当前位置:文档之家› 温度测量控制技术

温度测量控制技术

温度测量控制技术
温度测量控制技术

温度测量控制技术

一、目的

1. 学会使用触点温度计,掌握恒温槽的控制技术。

2. 了解恒温槽的构造及各部件的作用,初步掌握其安装和使用方法。

3. 测绘恒温槽的灵敏度曲线。

二、仪器和试剂

玻璃缸恒温槽和超级恒温槽各一套(浴槽、加热器、触点温度计、电子继电器、搅拌器、精密温度计)

三、原理

许多物理化学参数的测定须在恒温条件下进行,一般采用恒温水浴来获得恒温条件,恒温槽是常用的一种以液体为介质的恒温装置,恒温槽包括玻璃缸恒温槽和超级恒温槽。

1.恒温槽的结构

讲解本实验所用玻璃缸恒温槽装置,超级恒温槽的结构。

恒温槽一般由浴槽、温度调节器(水银接点温度计)、继电器、加热器、搅拌器和温度计组成。当浴槽的温度低于恒定温度时,温度调节器通过继电器的作用,使加热器加热;当浴槽的温度高于所恒定的温度时即停止加热。因此,浴槽温度在一微小的区间内波动,而置于浴槽中的系统,温度也被限制在相应的微小区间内而达到恒温的要求。

恒温槽各部分设备介绍如下:

⑴浴槽当控温范围在室温附近时,浴槽常用玻璃槽,便于观察系统的变化情况,浴槽的大小和形状可根据需要而定。在常温下,多采用水作为恒温介质。为避免水分蒸发,当温度高于50℃时,常在水面上加一层石蜡油。

⑵加热器常用加热器(如电阻丝等)。要求加热器惰性小、导热性好、面积大、功率适当。加热器的功率大小会影响温度控制的灵敏度。

⑶温度计恒温槽中常以一支0.1℃分度的温度计测量浴槽的温度。

⑷搅拌器搅拌器以马达带动,常采用调压器调节其搅拌速率,要求搅拌器工作时,震动小、噪声低、能连续运转。搅拌器应安装在加热器的上方或附近,以使加热的液体及时分散,混合均匀。

⑸温度调节器它是决定恒温槽加热或停止加热的一个自动开关,用于调节恒温槽所要求控制的温度。实验室中常用水银接点温度计(又称水银触点温度计)水银接点温度计下半部为一普通水银温度计,但底部有一固定的金属丝与接点温度计中的水银相连接;在毛细管上部也有一金属丝,借助磁铁转动螺丝杆,可以随意调节改金属丝的上下位置。螺杆的标铁和上部温度标尺相配合可粗略估计所需控制的温度。

浴槽升温时,接点温度计中的水银柱上升,当达到所需恒定的温度时,就与上方的金属丝接触;温度降低时与金属丝断开。通过两引出导线与继电器相连,达到控制加热器回路的断路或通路。

水银接点温度计只能作为温度的调节器,不能作为温度的指示器,恒温槽的温度由精密温度计指示。

水银接点温度计控温精度通常是±0.1℃。当要求更高精度时,可选用控温精度更高的温度调节

器,如甲苯-水银温度控制计。对要求不高的水浴锅,则可采用简单的双金属片温度调节器。

⑹继电器 继电器种类很多,在物理化学实验中常采用电子继电器(由控制电路及机电器组成)。 电子继电器灵敏度很高,在控温装置中经常采用, 这种温度控制装置属于“通”、“断”类型。因为加热器将热传递给水银接点温度计而需要一定时间,因此会出现温度传递的滞后,即当水银接点温度计的水银触及控温金属丝时,电源中断,但实际上电加热器附近的水温已经超过了设定温度,另外,电加热器还有余热向水浴传递,致使恒温槽温度略高于设定温度。同理,在电源接通过程中,也会出现温度传递的滞后而使恒温槽温度略低于设定温度。一般恒温水浴温度波动在±0.1℃左右。

除上述的一般恒温槽外,实验室中还常用超级恒温槽,其原理与一般恒温槽相同,只是它另附有一循环水泵,能使浴槽中的恒温水循环流过待恒温系统,使试样恒温,而不必将待恒温的系统浸没在浴槽中。

2.恒温槽灵敏度及其测定

衡量恒温槽的品质好坏,可以用灵敏度来度量。通常以实测的最高温度值与最低温度值之差的一半来表示其灵敏度。

2

E T T T -=

灵敏度常以温度—时间曲线表示。若记开始加热和停止加热时槽温的平均值分别为T 始、T 停,在(T 停-T 始)/2处作一水平线为基线,再作出温度—时间曲线,通过对曲线分析,可以对恒温槽的灵敏度作出评价。

四、步骤 1.安装恒温槽

在玻璃缸中加入蒸馏水至容积三分之二处,将各部件组装好,按好线路。 2.调试恒温槽

经教师检查无误后,接通电源,调节恒温槽水温至设定温度。假定室温为20℃,欲设定实验温度为25℃,其调试方法如下:○

1先旋松接触温度计上端调节帽固定螺丝,再旋动磁性螺旋调节帽,使温度指示螺母位于大约24℃处,接通电源,调节搅拌器的转速适当。开启加热器,这时电子继电器的红色指示灯亮,表示加热器工作;直至电子继电器的绿色指示灯亮,表示停止加热,观察恒温槽中精密温度计,根据与其所需控制温度的差距,进一步调节接点温度计中金属丝的位置。○2细心地反复调节,直至在红灯、绿灯交替出现期间,精密温度计的示值恒定在所需控制的25℃为止。最后固定接触温度计上端调节帽固定螺丝。从精密温度计上读取开始加热和停止加热时的温度(T 始和T 停),各记录5次。

3.灵敏度的测定

待恒温槽在25℃下恒温5min 后,每隔30s ,从贝克曼温度计上读一次水的温度T ,大约取40~60组数据。

实验结束,先关掉温控仪、搅拌器的电源开关,再拨下电源插头。

五、数据记录和处理 1.列表记录实验数据

室温_________ 大气压__________ 表1

2.求出恒温槽温度为25℃时的T 始、T 停的平均值、始T 、T 停,求出的值始

停2

T

3.以时间t 为横轴,温度T 为纵轴,在T 处作出基线,给出25℃时槽温槽的灵敏度曲线。

压力测量技术

一、目的

1. 熟练气压计的使用及其读数校正,掌握压力测量技术,真空技术;

2. 用平衡管测定乙酸甲酯在不同温度下的蒸汽压;

3. 求算乙酸甲酯的平均摩尔汽化焓和正常沸点。 二、仪器与药品

静态法测定蒸气压的装置1套;SHB-3循环水多用真空泵1台;乙酸甲酯 三、原理

在一定温度下,液体纯物质与其气相达平衡时的压力,称为该温度下该纯物质的饱和蒸气压,简称蒸气压。若设蒸气为理想气体,实验温度范围内摩尔汽化焓?vap H m 可视为常数,并略去液体的体积,

纯物质的蒸气压P 与温度T 的关系可用克劳修斯-克拉贝龙(Clausius-Clapeyron )方程来表示:

ln vap m H p C RT

?=-

+

式中R 为摩尔气体常数,C 为不定积分数。

实验测定不同温度下的蒸气压p ,以lnp 对1/T 作图,得一直线,由此可求得直线的斜率m 和截距C 。乙酸甲酯的平均摩尔汽化焓?vap H m 为:

?Vap H m =-mR

由式(2-3-1)还可以求算乙酸甲酯的正常沸点。

本实验采用静态法直接测定乙酸甲酯在一定温度下的蒸气压,测定在平衡管中进行。

它由液体储管A 、B 和C 组成,管内装有被测液体。若在A 、C 管液面上方的空间内充满了该液体纯物质的饱和蒸气,而且当B 、C 两管的液面处于同一水平是,该液体纯物质的蒸气压p(也就是作用于C 管液面上的压力)正好与B 管液面上的外压p 外相等。所以,该液体纯物质的蒸气压就可由外接U 形压力计测得。

