当前位置:文档之家› 论高可靠性ETS控制系统设计

论高可靠性ETS控制系统设计

论高可靠性ETS控制系统设计
论高可靠性ETS控制系统设计

论高可靠性ETS控制系统设计

摘要汽轮机危急跳闸系统ETS装置是汽轮机保护最重要的一环,其运行安全与否直接影响到汽轮机的安全运行。本设计采用大规模可编程逻辑器件对输入信号进行逻辑运算和对外输出控制,实现了首出信号的锁存功能。采用三冗余的控制思想,提高了系统的可靠性。

关键词ETS;高可靠性;三冗余;稳定

前言

ETS(Emergency Trip System)是汽輪机危急跳闸系统的简称。汽轮机危急跳闸系统ETS装置是汽轮机保护最重要的一环,它是汽轮机电跳闸的出口,其运行安全与否直接影响到汽轮机的安全运行。

本设计中的高可靠性ETS系统采用大规模可编程逻辑器件,信号逻辑运算及对外控制输出用硬件电路实现,响应速度快;同时系统带有投切保护和首出指示功能;每一路输入信号都有10ms的输入延时防抖;对外通信接口丰富,可对外进行CAN总线和RS485总线通讯;组合灵活,可现实双冗余和三冗余结构,能够适应各种系统的安全性保护需求。

1 系统原理

ETS接收到的来自汽轮机的信号,经过光耦隔离和电平转换之后,同一个信号被输入信号分配端子分为3个相同的信号线,分别进入3套独立的ETS处理模块中,逻辑信号经内部大规模可编程逻辑器件的逻辑运算之后,3个信号各自的输出信号经过3取2表决运算,通过大功率的继电器输出DO信号。系统通过可编程逻辑器件对首出信号进行了锁存,同时通过独立的单片机将锁存的首出信号传送至上位机软件,实现对输入信号及输出信号的实时监控。多套相互独立的ETS系统同时处理同一输入信号,实现控制多冗余。系统可以单套单独使用,实现单路保护;也可以使用两套信号处理部分,实现双冗余结构;也可以三套同时使用,从而实现三冗余结构。可根据对系统安全性要求的高低灵活组合[1]。

1.1 逻辑运算

汽轮机送入EST系统的信号为干接点的开关量信号,通常接入的逻辑为单端逻辑信号和3取2逻辑信号,该ETS系统可同时处理8路单端逻辑信号和7路3取2逻辑信号,即总共15路逻辑。所有的这些逻辑信号通过一个或门接入R/S触发器的信号触发端,即只要有1路输入信号有效,R/S触发器就会被触发,同时将信号输入端锁存,即只有先输入的信号为有效信号,R/S触发器一旦被触发,后输入的信号即为无效信号,任何后续信号的输入都不会对该ETS系统的输出造成干扰,也就是该ETS系统的首出锁存功能。直到输入复位信号将R/S 触发器复位,首出锁存才被解锁,系统恢复到信号等待状态。

硬件系统的可靠性设计

硬件系统的可靠性设计

目录 1 可靠性概念 (4) 1.1 失效率 (4) 1.2 可靠度 (5) 1.3 不可靠度 (6) 1.4 平均无故障时间 (6) 1.5 可靠性指标间的关系 (6) 2 可靠性模型 (7) 2.1 串联系统 (7) 2.2 并联系统 (9) 2.3 混合系统 (11) 2.4 提高可靠性的方法 (12) 3 可靠性设计方法 (12) 3.1 元器件 (12) 3.2 降额设计 (13) 3.3 冗余设计 (14) 3.4 电磁兼容设计 (15) 3.5 故障自动检测与诊断 (15) 3.6 软件可靠性技术 (15) 3.7 失效保险技术 (15) 3.8 热设计 (16) 3.9 EMC设计 (16) 3.10 可靠性指标分配原则 (17) 4 常用器件的可靠性及选择 (19) 4.1 元器件失效特性 (19) 4.2 元器件失效机理 (21) 4.3 元器件选择 (23) 4.4 电阻 (23) 4.5 电容 (26) 4.6 二极管 (30) 4.7 光耦合器 (31) 4.8 集成电路 (32) 5 电路设计 (38) 5.1 电流倒灌 (38) 5.2 热插拔设计 (40) 5.3 过流保护 (41) 5.4 反射波干扰 (42) 5.5 电源干扰 (49) 5.6 静电干扰 (51) 5.7 上电复位 (52) 5.8 时钟信号的驱动 (53) 5.9 时钟信号的匹配方法 (55) 6 PCB设计 (60)

6.1 布线 (60) 6.2 去耦电容 (62) 7 系统可靠性测试 (62) 7.1 环境适应性测试 (62) 7.2 EMC测试 (63) 7.3 其它测试 (63) 8 参考资料 (64) 9 附录 (64)

高可靠性供电系统

高可靠性供电系统 具有可靠的电力供应系统。公司生产用电属于二级负荷用电企业,设计总容量达到46000KV A,工厂的10KV开闭所共有四条进线和三十八条出线。主进线由厂内专用110KV/10KV永安变电站进行两回路双母线供电,备供即保安电源由新桥变10KV双回路进行供电,供电能力达到16000KV A,永安变电站坐落在我公司厂区,其项目是省电力公司根据我公司的实力和发展前景专项投资8000万建成的。此变电站属于我公司专供变电站。 大型循环冷却水系统 采用台湾良机公司产5*2500m3/h钢混冷却塔,加上功能先进的自控系统可以根据热负荷变化自动变频加卸载,是国内生物制药行业为数不多的系统;与之配套的软化水采用全自动运行和再生处理、循环供水系统采用大型3000m3/h水泵运行为主小型水泵全自动变频调节为辅的模式,实现了无人值守。本公司循环冷却水系统无论装置规模还是节能水平都达到国内同类医药厂家之首。 热力系统 为了保证公司生物医药生产的需要,公司专门征地100亩,投资6800万元建设示范区南区供热中心,除满足本企业用热负荷外尚可满足入区兄弟企业的用热要求。现已建成2*20t/h锅炉2台,一次建成配套的煤棚,粉煤、运煤系统,水处理系统,烟尘处理系统,除尘出渣系统等辅助设备,还将根据热负荷的增加继续投资陆续建设3*35t/h锅炉。该系统设备技术先进、运行可靠、环保节能,是示范区重点支持建设项目。 生物发酵罐系统 工厂装备了目前生物制药行业最先进的发酵罐。其结构是上海医药设计院亚达发搅拌设备有限公司(美国开米尼公司设计模型)。其结构式上海医药设计院亚达发搅拌设备有限公司(该公司为国内鲁抗西安制药厂等百余家国内企业设计制造了搅拌机)根据国外技术结合本公司产品特性专门设计的SPIDI系列产品,主要有径向流与轴向流相结合的搅拌系统、双层内外循环冷却系统等组成。 生物发酵DCS控制系统 与发酵罐相配套的发酵工艺DCS控制系统采用温度:±0.5℃;PH:0.1--0.2;补料:1%,并且具有分散性强,支持cpu、电源、通讯、I/O冗余,精度达到16

