当前位置:文档之家› 5氧传感器检测与维修

5氧传感器检测与维修

5氧传感器检测与维修
5氧传感器检测与维修

一、工作任务

1.认识各类型氧传感器结构;

2. 分析氧传感器电路图及波形;

3. 检修大众AJR发动机台架的氧传感器;

4.制定工作计划,团结协作,培养团体意识;

5.查找、阅读分析电路图,培养自学能力。

二、准备工作

1.实习组织:分组实习,组长负责制,教师进行分工及布置任务,然后由小组相互学习、讨论及各组员轮流操作,最后各学员填写工作页,派小组代表讲解,老师点评。实习完毕后各场地、仪器设备的清洁维护工作。

2.工具(仪器)准备:请根据工作内容与目标制定所需的工用具。

3.(安全)注意事项:学习过程中要遵循先整体,后系统,再零件的认识规律,特别不要忽视一些管路、细小部件的认识。

4、相关知识

(1)氧传感器是用来检测,判断混合气,调整空燃比在理论值14.7左右,实现燃油控制,从而使三元催化效果最佳,达到最佳的排放性能。

(2)在图1中圈出氧传感器,氧传感器一般安装在上。

有些车只有在三元催化

装置前安装1氧传感器,而有些车安装2个氧传感器,一个安装在

三元催化装置前,而一个在三元催化装置后。

(3)氧传感器按结构可分为和两种,

若按是否有加热装置,可分为和两种。

图1 氧传感器的位置(4)二氧化锆氧传感器(如图2)是由一个用陶瓷型

二氧化锆制成的,内外侧都包一层铂。二氧化锆的内侧

通,外侧接触。在高温下,氧气电

离,当二氧化锆内外表面的氧气浓度相差大时,二氧化锆是一电源向外输出电压就。

(5)当混合气较稀时,排气管的含氧量就,二氧化锆元件的内外浓度差就,产生电压就。反之,当混合气较浓时,产生电压就。

图2 二氧化锆氧传感器结构图(6)二氧化钛氧传感器的结构与二氧化锆相似,主要是材料不同与原理有些不同,二氧化钛氧传感器工作时,二氧化钛的会随着外表面的氧含量的增多而变,一般ECU要向二氧化钛氧传感器提供1V左右的电压。

三、工作过程与记录分析

1.分析各种常见氧传感器

图3-a 氧传感器电路图 图3-b 氧传感器电阻检测 2.分析图3-a ,用万用表检测各端子间电阻,填写表格 你的结论其电阻值是否正常:

3.在大众AJR 发动机台架上检测氧传感器 (1)外观检查

检查氧传感器外壳是否有破损,连接器连接是否良好,拔出插头观察是否有锈蚀、松动等。

(2)分析传感器的电路图

查找有关资料,确认该车型传感器的类型、结构、电路图,在下面画出其电路图。(3)检测电阻,根据氧传感器的电路图,制定电阻检测的计划,并实施。

(4)检测电压

1-88 富康爱丽舍氧传感器故障诊断

快 讯 INFO ’RAPID ZX (1) N0 88 东风雪铁龙服务备件部 DCAD/DPS 氧传感器故障诊断 2008年12月17日 该资料应分类留存在:富康、爱丽舍快讯夹子中 CE DOCUMENT EST A CLASSER DANS:LE CLASSEUR NOTE TECHNIQUE ET INFO RAPIDE ZX、Elysee 一、涉及车型: 装备 TU5JP4发动机的东风雪铁龙所有车型。 二、故障现象: 发动机故障灯亮,PROXIA 诊断为氧传感器故障,故障码为P0134、P0135等。 三、检查更换工艺: 氧传感器工作电路原理图 ,如下图 1、(拆下氧传感器插头)将数字万用表打到欧姆档,测量传感器加热(+)与加热(-)两端针脚。常 温下其阻值为2.5~4.5Ω;若电阻为无穷大(断路)则更换氧传感器。 2、(拆下氧传感器插头)测量与加热1#脚连接的线束电压是否为12V;如供电电压不是12V,按车辆 电路图检查相关的供电电路。 3、启动发动机,怠速运行几分钟后通过PROXIA 读取氧传感器电压,检查电压是否在0.1V—0.9V 间 波动,若电压值无波动或波动异常(持续偏稀或偏浓)则进行下面的4、5项检查。 4、拆下氧传感器贴近耳朵轻轻摇动,如有异响说明内部的陶瓷探针可能破裂,需更换氧传感器。 5、 氧传感器柄部套下有通气孔,外界空气由此进入氧传感器的内腔,一旦油污或者其他沉积物进入氧 传感器内腔,或者堵塞了该通气孔,会使氧传感器的输出信号失真。检查头部通气孔是否堵塞,清理积碳堵塞物,然后装车。按 第3项重新检测,电压的波动值不正常则更换氧传感器。 注:实际测量以车辆电路图上信号脚为准。

称重传感器故障检测及原因分析

称重传感器故障检测及原因分析 一、概述 动态、静态电子秤大量使用的称重传感器为电阻应变式称重传感器。称重传感器由弹性体、应变计、检测电路三部分组成。 二、称重传感器的故障现象 因传感器故障造成称量系统故障的现象归纳起来主要表现为: 1.空载或称重过程中,显示数据不稳定、跳变。 2.零位漂移。 3.加载后无显示。 4.空载时显示数据过大,称重误差大。 5.称重后称无法回零。 6.重复性变差、线性、灵敏度差。 三、称重传感器故障常用检测方法 当计量系统出现故障现象后,我们可通过观察和仪表测量等方法,确定仪表无故障和秤体处于完好状态后,可做偏载测试以初步判断哪只传感器存在故障。 对传感器好坏的检测,我主要可以借助万用表其性能、技术参数进行测量,与生产厂家使用说明书提供及平时检修总结出来的技术数据进行对比,从而找出发生故障的传感器,具体的检测方法有: 1、阻抗判断法:切断工作电源,逐个将传感器的输出、输入线拆开,若用万用表测量输出、输入阻抗和信号电缆各芯与屏蔽层的绝缘性能(测量电阻值)下降,即可判断出该只传感器有故障。 1端和4端:激励工作电压输入端 2端和3端:重量毫伏电压信号输出端