在上述测定中,必须保证在A 、C 管液面上方的封闭空间内完全是被测液体的蒸气。如果在这个封闭空间内同时有其他气体存在(例如在测定开始前就有空气存在),则压力计的示值将是被测液体的蒸气压与其他气体的分压之和。况且,液面上有其他气体存在对被测液体的蒸气压有微小的影响。所以,把A 、C 管液面上方封闭空间内的空气排除干净,是本实验的操作重点之一。

采用静态法测定蒸气压适用于蒸气压比较大的液体。 四、步骤

1.读取当日室温与大气压 2.加料和安装

从装置中取下平衡管,从其顶端加料,加入的乙酸甲酯的量约占A 管体积的2/3,并在B,C 管内保留一定量的乙酸甲酯,然后放回原处加以固定,必须使恒温水浴的水面高出平衡管2cm 以上。应设法将精密温度计安置在A 管和B 管之间。

3.检查气密性

打开冷凝器的冷却阀门。关闭进气活塞,开启抽气活塞进行减压,在系统的压力降到200mmHg 以下的真空度后,再关闭抽气活塞,这时系统处于真空下,仔细观察U 形压力计汞柱高度是否改变,若汞柱高度恒定不变(开始时可能有微小变化,其后要求做到2min 内保持不变),则表示系统的封闭性良好。若汞柱高度不恒定,则表示系统漏气,必须查出原因予以排除。

4.排除平衡管内的空气

将水银接点温度计调整到25℃左右(可以取略高于室温的某个温度为第一测定点,如在夏季可以取30℃或50℃)。开启电子继电器,启动搅拌器,调节其转速使之产生良好的搅拌效果。由于系统处在真空下,乙酸甲酯的温度很快超出了它的沸点,而不断有气泡自B管向上冒出,这时乙酸甲酯在剧烈沸腾,乙酸甲酯蒸气夹带着A,C管夜面上方封闭空间内的空气不断冒出,使平衡管内的空气被排出,乙酸甲酯蒸气则在冷凝管内凝聚,回流到平衡管内,在U行管内形成液封。维持沸腾3min,就可认为空气已被排除干净。

5.第一组数据的测定

打开缓冲瓶的进气活塞,然后用手轻捏橡胶管内玻璃球,当有微量空气进入B管上部,B管液面随系统真空度的略微跌落。缓慢进行上述操作,直至B管液面与C管液面基本处于同一水平(注意上述操作每次进入的空气不可太多,以免发生空气倒灌。如果发生空气倒灌,则必须重做排除空气的操作)。当两液面处在同一水平时,准确度取精密温度计的示值t精密,同时记录U形压力计的示值(左右两侧的汞柱高),至此就完成第一组数据的测定。

6.多组数据的测定

将水银接点温度计逐次调高2℃左右,照第一组数据测定的操作步骤,测定另外8个温度下的数据。注意在升温过程中,要逐次放入少量空气,既要防止液体暴沸,又要避免空气倒灌。

7.结束实验

实验结束后,先打开缓冲瓶的进气活塞,当真空泵的真空度指针回到原位关闭真空泵,拔掉真空泵、加热器、搅拌器、电子继电器电源,最后再读一次大气压。

五、数据记录和处理

1.数据记录

室温:;

大气压力(实验前):;大气压力(实验后):;

大气压力(平均值);;

记录表格

上表中?p t为温度时U形压力计示值

2.数据处理

上表中,p为乙酸甲酯的饱和蒸气压,它是大气压力p大气与U形压力计压差?p读数的差值:

p = p大气-?p

⑵以lnp对1/T作图,求算直线的斜率m、乙酸甲酯的摩尔汽化焓?vap H m以及正常沸点T b。

六、注意事项

1.平衡管中A,C管液面上方的空气必须排除。

2.抽气的速度要适中,避免平衡管内液体沸腾过剧致使B管内待测液被抽尽。

3.在升温时,需随时注意调节进气活塞,使B,C两管的液面保持等位,不发生沸腾,也不能使液体倒灌入A管中。

物质摩尔质量测定技术

一、目的

1. 掌握精密数字温度温差仪的使用方法;

2. 掌握凝固点降低法测定物质的摩尔质量的原理与技术。 二、仪器与药品

凝固点降低实验装置1套; 分析天平1台; SWC-Ⅱ精密数字温度差仪 1台; 压片机1台; -20~10℃温度计1支; 25cm 3

移液管1支; 600cm 3

烧杯1个;

分析纯的葡萄糖;

碎冰

三、原理

在稀薄溶液中,如果溶质B 与溶剂A 不生成固溶体,溶液的凝固点降低值f T ?与溶质B 的质量摩尔浓度b B 成正比,即:

*f f f f B T T T K b ?=-=

B

B B A m b M m =

B

B f

f A

m M K T m =? 。

纯溶剂和溶液在冷却过程中,其温度随时间而

变化的冷却曲线如图所示.纯溶剂的冷却曲线中的低下部分表示发生了过冷现象,即溶剂冷至凝固点以下仍无固相析出。这是由于开始结晶出的微小晶粒的饱和蒸气压大于同温度下普通晶体和液体的饱和蒸气压,所以往往产生过冷现象,即液体的温度要降到凝固点以下才析出固体,随后温度再上升到凝固点。

溶液的冷却情况与此不同,当溶液冷却到凝固点时,开始析出固态纯溶剂。随着溶剂的析出,溶液的浓度相应增大,所以溶液的凝固点随着溶剂的析出而不断下降,在冷却曲线上得不到温度不变的水平线段,因此,在测定浓度一定的溶液的凝固点时,析出的固体越少,测得的凝固点才越准确。同时过冷程度应尽量减小,一般可采用在开始结晶时,加入少量溶剂的微小晶体作为晶种的方法,以促使晶体生成,或者用加速搅拌的方法促使晶体成长。当有过冷情况发生时,溶液的凝固点应从冷却曲线上待温度回升后外推而得。

四、步骤 1.安装实验装置

将凝固点测定仪安装好。注意测定管、小搅拌棒和温差测量仪的探头都必须清洁、干燥。温差测量仪的探头、温度计与搅拌棒间应有一定空隙,防止搅拌时发生摩擦。

2.调节冰水浴的温度

在冰浴槽中加入约2/3的自来水,然后加入适量碎冰,使冰水浴的温度为-3.5

℃左右(寒剂温度

以不低于所测溶液凝固点3℃为宜)。实验时,应经常搅拌冰水并间断地补充少量的碎冰,使冰水浴的温度基本保持不变。

3.纯溶剂环己烷凝固点的测定

准确移取25ml蒸馏水,小心注入测定管中,塞紧软木塞,防止环己烷挥发,并记下环己烷的温度值。

先将盛有环己烷的测定管直接插入冰水浴中,上下移动小搅拌棒,使环己烷逐步冷却。当有固体析出时,迅速取出测定管,擦干管外冰水,插入空气套管中,缓慢而均匀地搅拌(约每秒一次)。观察精密温差测量仪的读数,直至温度稳定,此稳定的温度就是环己烷的近似凝固点。

取出测定管,用手温热,并不断搅拌,使管中的固体完全熔化。再将测定管直接插入冰水浴中,缓慢搅拌,使蒸馏水较快地冷却。当温度降至高于近似凝固点0.5℃时,迅速取出测定管,擦干后插入空气套管中,缓慢搅拌(每秒一次),使蒸馏水的温度均匀下降。当温度低于近似凝固点0.2~0.3℃时应急速搅拌(防止过冷超过0.5℃),促使固体析出。当固体析出时,温度开始上升,立即改为缓慢搅拌,注意观察精密温差测量仪的读数,直至稳定,此稳定的温度为蒸馏水的凝固点。重复测定三次,要求环己烷凝固点的绝对平均误差小于±0. 03℃。

4.溶液凝固点的测定

取出测定管,使管中的冰熔化。用分析天平称量约1.5g的葡萄糖,放入测定管并搅拌,使葡萄糖全部溶解。用“步骤3”中方法测定溶液的凝固点,先测近似凝固点,再精确测定凝固点。但溶液的凝固点是取过冷后温度回升所达到的最高温度。重复测定三次,要求其绝对平均误差小于±0.03℃。