论高可靠性ETS控制系统设计

论高可靠性ETS控制系统设计 摘要汽轮机危急跳闸系统ETS装置是汽轮机保护最重要的一环,其运行安全与否直接影响到汽轮机的安全运行。本设计采用大规模可编程逻辑器件对输入信号进行逻辑运算和对外输出控制,实现了首出信号的锁存功能。采用三冗余的控制思想,提高了系统的可靠性。 关键词ETS;高可靠性;三冗余;稳定 前言 ETS(Emergency Trip System)是汽輪机危急跳闸系统的简称。汽轮机危急跳闸系统ETS装置是汽轮机保护最重要的一环,它是汽轮机电跳闸的出口,其运行安全与否直接影响到汽轮机的安全运行。 本设计中的高可靠性ETS系统采用大规模可编程逻辑器件,信号逻辑运算及对外控制输出用硬件电路实现,响应速度快;同时系统带有投切保护和首出指示功能;每一路输入信号都有10ms的输入延时防抖;对外通信接口丰富,可对外进行CAN总线和RS485总线通讯;组合灵活,可现实双冗余和三冗余结构,能够适应各种系统的安全性保护需求。 1 系统原理 ETS接收到的来自汽轮机的信号,经过光耦隔离和电平转换之后,同一个信号被输入信号分配端子分为3个相同的信号线,分别进入3套独立的ETS处理模块中,逻辑信号经内部大规模可编程逻辑器件的逻辑运算之后,3个信号各自的输出信号经过3取2表决运算,通过大功率的继电器输出DO信号。系统通过可编程逻辑器件对首出信号进行了锁存,同时通过独立的单片机将锁存的首出信号传送至上位机软件,实现对输入信号及输出信号的实时监控。多套相互独立的ETS系统同时处理同一输入信号,实现控制多冗余。系统可以单套单独使用,实现单路保护;也可以使用两套信号处理部分,实现双冗余结构;也可以三套同时使用,从而实现三冗余结构。可根据对系统安全性要求的高低灵活组合[1]。 1.1 逻辑运算 汽轮机送入EST系统的信号为干接点的开关量信号,通常接入的逻辑为单端逻辑信号和3取2逻辑信号,该ETS系统可同时处理8路单端逻辑信号和7路3取2逻辑信号,即总共15路逻辑。所有的这些逻辑信号通过一个或门接入R/S触发器的信号触发端,即只要有1路输入信号有效,R/S触发器就会被触发,同时将信号输入端锁存,即只有先输入的信号为有效信号,R/S触发器一旦被触发,后输入的信号即为无效信号,任何后续信号的输入都不会对该ETS系统的输出造成干扰,也就是该ETS系统的首出锁存功能。直到输入复位信号将R/S 触发器复位,首出锁存才被解锁,系统恢复到信号等待状态。

可靠性、有效性、可维护性和安全性(RAMS)

1 目的 为确保产品在使用寿命周期内的可靠性、有效性、可维护性和安全性(以下简称RAMS),建立执行可靠性分析的典型方法,更好地满足顾客要求,保证顾客满意,特制定本程序。 2 适用范围 适用于本集团产品的设计、开发、试验、使用全过程RAMS的策划和控制。 3 定义 RAMS:可靠性、有效性、可维护性和安全性。 R——Reliability可靠性:产品在规定的条件下和规定的时间内,完成规定功能的能力。可靠性的概率度量亦称可靠度。 A——Availability有效性:是指产品在特定条件下能够令人满意地发挥功能的概率。 M——Maintainability可维护性:是指产品在规定的条件下和规定的时间内,按规定的程序和方法进行维修时,保持或恢复到规定状态的能力。维修性的概率度量亦称维修度。 S——Safety安全性:是指保证产品能够可靠地完成其规定功能,同时保证操作和维护人员 的人身安全。 FME(C)A:Failure Mode and Effect(Criticality)Analysis 故障模式和影响(危险)分析。 MTBF平均故障间隔时间:指可修复产品(部件)的连续发生故障的平均时间。 MTTR平均修复时间:指检修员修理和测试机组,使之恢复到正常服务中的平均故障维修时间。 数据库:为解决特定的任务,以一定的组织方式存储在一起的相关的数据的集合。 4 职责 4.1 销售公司负责获取顾客RAMS要求并传递至相关部门;组织对顾客进行产品正确使用和维护的培训;负责产品交付后RAMS数据的收集和反馈。 4.2 技术研究院各技术职能部门负责确定RAMS目标,确定对所用元器件、材料、工艺的可靠性要求,进行可靠性分配和预测,负责建立RAMS数据库。 4.3 工程技术部负责确定能保证实现设计可靠性的工艺方法。 4.4 采购部负责将相关资料和外包(外协)配件的RAMS要求传递给供方,并督促供方实现这些要求。 4.5制造部负责严格按产品图样、工艺文件组织生产。 4.6动能保障部负责制定工装设备、计量测试设备的维修计划并实施,保证其处于完好状态。

