当前位置:文档之家› 航空机载设备电质量测试方法

航空机载设备电质量测试方法

航空机载设备电质量测试方法
航空机载设备电质量测试方法

航空机载设备电源质量测试方法MIL-STD-704标准用于考察航空电子设备与军用飞机供电设备之间的兼容性。它定义了军用飞机上电子设备电源输入端口上的特性要求。军用飞机上的供电系统必须按照MIL-STD-704标准的要求为电子设备供电,同时军用飞机上的电子设备在规定的电源质量条件下必须能够正常工作。

美军标704测试指南分为8个部分,第一部分是关于兼容性测试,电源分类,军用飞机电气工作条件及电子设备规格的一般性指导。第2-8部分为对应各类供电类型的电子设备所进行的兼容性测试指南。机载电子设备电源主要分为以下几类:

单相/三相交流,400Hz,115V

单相/三相变频交流,115V

单相交流,60Hz,115V

直流,28V/270V

MIL-STD-704详细说明了六种电气工作状态:

1、正常工作状态

2、电源中断(转换)状态

3、非正常供电状态

4、应急供电状态

5、启动状态

6、电源故障状态

以下详细介绍这六种状态:

正常工作状态:在正常负载条件下,军用飞机电气系统中各项功能均可正常实现。军用飞机电气负载可以为电阻性,电感性,轻微容性,非线性,开关性质的以及脉冲性质的。发动机的冲击电流和电源的冲击电流都是在正常的负载条件下的。在正常工作状态下,所有电子设备必须能在性能和功能两个方面满足要求。

电源中断(转换)状态:当电气负载在供电电源之间转换时,就会发生电源中断。对于交流系统,转

换可以发生在外接地面电源、外接辅助电源,接入多功能军用飞机交流发电机或变换器;对于直流系统,转换可以发生在外接地面电源,外接辅助电源,外接多功能军用飞机直流发电机,直流变换器或变压整流器之间,在上述状态下军用飞机电气系统应当能正常运行。

非正常供电状态:当军用飞机电气系统中发生故障时,即进入非正常供电状态。非正常供电状态可能在保护装置动作消除故障之前的短暂时间内持续存在,也可能持续一段更长时间。非正常供电状态会有过压,欠压,过频及欠频状态。

能够导致非正常供电状态的故障有:

●发电机控制单元故障

●发电机故障,绕组损坏,失磁等

●线路以及电流接触器故障

●电气过载

●短路

应急供电状态:应急供电状态是指主供电电源失效并且军用飞机电气系统在有限容量的备用电源供电时的一种工作状态。备用电源可以是电池,低压空气驱动的发电机,也可能是燃料电池。

启动状态:是指当电池启动辅助电源时,或当推进发动机的电气系统启动时的状态。对于大部分军用飞机而言,启动状态只发生在采用直流供电的系统中。

电源故障状态:当电子设备电源中断大于50ms而小于7s时的工作状态。

以下列举section2和section8的测试规范:

通过以上规范(https://www.doczj.com/doc/2c10891258.html,) ,交流电源供电设备中测试用到的仪器分为激励设备和监视设备:

激励设备:能够复现电源供电和飞机的输入信号的设备,复制军用飞机的有效工作环境。

监视设备:监视设备在测试过程中掌握电子设备是否运行在所规定的性能水平之内。

激励设备有:

1.可调节频率及电压的交流电源,模拟电源的稳定工作状态中电压及频率的输出及非稳定工作状态中电

压的瞬变,频率的瞬变,或者电压,频率,相位的变动对飞机电子设备的影响。

2.信号发生器,模拟干扰信号,调制信号等输入

监视设备有:

3.记录仪或者数采设备记录测试中感兴趣的电气参数

4.数字示波器监视在不同测试环境下,机载设备的输出状态,纹波等

5.频谱分析仪记录电压失真频谱

6.功率分析仪记录电流谐波分量,电压失真分量等

以下简单举例电源测试项目

以上方案和数据来自神州技测,全套的满足MIL-STD704及DO160测试标准的交流电源,直流电源和测试方案,做过一些类似的方案。

交流电源:

频率15-5kHz可调,可编辑50次谐波,软件内置航空的各种标准。并且可在软件自由编辑各种任意波形,轻松满足测试要求。

直流电源:多种电压,电流型号,超高的功率密度,节省测试空间。

机载电子设备

机载电子设备 “航空电子技术"是一个范畴很大、边界模糊并且又正在迅速延拓的技术概念。如今,它不仅包括传统观念上的机载无线电设备(诸如通讯、导航、雷达、遥测、遥感、电视、电子侦察与干扰等),而且还包括各类机载计算机,数据处理、显示与记录设备,并广义地涉及到某些光电设备,光纤设备,激光设备和红外线设备,甚至渗透到了飞机外形和蒙皮材料之中 (例如所谓“隐身技术”)。 从设备类型讲,品类繁多,不胜枚举。 一架飞机,机体只有一个,发动机虽然可能多达数台,但基本上属于同一类型,可以“举一反三",阐述方便。但如今的航空电子设备,则远非如此简单。不同的飞机(如直升机,轻型机、客机、运输机,战斗机,轰炸机,电子侦察/干扰机,空中预警与控制机、无人驾驶飞机等)上,其电子技术装备,往往是千差万别的。最简单的轻型民用飞机上,可能只航空无线电台及其它少数几种电子技术装备,但大型的的战斗机、轰炸机、电子侦察/干扰机和预警飞机上,则可能有几十种甚至几百种无线电/电子技术设备。 以美国的重型喷气轰炸机B-1B为例,其机载电子装备,除了拥有复杂的无线电通讯设备之外,还有被划分为五个大的子系统(导航子系统,防御子系统,武器管理子系统,控制与显示子系统,计算机子系统)的24类76大件。此外,还有十多种天线设备。 又例如:美、英联合研制的垂直/短距起落战斗机AV-8B“鹞Ⅱ型”上,装备有分成一十二个子系统的几十件航空电子设备l)两套AN/ARC-159型特高频通信系统;(2)改进的高度和方向参考系统(3)激光陀螺性导航系统i(4)AN/ARN-84型塔康导航系统;(5)数字式大气数据计算机子系统;(6)RDS-82型气象雷达子系统;(7)雷达高度表子系统;(8)前视和后视雷达警戒接受设备;(9)红外线诱饵式曳光弹和箔条投放器子系统;(10)有源电子干扰机子系统(11)AN/APX一100型敌我识别器;(l2)目标截获与跟踪子系统(具有电视和激光双功 能,通过数字计算机与“平显”系统联系)。 又例如:美国“火蜂”序列无人驾驶飞机上的机载电子设备,除了最基本的遥控接收机子系统,遥测发射机子系统,雷达信标机以及数字式自动驾驶仪子系统而外,随执行任务的不同和机型的不同,还可能装备如下各种无线电/电子技术设备:敌我识别器,有源的或无源的雷达目标增强器.目标红外影像增强器,导弹命中误差测量系统,箔条散播器,电子干扰机,电子侦察系统,电视/红外线侦察系统,雷达高度表或地形跟踪系统,激光设备等等,而且每种设 备又有许多型别。

航空航天飞行器设计

武汉大学《航空航天技术概论》作业2 题目:新型神飞器的设计制做 学院:物理科学与技术学院 专业:物理学 姓名:胡万景 学号:2012335550114 2013年7月30日

本人在现代的航天器基础上利用最新的科研探索方向,从神飞器的名字、要完成的使命、如何设计、功能设计和设计控制、应用前景及任务等几个方面来构想一架现实为未来相结合的神飞器。 神飞器名字:永不落雪域神飞器 要完成的使命:探测宇宙星系、发展现代科学技术、解释科学谜团、携带人们实现太空之旅、军情探窥、为人类探测地球之外的能源 如何设计:“永不落雪域神飞器”将采用非传统的设计,从空气动力学角度来说,可以将它描述为一种升力体结构,在神器身后部设计自动化控制面版,包括全动式水平尾翼和双垂直尾翼与方向舵,这种飞翼可以自动收缩,而且为扁平的。该设计将成为未来全球最大超速巡航的神飞航天一体器,既可以用于航天事业又可以用于作战神器。由于高速巡航的需要和航天的探索,为了减小阻力而将前缘设计得很尖而且扁平,同时控制面也相应很薄很轻巧。神飞器前身下部的外形设计为超冲压核动力发动机进气道,提供外部压缩斜面,同时后身下部的外形设计为单膨胀喷管面。机体上表面采用无缓和的曲率,机身前装备大块的扁压舱,要使飞行器的重心足够靠前,提供近似中心的纵向和横向的稳定性。飞行器的机身桁梁和隔板由钢、钛、铝等纳米材料制成,其上覆盖有钢、铝陶瓷纳米盖。这些材料是由神飞器的硬度、随时可变形需求确定的,而尾舱选用镍钛合金,这是为了热防护的需要。出于飞行器平衡的需要,前舱采用了钨化纳米材料制实心块。机体的热防护采用碳耐高温陶瓷。前缘、上、下表面覆盖强化氧化铝纳米防热瓷瓦。钢铝纳米陶瓷金属盖设计为多个相对简单、低成本的刻面形状,这样会使得外型设计线加工到热防护系统防热陶瓷中,而于防热陶瓷的设计为外表面的机是在陶瓷安装到机身上。为此,表面涂纳米量子隐身漆,从而避免了被其他探测系统发现、热烘烤、抗干扰、防辐射、防腐蚀等性质极强的结构。对于低飞行器来说,水平表面只采用碳纳米材料防热;而对于高速神行器来说,水平和垂直表面都采用碳纳米材料防护。发动机着采用散热性好的珀合金材料,其整流罩和侧壁采用了主动式液氮冷却系统。从整体上说,这个神飞器是一个超级扁的飞行一体机,可以收缩变幻,可以变形。 功能设计和设计控制: 1.。神飞器的发动机:我们不使用传统的固态、液态、或者混合态发动机作为动力来提高效果,而现行的发动机有些国家利用太阳帆,利用太阳的能量,可是太阳能转化速度比较慢,所以传统的化学能和太阳能飞行器不适合进行长时间的飞行。为了我们的飞行器成为世界永不落神飞器,我们将在这个飞行器上装载核聚变动力器,让它成为核动力火箭。这将提供更快的速度和强大的能量源来源,而且消耗不尽,所以我们的神飞器会永远挂在空中而不降落,这也可以解决登陆其他行星时所遇到的各种能源来源问题。核聚变神飞器将大大缩短深空飞行的时间,可以为我们人类充分探索和利用太阳系资源开辟道路,这样的话我们能在一个月之内前往其他星系,那将是多么美妙的情景,也可以减少宇航员暴露在宇宙射线下的风险,人类如果需要进入深空,并有效的配合减速发动机的减速,就可以减少人们在空间飞行中受到的辐射,为人类缩短较短的太空旅程减少节省食物和水,这样我们的太空之旅每个人都可以实现。 宇宙飞船推进技术,我们只有在科幻小说中才听说过的“曲速推进”发动机,物质和反物质动力系统等,而现在我们这款神飞器完全可以实现。除了核动力发动机外,可控核聚变反应堆,使用核裂变技术的发动力系统是我们这个飞行器成为永不落飞行器唯一途径,我们在飞行器上安装四台核动力涡轮发动机,这些核