测量方法:不加电的情况下, 1. 测量1、4端的电阻380Ω±5Ω 2. 测量2、3端的电阻为350Ω±3Ω 3. 测量1、2端,测量1、3端电阻应该相等,大约300Ω±3Ω 4.测量4、2端,测量4、3端电阻应该相等,大约300Ω±3Ω 注:电阻值根据具体的传感器大小可能不同;如果根据以上的测量方法得出的电阻大小不等,传感器多半损坏,应更换。 2、输出信号判断法: 有时传感器损坏,但阻抗并没有很大变化,果采用阻抗法无法检测出传感器的好坏,可采用此法作进一步地检测。给仪表送电后,逐个将传感器的输出线拆掉,需要注意的是在拆线过程中要特别小心操作以防触电,且不可将输出线与输入激励线短路,在空载情况下,用万用表直流mV档测其输出线的mV值。 假定额定激励电压为U(V),传感器的灵敏度为M(mV/V),传感器载荷重量为K(kg),传感器的额定容量为F(kg),则每只传感器输出电压应为:U×M×K/F (mV) 同一衡器同型号的传感器在无载荷情况下其输出mv值基本一致。若超出计算值或传感器的额定输出且输出不稳定,即可判断该只传感器有故障。

综合录井仪常见故障分析

综合录井仪常见故障分析 1、绞车传感器 ①显示运动方向与实际方向相反。说明绞车接口板上的换向开关的位置不对,打开气体/工程接口机箱的前面板,将换向开关的位置拔到另外的位置上。 ②大钩高度单向变化,方向不变,说明绞车接口板上的判向电路故障或是绞车传感器两路信号中缺一路信号,打开气体/工程接口机箱的前面板,若大钩运动时两路信号指示灯有一路不闪,则是传感器故障,需更换传感器。若两路指示灯闪亮而方向指示灯在大钩方向改变时不变色。则是接口电路故障,需更换绞车接口板。 ③大钩高度不变,说明绞车接口板上的判向电路故障或是绞车传感器故障,打开气体/工程接口机箱的前面板,若大钩运动时两路信号指示灯不闪,则时传感器故障,需更换传感器,若两路指示灯闪亮而脉冲指示灯不闪亮。则是接口电路故障,需更换绞车接口板。 2、泵冲/转速传感器 泵冲/转速显示为零。首先查看录井软件中泵冲或转速是否替代为零,若是则修改替代;用金属物接近传感器感应面,若传感器指示灯不闪亮,则传感器坏,更换传感器;感应面与感应物的距离太远,调 节传感器的螺纹,使感应面与感应物的距离在有效范围内,如果以上方法都不行,则属于泵冲/转速接口电路故障,需更换泵冲/转速接口板。 3、钻井液密度传感器: ①钻井液密度显示很大,首先查看录井软件中钻井液密度是否替代为零,若是则修改替代;检查传感器的安装,看钻井液密度传感器的感应膜片是否被泥砂堵满或上端膜片是否暴露在钻井液外面。 ②钻井液密度显示很小,首先查看录井软件中钻井液密度是否替代为零,若是则修改替代;检查钻井液密度传感器的信号线的连接是否正常。 4、钻井液温度传感器 ①钻井液温度显示很高,首先查看录井软件中钻井液温度是否替代为零,若是则修改替代;检查标定数据是否正确,修改标定数据,打开顶端电气连接盒,测量前置电路1、2间的电阻应小于140欧姆,若很大则检查连线或探头。 ②钻井液温度显示很低,首先查看录井软件中钻井液温度是否替代为零,若是则修改替代;打开顶端电气连接盒,测量前置电路1、2间的电阻应大于100欧姆,若很小则检查连接线或探头。 5、压力/大钩负荷传感器 ①大钩负荷为零或不变,首先查看录井软件中大钩负荷是否替代为零,若是则修改替代;若钻台指重表也无显示,则怀疑油路故障,重新注油或检查油路;若钻台指重表有指示而传感器输出不对,则更换大钩负荷传感器。 ②立管压力/套管压力/扭矩为零或不变,同上。

宽带氧传感器的工作原理和常见故障的检查方法

宽带氧传感器的工作原理和常见故障的检查方法 发布时间: 2010-4-29 15:52 | 编辑: 汽车乐https://www.doczj.com/doc/2c11683796.html, | 查看: 1067次来源: 网络 随着汽车尾气排放限值要求的不断提高,传统的开关型氧传感器已不能满足需要,取而代之的是控制精度更高的线性宽带氧传感器(Universal Exhaust Gas Oxygen Sensor,简称UEGO)。氧传感器闭环控制调节发动机燃烧室内的混合汽,以实现最佳的三元催化转换器运行,从而满足排放限值的要求。为此,氧传感器闭环控制的任务是确保废气空燃比始终处于催化转换器的最佳工作点。氧传感器闭环控制只改变所要喷射的燃油质量、燃烧室内的空气质量,也就是说汽缸充气和点火正时均不受影响,因此氧传感器是用来帮助确定废气中氧含量而反映实际工况中的空燃比。控制单元内的氧传感器闭环控制必须通过所提供的信号来对混合汽的成分做出相应调整,控制过程很大程度上取决于氧传感器的属性。 宽带氧传感器能够提供准确的空燃比反馈信号给ECU,从而ECU精确地控制喷油时间,使汽缸内混合汽浓度始终保持理论空燃比值。宽带氧传感器的使用提高了ECU的控制精度,最大限度地发挥了三元催化器的作用,优化了发动机的性能,并可节省大约15%的燃油消耗,更加有效地降低了有害气体的排放。 宽带氧传感器通过检测发动机尾气排放中的氧含量,并向电子控制单元(ECU)输送相应的电压信号,反映空气燃油混合比的稀浓。ECU根据氧传感器传送的实际混合汽浓稀反馈信号而相应调节喷油脉宽,使发动机运行在最佳空燃比(λ=1)状态,从而为催化转换器的尾气处理创造理想的条件。如果混合汽太浓(λ<1),必须减少喷油量,如果混合汽太稀(λ>1),则要增加喷油量。 现代汽车发动机管理系统中,安装在催化转换器前的宽带氧传感器,称作控制氧传感器,安装在三元催化器的上游位置,监测尾气中氧的浓度,并将信息反馈给控制单元,用于调节喷油量,从而实现发动机的闭环控制,改善发动机的燃烧性能并减少有害气体的排放。根据OBD-Ⅱ规定,现代汽车必须对三元催化转换器效率进行持续监控,为此配有诊断氧传感器,安装在催化转换器的下游端。通过比较催化转换器上游和下游的传感器信号,可以确定催化转换器的效率。主要原因是由于控制氧传感器因老化,其向ECU输送的电压信号曲线会发生偏移,诊断氧传感器会检测控制氧传感器是否仍然处于最佳工作状态,然后ECU 就可计算出矫正偏移所需的补偿量。 由于老化而造成工作性能变差的氧传感器,也会影响燃油经济性的指标。老化的氧传感器提供给DME的混合汽浓度信号存在误差,将使DME控制单元在可燃混合汽形成的控制产生偏差,而造成燃油消耗的增加。表1是博世公司所做的氧传感器对燃油经济性影响的明细表。 一、宽带型氧传感器的分类及基本构造 根据氧传感器的制造材料不同,宽带型氧传感器可分为以ZrO2为基体的固化电解质型和利用氧化物半导体电阻变化型两大类;根据传感器的结构不同,宽带型氧传感又可分为电池型、临界电流型及泵电池型。 宽带型氧传感器的基本控制原理就是以普通氧化锆型氧传感器为基础扩展而来。氧化锆型氧传感器有一特性,即当氧离子移动时会产生电动势。反之,若将电动势加在氧化锆组件上,即会造成氧离子的移动。根据此原理即可由发动机控制单元控制所想要的比例值。 构成宽带型氧传感器的组件有两个部分:一部分为感应室,另一部分是泵氧元。 感应室的一面与大气接触,而另一面是测试腔,通过扩散孔与排气接触,与普通氧化锆传感器一样,由于感应室两侧的氧含量不同而产生一个电动势。一般的氧化锆传感器将