系统可靠性设计与分析

可靠性设计与分析作业 学号:071130123 姓名:向正平一、指数分布的概率密度函数、分布函数、可靠度函数曲线 (1)程序语言 t=(0:0.01:20); Array m=[0.3,0.6,0.9]; linecolor=['r','b','y']; for i=1:length(m); f=m(i)*exp(-m(i)*t); F=1-exp(-m(i)*t); R=exp(-m(i)*t); color=linecolor(i); subplot(3,1,1); title('指数函数概率密度函数曲线'); plot(t,f,color); hold on subplot(3,1,2); title('指数函数分布函数函数曲线'); plot(t,F,color); hold on subplot(3,1,3); title('指数指数分布可靠度函数曲线 plot(t,R,color); hold on end (3)指数分布的分析 在可靠性理论中,指数分布是最基本、最常用的分布,适合于失效率为常数 的情况。指数分布不但在电子元器件偶然失效期普遍使用,而且在复杂系统和整 机方面以及机械技术的可靠性领域也得到使用。 有图像可以看出失效率函数密度f(t)随着时间的增加不断下降,而失效率随 着时间的增加在不断的上升,可靠度也在随着时间的增加不断地下降,从图线的 颜色可以看出,随着m的增加失效率密度函数下降越快,而可靠度的随m的增加 而不断的增加,则失效率随m的增加减小越快。 在工程运用中,如果某零件符合指数分布,那么可以适当增加m的值,使零 件的可靠度会提升,增加可靠性。 二、正态分布的概率密度函数、分布函数、可靠性函数、失效率函数曲线 (1)程序语言 t=-10:0.01:10; m=[3,6,9]; n=[1,2,3]; linecolor=['r','b','y'];

可靠性设计心得

可靠性设计学习心得 随着科学技术的发展,对产品的要求不断提高,不仅要具有好的性能,更要具有高的可靠性水平。采用可靠性设计弥补了常规设计的不足,使得设计方案更加贴近生产实际。所谓可靠性是指“产品在规定时间内,在规定的使用条件下,完成规定功能的能力或性质”。可靠性的概率度量称为可靠度。可靠性工程的诞生已近半个世纪的历史, 以电子产品可靠性设计为先导的可靠性工程迄今发展得比较成熟, 已形成一门独立的学科。相比之下, 机械产品的可靠性设计与研究则起步较晚。所谓机械可靠性,是指机械产品在规定的使用条件下、规定的时间内完成规定功能的能力。由于工程材料特性的离散性以及测量、加工、制造和安装误差等因素的影响,使机械产品的系统参数具有固有的不确定性,因此考虑这种固有随机性的可靠性设计技术至关重要。据有关方面统计,产品设计对产品质量的贡献率可达70%~80%,可见设计决定了产品的固有质量特性(如:功能、性能、寿命、安全性和可靠性等),赋予了产品“先天优劣”的本质特性。上世纪60年代, 对机械可靠性问题引起了广泛的重视并开始对其进行了系统研究。虽然国内外都投入了研究力量, 取得了一定的进展,但终因机械产品可靠性涉及的领域太多、可靠性研究的范围大、基础性数据缺乏等原因,机械可靠性设计在工程实际中应用得并不广泛。本文简要介绍了可靠性技术在机械领域中的应用,主要介绍了一些在机械产品设计中应用的较为成熟的可靠性技术和可靠性设计方法,并且结合当今可靠性工程学科的发展,指出了可靠性技术在机械领域中的发展和趋势。 常规设计中,经验性的成分较多,如基于安全系数的设计。 常规设计可通过下式体现: S E l F f lim ][...),,,(σσμσ=≤= 计算中,F 、l 、E 、μ、slim 等各物理量均视为确定性变量,安全系数则是一个经验性很强的系数。 上式给出的结论是:若s≤[s]则安全;反之则不安全。 应该说,上述观点不够严谨。首先,设计中的许多物理量明是随机变量;基

硬件系统可靠性设计规范

硬件系统可靠性设计规范 一、概论 可靠性的定义:产品或系统在规定条件下和规定时间内完成规定功能的能力 可靠性及抗干扰设计是硬件设计必不可少的一部分,它包括芯片、器件选择、去耦滤波、印刷电路板布线、通道隔离等。有完善的抗干扰措施,是保证系统精度、工作正常和不产生错误的必要条件。设备可靠性设计规范的一个核心思想是监控过程,而不是监控结果。 二、可靠性设计方法 1、元器件:构成系统的基本部件,作为设计与使用者,主要是保证所选用的元器件的质量或可靠性指标满足设计的要求 2、降额设计:使电子元器件的工作应力适当低于其规定的额定值,从而达到降低基本故障率,保证系统可靠性的目的。幅度的大小可分为一、二、三级降额,一级降额((实际承受应力)/(器件额定应力) < 50%的降额),建议使用二级降额设计方法,一级降额<70% 3、冗余设计:也称为容错技术或故障掩盖技术,它是通过增加完成同一功能的并联或备用单元(包括硬件单元或软件单元)数目来提高系统可靠性的一种设计方法,实现方法主要包括:硬件冗余;软件冗余;信息冗余;时间冗余等 4、电磁兼容设计:系统在电磁环境中运行的适应性,即在电磁环境下能保持完成规定功能的能力。电磁兼容性设计的目的是使系统既不受外部电磁干扰的影响,也不对其它电子设备产生电磁干扰。硬件措施主要有滤波技术、去耦电路、屏蔽技术、接地技术等;软件措施主要有数字滤波、软件冗余、程序运行监视及故障自动恢复技术等 5、故障自动检测及诊断 6、软件可靠性设计:为了提高软件的可靠性,应尽量将软件规范化、标准化、模块化 7、失效保险技术 8、热设计 9、EMC设计:电磁兼容(EMC)包括电磁干扰(EMI)和电磁敏感度(EMS)两个方面 三、可靠性设计准则