电介质的电学性能及测试方法

电介质材料的电性包括介电性、压电性、铁电性和热释电性等。 1介电性、 介质在外加电场时会产生感应电荷而削弱电场,介质中电场与原外加电场(真空中) 的比值即为相对介电常数,又称诱电率,与频率相关。介电常数是相对介电常数与真空中绝对介电常数乘积。 介电常数又称电容率或相对电容率,表征电介质或绝缘材料电性能的一个重要数据,常用ε表示。它是指在同一电容器中用同一物质为电介质和真空时的电容的比值,表示电介质在电场中贮存静电能的相对能力。对介电常数越小即某介质下的电容率越小,应该更不绝缘。来个极限假设,假设该介质为导体,此时电容就联通了,也就没有电容,电容率最小。介电常数是物质相对于真空来说增加电容器电容能力的度量。介电常数随分子偶极矩和可极化性的增大而增大。在化学中,介电常数是溶剂的一个重要性质,它表征溶剂对溶质分子溶剂化以及隔开离子的能力。介电常数大的溶剂,有较大隔开离子的能力,同时也具有较强的溶剂化能力。 科标检测介电常数检测标准如下: GB11297.11-1989热释电材料介电常数的测试方法 GB11310-1989压电陶瓷材料性能测试方法相对自由介电常数温度特性的测试 GB/T12636-1990微波介质基片复介电常数带状线测试方法 GB/T1693-2007硫化橡胶介电常数和介质损耗角正切值的测定方法 GB/T2951.51-2008电缆和光缆绝缘和护套材料通用试验方法第51部分:填充膏专用 试验方法滴点油分离低温脆性总酸值腐蚀性23℃时的介电常数23℃和100℃时的直 流电阻率 GB/T5597-1999固体电介质微波复介电常数的测试方法 GB/T7265.1-1987固体电介质微波复介电常数的测试方法微扰法 GB7265.2-1987固体电介质微波复介电常数的测试方法“开式腔”法 SJ/T10142-1991电介质材料微波复介电常数测试方法同轴线终端开路法 SJ/T10143-1991固体电介质微波复介电常数测试方法重入腔法 SJ/T11043-1996电子玻璃高频介质损耗和介电常数的测试方法 SJ/T1147-1993电容器用有机薄膜介质损耗角正切值和介电常数试验方法 SJ20512-1995微波大损耗固体材料复介电常数和复磁导率测试方法 SY/T6528-2002岩样介电常数测量方法 服务范围:老化测试、物理性能、电气性能、可靠性测试、阻燃检测等 介电性能 介电材料(又称电介质)是一类具有电极化能力的功能材料,它是以正负 电荷重心不重合的电极化方式来传递和储存电的作用。极化指在外加电场作用下,构成电介质材料的内部微观粒子,如原子,离子和分子这些微观粒子的正负电荷中心发生分离,并沿着外部电场的方向在一定的范围内做短距离移动,从而形成偶极子的过程。极化现象和频率密切相关,在特定的的频率范围主要有四种极化机制:电子极化(electronic polarization,1015Hz),离子极化(ionic polarization,1012~1013Hz),转向极化(orientation polarization,1011~1012Hz)和 空间电荷极化(space charge polarization,103Hz)。这些极化的基本形式又分为位 移极化和松弛极化,位移极化是弹性的,不需要消耗时间,也无能量消耗,如电子位移极化和离子位移极化。而松弛极化与质点的热运动密切相关,极化的建立