氧传感器故障分析

一、氧传感器的故障分析与诊断 1、氧传感器在电控发动机排放控制中的重要性 在使用三元催化转换器以减少排气污染的发动机上,氧传感器是必不可少的元件。由于混合气的空燃比一旦偏离理论空燃比,三元催化器对CO、HC和NOX的净化能力将急剧下降,故在排气管中安装氧传感器,用以检测排气中氧的浓度,并向ECU发出反馈信号,再由ECU控制喷油器喷油量的增减,从而将混合气的空燃比控制在理论值附近。 2、氧传感器的种类及氧传感器在汽车上安装的重要性 目前,实际应用的氧传感器有氧化锆式氧传感器和氧化钛式氧传感器两种。而常见的氧传感器又有单引线、双引线、三引线及四引线之分,;单引线的为氧化锆式氧传感器;双引线的为氧化钛式氧传感器;三引线和四引线的为加热型氧化锆式氧传感器,原则上四种引线方式的氧传感器是不能替代使用的。 氧传感器一旦出现故障,将使电子燃油喷射系统的电脑不能得到排气管中氧浓度的信息,因而不能对空燃比进行反馈控制,会使发动机油耗和排气污染增加,发动机出现怠速不稳、缺火、喘振等故障现象。因此,必须及时的排除故障或更换。空燃比对排气中碳氢化合物(HC)和一氧化碳(CO)的含量有很大影响,在空燃比低于14.7:1时,HC及CO含量降低;如果空燃比高于14.7:1时,HC及CO 含量迅速上升。但是,降低空燃比会导致燃烧温度升高,排气中的氮氧化合物(NOX)升高。所以,理想的空燃比应在接近14.7:1的很小范围内。另外三元催化转化器的转化效率只有在空气系数为1的很小范围内最高。如图1所示 三元催化转化器对发动机的排放控制具有极其重要的意义。没有三元催化转化器就不可能满足欧洲排放法规。第二代车载故障诊断系统(OBD-Ⅱ) 具1有对三元催化转化器进行故障诊断的功能。 图1 三元催化转换效率图 而为了对三元催化转化器进行故障诊断,必须在它的前和后各装一个氧传感器(图2)。

液位传感器常用的检测方法

为了选择最佳的液位传感器,我们不但需要了解被测液体的属性和状态,同时,也要知道不同的检测方式的优点与局限性,从而才能选出最合适的传感器。以下为目前市场上最常见的检测技术。 激光测量:激光类传感器基于光学检测原理,通过物体表面反射光线至接收器进行检测,其光斑较小且集中,易于安装、校准,灵活性好,可应用于散料或液位的连续或者限位报警等;但其不适合应用于透明液体(透明液体容易折射光线,导致光线无法反射至接收器),含泡沫或者蒸汽环境(无法穿透泡沫或者容易受到蒸汽干扰),波动性液体(容易造成误动作),振动环境等。 tdr(时域反射)/ 导波雷达/微波原理测量:其名称在行业内有多种不同的叫法,其具备了激光测量的好处,如:易于安装、校准,灵活性好等,另外其更优于激光检测,如无需重复校准和多功能输出等,其适用于各种含泡沫的液位检测,不受液体颜色影响,甚至可应用于高粘性液体,受外部环境干扰相对小,但其测量高度一般小于6米。 超声波测量:由于其原理为通过检测超声波发送与反射的时间差来计算液位高度,故容易受到超声波传播的能量损耗影响。其亦具备安装容易、灵活性高等特点,通常可安装于高处进行非接触式测量。但当使用于含蒸汽、粉层等环境时,检测距离将会明显缩短,不建议使用在吸波环境,如泡沫等。 音叉振动测量:音叉式测量仅为开关量输出,不能用于连续性监控液体高度。其原理为:当液体或者散料填充两个振动叉时,共振频率改变时,依靠检测频率改变而发出开关信号。其可用于高粘度液体或者固体散料的高度监控,主要为防溢报警、低液位报警等,不提供模拟量输出,另外,多数情况下需要开孔安装于容器侧面。 光电折射式测量:该检测方式通过传感器内部发出光源,光源通过透明树脂全反射至传感器接受器,但遇到液面时,部分光线将折射至液体,从而传感器检测全反射回来光量值的减少来监控液面。该检测方式便宜,安装、调试简单,但仅能应用于透明液体,同时只输出开关量信号。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.doczj.com/doc/2c11683796.html,/