机械产品可靠性设计综述

机械产品可靠性设计综述 一、可靠性设计的基本概念 可靠性设计的定义: 定义1:对系统和结构进行可靠性分析和预测,采用简化系统和结构、余度设计和可维修设计等措施以提高系统和结构可靠度的设计。 定义2:为了满足产品的可靠性要求而进行的设计。 可靠性设计即根据可靠性理论与方法确定产品零部件以及整机的结构方案和有关参数的过程。设计水平是保证产品可靠性的基础。 可靠性设计是产品的一个重要的性能特征,产品质量的主要指标之一,是随产品所使用时间的延续而在不断变化的。可靠性设计的任务就是确定产品质量指标的变化规律,并在其基础上确定如何以最少的费用以保证产品应有的工作寿命和可靠度,建立最优的设计方案,实现所要求的产品可靠性水平。 可靠性问题的研究是因处理电子产品不可靠问题于第二次世界大战期间发展起来的。可靠性设计用在机械方面的研究始于20世纪60年代,首先应用于军事和航天等工业部门,随后逐渐扩展到民用工业。 可靠性设计的一个重要内容是可靠性预测,即利用所得的资料预报一个零件、部件或系统实际可能达到的可性,预报这些零部件或系统在规定的条件下和在规定时间内完成规定功能的概率。在产品设计的初期阶段,及时完成可靠性预测工作,可以了解产品各零部件之间可靠性的相互关系,找出提高产品可靠性的有效途径。 二、可靠性设计的基本原理 (1)选择设计方案时尽量不采用还不成熟的新系统和零件,尽量采用已有经验并已标准化的零部件和成熟的技术。 (2)结构简化,零件数削减。如日本横河记录仪表10年中无件数削减30%,大大提高了可靠性。 (3)考虑功能零件的可接近性,采用模块结构等以利于可维修性。 (4)设置故障监测和诊断装置,保证零件部设计裕度(安全系数/降额)。 (5)必要时采用功能并联、冗余技术。如日本的液压挖掘机等,采用双泵、双发动机的冗余设计。 (6)失效安全设计(Failure Safe),系统某一部分即使发生故障,但使其限制在一定范围内,不致影响整个系统的功能。 (7)安全寿命设计(Safe Life),保证使用中不发生破坏而充分安全的设计。例如对一些重要的安全性零件如汽车刹车,转向机构等要保证在极限条件下不能发生变形、破坏。 (8)加强连接部分的设计分析,例如选定合理的连接、止推方式。考虑防振,防冲击,对连接条件的确认。 (9)可靠性确认试验,在没有现成数据和可用的经验时,这是唯一的手段。尤其机械零部件的可靠性预测精度还很低。主要通过试验确认。 三、可靠性设计的基本方法 为了使设计时能充分地预测和预防故障,把更多的失效经验设计到产品中,因而必须邦助设计人员掌握充分的故障情报资料和设计依据。采取以下措施:

容器云平台高可靠性设计

容器云平台高可靠性设计

1 容器云平台高可靠的需求与价值 (01) 1.1 容器技术与传统虚拟化技术可靠性架构的对比 (01) 1.2 容器的集群需求 (02) 1.3 Kubernetes对于容器云平台高可用的特性和价值 (03) 2 容器云平台总体高可靠架构设计 (03) 2.1 高可靠Docker容器集群设计和部署 (03) 2.2 高可靠Kubernetes集群的设计和部署 (03) 2.3 高可靠Etcd集群的设计和部署 (05) 2.4 容器云整体高可靠的设计和实现 (05) 2.5 支撑高可靠的VIP技术 (06) 3 容器云平台高可靠架构的指标对比 (07) 4 结语 (07)

高可靠是容器云平台功能架构中的关键的一环,在业务连续性和系统可靠性两个关键指标中,容器云的高可靠起到了至关重要的作用。在通用企业级的容器云平台构建和设计中,相应的设计方案和技术框架体现在高可用方面。对于企业的业务连续性而言,容器云平台的高可靠主要分为高可用、高性能、高安全性、易扩展性四个方面。高可靠的容器云平台用于承载微服务系统的应用,仅仅依靠Docker容器技术是无法满足需求的,因此Kubernetes作为服务编排和部署工具不断的和Docker以及CRI容器运行时进行融合,衔接传统的PaaS平台,在功能上不仅可以保证容器集群的编排和运维,又可以提供优越的平台层服务。Kubernetes 具备完备的集群管理能力,包括多层次的安全防护和准入机制、多租户应用支撑能力、透明的服务注册和服务发现机制、内建智能负载均衡器、强大的故障发现和自我修复能力、服务滚动升级和在线扩容能力、可扩展的资源自动调度机制及多颗粒度的资源配合管理能力。 在本文”基于Docker/CRI+Kubernetes的容器云平台的高可靠设计”中,通过对Docker/CRI、Kuberne-tes和相关支撑组件的可靠性特性以及架构设计的详细分析,从而论证了其未来可以满足云平台可靠性需求的能力。 1 容器云平台高可靠的需求与价值 1.1 容器技术与传统虚拟化技术可靠性架构的对比 以Wmware为代表的虚拟化实现了内部私有云IaaS平台的技术,给企业带来了服务器运算资源的集中、应用开发速度提升、运维成本下降和系统稳定性提高等显著成效。同时,随着微服务应用的迅速发展及容器技术的逐渐成熟和广泛应用,虚拟化云平台有了相应的局限性,如何提升效率和提高稳定性成为了其新的瓶颈,因此容器技术开始进入云平台的契机已经到来。 Docker是最早开始广泛应用的容器引擎,得益于其容器仓库和社区。Docker是Dockerd,containerd,containerd-shim和runc的组合。Docker容器技术对效率和稳定性的进一步提升进行的探索实践具体为:Docker Engine取代原有重复的虚拟化层Hypervisor和系统服务层Guest OS,可以更灵活、高效地利用Linux Namespaces和Cgroups技术为应用程序提供隔离性高、安全灵活的运行空间和运行资源,从下图的技术架构进行对比可以看出两者的技术优越性。

北京航空航天大学系统可靠性设计分析期末试卷a

1.判断题(共20分,每题2分,答错倒扣1分) (1)()系统可靠性与维修性决定了系统的可用性和可信性。 (2)()为简化故障树,可将逻辑门之间的中间事件省略。 (3)()在系统寿命周期的各阶段中,可靠性指标是不变的。 (4)()如果规定的系统故障率指标是每单位时间0.16,考虑分配余量,可以按每单位时间0.2 进行可靠性分配。 (5)()MTBF和MFHBF都是基本可靠性参数。 (6)()电子元器件的质量等级愈高,并不一定表示其可靠性愈高。 (7)()事件树的后果事件指由于初因事件及其后续事件的发生或不发生所导致的不良结果。 (8)()对于大多数武器装备,其寿命周期费用中的使用保障费用要比研制和生产费用高。 (9)()所有产品的故障率随时间的变化规律,都要经过浴盆曲线的早期故障阶段、偶然故障 阶段和耗损故障阶段。 (10)()各种产品的可靠度函数曲线随时间的增加都呈下降趋势。 2.填空题(共20分,每空2分) (1)MFHBF的中文含义为。 (2)平均故障前时间MTTF与可靠度R(t)之间的关系式是。 (3)与电子、电器设备构成的系统相比,机械产品可靠性特点一是寿命不服从分 布,二是零部件程度低。 (4)在系统所处的特定条件下,出现的未预期到的通路称为。 (5)最坏情况容差分析法中,当网络函数在工作点附近可微且变化较小、容差分析精度要求不 高、设计参数变化范围较小时,可采用;当网络函数在工作点可微且变化较大,或容差分析精度要求较高,或设计参数变化范围较大时,可采用。 (6)一般地,二维危害性矩阵图的横坐标为严酷度类别,纵坐标根据情况可选下列三项之一: 、 或。