五、数据记录和处理

将实验数据填入下表中。已知蒸馏水的K f=1.86Kg?K/mol,

33

折光率测定技术

一、目的

1.掌握折光仪的使用,掌握用沸点仪测沸点的方法。

2.绘制环己烷-乙醇体系的沸点-组成图。

3.确定环己烷-乙醇的恒沸组成和恒沸点。

4.了解阿贝折光仪的构造原理,掌握其使用方法。

二、仪器和试剂

沸点仪一套;温度计(50~100℃分度为0.01℃)1支;

阿贝折光仪1台;稳流电源1台;

超级恒温槽1台;试管架;

小试管若干;长颈吸管两根;

吸耳球一个;

环己烷(A.R);无水乙醇(A.R);

三、原理

常温下,两液体物质按任意比例互溶而形成的混合物,称为完全互溶双液系。对于纯态液体,外压一定时,其沸点是一定的,而对于双液系,外压一定时,其沸点还与组成有关,并且在沸点时,平衡的气、液两相组成不同。如果在定压下将液态混合物蒸馏,测定馏出物(气相)和蒸馏液(液相)的组成,就可得到平衡时气液两相的组成,并绘制出沸点-组成图。

本实验采用的环己烷(B)-乙醇(A)体系,其沸点-组成图属于具有最低恒沸点的类型。在101.325kPa下,环己烷的沸点为80.75℃,乙醇的沸点为78.37℃,最低恒沸点为t=64.8℃,最低恒沸点混合物的组成(摩尔分数)为x B=0.55。

平衡时,气、液两相组成的分析,可使用阿贝折光仪测定,因为折射率与浓度有关。利用附录中“环己烷(B)-乙醇(A)二组分系统的折射率-组成对照表”查出对应于样品折射率的组成。

四、步骤

1.读取当日大气压力

2.开启超级恒温槽。调节水的温度到(30.0±0.1)℃,供阿贝折光仪使用。

3.配制一系列组成不同的环己烷(B)-乙醇(A)液态混合物,质量百分数(w%为乙醇含量)分别为3%、10%、20%、30%、60%、80%、90%的环己烷-乙醇溶液,倒入沸点仪的圆底烧瓶中(液面高度不能超过圆底烧瓶的取液口的底部),测各个组成下的沸点及气相和液相折光率。

4.在接通电源之前首先检查沸点仪,注意电阻丝要靠近烧瓶底部中心(不要贴壁),既不能露出液面,也不能与温度计的水银球靠得太近;温度计水银球的位置要2/3浸入液面。检查橡皮塞是否塞紧。变压器是否在0刻度。

5.打开冷凝水,接通电源,调节变压器,使溶液缓慢加热至沸腾。当蒸气在冷凝管中开始冷凝时,再调节冷凝水的流量及电压大小,注意保持蒸气在冷凝管中的回流高度在2cm左右,待温度计的读数稳定3~5min后,看温度计显示的数值是否在下表所示的温度范围。如果在,记录温度值;如果不在,按照表中的调节方法进行调节,直到在该范围为止,记录数据。

温度高,加乙醇

温度低, 放气相样

温度高,加环己烷

6.存气相样,即逆时针稍微旋转三通,使圆底烧瓶的支管中存液,当快要存满的时候,切断电

源,停止加热。

7.取液相样放气相样 用一支洁净干燥的长滴管自温度计的支管口处吸取液体,置于干燥洁净的小试管中,用另一干燥洁净的小试管,接三通处所存的气相样,按照试管架上的标注放置样品。在阿贝折光仪上,分别测其折射率。

依照上述方法测定其它样品的沸点及气、液相的折射率(每个样品都应测三次,取平均)。 8.测纯环己烷或者纯乙醇折光率,然后与文献值相比较,其差值作为所用折光仪的零点误差。 9.试验结束后,关闭电源及水源,

五、数据记录和处理

室温 大气压

2.绘制环己烷-乙醇系统在101325Pa 下的T -X 图,找出最低恒沸点及恒沸混合物的组成。(环己烷-乙醇二元液系绘图所用方格纸不小于12cm×18cm )

六、注意事项

1.使用沸点仪时,电阻丝不能露出液面,一定要被液体所浸没,否则通电加热会引起有机液体的燃烧。通过电流不能太大,所加电压不能大于20伏,只要能使液体沸腾即可。

2.一定要使系统达到气、液平衡,即温度读数最后要稳定。

3.只能在停止加热后才可取样分析。

4.取样及分析样品时动作要迅速,以防止由于蒸发而改变成分。每份样品需读数3次,取其平均值。在环己烷含量较高的部分,折射率随组成的变化较小,实验误差略大。

5.阿贝折光仪使用时,棱镜上不能触及硬物(如滴管),拭擦棱镜需用擦镜纸。

6.试验过程中注意观察温度,使之保持在30.0±0.1℃。

7.超级恒温槽与阿贝折光仪连接的胶皮管不要折,否则不能保证阿贝折光仪的温度为30.0±0.1℃。

8.废液直接倒入下水管道中。取样前,小试管和取液口都要用吸耳球吹干。

9.实验过程中,必须在冷凝管中通入冷却水,以使气相全部冷凝。

旋光度测量技术

一、目的

1.了解旋光仪的基本原理,学会正确使用旋光仪。 2.测定蔗糖在酸中水解的速率常数和半衰期。 二、仪器与试剂 旋光仪一台;

恒温槽一个; 天平或台秤一台;

秒表一块;

50ml 容量瓶一个; 锥形瓶若干;烧杯若干;移液管若干;

蔗糖(A.R );

3mol/L HCl 溶液

三、原理

蔗糖水溶液在有氢离子存在时发生水解反应:

C 12H 22O 11 + H 2O

——→C 6H 12O 6 + C 6H 12O 6

蔗糖 葡萄糖 果糖

蔗糖水解反应为准一级反应,其速率方程可写成:

㏑A

0,A C C =kt

㏑C A =-kt + ㏑C A ,0

式中C A ,0为蔗糖的初浓度,C A 为反应进行到t 时刻蔗糖的浓度,㏑A C ~t 呈线性, 其

直线斜率为-k 。

蔗糖、葡萄糖、果糖都是旋光物质,它们的比旋光度分别为:[α蔗]20D =66.65°

、[α葡]20

D =52.5°

[α果]20D =-91.9°

。这里的α表示在20℃时用钠黄光作光源测得的旋光度。正值表示右旋,负值表

示左旋。由于蔗糖的水解是能进行到底的,又由于生成物中果糖的左旋远大于葡萄糖的右旋,所以生成物呈左旋光性。随着反应的进行,系统逐渐由右旋变为左旋,直至左旋最大。设反应开始测得的旋光度为α0,经t 分钟后测得的旋光度为αt ,反应完毕后测得的旋光度为α∞。

㏑(t α-∞α)=- kt + ㏑(0α-∞α)

式中(0α-∞α)为常数。用㏑(t α-∞α)对t 作图,所得直线的负斜率即为速率常数k 。

四、步骤

1.旋光仪零点的校正

蒸馏水为非旋光性物质,可用其校正仪器的零点(α=0时仪器对应的刻度)。

先洗净样品管,将管一端加上盖子,并在管内灌满蒸馏水,使液体形成一凸面,在样品管另一端加上盖子,此时管内不应有气泡存在,旋上套盖,使玻璃片紧贴于水面,勿使漏水。旋盖时用力不能太猛,旋盖不宜太紧。用滤纸将样品管外擦干,用镜头纸擦镜玻璃片。

转动检偏镜,使视场内观察到明暗相等的三分视野,此时观察检偏镜的旋角α 是否为零,重复三次,如为零则无零位误差;不为零,说明有零位误差,记下检偏镜的旋角α,重复三次,取其平均值。此平均值即为零点,用来校正仪器的系统误差。