录井仪安装、色谱仪调试要求

综合录井仪的安装与调试 我们公司编写的《综合录井仪设备现场安装技术规程》和《综合录井仪设备调试校验标定》两本书,对传感器的安装调试里面有非常详细的说明。作为一名野外工作者,由于每次安装调试的环境不一样,所遇到的具体情况也各不相同,所以要灵活对待。就此结合我在野外工作的经历给大家谈谈如何安装、调试。 仪器房就位问题 仪器大班先观察好仪器摆放地点,如果摆放地点不平整或有坡度,就要带领其他人员把摆放点整平,卸载仪器房时心中有数,指挥吊车如何摆放。至于摆放地点,应摆在井场右前方靠振动筛一侧,距井口30~50m处,仪器房要安放平稳。但在实际情况中,摆放仪器的地方常被井队的钻杆或其它东西所占,这时不能将就,一定要找井队负责人员,把东西吊开。把仪器房安放到位。 仪器房就位后,仪器大班就要着手勘察仪器的电源线,传感器信号线等,如何走线,架线杆如何摆放,传感器的安放位置等,接下来把电源线接上,仪器房通上电,就可以干活了,把传感器搬出来,清理仪器房,把电脑摆好,如果有足够的时间,可以打开接口箱电源,在仪器房前逐个调试传感器(具体如何调试,参数多大,后面我会具体谈这个问题),有些传感器因为使用时间较长,例如浮筒式池体积传感器,钢丝绳或断或脱落,要打开盖子维修之后才能调试(由于浮筒式池体积传感器使用不便,容易损坏,且精度不高,现在这种浮筒式池体积传感器厂家基本上都不生产了,使用越来越多的是干簧管和超声波池体积传感器),调试完之后开始安装传感器、牵信号线了,信号线两端均需清楚标注所接传感器的名称,避免接错线。安装之前,要和井队的技术员协商沟通,一些不符合规范的地方,需要井队整改的地方,应向井队或监理提出,例如钻井液出口管的坡度大于3~5°,出口泥浆槽液面低于50cm等等(这些都是《现场安装技术规程》里的内容),下面我会讲到。布置电源线和信号线的时候应注意如何走线,有些井队的泥浆罐的侧面有一排接线槽,可以沿着这个接线盒走线,有些井队的泥浆罐侧面没有接线槽,不知如何走线,这时不要自作主张牵,要问井队的负责人或技术员,这种情况我在毛开一井遇到过,当时井队的泥浆罐没有接线槽,凭以往的经验,我们从泥浆罐的侧面下走线,结果因走线不合理需要重新布线,收回所有的线重新布置,可想而知工作量是相当大的。观察好传感器安装在那地方,或者

浅谈氧传感器的故障分析与诊断

浅谈氧传感器的故障分析与诊断 默认分类 2008-03-29 10:42 阅读464 评论4 字号:大中小 作者:王和平 时间:2007年6月2日 [摘要] 本文首先阐述了氧传感器在电控发动机排放控制中的重要性,然后介绍了氧传感器的种类及影响氧传感器的因素。接着结合氧传感器的波形对氧传感器的技术状况进行了分析,并列举出了故障实例。 主题词:氧传感器、空燃比、氧传感器的故障诊断 论文主题: 1、氧传感器在电控发动机排放控制中的重要性 在使用三元催化转换器以减少排气污染的发动机上,氧传感器是必不可少的元件。由于混合气的空燃比一旦偏离理论空燃比,三元催化器对CO、HC和NOX的净化能力将急剧下降,故在排气管中安装氧传感器,用以检测排气中氧的浓度,并向ECU发出反馈信号,再由ECU控制喷油器喷油量的增减,从而 将混合气的空燃比控制在理论值附近。 2、氧传感器的种类及氧传感器在汽车上安装的重要性 目前,实际应用的氧传感器有氧化锆式氧传感器和氧化钛式氧传感器两种。而常见的氧传感器又有单引线、双引线、三引线及四引线之分,;单引线的为氧化锆式氧传感器;双引线的为氧化钛式氧传感器; 三引线和四引线的为加热型氧化锆式氧传感器,原则上四种引线方式的氧传感器是不能替代使用的。 氧传感器一旦出现故障,将使电子燃油喷射系统的电脑不能得到排气管中氧浓度的信息,因而不能对空燃比进行反馈控制,会使发动机油耗和排气污染增加,发动机出现怠速不稳、缺火、喘振等故障现象。 因此,必须及时的排除故障或更换。 空燃比对排气中碳氢化合物(HC)和一氧化碳(CO)的含量有很大影响,在空燃比低于14.7:1时,HC及CO含量降低;如果空燃比高于14.7:1时,HC及CO含量迅速上升。但是,降低空燃比会导致燃烧温度升高,排气中的氮氧化合物(NOX)升高。所以,理想的空燃比应在接近14.7:1的很小范围内。另外三元催化转化器的转化效率只有在空气系数为1的很小范围内最高。如图1所示 三元催化转化器对发动机的排放控制具有极其重要的意义。没有三元催化转化器就不可能满足欧洲排放法规。第二代车载故障诊断系统(OBD-Ⅱ) 具1有对三元催化转化器进行故障诊断的功能。

自动站雨量传感器常见故障现象分析与处理

自动站雨量传感器常见故障现象分析与处理 摘要:通过分析自动气象站常见故障产生的原因,提出在工作中的正确处理方法。 关键词:雨量传感器故障分析处理 1、引言 目前,克拉玛依市自动站大部分都分布在沙漠腹地,自动站雨量传感器长期在野外使用,因其特殊结构而使其更容易受环境污染造成各种故障,轻者使降水记录比实际滞后,严重的造成降水记录缺测。依据克拉玛依市自动气象站多年来的运行情况,发现降水记录的准确性和完整性,很大程度上取决于雨量传感器的运行状态。本文以SL3-1型雨量传感器为例,就雨量传感器常见故障进行分析与探讨一些常用处理方法。 2、工作原理 SL3-1型雨量传感器由集水器、漏斗、过滤网、计数翻斗、调节螺丝、磁钢、电路板、传输电缆等组成。测量过程中,降水由集水器汇集,通过过滤网过滤,经小漏斗流入计数翻斗内,当翻斗承积的水量达到一定数量时翻斗翻动,另一半翻斗开始装水,通过翻斗翻动带动磁钢移动,磁钢经过电路板上的干簧管时,使干簧管接点因磁化而闭合,送出一个电路导通脉冲,相当于0.1mm降雨量,离开时干簧管又断开。这样周而复始对降水进行计数。 3、故障现象分析与处理 3.1 有降水时降水无记录 这种现象常见故障主要有集水器堵塞水流下不去、小漏斗堵塞、磁钢失效、干簧管损坏、翻斗不翻、通讯线路接触不良或中断。 处理方法:首先检查集水器中有无积水,如有则先取下过滤网进行清洗,用细铁丝疏通漏水孔;无积水,则应检查传感器的数据线有没有因清洗仪器时没接上或是没有连接到位;如果正常,则取下集水器,检查小斗有无积水,如有则同上取下过滤网清洗,用铁丝疏通漏水孔;无则检查漏斗内是否有水,如有水则用手轻轻翻动翻斗,检查翻斗是否翻动灵活,看是否有记录,如有记录且翻动次数与记录一次,则说明正常。如翻斗翻动不灵活,则取下漏斗,检查刀口是否变形,如有变形则更换,再检查V形槽是否有异物,如有则用清水清洗干净并擦干。检查V形槽是否变形,如变形则更换。 以上检查无问题则继续检查。先检查电缆是否接插牢固,再检查电缆是否断路。具体方法是用万用表量取干簧管两脚是否有5伏特电压,如无电压,则检查电缆插头是否接触良好,再检查雨量传感器端电缆电压,如无再检查采集器降水通信口是否有电压,正常则说明电缆有问题,先检查接头是否接好,排除后检查电缆是否破损或断路。如有则说明正常。再检查磁钢与干簧管是否正常,先拔下电缆插头,用手捏住磁钢,使磁钢与干簧管对其,用万用表电阻档量取干簧管两脚,如接通说明是好的,再翻动翻斗看接通次数与翻动次数一致,如有漏接通,则调整磁钢位置反复测试直到正常。如仍无效,则更换磁钢也可以用一磁铁试一下,检查干簧管是否正常,即把磁铁在干簧管前来回移动,看干簧管接通是否正常,如不正常则更换。 3.2 降水记录滞后 这种现象主要由于集水器或小漏斗被堵塞,造成降水流入翻斗较慢,雨较大