3.简要描述故障树“三早”简化技术的内容。(10分)

可靠性设计的基本方法

可靠性设计的基本方法 来源:未知作者:秩名2012年05月02日 11:45 分享 [导读]系统在设计过程中将在满足性能指标的条件下,线路尽可能简单,系统设计充分借鉴2G直放站设计经验,采用可靠性高的、模块化的标准射频模块,提高系统的集成度,监控盘直接借用 关键词:降额设计静电防护可靠性设计 系统的可靠性设计 1.简化设计 系统在设计过程中将在满足性能指标的条件下,线路尽可能简单,系统设计充分借鉴2G直放站设计经验,采用可靠性高的、模块化的标准射频模块,提高系统的集成度,监控盘直接借用2G直放站监控盘,根据3G 通信协议重新设计监控程序,电源采用公司成熟的模块化电源解决方案,以提高产品的可靠性。 2.模块和元器件选择和控制 优先选用公司元器件大纲中的器件,优先选用经过认证的合格供应商提供的器件,尽可能减少元器件的品种、规格,严格控制选用非标准规格的元器件; 需要外购的部分射频模块一方面严格对供货商进行准入认证,另一方面要对入库的外购模块进行严格的性能检验,以保证外购模块的质量。外购的模块和元器件在装机前将100%进行环境应力筛选试验(ESS),以保证元器件在装机前已消除了早期的性能缺陷。 3.热设计考虑 直放站结构设计时均对产品进行热分析和预计,对产品内部最高温升进行设计控制,采用大功率散热器,并预留足够的余量,同时对发热量较大的功率放大器模块安装时底部覆涂导热硅脂,保证功放表面温升不大于25℃。 总体结构方案设计完成后,针对电子设备热产生机理与传播方式,对电子设备的热场分布进行分析研究,采用合理的热设计方法保证电子设备在允许的温度范围内工作。通过CAE辅助分析软件,进行模型建立、模型求解和结果解释三方面对直放站产品进行热效应分析,优化整机设备关键器件、部件的参数位置;并对电子系统强迫对流和自然对流冷结构设计方案进行优化。在仿真方案达到设计要求后,通过环境温升试验对设备结构设计方案作最终考评,以保证直放站设备的热设计可靠性。 4.降额设计 降低元器件在电路中所承受的应力(一般主要指温度应力及电应力)可以提高元器件的可靠性,元器件的工作温度范围要求大于整机的工作温度范围,电阻、电容等元器件的耐压值应大于额定工作电压的2倍,电源模块实际功耗不超过额定功率的70%。 5.通信可靠性

工业自动控制系统可靠性分析

龙源期刊网 https://www.doczj.com/doc/2c1701714.html, 工业自动控制系统可靠性分析 作者:靳永全 来源:《中国科技博览》2012年第32期 [摘要]:分析了影响工业自动控制系统可靠性的因素,从硬件、软件及编程组态方面,提出了提高可靠性的措施;硬件方面从一次元件及接地方面进行了论述;软件方面包括:I/O信号的处理、程序设计及监视报警等。 中图分类号:TG453+.9 文献标识码:TG 文章编号:1009-914X(2012)32- 0389 -01 1、引言 自动控制系统现在广泛应用于工业生产中,其本身主要由四部分组成:控制器、被控对象、执行机构和变送器,其中任何一个环节的任何一个部件出现故障,都会影响到系统的正常工作。因此针对这些环节进行分析,采取相应的措施可有效提高自动控制系统的可靠性。 2、影响自动控制系统可靠性的因素 自动控制系统本身具有较高的可靠性,其影响因素主要来至于外部,一方面来自于输入输出信号,另一方面来至于就地一次元件;另外逻辑组态的缺陷同样会影响控制系统的可靠性。 2.1 输入输出信号对系统可靠性的影响 控制系统输入输出信号的正确性直接影响到系统的可靠性,如果输入到控制系统的信号不正确,系统将无法确定当前系统及设备状况,甚至给监控人员错误的信息,从而做出不正确的决策,造成故障,影响系统的可靠性。而造成输入输出信号的错误主要有以下几方面的因素: 2.1.1辐射的干扰 控制系统输入信号的辐射干扰主要由电力网络、雷电、无线电广播、高频设备等产生的。辐射干扰对控制系统的影响主要有两个方面,一方面是对控制系统内部的辐射,由控制系统内部电路感应而产生干扰;另一个方面是对控制系统通信网络的辐射,由通迅及信号线路引入到控制系统而产生干扰。辐射干扰主要与电磁场的强度特别是频率有关,通常采用屏蔽或信号隔离的方法,减小干扰的影响,提高系统的可靠性。 2.1.2来自接地系统的干扰 正确的接地可有效避免信号的干扰,提高信号的正确性。如果接地不当,不仅不能减少干扰,反而会影响信号的精度,甚至引入错误的信号。控制系统的接地主要有系统接地、设备接

硬件可靠性及提高

硬件可靠性及提高 一般来说,系统总是由多个子系统组成,而子系统又是由更小的子系统组成,直到细分到电阻器、电容器、电感、晶体管、集成电路、机械零件等小元件的复杂组合,其中任何一个元件发生故障都会成为系统出现故障的原因。因此,硬件可靠性设计在保证元器件可靠性的基础上,既要考虑单一控制单元的可靠性设计,更要考虑整个控制系统的可靠性设计。 1.影响硬件可靠性的因素 (1)元件失效。元件失效有三种:一是元件本身的缺陷,如硅裂、漏气等;二是加工过程、环境条件的变化加速了元件、组件的失效;三是工艺问题,如焊接不牢、筛选不严等。 (2)设计不当。在计算机控制系统中,许多元器件发生的故障并不是元件本身的问题,而是系统设计不合理或元器件使用不当所造成。 在设计过程中,如何正确使用各种型号的元器件或集成电路,是提高硬件可靠性不可忽视的重要因素。 (1)电气性能:元器件的电气性能是指元器件所能承受的电压、电流、电容、功率等的能力,在使用时要注意元器件的电气性能,不能超限使用。(2)环境条件:计算机控制系统的工作环境有时相当恶劣,由于环境因素的影响,不少系统的实验室试验情况虽然良好,但安装到现场并长期运行就频出故障。其原因是多方面的,包括温度、干扰、电源、现场空气等对硬件的影响。因此,设计系统时,应考虑环境条件对硬件参数的影响,元件设备须经老化试验处理。 (3)组装工艺:在硬件设计中,组装工艺直接影响硬件系统的可靠性。由于工艺原因引起的故障很难定位排除,一个焊点的虚焊或似接非接很可能导致整个系统在工作过程中不时地出现工作不正常现象。另外,设计印制电路板时应考虑元器件的布局、引线的走向、引线的分类排序等。