航空机载设备电源质量测试方法

航空机载设备电源质量测试方法MIL-STD-704标准用于考察航空电子设备与军用飞机供电设备之间的兼容性。它定义了军用飞机上电子设备电源输入端口上的特性要求。军用飞机上的供电系统必须按照MIL-STD-704标准的要求为电子设备供电,同时军用飞机上的电子设备在规定的电源质量条件下必须能够正常工作。 美军标704测试指南分为8个部分,第一部分是关于兼容性测试,电源分类,军用飞机电气工作条件及电子设备规格的一般性指导。第2-8部分为对应各类供电类型的电子设备所进行的兼容性测试指南。机载电子设备电源主要分为以下几类: 单相/三相交流,400Hz,115V 单相/三相变频交流,115V 单相交流,60Hz,115V 直流,28V/270V MIL-STD-704详细说明了六种电气工作状态: 1、正常工作状态 2、电源中断(转换)状态 3、非正常供电状态 4、应急供电状态 5、启动状态 6、电源故障状态 以下详细介绍这六种状态: 正常工作状态:在正常负载条件下,军用飞机电气系统中各项功能均可正常实现。军用飞机电气负载可以为电阻性,电感性,轻微容性,非线性,开关性质的以及脉冲性质的。发动机的冲击电流和电源的冲击电流都是在正常的负载条件下的。在正常工作状态下,所有电子设备必须能在性能和功能两个方面满足要求。 电源中断(转换)状态:当电气负载在供电电源之间转换时,就会发生电源中断。对于交流系统,转

换可以发生在外接地面电源、外接辅助电源,接入多功能军用飞机交流发电机或变换器;对于直流系统,转换可以发生在外接地面电源,外接辅助电源,外接多功能军用飞机直流发电机,直流变换器或变压整流器之间,在上述状态下军用飞机电气系统应当能正常运行。 非正常供电状态:当军用飞机电气系统中发生故障时,即进入非正常供电状态。非正常供电状态可能在保护装置动作消除故障之前的短暂时间内持续存在,也可能持续一段更长时间。非正常供电状态会有过压,欠压,过频及欠频状态。 能够导致非正常供电状态的故障有: ●发电机控制单元故障 ●发电机故障,绕组损坏,失磁等 ●线路以及电流接触器故障 ●电气过载 ●短路 应急供电状态:应急供电状态是指主供电电源失效并且军用飞机电气系统在有限容量的备用电源供电时的一种工作状态。备用电源可以是电池,低压空气驱动的发电机,也可能是燃料电池。 启动状态:是指当电池启动辅助电源时,或当推进发动机的电气系统启动时的状态。对于大部分军用飞机而言,启动状态只发生在采用直流供电的系统中。 电源故障状态:当电子设备电源中断大于50ms而小于7s时的工作状态。 以下列举section2和section8的测试规范:

材料的介电常数和磁导率的测量

无机材料的介电常数及磁导率的测定 一、实验目的 1. 掌握无机材料介电常数及磁导率的测试原理及测试方法。 2. 学会使用Agilent4991A 射频阻抗分析仪的各种功能及操作方法。 3. 分析影响介电常数和磁导率的的因素。 二、实验原理 1.介电性能 介电材料(又称电介质)是一类具有电极化能力的功能材料,它是以正负电荷重心不重合的电极化方式来传递和储存电的作用。极化指在外加电场作用下,构成电介质材料的内部微观粒子,如原子,离子和分子这些微观粒子的正负电荷中心发生分离,并沿着外部电场的方向在一定的范围内做短距离移动,从而形成偶极子的过程。极化现象和频率密切相关,在特定的的频率范围主要有四种极化机制:电子极化 (electronic polarization ,1015Hz),离子极化 (ionic polarization ,1012~1013Hz),转向极化 (orientation polarization ,1011~1012Hz)和空间电荷极化 (space charge polarization ,103Hz)。这些极化的基本形式又分为位移极化和松弛极化,位移极化是弹性的,不需要消耗时间,也无能量消耗,如电子位移极化和离子位移极化。而松弛极化与质点的热运动密切相关,极化的建立需要消耗一定的时间,也通常伴随有能量的消耗,如电子松弛极化和离子松弛极化。 相对介电常数(ε),简称为介电常数,是表征电介质材料介电性能的最重要的基本参数,它反映了电介质材料在电场作用下的极化程度。ε的数值等于以该材料为介质所作的电容器的电容量与以真空为介质所作的同样形状的电容器的电容量之比值。表达式如下: A Cd C C ?==001εε (1) 式中C 为含有电介质材料的电容器的电容量;C 0为相同情况下真空电容器的电容量;A 为电极极板面积;d 为电极间距离;ε0为真空介电常数,等于8.85×10-12 F/m 。 另外一个表征材料的介电性能的重要参数是介电损耗,一般用损耗角的正切(tanδ)表示。它是指材料在电场作用下,由于介质电导和介质极化的滞后效应