录井仪传感器现场标定图

综合录井仪井次标定 综合录井仪井次标定分为气测仪、硫化氢测量单元和钻井工程参数与钻井液参数测量单元井次标定。每口井 在录井前进行井次标定,连续工作超过6个月时应再标定一次; 下图为神开综合录井仪,录井前传感器硬件标定表和软件标定线性图。由于综合录井仪型号差异,采集软件不同,在录井前给甲方提供传感器标定时,要求做到实事求是,标定数据与采集机一致。标定合格,标定曲线呈线性关系,标定抓图时间、井名清晰。

套压标定图版 套压压力校验台标定刻度表(量程:0-60MPa) 压力值电压值 0MPa 0.985v 10MPa 1.68v 20MPa 2.30v 井号:苏274井 30MPa 2.91v 标定人:孙有林校验人:江磊40MPa 3.56v 标定日期:2009年10月02日 量程0-60MPa

立压标定图版 立压压力校验台标定对照表(量程:0-60MPa) 压力值电压值 0MPa 1.018v 10MPa 1.68v 井号:苏274井 20MPa 2.33v 标定人:孙有林校验人:江磊30MPa 2.93v 标定日期:2009年9月10日

量程:0-60MPa H2S 标定图版 H2S标定对照表 标准样值电压值

0ppm 1.026v 5ppm 1.211v 井号:苏274井 10ppm 1.329v 标定人:孙有林校验人:江磊50ppm 2.600v 标定日期:2009年10月10日 出口电导标定图版 出口电导标定对照表(量程0-300 ms/cm) 电阻箱阻值(Ω)电导率值(ms/cm)电压值(v)

无穷大0 1.02 21.6 71 2.01 井号:苏274井 10.8 148 2.99 标定人:孙有林校验人:江磊5.4 298 4.98 标定日期:2009年9月10日 入口电导标定图版 入口电导标定对照表(量程0-300 ms/cm)

氧传感器的工作原理与检测方法

氧传感器的工作原理与检测方法!!! 氧传感器安装在发动机的排气管上,位于三效催化转化器之前,用于测量废气中的氧含 量。如果废气中的氧含量高,说明混合气偏稀,氧传感器将这一信息输入发动机电控单元 (ECU),ECU 指令喷油器增加喷油量;如果废气中的氧含量低,说明混合气偏浓,ECU 指 令喷油器减少喷油量,从而帮助ECU 把混合气的空燃比控制在理论值(14.7)附近。因此, 氧传感器相当于一个混合气的浓度开关,它是电喷发动机实行闭环控制不可缺少的重要部 件。 1 氧传感器是一种热敏电压型传感器 氧传感器间接地反映进入气缸中混合气的浓度,这种信息是以波动的电压传递给电控单 元(ECU)的,因此判断氧传感器性能的主要方法是检测氧传感器输出的信号电压值及其波 动的范围和波动的频率。另一方面,发动机只有达到一定的温度才能激活氧传感器。因此, 检测氧传感器前,必须对发动机充分预热,在氧传感器达到正常工作温度300℃~350℃以后

才能进行检测,在此之前,氧传感器的电阻大,如同开路,氧传感器不产生任何电压信号; 若发动机的排气温度超过800℃,氧传感器的控制也将中断。 目前有的车型采用主、副2 个氧传感器,主氧传感器(在前)通常带有加热器,副氧传 感器不带加热器,要依*废气预热,温度超过300℃才能正常工作。对于加热型氧传感器, 其加热电阻的阻值一般为5Ω~7Ω。如果加热电阻被烧蚀(电阻为无穷大),氧传感器很难快 速达到正常的工作温度,此时应当更换氧传感器。 2 氧传感器的故障确认采取“时域判定法” 所谓“时域判定法”,是指某传感器的输出信号是否在一定的时间内发生变化以及变化的 范围、频率是否符合标准值,如果不发生这种变化,自诊断系统即确认其有故障。 氧传感器提供的信号电压标准为0.1 V ~1.0V,并且在这个范围内快速波动,其波动频率 标准为30 次/min。当氧传感器输出的信号电压在0.1 V ~0.3V 之间波动时,ECU 判定为混合 气偏稀;当氧传感器的信号电压在0.6 V ~0.9V 之间波动时,ECU 判定为混合气偏浓;当信 号电压为0.45V 左右时属最佳。如果氧传感器在一定的时间内没有