维修性设计与分析

可靠性设计准则 可靠性设计准则是设计人员在长期的设计实践中积累起来的、能提高产品可靠性的行之有效的经验和方法,并归纳、总结形成 具有普遍适用价值的设计原则。它是设计人员进行产品设计时必须遵 循的准则,以避免重复发生过去已发生过的故障或设计缺陷。 可靠性设计准则一般是针对某个具体产品制定的。但也可以将产品的可靠性设计准则的共性部分上升为某类产品的可靠性设计 准则。如:HB7251-95《直升机可靠性设计准则》、HB7232-95《军用 飞机可靠性设计准则》、GJB2635-96《军用飞机腐蚀防护设计和控制 要求》等。 维修性设计与分析 1.维修性模型的建立 维修性模型用来表达系统与各单元维修性的关系,维修性参数与各种设计及保障要素参数之间的关系,供维修性分配、预计及评定用。 建立维修性模型的一般程序可如图1所示。首先明确分析的目的和要求,对分析对象进行描述,找出对欲分析参数有影响的因素,并确定其参数。然后建立数学模型,通过收集数据和参数估计,不断对模型进行修改完善。 图1 建立维修性模型的一般程序 2.维修性分配 维修性分配是为了把产品的维修性定量要求按给定准则分配给各组成单元而进行的工作。 (1)维修性分配的一般程序 1)进行系统维修职能分析,确定每一个维修级别需要行使的维修保障的职能和流程。 2)进行系统功能层次分析,确定系统各组成部分的维修措施和要素。

3)确定系统各组成部分的维修频率。 4)将系统维修性指标分配到各单元,研究分配方案的可行性,进行综合权衡。 (2)维修性分配方法常用方法见表1。 表1 维修性分配的常用方法 3.维修性预计 维修性预计是为了估计产品在给定工作条件下的维修性而进行的工作。它的目的是预先估计产品的维修性参数,了解其是否满足规定的维修性指标,以便对维修性工作实施监控。 (1)维修性预计的一般程序 1)收集资料。首先要收集并熟悉所预计产品设计资料和可靠性数据。还要收集有关维修与保障方案及其尽可能细化的资料。 2)系统的职能与功能层次分析。 3)确定产品设计特征与维修性参数的关系。 4)预计维修性参数值。利用各种预计模型,估算各单元和系统的维修性参数值。 (2)维修性预计方法维修性预计的方法有多种,常用的维修性预计方法要点见表2。 表2 常用的维修性预计方法 (3)工程应用中注意事项 1)预计的组织实施。低层次产品的维修性估计与产品设计过程结合紧密,通常由设计人员进行。系统、设备的正式维修性预计,涉及面宽且专业性强,应由维修性专业人员进行。 2)预计的方法和模型的选用。要根据产品的类型、所要预计的参数、研制阶段等因素,选择适用的方法。同时,对各种方法提供的模型进行考察,分析其适用性,可作局部修正。

嵌入式系统最小系统硬件设计

引言 嵌入式系统是以应用为中心,软件硬件可裁剪,适应应用系统对功能、可靠性、成本、体积、功耗等综合性严格要求的专用计算机系统。本文主要研究了基于S3C2410的嵌入式最小系统,围绕其设计出相应的存储器、总电源电路、复位电路等一系列电路模块。 嵌入式最小系统 嵌入式最小系统即是在尽可能减少上层应用的情况下,能够使系统运行的最小化模块配置。以ARM内核嵌入式微处理器为中心,具有完全相配接的Flash电路、SDRAM电路、JTAG电路、电源电路、晶振电路、复位信号电路和系统总线扩展等,保证嵌入式微处理器正常运行的系统,可称为嵌入式最小系统。对于一个典型的嵌入式最小系统,以ARM处理器为例,其构成模块及其各部分功能如图1所示,其中ARM微处理器、FLASH和SDRAM模块是嵌入式最小系统的核心部分。

微处理器——采用了S3C2410A ; 电源模块——本电源运用5V 的直流电源通过两个三端稳压器转换成我们所设计的最小系统所需要的两个电压,分别是3.3V 和1.8V ,3.3V 的给VDDMOP ,VDDIO,VDDADC 等供电,而1.8V 的给VDDi 和RTC 供电。 时钟模块(晶振)——通常经ARM 内部锁相环进行相应的倍频,以提供系统各模块运行所需的时钟频率输入。32.768kHz 给RTC 和Reset 模块,产生计数时钟,10MHz 作为主时钟源; Flash 存储模块——存放嵌入式操作系统、用户应用程序或者其他在系统掉电后需要保存的用户数据等; SDRAM 模块——为系统运行提供动态存储空间,是系统代码运行的主要区域; 复位模块——实现对系统的复位; 1.8V 电源LDD 稳压 SDARM 32MB (use JTAG 接口 REST 电路256字 节E2PROM E2PROM UART 串口功能扩展 32768Hz 晶振RTC 时钟源 S3C2410A-20 (ARM920T) (16KB I-Cache,16KB D-Cache) SDARM 32MB (use NOR FLASH 2MB (use

可靠性试验分析及设计

ji 第四章(44) 可靠性试验与设计 四、最小二乘法 用图估法在概率纸上描出[],()i i t F t 点后,凭目视作分布检验判别所作的回归直线往往因人而异,因此最好再通过数值计算求出精确的分布检验结论和求出数学拟合的回归直线。通常用相关系数作分布检验,用最小二乘法求回归直线。 相关系数由下式求得: ()() n i i X X Y Y γ--= ∑ 其中X,Y 是回归直线的横坐标和纵坐标,它随分布的不同而不同。下表是不同分布的 坐标转换 只有相关系数γ 大于临界值0γ时,才能判定所假设的分布成立。0γ临界系数可查相应的临界相关系数表,如给定显著水平0.05α=,n=10,可查表得00.576γ=。若计算的0γγ,则假设的分布成 立。 如果回归的线性方程为 Y mX B =- 则由最小二乘法得到系数为