机载电子设备适航性问题与解决措施

机载电子设备适航性问题与解决措施 【摘要】航空界的所有领域无论是飞机制造商还是机载电子设备或是管理机构都由适 航性管理限制。民用航空的适航性与我们的出行安全息息相关,每一架飞机背后都有一个专业的团队对他的每一次出行进行适航性研究,同时他们还要考虑安全的成本问题,所以说很难对适航性进行准确的解释,本文主要研究前机载电子设备适航性中存在的问题,探究其解决措施,为适航性研究提供一些借鉴意见。 【关键词】机载电子设备;适航性;问题;解决措施 1前言 无论国内还是国外,适航性都是航空界最炙手可热的话题,而机载电子设备涉及了飞 机通信系统、导航系统、仪表系统、自动飞行控制系统等四大重要系统的正常运行,对飞机性能有很大影响,重要性不容小觑。做好适航性的研究能最大限度的保障飞机的安全性问题,我国十分重视机载电子设备的设计问题,严格规定机载电子设备必须满足适航性的要求。机载系统的技术水平是航空界高科技的一把标尺,他带动了遥感器技术、光电信息处理技术、自动控制技术、液压传动技术、新材料的研究、特色工艺等多种高科技的发展,所以说对机载电子设备适航性的研究是很有必要的。 2存在的问题 2.1维修保障机制不足 目前我国民用机的机载设备存在维修保障机制不足的问题,一方面,我国当前的民用 飞机故障检测系统主要是用机载传感器或机载BIT设备对飞机进行检测,诊断存在的故障,监测点与检测技术都存在问题,目前机上的监测范围存在盲区而且检测设备的能动性比较低,只有40%的机载故障能够及时的被检测出来,而且检测系统对于飞机结构强度以及使用寿命的监测信息单一,检测技术不够完善,对于电路中存在的故障无法获知,存在很大的安全隐患;另一方面,仅仅靠故障的物理参量和状态参量不能准确的找到问题的根源,并且对于飞机故障的预测手段也存在问题,现阶段的机载设备只能收集飞行状态、飞行参数、故障检测

介电常数的测定 (4)

介电常数的测定 0419 PB04204051 刘畅畅 实验目的 了解多种测量介电常数的方法及其特点和适用范围,掌握替代法,比较法和谐振法测固体电介质介电常数的原理和方法,用自己设计与制作的介电常数测试仪,测量压电陶瓷的介电常数。 数据处理与分析 (一)原理:介质材料的介电常数一般采用相对介电常数r ε来表示,通常采用测量样品的电容量,经过计算求出r ε,它们满足如下关系: 00r Cd S εεεε= = 式中ε为绝对介电常数,0ε为真空介电常数,12 08.8510/F m ε-=?,S 为样品的有效面积,d 为样品的厚度,C 为被测样品的电容量,通常取频率为1kHz 时的电容量C 。 (二)实验过程及数据处理 压电陶瓷尺寸: 直径: 0.9524.7840.063D mm v mm == 厚度: 0.950.2720.043H mm v mm == 一.根据所给仪器、元件和用具,采用替代法设计一台简易的介电常数测试仪,测量压电陶瓷的介电常数r ε。 在实验中采用预习报告中的图()a 连接电路,该电路为待测电容Cx 、限流电阻0R 、安培计与信号源组成的简单串联电路。接入Cx ,调节信号源频率和电压及限流电阻0R ,使安培计读数在毫安范围内恒定(并保持仪器最高的有效位数),记下Ix 。再换接入Cs ,调节Cs 与Rs ,使Is 接近Ix 。若Cx 上的介电损耗电阻Rx 与标准电容箱的介电损耗电阻Rs 相接近,即Rx Rs ≈,则Cx Cs =。 测得的数据如下: 输出频率 1.0002~1.0003kHz 输出电压 20V