2.溶液的配制

用天平称取10g 蔗糖溶于蒸馏水中,倒入50ml 容量瓶中,并稀释至刻度。如溶液不清应过滤一次。

3.旋光角的测定

用移液管量取蔗糖溶液25ml 放入干燥的锥形瓶中,用移液管移取25ml 、3mol/L 的HCl 溶液快速置入锥形瓶中,与蔗糖溶液混合,当盐酸加入一半时开始记时,以此标志反应的开始,震荡摇匀。用待测液荡洗旋光管二次后,立即装满旋光管,盖好旋盖并擦净,放入旋光仪,测量不同时刻的旋光角。

从记时开始,间隔5分钟测四个数据。后间隔10分钟测三个数据,最后一个数据间隔15分钟。 4.∞α的测定

反应完毕后,将旋光管内的反应液与瓶内剩余的反应液混合,置于50~60℃的水浴上加热60min ,其间震荡数次,使反应完全。然后取出,冷却至室温,测其旋光角∞α。。

实验完毕后一定要洗净样品管并擦干,以免酸腐蚀样品管的金属旋盖。

五、数据记录及处理

以㏑(t α-∞α)对t 作图,由直线斜率计算速率常数k 。 六、注意事项

在进行反应终了液制备时,水浴温度不可过高,否则会发生副反应,使溶液颜色变黄。加热过程中应避免溶液蒸发,使糖的浓度改变,从而影响α的测定。

智能型温度测量控制系统

河北农业大学 毕业论文﹙设计﹚开题报告 题目智能型温度测量控制系统-开题报告 学生姓名学号 所在院(系)信息工程学院 专业班级通信工程2010140 指导教师 2014年02月23日

题目基于单片机的温度控制系统设计 一、选题的目的及研究意义 温度的测量及控制对保证产品质量、提高生产效率、节约能源、生产安全、促进国民经济的发展起到非常重要的作用,是工业对象中主要的被控参数之一。在单片机温度测量系统中的关键是测量温度、控制温度和保持温度。在日常生活中,也可广泛实用于地热、空调器、电加热器等各种家庭室温测量及工业设备温度测量场合。随着微机测量和控制技术的迅速发展与广泛应用,以单片机为核心的温度采集与控制系统的研发与应用在很大程度上提高了生产生活中对温度的控制水平。近年来,温度的检测在理论上发展比较成熟,但在实际测量和控制中,如何保证快速实时地对温度进行采样,确保数据的正确传输,并能对所测温度场进行较精确的控制,仍然是目前需要解决的问题。这次毕业设计选题的目的主要是让生活在信息时代的我们,将所学知识应用于生产生活当中,掌握系统总体设计的流程,方案的论证,选择,实施与完善。通过对温度控制通信系统的设计、制作、了解信息采集测试、控制的全过程,提高在电子工程设计和实际操作方面的综合能力,初步培养在完成工程项目中所应具备的基本素质和要求。培养研发能力,通过对电子电路的设计,初步掌握在给定条件和要求的情况下,如何达到以最经济实用的方法、巧妙合理地去设计工程系统中的某一部分电路,并将其连接到系统中去。提高查阅资料、语言表达能力和理论联系实际的技能。 当今社会温度的测量与控制系统在生产与生活的各个领域中扮着越来越重要的角色,大到工业冶炼,物质分离,环境检测,电力机房,冷冻库,粮仓,医疗卫生等方面,小到家庭冰箱,空调,电饭煲,太阳能热水器等方面都得到了广泛的应用,温度控制系统的广泛应用也使得这方面研究意义非常的重要。 二、综述与本课题相关领域的研究现状、发展趋势、研究方法及应用领域等 国外对温度控制技术研究较早,始于20世纪70年代。先是采用模拟式的组合仪表,采集现场信息并进行指示、记录和控制。80年代末出现了分布式控制系统。目前正开发和研制计算机数据采集控制系统的多因子综合控制系统。现在世界各国的温度测控技术发展很快,一些国家在实现自动化的基础上正向着完全自动化、无人化的方向发展。我国对于温度测控技术的研究较晚,始于20世纪80年代。我国工程技术人员在吸收发达国家温度测控技术的基础上,才掌握了温度室内微机控制技术,该技术仅限于对温度的单项环境因子的控制。我国温度测控设施计算机应用,在总体上正从消化吸收、简单应用阶段向实用化、综合性应用阶段过渡和发展。在技术上,以单片机控制的单参数单回路系统居多,尚无真正意义上的多参数综合控制系统,与发达国家相比,存在较大差距。我国温度测量控制现状还远远没有达到工厂化的程度,生产实际中仍然有许多问题困扰着我们,存在着装备配套能力差,产业化程度低,环境控制水平落后,软硬件资源不能共享和可靠性差等缺点。在今后的温控系统的研究中会趋于智能化,集成化,系统的各项性能指标更准确,更加稳定可靠。应用领域非常的广泛,①冷冻库,粮仓,储罐,电信机房,电力机房,电缆线槽等测温和控制领域。 ②轴瓦,缸体,纺机,空调等狭小空间工业设备测温和控制。③汽车空调,冰箱,冷柜以及中低温干燥箱等。④太阳能供热,制冷管道热量计量,中央空调分户热能计量等。温度是一种最基本的环

基于单片机的温度测量系统设计

基于STC单片机的温度测量系统的研究 摘要:本文针对现有温度测量方法线性度、灵敏度、抗振动性能较差的不足,提出了一种基于STC单片机,采用Pt1000温度传感器,通过间接测量铂热电阻阻值来实现温度测量的方案。重点介绍了,铂热电阻测量温度的原理,基于STC实现铂热电阻阻值测量,牛顿迭代法计算温度,给出了部分硬件、软件的设计方法。实验验证,该系统测量精度高,线性好,具有较强的实时性和可靠性,具有一定的工程价值。 关键词:STC单片机、Pt1000温度传感器、温度测量、铂热电阻阻值、牛顿迭代法。 Study of Temperature Measurement System based on STC single chip computer Zhang Yapeng,Wang Xiangting,Xu Enchun,Wei Maolin Abstract:A method to achieve temperature Measurement by the Indirect Measurement the resistance of platinum thermistor is proposed. It is realized by the single chip computer STC with Pt1000temperature sensor.The shortcomings of available methods whose Linearity, Sensitivity, and vibration resistance are worse are overcame by the proposed method. This paper emphasizes on the following aspects:the principle of temperature measurement by using platinum thermistor , the measurement of platinum thermistor’s resistance based on STC single chip computer, the calculating temperature by Newton Iteration Method. Parts of hardware and software are given. The experimental results demonstrate that the precision and linearity of the method is superior. It is also superior in real-time character and reliability and has a certain value in engineering application. Keywords: STC single chip computer,Pt1000temperature sensor,platinum thermistor’s resistance,Newton Iteration Method 0 引言 精密化学、生物医药、精细化工、精密仪器等领域对温度控制精度的要求极高,而温度控制的核心正是温度测量。 目前在国内,应用最广泛的测温方法有热电偶测温、集成式温度传感器、热敏电阻测温、铂热电阻测温四种方法。 (1) 热电偶的温度测量范围较广,结构简单,但是它的电动势小,灵敏度较差,误差较大,实际使用时必须加冷端补偿,使用不方便。 (2) 集成式温度传感器是新一代的温度传感器,具有体积小、重量轻、线性度好、性能稳定等优点,适于远距离测量和传输。但由于价格相对较为昂贵,在国内测温领域的应用还不是很广泛。 (3) 热敏电阻具有灵敏度高、功耗低、价格低廉等优点,但其阻值与温度变化成非线性关系,在测量精度较高的场合必须进行非线性处理,给计算带来不便,此外元件的稳定性以及互换性较差,从而使它的应用范围较小。 (4)铂热电阻具有输出电势大、线性度好、灵敏度高、抗振性能好等优点。虽然它 的价格相对于热敏电阻要高一些,但它的综合性能指标确是最好的。而且它在0~200°C范

温度测量控制系统的设计与制作实验报告(汇编)