氧传感器的检测

氧传感器的检测 1、结构和工作原理 在使用三效催化转化器降低排放污染的发动机上,氧传感器是必不可少的。三效催化转化器安装在排气管的中段,它能净化排气中CO、HC和NOx三种主要的有害成分,但只在混合气的空燃比处于接近理论空燃比的一个窄小范围内,三效催化转化器才能有效地起到净化作用。故在排气管中插入氧传感器,借检测废气中的氧浓度测定空燃比。并将其转换成电压信号或电阻信号,反馈给ECU。ECU控制空燃比收敛于理论值。 目前使用的氧传感器有氧化锆式和氧化钛式两种,其中应用最多的是氧化锆式氧传感器。 (1)氧化锆式氧传感器 氧化锆式氧传感器的基 本元件是氧化锆陶瓷管(固体电解 质),亦称锆管(图 1)。锆管固定 在带有安装螺纹的固定套中,内外表 面均覆盖着一层多孔性的铅膜,其内 表面与大气接触,外表面与废气接触。 氧传感器的接线端有一个金属护套, 其上开有一个用于锆管内腔与大气相 通的孔;电线将锆管内表面铂极经绝 缘套从此接线端引出。 氧化锆在温度超过300℃后,才能进行 正常工作。早期使用的氧传感器靠排 气加热,这种传感器必须在发动机起 动运转数分钟后才能开始工作,它只 有一根接线与ECU相连(图 2(a))。 现在,大部分汽车使用带加热器的氧 传感器(图 2(b)),这种传感器内 有一个电加热元件,可在发动机起动 后的20-30s内迅速将氧传感器加热至 工作温度。它有三根接线,一根接ECU, 另外两根分别接地和电源。 锆管的陶瓷体是多孔的,渗入其中的氧 气,在温度较高时发生电离。由于锆管内、外侧氧 含量不一致,存在浓差,因而氧离子从大气侧向排 气一侧扩散,从而使锆管成为一个微电池,在两铂 极间产生电压(图 3)。当混合气的实际空燃比小 于理论空燃比,即发动机以较浓的混合气运转时, 排气中氧含量少,但CO、HC、H2等较多。这些气 体在锆管外表面的铅催化作用下与氧发生反应,将 耗尽排气中残余的氧,使锆管外表面氧气浓度变为 零,这就使得锆管内、外侧氧浓差加大,两铅极间

压力传感器的检测方法有什么.

压力传感器的应用范围非常广泛,伴随着压力传感器的广泛应用,确定如何检测压力传感器显得十分重要。检测压力传感器,根据目的不同,检测的项目也不一样,当然检测的方法也就会有区别。 1、桥路的检测,主要检测传感器的电路是否正确,一般是惠斯通全桥电路,利用万用表的欧姆档,量输入端之间的阻抗、以及输出端之间的阻抗,这两个阻抗就是压力传感器的输入、输出阻抗。如果阻抗是无穷大,桥路就是断开的,说明传感器有问题或者引脚的定义没有判断正确。 2、零点的检测,用万用表的电压档,检测在没有施加压力的条件下,传感器的零点输出。这个输出一般为mV级的电压,如果超出了传感器的技术指标,就说明传感器的零点偏差超范围。 3、加压检测,检单的方法是:给传感器供电,用嘴吹压力传感器的导气孔,用万用表的电压档检测传感器输出端的电压变化。如果压力传感器的相对灵敏度很大,这个变化量会明显。如果丝毫没有变化,就需要改用气压源施加压力。 通过以上方法,基本可以检测一个传感器的状况。如果需要准确的检测,就需要用标准的压力源,给传感器压力,按照压力的大小和输出信号的变化量,对传感器进行校准。并在条件许可的情况下,进行相关参数的温度检测。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.doczj.com/doc/2c11683796.html,/

氧传感器技术手册

氧传感器使用说明书 (第一版) 适用零件号:25327985 25359908

1.概述 氧传感器是现代发动机管理系统中必不可少的重要零部件。它是一种利用电化学工作原理发展出来的电器元件。 氧传感器在现代发动机管理系统的配置机构中被用于探测汽车发动机所排出的燃烧废气中氧的含量,借以判定发动机实时燃油供给空气燃料混合比的实际状态,并通过自身产生的电器反应信号反馈给发动机电子控制模块(ECM),以作为系统燃油管理系统的闭环燃油修正补偿控制的重要依据,使燃油管理子系统能够更加精确地控制调整发动机各种工作状态下的空气燃料混合比;并在绝大多数工况下使系统保持在理想空燃比工作状态,以便获得更加优良的汽车排放控制特性和燃油经济性。 氧传感器的输出信号为0 ~ 1V的交变电压信号。传感器可根据发动机所排燃烧气中氧的含量高低自动感应和探测并向发动机电子控制模块输出这一高低变化的电压信号。 现代发动机管理系统采用的氧传感器有两种主要类型:非加热型氧传感器和加热型氧传感器。 装配在发动机排气歧管上的氧传感器,由于可以利用发动机所排出燃烧废气的余热进行快速加热,故可使用价格低廉的非加热型氧传感器;当氧传感器的安装位置受到整车布置限制,氧传感器距离发动机排气歧管出口较远时,由于不能利用发动机燃烧废气对于传感器迅速加热,此时必然需要采用加热式氧传感器。 加热式氧传感器的内部设计有热敏电加热元件,可利用系统供电电压强制使氧传感器加速预热,促使其快速起燃,及早实现系统的闭环燃油管理控制。

2. 工作原理 德尔福公司生产的氧传感器是采用氧化锆元件作为传感器的基础元件。氧化锆元件是一种通体充满无数微孔的陶瓷基础元件外面镀有氧化锆涂层,该涂层外测暴露于发动机燃烧废气之中;涂层的内侧透过含微孔的陶瓷元件与大气相通。集中在氧化锆内外两侧电极之间氧含量的差别形成的微分电压信号。 当氧化锆元件被电流加热或被流经传感器的发动机燃烧废气加热所激活,空气经过通体充满无数微孔的陶瓷基础元件进入氧化锆元件的内电极,而燃烧废气流经氧化锆的外电极。氧离子将从氧化锆内电极向外电极移动,传感器的内外电极之间构成了一个简单的原电池,发动机燃烧废气中氧含量的变化不同在两个电极之间产生不同的输出电压信号。氧传感器将根据发动机燃烧废气中氧离子浓度的高低变化来改变这一输出电压信号的高低。 氧传感器通常的工作表现为在当发动机的工作时空燃比变稀时,排气中氧含量的浓度将会升高,此时,氧传感器的输出电压信号接近 0V;当空燃比变浓时,排气中氧含量的浓度降低,传感器的输出电压将接近 1V。 发动机电子控制模块(ECM)根据这一输入电压信号,配合系统控制逻辑及控制策略,通过响应的传感器和执行器,就可以调整系统输出控制指令,使发动机工作在和保持理想的空燃比燃油供给状态。 氧传感器核心元件允许的最低工作温度为300摄氏度;最高温度一般不超过850摄氏度。具体情况参照实际产品图纸规定的实际数值为准。 氧传感器是闭环燃油管理控制子系统的关键元件。正是由于有了该传感器才使得发动机的空燃比的闭环燃油控制成为可能,从而使系统实现为达到最佳三元催化转换器转化效率所需的理想空燃比的控制目标,实现最佳发动机燃烧控制目的。 3. 结构特征 德尔福公司生产的现代发动机管理系统配套用氧传感器的主要特点为: ?零部件统一设计,全球采购系统可保障全球产品性能的一致性 ?传感器具备防水功能 ?无需空气渗透过滤装置 ?通用化接口结构设计,简便易于替代竞争对手产品 ?大批量生产,大批量产品应用考核,可靠性能优良 ?超强低温适应性能