Ix=1.5860mA Is=1.5872mA Cs=0.0367F R=1000μΩ Is Ix ≈。此时Rx Rs ≈,有Cx Cs ≈。所以Cx = Cs = 0.0367 F μ。 63 212 2 2 30012 00.0367100.272102339.264024.784108.8510 3.1422r Cd CH C N m S D εεεεεπ------???=== = =?????????? ? ? ?? ?? 二.用比较法设计一台简易的介电常数测试仪,测量压电陶瓷的介电常数r ε。 在Rx Rs ≈的条件下,测量Cx 与Cs 上的电压比Vs Vx 即可求得Cx : Vs Cx Cs Vx =? (Vs 可以不等于Vx ) 测得的数据如下: 输出频率 1.0003~1.0004kHz 输出电压 20V Vx = 3.527V Vs = 3.531V Cs = 0.0367F R = 1000μΩ Rx Rs ≈。Cx 与Cs 上的电压比 3.5270.9988673.531 Vs Vx == 683.527 0.036710 3.6658103.531 Vs Cx Cs F Vx --∴=?=??=? 83 212 2 2 30012 0 3.6658100.272102336.586924.784108.8510 3.1422r Cd CH C N m S D εεεεεπ------???=== = =?????? ???? ? ? ?? ?? 三.用谐振法设计一台简易的介电常数测试仪,测量压电陶瓷的介电常数r ε。 由已知电感L (取1H ),电阻R (取1k Ω)和待测电容Cx 组成振荡电路,改变信号源频率使RLC 回路谐振,伏特计上指示最大,则电容可由下式求出: 22 14Cx f L π= 式中f 为频率,L 为已知电感,Cx 为待测电容。

大学物理实验介电常数的测量的讲义

固体与液体介电常数的测量 一、实验目的: 运用比较法粗测固体电介质的介电常数,运用比较法法测量固体的介电常数,谐振法测量固体与液体的介电常数(以及液体的磁导率),学习其测量方法及其物理意义,练习示波器的使用。 二、实验原理: 介质材料的介电常数一般采用相对介电常数εr 来表示,通常采用测量样品的电容量,经过计算求出εr ,它们满足如下关系: S Cd r 00εεεε== 式中ε为绝对介电常数,ε0为真空介电常数,m F /1085.8120 -?=ε,S 为样品的有 效面积,d 为样品的厚度,C 为被测样品的电容量,通常取频率为1kHz 时的电容量C 。 替代法: 替代法的电路图如下图所示。此时电路测量精度与标准电容箱的精度密切相关。实际测量时,取R=1000欧姆,我们用双踪示波器观察,调节电容箱和电阻箱的值,使两个信号相位相同, 电压相同,此时标准电容箱的容值即为待测电容的容值。

谐振法: 1、交流谐振电路: 在由电容和电感组成的LC 电路中,若给电容器充电,就可在电路中产生简谐形式的自由电振荡。若电路中存在交变信号源,不断地给电路补充能量,使振荡得以持续进行,形成受迫振动,则回路中将出现一种新的现象——交流谐振现象。RLC 串联谐振电路如下图所示: 图一:RLC 串联谐振电路 其中电源和电阻两端接双踪示波器。 电阻R 、电容C 和电感L 串联电路中的电流与电阻两端的电压是同相位的,但超前于电 容C 两端的电压2π ,落后于电感两端的电压2π ,如图二。 图二:电阻R 、电容C 和电感L 的电压矢量图 电路总阻抗:Z = = L V → -R V →

介电常数的测量

实验七 介电常数的测量 ε和损耗角tgδ的温度和频率特性,可以获取物质内部 测量物质在交变电场中介电常数 r 结构的重要信息。DP—5型介电谱仪内置带有锁相环(PLL)的宽范围正弦频率合成信号源和由乘法器、同步积分器、移相器等组成的锁定放大测量电路,具有弱信号检测和网络分析的功能。对填充介质的平行板电容器的激励信号的正交分量(实部和虚部)进行比较、分离、测量,检测介电频率谱和温度谱。作为大学物理实验的内容,具有测量精度高、方法新颖、知识性和实用性强等特点。 [目的要求] ε和损耗角tgδ的温度和频率特性。 1.学习用介电谱仪测量物质在交变电场中介电常数 r 2.了解带有锁相环(PLL)的正弦频率合成信号源和锁定放大测量电路的原理和结构。 3.掌握对信号的正交分量(实部和虚部)进行比较、分离、测量的方法。 [实验原理] 图1测量原理图 原理如图1所示.置于平板电极之间的样品,在正弦型信号的激励下,等效于电阻R和电容C的并联网络。其中电阻R是用来模拟样品在极化过程中由于极化滞后于外场的变化所引起的能量损失。若极板的面积为A,间距为d,则: R=d/Aσ, C=εA/d, tgδ=1/ωRC=σ/ωε 式中ε=εoεr,εo为真空介电常量,σ为与介电极化机制有关的交流电导率。设网络的复阻抗为Z,其实部为Z’,虚部为Z″,样品上激励电压为Vs(基准信号),通过样品的电流由运放ICl转化为电压Vz:(样品信号),用V’s,V″s和V″z分别表示其实部和虚部,则有:Vz=RnVs/Z, σ=K(V’sV’z+V″sV″z), ωε=K(V’sV″z-V″sV’z) tgδ=(V’sV’z+V″sV″z)/ (V’sV″z-V″sV’z) 式中K=d/ARn(V’sV’s+V″sV″s)。 电压的实部和虚部通过开关型乘法器IC2和π/2移相器IC3实现分离后测量。IC2的作用是将被测正弦信号Vz(或Vs)与同频率的相关参考方波Vr相乘。本系统测量时通过移相微调电路使Vr和vs同相位,即Vs的虚部V″s=O,测量公式简化为: σ=K’V’z, ωε=K’V″z, tgδ=V’z/V″z