北京电子科技学院 课程设计报告 ( 2010 – 2011年度第一学期) 名称:模拟电子技术课程设计 题目:温度测量控制系统的设计与制作 学号: 学生姓名: 指导教师: 成绩: 日期:2010年11月17日

目录 一、电子技术课程设计的目的与要求 (3) 二、课程设计名称及设计要求 (3) 三、总体设计思想 (3) 四、系统框图及简要说明 (4) 五、单元电路设计(原理、芯片、参数计算等) (4) 六、总体电路 (5) 七、仿真结果 (8) 八、实测结果分析 (9) 九、心得体会 (9) 附录I:元器件清单 (11) 附录II:multisim仿真图 (11) 附录III:参考文献 (11)

一、电子技术课程设计的目的与要求 (一)电子技术课程设计的目的 课程设计作为模拟电子技术课程的重要组成部分,目的是使学生进一步理解课程内容,基本掌握电子系统设计和调试的方法,增加集成电路应用知识,培养学生实际动手能力以及分析、解决问题的能力。 按照本专业培养方案要求,在学完专业基础课模拟电子技术课程后,应进行课程设计,其目的是使学生更好地巩固和加深对基础知识的理解,学会设计小型电子系统的方法,独立完成系统设计及调试,增强学生理论联系实际的能力,提高学生电路分析和设计能力。通过实践教学引导学生在理论指导下有所创新,为专业课的学习和日后工程实践奠定基础。 (二)电子技术课程设计的要求 1.教学基本要求 要求学生独立完成选题设计,掌握数字系统设计方法;完成系统的组装及调试工作;在课程设计中要注重培养工程质量意识,按要求写出课程设计报告。 教师应事先准备好课程设计任务书、指导学生查阅有关资料,安排适当的时间进行答疑,帮助学生解决课程设计过程中的问题。 2.能力培养要求 (1)通过查阅手册和有关文献资料培养学生独立分析和解决实际问题的能力。 (2)通过实际电路方案的分析比较、设计计算、元件选取、安装调试等环节,掌握简单实用电路的分析方法和工程设计方法。 (3)掌握常用仪器设备的使用方法,学会简单的实验调试,提高动手能力。 (4)综合应用课程中学到的理论知识去独立完成一个设计任务。 (5)培养严肃认真的工作作风和严谨的科学态度。 二、课程设计名称及设计要求 (一)课程设计名称 设计题目:温度测量控制系统的设计与制作 (二)课程设计要求 1、设计任务 要求设计制作一个可以测量温度的测量控制系统,测量温度范围:室温0~50℃,测量精度±1℃。 2、技术指标及要求: (1)当温度在室温0℃~50℃之间变化时,系统输出端1相应在0~5V之间变化。 (2)当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。 输出端1电压小于3V并大于2V时,输出端2保持不变。 三、总体设计思想 使用温度传感器完成系统设计中将实现温度信号转化为电压信号这一要求,该器件具有良好的线性和互换性,测量精度高,并具有消除电源波动的特性。因此,我们可以利用它的这些特性,实现从温度到电流的转化;但是,又考虑到温度传感器应用在电路中后,相当于电流源的作用,产生的是电流信号,所以,应用一个接地电阻使电流信号在传输过程中转化为电压信号。接下来应该是对产生电压信号的传输与调整,这里要用到电压跟随器、加减运算电路,这些电路的实现都离不开集成运放对信号进行运算以及电位器对电压调节,所以选用了集成运放LM324和电位器;最后为实现技术指标(当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。输出端1电压小于3V并大于2V时,输出端2保持不变。)中的要求,选用了555定时器LM555CM。 通过以上分析,电路的总体设计思想就明确了,即我们使用温度传感器AD590将温度转化成电压信号,然后通过一系列的集成运放电路,使表示温度的电压放大,从而线性地落在0~5V这个区间里。最后通过一个555设计的电路实现当输出电压在2与3V这两点上实现输出高低电平的变化。

温度控制系统测试.

温度控制系统测试 实验目的 1.在自动控制理论实验基础上,控制实际的模拟对象,加深对理论的理解; 2.掌握闭环控制系统的参数调节对系统动态性能的影响。 实验设备 1.自动控制理论及计算机控制技术实验装置; 2.数字式万用表、示波器(自备); 3.温度对象、控制对象。 实验原理 图 1 温度控制系统框图如图1所示,由给定、PID调节器、可控硅调制(使用全隔离单相交流调压模块)、加温室(采用经高速风扇吹出热风)、温度变送器(PT100输入0-100°输出2-10V电压)和输出电压反馈等部分组成。在参数给定的情况下,经过PID运算产生相应的控制量,使加温室里的温度稳定在给定值。 给定Ug由自动控制理论及计算机控制技术的实验面板单元U3的O1提供,电压变化范围为1.3V~10V。 PID调节器的输出作为可控硅调制的输入信号,经控制电压改变可控硅导通角从而改变输出电压的大小,作为对加温室里电热丝的加热信号。 温度测量采用PT100热敏电阻,经温度变送器转换成电压反馈量,温度输入范围为0~100℃,温度变送器的输出电压范围为DC2~10V。 根据实际的设计要求,调节反馈系数β,从而调节输出电压。

实验电路原理图 实验电路由自动控制理论及计算机控制技术实验板上的运放和备用元件搭建而成,实验参考参数如下:R0=R1=R2=100KΩ,R3=100KΩ,R4=10M,C1=10uF,R5=430K。Rf/Ri=1; 具体的实验步骤如下: 1.先将自动控制理论及计算机控制技术面板上的电源船形开关均放在“OFF”状态。 2.利用实验板上的单元电路U9、U13和U15,设计并连接如图2所示的闭环系统。 图2 在进行实验连线之前,先将U9单元两个输入端的100K可调电阻均逆时针旋转到底(即调至最小),使电阻R0、R1均为100K; 将U15单元输入端的100K可调电阻逆时针旋转到底(即调至最小),使输入电阻R3的总阻值为100K;C1在U15单元模块上。R4取元件库单元上的10M电阻。R5取元件库单元上的的430K电阻; U13单元作为反相器单元,将U13单元输入端的100K可调电阻均顺时针旋转到底(即调至最大),使电阻Ri为200K;保证反馈系数为1。 注明:所有运放单元的+端所接的100K电阻均已经内部接好,实验时不需外接。 (1)将数据采集系统U3单元的O1接到Ug; (2)给定输出接PID调节器的输入,这里参考电路中Kd=0,R4的作用是提高PI调节器的动态特性。 (3)经过PID运算调节器输出(0~10V)接到温度的检测和控制单元的脉宽调制的

基于NTC热敏电阻的温度测量与控制系统设计(论文)

题目名称:基于NTC热敏电阻的温度测量与控 制系统设计 摘要:本系统由TL431精密基准电压,NTC热敏电阻(MF-55)的温度采集,A/D和D/A转换,单片机STC89C51为核心的最小控制系统,LCD1602的显示电路等构成。温度值的线性转换通过软件的插值方法实现。该系统能够测量范围为0~100℃,测量精度±1℃,并且能够记录24小时内每间隔30分钟温度值,并能够回调选定时刻的温度值,能计算并实时显示24小时内的平均温度、温度最大值、最小值、最大温差,且有越限报警功能。由于采用两个水泥电阻作为控温元件,更有效的增加了温度控制功能。 关键词: NTC TL431 温度线性转换 Abstract: The system is composed of TL431 as precise voltage,the temperature acauisition circuit with NTC thermistors (MF-55), the transform circuit of A/D and D/A, the core of the minimum control system with STC89C51, 1the display circuit usingLCD1602, etc. Get the temperature of the linear transformation by the software method. The range of the measure system is 0 ~ 100 ℃, measurement accuracy + 1 ℃.It can record 24 hours of each interval temperature by per 30 minutes selected of temperature.The time can be calculated and real-time display within 24 hours of the average temperature, maximum temperature and minimum temperature, maximum value, and each temperature sensor has more all the way limit alarm function. Due to the two cement resistance as temperature control components, the more effective increase the temperature control function. Keyword: NTC TL431 temperature linear conversion