1 1 111 221 1??1?1 ()n n i i i i n n n i i i i i i i n n i i i i Y m X B N X Y X Y N m X X N =======-+=-=-∑∑∑∑∑∑∑ 代入上表中的不同的分布,就可以得到相应分布的参数估计值。 五、最好线性无偏估计与简单线性无偏估计 1、无偏估计 不同子样有不同的参数估计值?q ,希望?q 在真值q 附近徘徊。若?()E q q =,则?q 为q 的无偏估计。如平均寿命的估计为?i t n q =? ,是否为无偏估计? Q 1 [] ?()[]n i i i i t E t E E n n n q q q === = =? 邋 \ ?q 为q 的无偏估计 2、最好无偏估计定义 若?k q 的方差比其它无偏估计量的方差都小,即?()min ()k k D D q q =,则?k q 为最好无偏估计。 3、线性估计定义 若估计量?q 是子样的一个线性函数,即1 ?n i i i a q ==C ? ,则称?q 为线性估计。 4、最好线性无偏估计 当子样数25n £时,通过变换具有()F m s C -形式的寿命分布函数,其,m s 的最好线性无偏估计为: 1 ?(,,)r j i D n r j X m ==? ?(,,)j C n r j X s =? 其中(,,),(,,)D n r j C n r j 分别为,m s 的无偏估计,有了,,n r j 后,可有专门表格查无偏系数(,,),(,,)D n r j C n r j 。

PCB可靠性设计

印制电路板的可靠性设计措施 摘要:本文通过长期科研实践和产品开发,提出了印制电路板在设计与工艺中应解决的可靠性设计、电磁兼容性问题的有效方法。 关键词:印制电路板可靠性电磁兼容 1 引言 近年,由于先后参加“彩电回扫变压器自动测试系统”“黑白电视机回扫变压器自动测试仪”以及“FBT回扫变压器温控台”,“FBT回扫变压器断续台”的研制开发生产工作,体会到:即使电路原理图和试验板试验正确,印制板电路设计不当,也会对设计的电子产品的可靠性产生不利影响。 印制电路板的设计与工艺越来越显得重要,譬如:印制电路板的两条细平行线靠得近,则会形成信号波形的延迟,在传输线的终端形成反射噪声。还有印制板地线的阻抗较高,构成公共阻抗就会在器件之间形成耦合干扰,元、器件在印制板中的排列也十分重要。因此,在设计印制电路板的时候,应注意采用科学的方法进行印制板的可靠性设计和电磁兼容性设计。 2.根据器件排列选择印制 电路板的尺寸 根据电路原理图中的元器件的体积,多少及相互影响来决定印制电路板的大小尺寸的选择。印制板尺寸要适中,尺寸大时,即制线条长,阻抗增加,不仅抗噪声能力下降,成本也高,体积也大;尺寸小时,则散热不好,同时易受临近线条干扰。 器件的排列,应把相互有关的器件尽量就近排列,按电路原理图逐级排列。有两个变压器以上的电路应考虑垂直分布,对发热器件应考虑通风与散热。 3.电磁兼容性设计 印制电路板中的电磁兼容设计尤为重要。电磁兼容性是指电子设备在各种电磁环境中能够正常工作的能力。电磁兼容性设计的目的是使电子设备既能抑制各种外来的干扰,使电子设备在特定的电磁环境中能够正常工作,同时又能减少电子设备本身对其它电子设备的电磁干扰 。 3.1 选择合理的布线 印制电路板中选择合理的布线也是提高电磁兼容的好办法。为了抑制印制电路板导线之间的串扰,在设计布线时应尽量避免长距离的平行走线,尽可能拉开线与线之间的距离,信号线与地线及电源线尽可能不交叉,在一些对干扰十分敏感的信号线之间设置一根接地的印制线,可以有效地抑制串扰。 选择双面印制板也是提高电磁兼容的有效办法。具体做法是在印制板的一面横向布线,另一面纵向布线,然后在交叉孔处用金属化孔相连,装配时逐一严格检查金属化孔的上下连线是否接通。采用平行走线可以减少导线电感,但导线之间的互感和分布电容增加,如果布局允许,最好采用双面#字形网状布线结构。 3.2 抑制高频产生的电磁辐射

提高PLC自动控制系统可靠性的方法

提高自动控制系统可靠性地探讨 苏州创元维修电工技师培训 凌璟 目录 一、引言—————————————————————— 二、控制系统可靠性降低地主要原因—————————— 三、设计完善地故障报警系统————————————— 四、输入信号可靠性研究——————————————— 五、执行机构可靠性研究——————————————— 六、结论—————————————————————— 提高自动控制系统可靠性地探讨 、引言 可编程控制器,简称(),是指以计算机技术为基础地新型工业控制装置.在年国际电工委员会()颁布地标准草案中对做了如下定义:“是一种专门为在工业环境下应用而设计地数字运算操作地电子装置.它采用可以编制程序地存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作地指令,并能通过数字式或模拟式地输入和输出,控制各种类型地机械或生产过程.及其有关地外围设备都应该按易于与工业控制系统形成一个整体,易于扩展其功能地原则而设计.”资料个人收集整理,勿做商业用途 发展到今天,已经形成了大、中、小各种规模地系列化产品.可以用于各种规模地工业控制场合.除了逻辑处理功能以外,现代大多具有完善地数据运算能力,可用于各种数字控制领域.近年来地功能单元大量涌现,使渗透到了位置控制、温度控制、等各种工业控制中.加上通信能力地增强及人机界面技术地发展,使用组成各种控制系统变得非常容易.资料个人收集整理,勿做商业用途 高可靠性是电气控制设备地关键性能.可编程控制器由于抗干扰能力强,可靠性高,编程简单,性能价格比高,在工业控制领域得到越来越广泛应用.资料个人收集整理,勿做商业用途 工业年月机作为中央控制单元,配有组态软件,选用大屏幕实时监视界面,实现各控制点地动态显示、数据修改、故障诊断、自动报警,还可显示查询历史事件记录,系统各主要部件累计运行时间,各装置工艺流程图,各装置结构图等.中央控制单元和下位机之间采用串行通讯方式进行数据交换,通常距离在以内选用双绞线通讯方式,较长距离可选用光纤通讯,更长距离也可选用无线通讯方式.下位机选用控制,根据控制对象地多少,控制对象地范围,可选用一台或多台进行控制,之间数据交换是利用内部链接寄存器,实现数据交换和共享.由于对现场进行实时监控具有很高地可靠性,且编程简单、灵活,因此越来越受到人们重视.资料个人收集整理,勿做商业用途 、控制系统可靠性降低地主要原因 控制系统可靠性降低地主要原因有多种可能性,虽然工业控制机和可编程控制器本身都具有很高地可靠性,但如果输入给地开关量信号出现错误,模拟量信号出现较大偏差,输出口控制地执行机构没有按要求动作,这些都可能使控制过程出错,造成无法挽回地经济损失.资料个人收集整理,勿做商业用途 影响现场输入给信号出错地主要原因有:、造成传输信号线短路或断路(由于机械拉扯,线路自身老化,连接处松脱等),当传输信号线出故障时,现场信号无法传