无线电导航原理和机载设备简介及使用

★无线电导航原理和机载设备简介★ 导航概述 早期的飞行器在空中飞行仅依靠地标导航--飞行中盯着公路、铁路、河流等线状地标;山峰、灯塔、公路交汇点等点状地标;湖泊、城镇等面状地标。后来,空勤人员利用航空地图、磁罗盘、计算尺、时钟等工具和他们的天文、地理、数学知识,根据风速、风向计算航线角,结合地标修正航线偏差,这种工作叫做“空中领航”。这种方法虽然“原始”,但航空先驱林伯当年就是依靠这些东西驾驶一架活塞式单发动机飞机“圣路易斯精神号”独自由美国西海岸起程,直接飞越大西洋到达巴黎的,他飞越茫茫大西洋时还通过观察海上的洋流、夜空中的星座来辨别方向、确定位置。空中领航学是飞行员的一门必修课,其核心是用矢量合成原理修正风对飞行航迹的影响。 随着无线电技术的发展,各式各样的电子设备为飞行器提供精确的导航信息:有用于洲际导航的奥米加导航系统(OMEGA)、适用于广阔海面的罗兰系统(LORAN-A,LORAN-C)、用于近距导航的甚高频全向无线电信标导航系统(VORTAC),另外还有一些专为军事用途开发的导航信标和雷达系统。现在,利用同步卫星工作的全球定位系统(GPS)已开始广泛使用。但 VORTAC 仍是近距导航的主流,绝大多数现代军民用飞机,包括民航客机、小型通用飞机都配备有VOR接收机(VOR,very high frequency ommi-directional range)。 VORTAC是VOR/DME和TACAN的统称。VOR/DME是民用系统,TACAN是为适应舰载、移动台站而开发的军用战术空中导航系统(即塔康导航系统)。两者的工作原理和技术规范都不同,但使用上它们是完全一样的。事实上,有的VOR/DME和TACAN发射台站是建在一起、使用同一个频率的,对空勤人员来说,只是一个VOR信标。 VOR信标是世界上最多、最主要的无线电导航点。许许多多的VOR台站相隔一定距离成网络状散点分布,当飞机上的接收机收到VOR信标的信号,飞行人员就可通过专用仪表判断飞机与该发射台站的相对位置,如果台站信号是带测距的(DME,distance measuring equitment),还可知道飞机与台站的距离,从而确定飞机当前的位置,并知道应以多少度的航线角飞抵目的地。 VOR/DME/NDB基本原理 VOR:very high frequency ommi-directional range,甚高频全向无线电信标 VOR信号发射机和接收机的工作频率在108.0-117.95 MHz 之间。VOR台站发射机发送的信号有两个:一个是相位固定的基准信号;另一个信号的相位是变化的,同时象灯塔的旋转探照灯一样向360度的每一个角度发射,而向各个角度发射的信号的相位都是不同的,它们与基准信号的相位差自然就互不相同。向360度发射的信号(指向磁北极)与基准信号是同相的,而向180度发射的信号(指向磁南极)与基准信号相位差180度。飞机上的VOR接收机根据所收到的两个信号的相位差就可判断飞机处于台站向哪一个角度发射的信号上。也就是说,可以判断飞机在以台站发射机为圆心的哪一条“半径”上。 VOR台站发送的信号形成360条“半径”,辐射状向各个方向传送,每条“半径”就是一条航道,称为“Radial”。假如:飞机位于平州VOR台站(该台站代号为POU)的正东南方,朝台站飞去,飞越台站时即改航向,往正西南方飞去。用导航术语来说就是:飞机沿POU的 135 Radial(R-135),飞向(inbound)台站,即其磁航向为315度,到达POU后,沿R-225,飞离(outbound)台站,即其磁航向为225度。注意:当飞机沿某条Radial飞离台站,其磁航向就是该条Radial号数;但当飞机沿某条Radial飞向台站,其磁航向就与该条Radial的号数差180。 由于VOR的无线电信号与电视广播、收音机的FM广播一样,是直线传播的,会被山峰等障碍物阻隔,所以即使距离很近,在地面也很少能接收到VOR信号,通常要飞高至