温度检测与控制实验报告材料

实验三十二温度传感器温度控制实验 一、实验目的 1.了解温度传感器电路的工作原理 2.了解温度控制的基本原理 3.掌握一线总线接口的使用 二、实验说明 这是一个综合硬件实验,分两大功能:温度的测量和温度的控制。 1.DALLAS最新单线数字温度传感器DS18B20简介 Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压围,使系统设计更灵活、方便。 DS18B20测量温度围为 -55°C~+125°C,在-10~+85°C围,精度为±0.5°C。DS18B20可以程序设定9~12位的分辨率,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。 DS18B20部结构 DS18B20部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如下: DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地)。 光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接 着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验 码(CRC=X8+X5+X4+1)。光刻ROM的作用是使每一个DS18B20都各不相同,这样 就可以实现一根总线上挂接多个DS18B20的目的。 DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 232221202-12-22-32-4 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 S S S S S 262524这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的

温度测量与控制电路

《电子技术》课程设计报告 题目温度测量与控制电路 学院(部)电子与控制工程学院 专业电子科学与技术 班级 学生姓名郭鹏 学号 13 指导教师(签字) 前言 随着数字时代的到来,人们对于温度的测量与控制的要求越来越高,用传统的水银或酒精温度计来测量温度,不仅测量时间长、读数不方便、精度不够高而且功能单一,已经不能满足人们在数字化时代的要求。于是我们提出,测温电路利用温度传感器监测外界温度的变化,通过放大器将温度传感器接收到的信号进行放大,放大到比较有利于我们测量的温度范围,然后利用A/D转换器实现模拟信号到数字信号的转换,最后通过编程让FPGA实现8位二进制数与BCD码之间的转化,实现温度的显示;并利用比较器来实现对放大电压信号的控制,从而实现对温度的控制;再者还加载了报警装置,使它的功能更加完善,使用更加方便。

本设计是采用了温度的测量、信号放大、A/D转换、温度的显示、温度的控制、报警装置六部分来具体实现上述目的。 目录 摘要与设计要求 (4) 第一章:系统概述 (5) 第二章:单元电路设计与分析 (5) 1) 方案选择 (5) 2)设计原理与参考电路 (6) 1 放大电路 (6) 2 低通滤波电路 (7) 3 温度控制电路 (8) 4 报警电路 (9) 5 A/D转换器 (10)

6 译码电路 (11) 第三章:系统综述、总体电路图 (14) 第四章:结束语 (15) 参考文献 (15) 元器件明细表 (15) 收获与体会,存在的问题等 (16) 温度测量与控制电路 摘要: 利用传感器对于外界的温度信号进行收集,收集到的信号通过集成运算放大器进行信号放大,放大后的信号经过A/D转换器实现模拟信号与数字信号间的转换,再通过FPGA编程所实现的功能将转换后的数字信号在数码管上显示出来,实现温度测量过程。放大的信号可以与所预定的温度范围进行比较,如果超出预定范围,则自动实现声光报警功能,实现温度控制过程。 关键字:温度测量温度控制信号放大 A/D转换声光报警 设计要求: 1. 测量温度范围为200C~1650C,精度 0.50C; 2. 被测量温度与控制温度均可数字显示; 3. 控制温度连续可调; 4. 温度超过设定值时,产生声光报警。

温度测量控制系统的设计与制作

安阳师范学院 课程设计报告 名称:模拟电子技术课程设计 题目:温度测量控制系统的设计和制作学号:101102041 学生姓名:刘亚敏 指导老师:李建法 日期:2011/12/14

目录 一、模拟电子技术课程设计的目的和要求...................... - 1 - 二、课程设计名称及设计要求................................ - 1 - 三、总体设计思想.......................................... - 1 - 四、系统框图及简要说明.................................... - 1 - 五、单元电路设计(原理、芯片、参数计算等)................ - 2 - 六、总体电路:............................................ - 6 - 七、仿真结果:............................................ - 6 - 八、实际测量数据分析...................................... - 7 - 九、设计感想.............................................. - 7 - 附录1:元器件清单......................................... - 8 - 附录2:参考文献........................................... - 8 -

基于单片机的温度测量控制系统设计

基于单片机的温度测量控制系统设计

目录 1引言 (2) 1.1问题的提出…………………………………………………………… (2) 1.1.1什么是温度控制…………………………………………………………… (2) 1.2设计目的…………………………………………………………… (2) 2设计方案 (3) 2.1硬件设计方案…………………………………………………………… (3) 2.2软件设计方案…………………………………………………………… (3) 3硬件设计 (5) 3.1主控制部分AT89S51的设计方案 (5) 3.2温度采集模块…………………………………………………………… (7) 3.3显示模块…………………………………………………………… (7) 4软件设计 (9) 4.1温度采集…………………………………………………………… (9) 4.2键盘输入…………………………………………………………… (10) 4.3 LCD显

示…………………………………………………………… (11) 5总结 (12) 6参考文献 (15) 附录1设计原理图 (14) 附录2设计程序 (15)

1引言 1.1问题的提出 温度是工业生产中主要的被控参数之一,与之相关的各种温度控制系统广泛应用于冶金、化工、机械、食品等领域。温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的。 1.1.1什么是温度控制 温度控制系统由温控器和热电偶组成,热电偶检测温度并转换成电信号传给温控器,温控器根据所设定的温度发出控制信号,温度高于设定温度上限停止加热系统或开启降温系统,低于设定温度下线停止降温系统或开启加热系统。 1.2设计目的 本设计以AT89C51单片机为核心的温度控制系统的工作原理和设计方法。温度信号由温度芯片DS18B20采集,并以数字信号的方式传送给单片机。由键盘输入预设温度,比较实际环境温度与预设温度再由单片机做出相应的处理已以达到温度控制的目的。

DS18B20温度测量与控制实验报告

课程实训报告 《单片机技术开发》 专业:机电一体化技术 班级: 104201 学号: 10420134 姓名:杨泽润 浙江交通职业技术学院机电学院 2012年5月29日

目录 一、DS18B20温度测量与控制实验目的…………………… 二、DS18B20温度测量与控制实验说明…………………… 三、DS18B20温度测量与控制实验框图与步骤…………………… 四、DS18B20温度测量与控制实验清单…………………… 五、DS18B20温度测量与控制实验原理图………………… 六、DS18B20温度测量与控制实验实训小结………………

1.了解单总线器件的编程方法。 2.了解温度测量的原理,掌握DS18B20 的使用。

本实验系统采用的温度传感器DS18B20是美国DALLAS公司推出的增强型单总线数字温度传感器。 Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压范围,使系统设计更灵活、方便。DS18B20测量温度范围为-55°C~+125°C,在-10~+85°C范围内,精度为±0.5°C。DS18B20可以程序设定9~12位的分辨率,及用户设定的报警温度存储在EEPROM中,掉电后依然 保存。 DS18B20 内部结构 DS18B20 内部结构主要由四部分组成:64 位光刻ROM、温 度传感器、非挥发的温度报警触发器TH 和TL、配置寄存器。 DS18B20 的管脚排列如下: DQ 为数字信号输入/输出端;GND 为电源地;VDD 为外接 供电电源输入端(在寄生电源接线方式时接地)。 光刻ROM 中的64 位序列号是出厂前被光刻好的,它可以 看作是该DS18B20 的地址序列码。64 位光刻ROM 的排列是: 开始8 位(28H)是产品类型标号,接着的48 位是该DS18B20 自身的序列号,最后8 位是前面56 位的循环冗余校验码 (CRC=X8+X5+X4+1)。光刻OMR 的作用是使每一个DS18B20 都各不相同,这样就可以实现一根总线上挂接多个DS18B20 的目 的。 DS18B20 中的温度传感器可完成对温度的测量,以12 位转化为例:用16 位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S 为符号位。 这是12 位转化后得到的12 位数据,存储在18B20的两个8 比特的RAM 中,二进制中的前面5 位是符号位,如果测得的温度大于0,这5 位为0,只要将测到的数值乘于0.0625 即可得到实际温度;如果温度小于0,这5 位为1,测到的数值需要取反加 1 再乘于0.0625 即可得到实际温度。