单片机以其高可靠性

AT89-ISP在线下载实验仪 概述: 单片机以其高可靠性、高性价比、低电压、低功耗等一系列优点,近几年得到迅猛发展和大范围推广,广泛应用于工业控制系统,数据采集系统、智能化仪器仪表,及通讯设备、日常消费类产品、玩具等。并且已经深入到工业生产的各个环节以及人民生活的各层次中,如车间流水线控制、自动化系统等、智能型家用电器(冰箱、空调、彩电)等,无不含有CPU控制器,即单片机。 为适应目前人才紧缺的状态、着眼于培养单片机人才、单片机工程师。我们推出了针对培养学习者应用能力的AT89-ISP 在线下载实验仪。以配合各大、中专院校、高职、技校等纷纷增加及扩大的单片机教学的需要。 特点: 1、在系统可编程特性: 首开单片机学习开发系统的先河,可方便地在系统实现程序下载,实时修改程序的不足之处,并立即从目标系统中反映出修改的结果,大大缩短单片机学习开发的周期,提高效率2、代码全速仿真: 弥补传统学习系统不能全速仿真的缺陷,使系统运行的结果完全反映代码的执行情况,更切实地吻合教学仪器的特点。 其次,在软件开发前的仿真调试后,完全可烧写入目标芯片,

并能获得完全一致的代码执行结果。是集学习、开发于一身的优良的目标系统; 3、系统资源丰富: ★内置RAM 32KB模块 ★内置8位动态数码显示模块 ★内置8X8点阵显示模块 ★4位静态数码显示模块 ★4位级联的74LS164串并转换模块 ★内置8通道8位A/D转换 ★内置8位D/A转换 ★内置2路SPI和I2C总线接口 ★内置4路1-Wire总线接口 ★内置4X4矩阵式键盘 ★内置4路独立式键盘 ★内置4路拨动开关 ★内置8位LED发光二极管 ★内置3路0-5V之间可调的电压 ★内置音频放大模块 ★2路继电器控制模块 ★2路4分频模块 ★内置RS232通信模块 4、资源的可重复利用性:

企业网络安全风险分析及可靠性设计与实现研究

企业网络安全风险分析及可靠性设计 与实现研究 摘 要:现今,伴随信息、通信技术的完善,网络攻击技术的革新,网络安全问题日益显现。网络安全的管控,可以从侧面反映网络的安全状态,确保企业的网络安全。网络的安全性,关系企业的长远发展问题,同时也会间接影响社会的发展,作为企业的管理者我们应确保企业网络的安全,进而提高企业的经济效益。因此,本文就从网络安全风险分析、网络可靠性设计、企业网络安全的实现几方面进行一定的探讨,期望可以为企业的正常运行提供一定的帮助。 关键词:企业;网络风险分析;可靠性设计与实现现今,伴随信息、通信技术的完善,计算机网络中信息与数据的汇聚,都给人们的生活带来了极大的便捷性。经由网络系统,不仅提高了企业信息保存、传输的速度;提高了市场的反映速度;还带动了企业业务的新发展。企业内部中的网络信息,在现实运用中都实现了资源共享[1]。但是,在资源共享的前提下,就存在企业内部机密的安全性问题,尤其是现今的网络安全问题频发,我们更应提高对于企业的网络安全问题的关注度。因此,本文就对企业网络安全进行一定的探讨,期望可以对企业的正常运行提供有效帮助。 1网络安全风险分析 1.1安全威胁的分类 网络安全威胁,具体就是指潜在的、会对企业资产形成损失的安全问题。导致安全威胁的因素诸多,具体分类为:恶意攻击;系统软件问题;自然灾害;人为因素等[2]。

1.2网络系统安全影响因素[3] 1.2.1缺乏完善的管理体系 完善的网络管理体系,不单需要投入大量的网络设备,同时也要求有技术的支持。网络安全建设,其主要因素还应建立规范的网络安全管理机制。在任何企业,为了有效的保证网络的安全性,都应注重管理与技术的结合。在企业中,应注重员工的安全教育,同时管理者应依据现实状况,不断的完善企业的管理制度。 1.2.2缺乏网络安全知识 企业中的员工,其安全防范意识欠缺,对于网络安全知识认识较少,常会因个人信息的丢失,导致公司机密文件的泄漏。企业的网络安全,关系到企业的长远发展策略,因此公司应增强员工的安全知识教育,从根本上确保公司的网络安全。首先,企业员工在获取资源时,应该警惕病毒的侵入,防患于未然。其次,企业员工应该对于网络程序的安全性,有自己的初步判断能力,同时安装防病毒软件,并定时进行更新。第三,企业员工中对于文件的管理,应该注重文件的安全问题,应由员工自己管理文件,并设置权限。 1.2.3网络拥塞 网络拥塞,具体讲就是指当用户对网络资源的需求量,超过了网络固有容量的时候,出现的一种网络过载的状况[4]。企业员工的访问时间;交换机与路由器的端口传输速率等,都是造成网络拥塞的原因。当企业中出现网络拥塞的情况,就会出现数据不能进行转发,进而影响正常的网络运转工作,因此,企业在网络管理中,应依据这一情况制定合理的规划。 1.2.4系统漏洞的问题 现今,多数企业都是应用TCP/IP

相关主题
文本预览
相关文档 最新文档