氧传感器故障诊断案例分析

氧传感器故障诊断案例分析 引论 本人在泰成集团泉州辖区凯迪拉克车间做机电实习生,我们岗位的主要任务是汽车的故障诊断,包括机修跟电路。我在这里现在的主要任务是做汽车保养,其余的正在学习中,比如我也开始更换火花塞,跟师傅一起拆装后桥洗油箱,跟换轮心总成,开始学习基本的故障诊断等等。我觉得我们要进步应该脚踏实地地做,不能自己会的东西就不想去做了,更不能不求上进,有些东西是靠自己去看去争取的。 氧传感器故障的排除对于我们维修人员来说也是非常重要的,前一阶段我们凯迪拉克轿车CTS就是因为氧传感器的故障导致汽车不能正常运转。但是,我们本着认真负责的态度,最终把故障解决了。 报告主体 一、氧传感器介绍 1.类型及工作原理 现在汽车上常用的 氧传感器主要有二氧化锆与二氧化钛氧传感器,不过随着技术的发展,比较好的车型也用到了新型的氧传感器,新型氧传感器有平面型氧传感器和宽频带型氧传感器。 ⑴.氧化锆氧传感器是具有传导性的固体电解质,在氧分子浓度差的作用下产生电动势。(如图) ⑵.氧化钛型氧传感器是高电阻半导体,当表面缺氧时,电阻变小与发动机冷却液温度传感器(ECT)相似,氧化钛氧传感器的电阻值则随其周围氧含量的变化而变化。 (如下图)

⑶.新型氧传感器平面型传感器(线性) ①.核心为陶瓷材料,两边有涂层。 ②.涂层的优点是:对尾气中的氧浓度更敏感。 ③.两边涂层的氧浓度不同,产生电压信号。 ④.外形没有改变。(如下图) ⑤.插脚为4个 ⑷.新型氧传感器宽频带型 Wide band O2 sensor ①.Nernst cell 感应室 ②.Reference cell 参考室 ③.Heater 加热组件 ④.Diffusion gap 扩散孔 1V/5V 搭 大 O 2 O O 2 2 O 2 O 2 H C C O NO X 尾 O2

汽车上所有传感器的检测方法

01 传感器的作用 汽车上的传感器它将汽车运行过程中的各种工况数据,如温度、流量、车速等信号,转化成电信号后传输给计算机,以使汽车各功能都处于最佳工作状态或将某些数据精准的告诉车主。 02 传感器的分类 汽车上的传感器从最初单纯的应用于发动机(水温、机油压力、燃油量)到现在应用于各大系统的上百种传感器,按其作用基本分为下面几种: 1、测量温度 如水温传感器、进气温度传感器、油温传感器、空调室内温度传感器等;2、测量压力 如机油压力、进气压力、燃油压力等; 3、测量流量 如空气流量计; 4、测量位置 如节气门位置传感器、燃油油量传感器、制动液位置传感器等; 5、测量(气体)浓度 如氧传感器; 6、测量速度 如曲轴传感器、车速传感器; 7、测量光强度 如光照传感器(自动大灯); 03

传感器的结构及检修 因传感器的种类繁多,很多传感器名称不一样,但是它们的监测原理及检修方式是一样的,于是这里仅根据其结构类型及作用进行介绍。 另外有一点大家需要注的意是,我们在检测的时候,并不应只考虑传感器本身的故障,还要考虑线束、插头以及控制模块的故障。 【1】电磁式曲轴位置传感器 广泛应用于曲轴位置传感器、凸轮轴位置传感器、轮速(ABS)传感器等。 电磁式的传感器主要由永久磁铁、电磁线圈、外壳以及脉冲轮等组成。 它所采取的是通过脉冲轮的旋转,电磁线圈切割磁感应线,产生出一个有频率的感应电压,电脑根据该频率电压进行计算后就可以得知,旋转的角度及圈数。

它的电路通常如下: 电磁式传感器一般为两线及三线式,三线的多一根信号屏蔽线。它的检测方法比较简单,常用的有如下几种方法: 1、量线圈的电阻,且都与屏蔽线不通;

传感器工作原理及故障判断方法

传感器工作原理及故障判断方法 概述 综合录井技术是在钻井过程中应用电子技术、计算机技术及分析技术,借助分析仪器进行各种石油地质、钻井工程及其它随钻信息的采集(收集)、分析处理,进而达到发现油气层、评价油气层和实时钻井监控目的的一项随钻石油勘探技术。应用综合录井技术可以为石油天然气勘探开发提供齐全、准确的第一性资料,是油气勘探开发技术系列的重要组成部分。 综合录井技术主要作用为随钻录井、实时钻井监控、随钻地质评价及随钻录井信息的处理和应用。 综合录井技术的特点有:录取参数多、采集精度高、资料连续性强、资料处理速度快、应用灵活、服务范围广等。 目前国际国内先进的综合录井仪参数的检测精度上有了大幅度的提高,也扩展了计算机系统功能,形成了随钻计算机实时监控和数据综合处理网络,部分综合录井仪还配套了随钻随测(MWD)系统,增加了远程传输等功能,实现了数据资源的共享。其原理框图见图1。 图1:综合录井仪基本结构图