温度测量控制技术

温度测量控制技术 一、目的 1. 学会使用触点温度计,掌握恒温槽的控制技术。 2. 了解恒温槽的构造及各部件的作用,初步掌握其安装和使用方法。 3. 测绘恒温槽的灵敏度曲线。 二、仪器和试剂 玻璃缸恒温槽和超级恒温槽各一套(浴槽、加热器、触点温度计、电子继电器、搅拌器、精密温度计) 三、原理 许多物理化学参数的测定须在恒温条件下进行,一般采用恒温水浴来获得恒温条件,恒温槽是常用的一种以液体为介质的恒温装置,恒温槽包括玻璃缸恒温槽和超级恒温槽。 1.恒温槽的结构 讲解本实验所用玻璃缸恒温槽装置,超级恒温槽的结构。 恒温槽一般由浴槽、温度调节器(水银接点温度计)、继电器、加热器、搅拌器和温度计组成。当浴槽的温度低于恒定温度时,温度调节器通过继电器的作用,使加热器加热;当浴槽的温度高于所恒定的温度时即停止加热。因此,浴槽温度在一微小的区间内波动,而置于浴槽中的系统,温度也被限制在相应的微小区间内而达到恒温的要求。 恒温槽各部分设备介绍如下: ⑴浴槽当控温范围在室温附近时,浴槽常用玻璃槽,便于观察系统的变化情况,浴槽的大小和形状可根据需要而定。在常温下,多采用水作为恒温介质。为避免水分蒸发,当温度高于50℃时,常在水面上加一层石蜡油。 ⑵加热器常用加热器(如电阻丝等)。要求加热器惰性小、导热性好、面积大、功率适当。加热器的功率大小会影响温度控制的灵敏度。 ⑶温度计恒温槽中常以一支0.1℃分度的温度计测量浴槽的温度。 ⑷搅拌器搅拌器以马达带动,常采用调压器调节其搅拌速率,要求搅拌器工作时,震动小、噪声低、能连续运转。搅拌器应安装在加热器的上方或附近,以使加热的液体及时分散,混合均匀。 ⑸温度调节器它是决定恒温槽加热或停止加热的一个自动开关,用于调节恒温槽所要求控制的温度。实验室中常用水银接点温度计(又称水银触点温度计)水银接点温度计下半部为一普通水银温度计,但底部有一固定的金属丝与接点温度计中的水银相连接;在毛细管上部也有一金属丝,借助磁铁转动螺丝杆,可以随意调节改金属丝的上下位置。螺杆的标铁和上部温度标尺相配合可粗略估计所需控制的温度。 浴槽升温时,接点温度计中的水银柱上升,当达到所需恒定的温度时,就与上方的金属丝接触;温度降低时与金属丝断开。通过两引出导线与继电器相连,达到控制加热器回路的断路或通路。 水银接点温度计只能作为温度的调节器,不能作为温度的指示器,恒温槽的温度由精密温度计指示。 水银接点温度计控温精度通常是±0.1℃。当要求更高精度时,可选用控温精度更高的温度调节

温湿度检测控制系统

1 前言 温度和湿度的检测和控制是许多行业的重要工作之一,不论是货品仓库、生产车间,都需要有规定的温度和湿度,然而温度和湿度却是最不易保障的指标,针对这一情况,研制可靠且实用的温度和湿度检测与控制系统就显得非常重要。 温湿度的检测与控制是工业生产过程中比较典型的应用之一,随着传感器在生产和生活中的更加广泛的应用。在生产中,温湿度的高低对产品的质量影响很大。由于温湿度的检测控制不当,可能使我们导致无法估计的经济损失。为保证日常工作的顺利进行,首要问题是加强生产车间温度与湿度的监测工作,但传统的方法过于粗糙,通过人工进行检测,对不符合温度和湿度要求的库房进行通风、去湿和降温等工作。这种人工测试方法费时费力、效率低,且测试的温度及湿度误差大,随机性大。目前,在低温条件下(通常指100℃以下),温湿度的测量已经相对成熟。利用新型单总线式数字温度传感器实现对温度的测试与控制得到更快的开发。但人们对它的要求越来越高,要为现代人工作、科研、学习、生活提供更好的更方便的设施就需要从数字单片机技术入手,一切向着数字化,智能化控制方向发展。 对于国外对温湿度检测的研究,从复杂模拟量检测到现在的数字智能化检测越发的成熟,随着科技的进步,现在的对于温湿度研究,检测系统向着智能化、小型化、低功耗的方向发展。在发展过程中,以单片机为核心的温湿度控制系统发展为体积小、操作简单、量程宽、性能稳定、测量精度高,等诸多优点在生产生活的各个方面实现着至关重要的作用。 温湿度传感器除电阻式、电容式湿敏元件之外,还有电解质离子型湿敏元件、重量型湿敏元件(利用感湿膜重量的变化来改变振荡频率)、光强型湿敏元件、声表面波湿敏元件等。湿敏元件的线性度及抗污染性差,在检测环境湿度时,湿敏元件要长期暴露在待测环境中,很容易被污染而影响其测量精度及长期稳定性。 2002年Sensiron公司在世界上率先研制成功SHT10型智能化温度/温度传感器,体积与火柴头相近。它们不仅能准确测量相对温度,还能测量温度和露点。测量相对温度的围是0~100%,分辨力达0.03%RH,最高精度为±2%RH。测量温度的围是-40℃~

温度测量与控制-课程设计

赣南师院物理与电子信息学院感测技术课程设计报告书 题目:温度测量与控制 姓名: 班级: 指导老师: 时间: 一、系统功能 本温度控制器可以实现以下的功能:

(1)采集温度,并通过LED数码管显示当前温度。LED数码管显示温度格式为四位,精确度可达±0.1℃。例如:25℃显示为025.0。 (2)通过按键可自由设定温度的上下限,并能在LED数码管显示设定的温度上下限值。 (3)通过控制三极管的导通与否来控制继电器的关断,继而控制外部加热(电烙铁升温)和制冷(小型电风扇降温)装置,使环境温度保持设定温度范围内。(4)具有温度报警装置。当温度高于上限值,红灯亮起;或者低于下限值,黄灯亮起,并发出报警声。 二、系统原理框图 2.1 系统总体方案 该温度控制器的系统总体方框图如图1所示。该系统主要包含DS18B20温度采集电路、输入控制电路、晶振复位电路、数码管显示电路、继电器控制电路,等外围电路组成。 图1 系统总体方框图 2.2 系统原理图

图2 系统原理图 三、传感器的选用和介绍 综合各方面考虑,本设计我们选择的温度传感器是DS18B20。 3.1 DS18B20的主要特性 DS18B20的主要特性如下。 1)适应电压范围更宽,电压范围:3.0~5.5V,在寄生电源方式下可由数据线供电。 2)在使用时不需要任何外围元件,全部传感元件及转换电路集成在形如一只三极管的集成电路内。 3)独特的单线接口方式:DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通信。 4)测温范围:-55℃~+125℃,在-10~+85℃时精度为±0.5℃。 5)DS18B20支持多点组网功能,多个DS18B20可以并联在唯一的三线上,实现组网多点测温。 6)可编程的分辨率为9~12位,对应的可分辨温度分别为0.5℃、0.25℃、0.125℃和0.0625℃,可实现高精度测温。 7)在9位分辨率时最多在93.75ms内把温度转换为数字,12位分辨率时最

