车辆,给监测控制带来了困难。国内现有超速测量抓拍系统在多车并行时,由于仅能检测出有车辆超速,无法分辨超速车辆,为避免误判只能放弃抓拍,无形中增加了交通事故隐患,严重影响了现代交通的严格法制化管理进程。因此多目标分辨雷达的研究和制造有着非常重要的作用。同时不仅可应用于超速雷达的探测,在对车型检测,缓解交通压力等方面都发挥很大的作用。 二、交通测速雷达发展状况 目前,美国联邦电讯委员会规定警用测速频道为Xband,Kband,Kaband三种,它们对应的微波频率分别为10.525GHZ,24.150GHZ,33.40-36.00GZH。Xband雷达形状为圆型,无法在车阵中锁定超速车辆只能在车阵中检测第一辆车的速度。K band测速雷达为手持式的雷达,国内警方绝大多数使用这种雷达。Ka band雷达与K band雷达相似,由于其微波频率更高,测速范围更加集中,所以不容易被干扰,目前国内基本局限于一般性测量且测量结果较粗糙,在先进技术方面还有很大差距,因此对多目标分辨的研究至关重要,对提高国内雷达水平,方便道路超速车辆管理有重要的作用。 三、多普勒雷达的作用原理 多普勒雷达,又名脉冲多普勒雷达,是一种利用多普勒效应来探测运动目标的位置和相对运动速度的雷达。1842年,奥地利物理学家J·C·多普勒发现,当波源和观测者有相对运动时,观测者接受到的波的频率和波源发来的频率不同,这种现象被称为多普勒效应。波是由频率和振幅所构成,而无线电波是随着物体而移动的,当无线电波在行进的过程中,碰到物体

基于激光多普勒效应测速系统的设计

Optoelectronics 光电子, 2015, 5, 13-18 Published Online June 2015 in Hans. https://www.doczj.com/doc/2c18516452.html,/journal/oe https://www.doczj.com/doc/2c18516452.html,/10.12677/oe.2015.52003 Design of Velocimetry System Base on Laser Doppler Effect Suiyan Tan, Chudong Xu College of Electronic Engineering, South China Agricultural University, Guangzhou Guangdong Email: tansuiyan@https://www.doczj.com/doc/2c18516452.html, Received: May 25th, 2015; accepted: Jun. 8th, 2015; published: Jun. 12th, 2015 Copyright ? 2015 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/2c18516452.html,/licenses/by/4.0/ Abstract A velocimetry system base on laser Doppler Effect is designed. The system works through building Michelson interferometer with discrete optical elements. The movable object of system is imple-mented by gear motor and doesn’t need to change the structure of experiment equipment; there-fore, the system is simple, convenient and low cost. Building the Michelson interferometer and measurement system by students themselves not only deepens students’ understanding of Dopp-ler Effect and its application, but also it is good for developing comprehensive and designed expe-riment, which can extend optic specialty undergraduate course experiment teaching content. Function of the velocimetry system is successfully achieved, and average error is 2.38%; errors are lower 5%. Keywords Laser Doppler Effect, Velocimetry System, Michelson Interferometer, Frequency Difference Method 基于激光多普勒效应测速系统的设计 谭穗妍,徐初东 华南农业大学电子工程学院,广东广州 Email: tansuiyan@https://www.doczj.com/doc/2c18516452.html, 收稿日期:2015年5月25日;录用日期:2015年6月8日;发布日期:2015年6月12日

利用激光多普勒效应测流体的流速 最终版

利用激光多普勒效应测流体的流速 指导老师:曾育峰 参赛学生:刘倩蔡艺生王宇松陆泽璇林乐鑫

利用激光多普勒效应测流体的流速 [摘要] 在基于流体中的微粒对激光产生多普勒效应的基础上,自制激光多普勒流速仪,经过特定的处理电路,以达到测量流体流速的目的。利用光外差探测法实现多普勒频移的测量,并利用光电探测器进行接收和转换,通过电路模块进行数据收集和处理后,利用频率计显示其频率差,最后用单片机自动化处理数据并显示水速。作品还加入了电脑仿真技术模块,以便更直观的观测水管中水流流速的动态变化情况。该作品原理突出、观测直观,实现对流体流速的测量。 [关键词]激光多普勒流速光外差法 一、激光多普勒效应测速的原理分析 1、多普勒效应 当波源和观察者存在相对运动时,观察者接收到的波,其频率会偏离波动本来的频率。相向运动,频率升高;相背运动,频率则降低,而且相对运动速度越大,这种频率偏移也越大,这种现象称为多普勒效应。多普勒效应在科学研究,工程技术,交通管理,医疗诊断等各方面都有十分广泛的应用。 2、激光多普勒效应测速原理 激光多普勒效应测速是利用流体在光场中的多普勒效应来测量流体的流速。这是一种非接触测量方法,只需要把光波送至测量点处,对流体没有干扰。激光多普勒效应测速还可以精确地控制被测空间大小,通过控制光束,光束在被测点处聚焦成为很小的测量体,可获得分辨率为20~100Lm 的极高测量精度。除此之外,激光多普勒效应测速具有输出信号频率与速度成线性关系的优点,并能覆盖很宽的速度范围。从原理上讲,其响应没有滞后,能跟得上湍流的快速脉动,能同时测定流体的大小和方向。 假设液体中微粒流动的速度为v,照射在微粒上的光为平面单色光波,波v,光速为c,一般v要比c小得多。根据相对论理论,微粒相矢量为k,光频率 对于光波运动,微粒散射光的频率因多普勒效应而发生频移。微粒散射光的频率v 应为:

相关主题
文本预览
相关文档 最新文档