1、传感器 亦称一次仪表,是将一种物理量转换为另一种物理量的设备。其输入信号为待测物理量,如温度、密度、压力、电阻率、距离等,输出信号为可以被二次仪表或计算机接收的物理量,如电流、电压、电阻等。传感器是综合录井仪的最基础部分,其工作性能的好坏直接影响着录井质量。 2、气体检测仪 气体检测仪主要包括烃类检测仪、非烃组分检测仪(或二氧化碳检测仪)等气体检测设备,以及脱气器、氢气发生器、空气压缩机等辅助设备。烃类检测仪主要是利用FID技术测量钻井液中的烃类气体含量;非烃组分检测仪是利用热导池鉴定器测量钻井液中CO2、H2等其它气体的含量。 3、计算机系统 随着计算机技术的发展及应用,目前综合录井仪的计算机系统不仅担负着参数的采集、处理、存储和输出的任务。其存储的资料还可以按照用户的要求,应用其它专用软件进行进一步处理,以完成地质勘探、钻井监控及其它录井目的。同时其联机系统已形成多用户的网络化计算机系统,实现多用户、网络化数据管理,具有携带近程或远程工作站的功能,以便于大型应用软件的使用和数据资源的共享。 4、输出设备 综合录井仪输出设备主要有显示器、记录仪、打印机、绘图仪等等。其用途是将计算机采集、处理的信息通过直观的方式呈现给用户以进行进一步的应用。

氧传感器故障最简单有效的判定方法

氧传感器故障最简单有效的判定方法 利用氧传感器输出电压可随混合气的角度变化而变化的特性,可以帮助我们诊断一些燃油或空气甚至机械部分的故障,但前提是氧传感器及控制系统功能必须完好:检查步骤如下。 1.检查氧传感器加热器电阻。拔下氧传感器插头,用万用表电阻档测量传感器侧1、2号插头间的电阻值,具体标准应查阅具体车型的维修手册,但一般来说,应在4~40之间,如果不符合标准值,应更换氧传感器。 2.检查氧传感器反馈电压。查阅所测车型的维修手册,找氧传感器信号线,用电线中的铜丝插入相应手术的插孔。然后插好插接器,用万用表直流电压档测量铜丝对负极的电压。注意必须使用数字式万用表,并且铜丝绝对不能搭铁,否则将不可恢复性地损坏氧传感器。此时起动发动机并使水温达到至少80℃,使发动机多次达到 2500r/min后使发动机转速保持2500r/min,并观察万用表显示的电压,电压值应在此0.1-1.0v之间迅速跳动,在10s之内电压应在0.1-1.0v之间变化至少8次,若电压变化比较缓慢,不一定就是氧传感器或反馈控制系统有故障,可能是氧传感器表面被积碳覆盖而灵敏性降低。这时可使发动机高速运转几分钟以清除积碳,然后再观察氧传感器信号电压是否符合规定,如仍不符合规定,则进行下一步检查。 3.检查氧传感器是否损坏。拔开插接器,使氧传感器和控制单元

分离,万用表测量信号输出端对负极的电压。这时人为地拔下一根进气管上的真空管,形成稀混合气,此时电压应下降;而当拔下油压调节器真空管,并用手堵住以形成浓混合气时,电压应当上升。如果这时氧传感器本身没有故障,故障在电脑或线路以及燃油、空气、机械方面。应该首先检查燃油、空气及机械部分的故障,这里面的影响是很奥妙的,需要大家动脑思考。比如空气系统漏真空。这时排气中氧分子浓度变大,氧传感器输出低电压,电脑便认为混合气稀,发出指令向浓的方向调整,但无论如何也弥补不了漏进系统的大量空气,所以氧传感器就会一直显示0.1-0.3v的低电压;再比如油压调节器出现故障导致油压过高,会使排气中氧分子含量减少。氧传感器输出高电压,表示混合气过浓,电脑便减少喷油时间,但氧回溃系统的调整是微量的,无法弥补油压过高造成的混合气过浓;所以氧传感器总显示0.6-0.9的高电压。其它情况还有很多,比如缺缸造成的影响等等。

传感器与检测技术试卷与答案

1.属于传感器动态特性指标的是(D) A重复性B线性度C灵敏度D固有频率 2误差分类,下列不属于的是(B) A系统误差B绝对误差C随机误差D粗大误差 3、非线性度是表示校准(B)的程度。 A、接近真值 B、偏离拟合直线 C、正反行程不重合 D、重复性 4、传感器的组成成分中,直接感受被侧物理量的是(B) A、转换元件 B、敏感元件 C、转换电路 D、放大电路 5、传感器的灵敏度高,表示该传感器(C) A工作频率宽B线性范围宽C单位输入量引起的输出量大D允许输入量大 6下列不属于按传感器的工作原理进行分类的传感器是(B) A应变式传感器B化学型传感器C压电式传感器D热电式传感器 7传感器主要完成两个方面的功能:检测和(D) A测量B感知C信号调节D转换 8回程误差表明的是在(C)期间输出输入特性曲线不重合的程度 A多次测量B同次测量C正反行程D不同测量 9、仪表的精度等级是用仪表的(C)来表示的。 A相对误差B绝对误差C引用误差D粗大误差 二、判断 1.在同一测量条件下,多次测量被测量时,绝对值和符号保持不变,或在改变条件时,按一定规律变化的误差称为系统误差。(√) 2系统误差可消除,那么随机误差也可消除。(×) 3对于具体的测量,精密度高的准确度不一定高,准确度高的精密度不一定高,所以精确度高的准确度不一定高(×) 4平均值就是真值。(×) 5在n次等精度测量中,算术平均值的标准差为单次测量的1/n。(×) 6.线性度就是非线性误差.(×) 7.传感器由被测量,敏感元件,转换元件,信号调理转换电路,输出电源组成.(√) 8.传感器的被测量一定就是非电量(×) 9.测量不确定度是随机误差与系统误差的综合。(√) 10传感器(或测试仪表)在第一次使用前和长时间使用后需要进行标定工作,是为了确定传感器静态特性指标和动态特性参数(√) 二、简答题:(50分) 1、什么是传感器动态特性和静态特性,简述在什么频域条件下只研究静态特性就能够满足通常的需要,而在什么频域条件下一般要研究传感器的动态特性? 答:传感器的动态特性是指当输入量随时间变化时传感器的输入—输出特性。静态特性是指当输入量为常量或变化极慢时传感器输入—输出特性。在时域条件下只研究静态特性就能够满足通常的需要,而在频域条件下一般要研究传感器的动态特性。 2、绘图并说明在使用传感器进行测量时,相对真值、测量值、测量误差、传感器输入、输出特性的概念以及它们之间的关系。 答:框图如下: 输入测量值相对真值输出 测量误差 测量值是通过直接或间接通过仪表测量出来的数值。 测量误差是指测量结果的测量值与被测量的真实值之间的差值。 当测量误差很小时,可以忽略,此时测量值可称为相对真值。

相关主题
文本预览
相关文档 最新文档