温度测量及控制实验

温度测量及控制实验 一、实验目的 1、了解热电阻或热电偶等温度传感器的工作原理和与工作特性; 2、学习PID控制方法和原理,加深对各式温度传感器工作特性的认识。 二、实验原理 PT100温度感测器是一种以白金(Pt)作成的电阻式温度检测器,属于正温度系数热敏电阻传感器,具有抗振动、稳定性好、准确度高、耐高压等优点。其电阻和温度变化的关系式如下:R=R0(1+αT) 其中α=0.00392,R0为100Ω(在0℃的电阻值),T为摄氏温度 依据1821年塞贝克发现的热电现象,即:当两种不同的导体或半导体接成闭合回路时,如果它们的两端接点的温度不同,则在该回路中就会产生电流。这表明回路中存在电动势,称为塞贝克温差电势,简称热电势。 K型热电偶是以镍铬合金为正极,镍硅合金为负极的两导体的一端焊接而成的。这两根导体的焊接端称为K型的热电极,其焊接端为热端,非焊接端为冷端。在进行温度测量时,将插入被测的物体介质中,使其热端感受到被测介质的温度,其冷端置于恒定的温度下,并用连接导线连接电气测量仪表。由于两端所处的温度不同,在回路中就会产生热电势,在保持冷端温度不变的情况下,产生的热电势只随其热端温度而变化。因此,用电气测量仪表测得热电势的数值后,便可求出对应的温度数值。由于这种合金具有较好的高温抗氧化性,可适用于氧化性或中性介质中。K型热电偶能测量较高温度,可长期测量1000度的高温,短期可测到1200度。 1.系统框图 控制系统的主要工作过程是:用户在人机界面上设置目标温度及各个控制参数,热电偶测量被控对象的温度信号,经过EM231热电偶模拟量输入模块转换为标准的数字量,PLC作出相应的数字处理,并进行PID控制的运算。在固态继电器输出方式下通过输出过程映像寄存器发出PWM波来驱动固态继电器控制加热器工作。在调压模块输出方式下通过模拟量输出模块EM232驱动调压模块控制加热器工作。

最新长安大学电子课程设计(温度测量与控制)

长安大学 电子技术课程设计 (温度测量与控制电路) 专业电气工程及其自动化 班级32040901 姓名李朝 指导教师田莉娟 日期2011年6月30日

前言 温度测量与控制电路广泛应用于生产生活中的各个方面,特别是在工业生产中,温度自动控制已经成为一个相当成熟的技术。本次课程设计给我们创造了良好的学习机会:一是查阅资料将自己所学的数字电子技术,模拟电子技术,以及传感器的相关知识综合运用,二是系统了解温度监测特别是工业上的温度控制的详细过程,为日后的学习和工作增长知识,积累经验。 在确定课设题目,经仔细分析问题后,实现温度的测量与控制方法很多,大致可以分为两大类型,一种是以单片机为主的软硬件结合方式,另一种是用简单芯片构成实现电路。由于单片机知识的匮乏,我们决定用后者实现。共同确定了总的电路结构,将设计分为三部分,李朝负责温度传感部分,谌新力负责温度显示和温度范围控制部分,肖阳负责温度控制执行电路和声光报警部分。温度传感部分由热电偶构成的温度传感器,数字显示和设定控制部分由模数转换器AD574A、281024 CMOS EEPROM、锁存器74LS175等组成,声光报警和温控加热降温执行电路主要用时基芯片555构成的多谐振荡器和单稳态电路组成。在确定了单元电路的设计方案后,我们在总结出总体方案框图的基础上,应用Multisim11.0仿真软件画出了各单元模块电路图,最后汇总电路图。 由于缺少实践经验,并且知识有限,所以本次设计中难免存在缺点和错误,敬请老师批评指正。 李朝 2010年6月20日

目录 温度测量与控制电路 (4) 摘要 (4) 一、系统综述和总体方案论证与选择 (5) 二、单元电路设计 (6) (一)温度传感模块 (6) (2)冷接点温度补偿方法的选择 (11) (3)滤波方法的讨论 (16) (4)电路的改进 (17) (5)仿真模拟 (18) (二)声光报警 (20) (三)温度控制执行 (21) 三、结束语 (21) 四、参考文献 (22) 五、元器件明细 (23) 六、收获体会 (31) 七、鸣谢 (32) 八、【附录】 (32) 评语 ..................................................................................................... 错误!未定义书签。

温度的测量及控制全解

温度的测量及控制 (一)温标 温度是表征体系中物质内部大量分子、原子平均动能的一个宏观物理量。物体内部分子、原子平均动能的增加或减少,表现为物体温度的升高或降低。物质的物理化学特性,都与温度有密切的关系,温度是确定物体状态的一个基本参量,因此,温度的准确测量和控制在科学实验中十分重要。 温度是一种特殊的物理量,两个物体的温度只能相等或不等。为了表示温度的的高低,相应的需要建立温标。那么,温标就是测量温度时必须遵循的规定,国际上先后制定了几种温标。 1.摄氏温标是以大气压下水的冰点(0℃)和沸点(100℃)为两个定点,定点间分为100等份,每一份为1℃。用外推法或内插法求得其它温度t。 2.1848年开尔文(Kelvin)提出热力学温标,通常也叫做绝对温标,以开(K)表示,它是建立在卡诺循环基础上的。 设理想的热机在和(>)二温度之间工作,工作物质在吸热 ,在温度放热,经一可逆循环对外做功 热机效率 卡诺循环中和仅与热量和有关,与工作物质无关,在任何工作 范围内均具有线性关系,是理想的科学的温标。若规定一个固定温度,则另 一个温度可由式求得。 理想气体在定容下的压力(或定压下的体积)与热力学温度呈严格的线性函数关系。因此,国际上选定气体温度计,用它来实现热力学温标。氦、氢、氮等气体在温度较高、压强不太大的条件下,其行为接近理想气体。所以,这种气体温度计的读数可以校正成为热力学温标。热力学温标,规定“热力学温度单位开尔文(K)是水三相点热力学温度的1/273.15”。热力学温标与摄氏温度分度值相同,只是差一个常数 T=273.15 + t

由于气体温度计的装置复杂,使用不方便,为了统一国际间的温度量值,1927年拟定了“国际温标”,建立了若干可靠而又能高度重现的固定点。随着科学技术的发展,又经多次修订,现在采用的是1990国际温标(ITS-90),其定义的温度固定点、标准温度计和计算的内插公式请参阅中国计量出版社出版的《1990年国际温标宣贯手册》和《1990国际温标补充资料》。 (二)水银温度计 水银温度计是实验室常用的温度计。它的优点是:水银容易提纯、导热率大、比热小、膨胀系数较均匀、不易附着在玻璃壁上、不透明、便于读数等。水银温度计适用范围为238.15K~633.15K(水银的熔点为234.45K,沸点为 629.85K),如果用石英玻璃作管壁,充入氮气或氩气,最高使用温度可达到1073.15K。如果水银中掺入8.5%的铊(Tl)则可以测量到213.2K的低温。 1.水银温度计的读数误差来源 (1)水银膨胀不均匀。此项较小,一般情况下可忽略不计。 (2)玻璃球体积的改变。一支精细的温度计,每隔一段时间要作定点校正,以作为温度计本身的误差。 (3)压力效应。通常温度计读数指外界压力为105Pa而言的,故当压力改变时,应对压力产生的影响进行校正。对于直径为 5~7 mm的水银球,压力系数的数量级约为0.l℃/105 Pa。 (4)露丝误差。水银温度计有“全浸”与“非全浸”两种。“全浸”指测量温度时,只有温度计全部水银柱浸在介质内时,所示温度才正确。“非全浸”指温度计的水银球及部分毛细管浸在加热介质中。如果一支温度计原来全浸没标定刻度而在使用时未完全浸没的话,则由于器外温度与被测体温度的不同,必然会引起误差。 (5)其它误差。如延迟误差,由于温度计水银球与被测介质达到热平衡时需要一定的时间,因此在快速测量时,时间太短容易引起误差。此外还有辐射误差,以及刻度不均匀、水银附着及毛细现象等引起的误差。 2.水银温度计校正 (1)读数校正 其一,以纯物质的熔点或沸点作为标准进行校正。 其二,以标准水银温度计为标准,与待校正的温度计同时测定某一体系的温度,将对应值一一记录,作出校正曲线。使用时利用校正曲线对温度计进行校正。

相关主题
文本预览
相关文档 最新文档