航空电子设备(机载设备)复习题

航空电子设备-复习习题 1、航空仪表的用途? (1)为飞行员提供驾驶飞机用的各种目视数据; (2)为机载导航设备提供有关的导航输入数据; (3)为机载记录设备提供有关的记录数据; (4)为自动飞行控制系统提供有关的数据。 2、仪表系统分类? (1)按功用分:仪表按功用可分为①飞行②导航③发动机④系统状态仪表。 (2)按原理分:测量、计算、调节仪表。 3、飞机仪表系统基本组成环节? 飞机仪表系统基本组成环节,概括起来包含感受、转换、传送、指示、计算、放大、执行等7种基本环节。 4、高度的分类和定义? 绝对高度:从飞机重心到实际海平面(修正的海平面气压平面)的垂直距离; 相对高度:从飞机到某一指定参考平面 (例如机场平面)的垂直距离; 标准气压高度:以标准海平面(760 毫米 汞柱高)为基准面,飞机重心到该基准面 的高度; 真实高度;从飞机到其所在位置正下方地面的垂直距离。 5、气压高度表? 气压高度表是利用皮托管所测量出的静压,根据大气压力与高度的一一对应关系,就可以得出飞机当前的高度。 6、气压高度表的结构? 气压高度表是一个闭口真空膜盒结构。高度表在膜盒外面通静压,由于静压随高度升高而越来越小,膜盒由于外界压力下降,会发生形变,越来越鼓涨,这种形变可以量化的,并能通过机械结构转化成指针读数的,那么就可以把高度和压力对应起来。 7、飞机速度的测量? 速度的测量是通过皮托探头将气压引入仪表进行计算的,但需使用到全压和静压。

8、名词解释: (1)全压Pt=空气在皮托管里全受阻时,产生的压力,它包括静压Ps和动压Qc;(2)静压Ps=飞机周围静止空气压力。 (3)动压Qc=空气相对物体运动时所具有的动能转化而来的压力。 (4)马赫数M=真空速Vt与本地音速a之比。 (5)真空速Vt:补偿了各种误差后的指示空速IAS。 9、各种空速定义: (1)指示空速(I AS):空速表根据动压计算的空速,未经任何补偿,也称表速。(2)计算空速(C AS):补偿了静压源误差后的指示空速。 (3)真空速(T AS):补偿了因空气密度和压缩性变化所引起的误差后的计算空速。(4)马赫数的大小只由动压和静压来决定,而与气温无关。 10、马赫数表? 马赫数表是用一个开口膜盒测量动压,而用一个闭口真空膜盒测量静压,经过传动机构使指针指示马赫数的仪表。 11、M数表、空速表区别是什么? 马赫数表的大小由动压和静压决定,是空速和音速的比值 空速表指示的是飞机与气流的相对速度,大小由动压和气流速度决定 12、T不变,H增高时,M如何变化? 高度增加音速下降马赫数增加 13、大气数据计算机ADC接收信号? 大气数据计算机接收全压、静压、总温探头和迎角传感器信号。 14、备用高度/空速表接收信号? 备用高度/空速表接收全压、静压传感器信号—— 15、电动高度表? 电动高度表用于指示飞机的气压高度,它以 数字(显示窗)和模拟(指针) 形式来显示气压高 度。并显示人工设置的气压基准值。表上还有设 置气压基准的调节旋钮,以及高度基准游标和 调节旋钮。

机载航空电子设备安全性研究

机载航空电子设备安全性研究 近几十年来,随着机载航空电子设备等各项技术的不断发展和运行环境的不断完善,自身的余度等安全性设计也不断提高,然而人为因素则已成为制约航空安全水平的首要环节。据统计数字显示,近70%的事故由人为原因导致,该原因则成为制约航空安全的最大障碍。安全性评估是飞机安全性工程中的一项重要内容,其目的是通过安全性风险分析与评估,识别、评价系统存在的危险,并根据危险的程度提出消除或控制危险的措施,避免重大的安全事故的发生。工程阶段的安全评估技术产生于20世纪60年代初期英美等工业发达国家,并于20世纪80年代逐步引入我国,通过吸收、消化国外安全检查表和安全性分析方法,逐步在航天、化工及核工业等行业开始应用相应的分析评价方法。航空领域于20世纪80年代中期已逐步推行安全检查表等安全性分析方法。但是在航空领域,安全性分析方法主要应用在装备研制阶段,而且因为缺少全面的安全性设计标准和相应的评估检查方法,装备的安全性工作停留在较低层次。随着对安全性的逐步重视,越来越多的安全性工作方法得到了推广和应用,如何实现对装备安全性工作状态的有效控制,已经成为各个行业关注的重点。因此,如何有效地评估装备安全性状态成为急需解决的问题之一。目前,从航空装备安全性分析与评估专业领域来看,在型号立项论证阶段,依然缺乏全面的安全性设计标准,缺少全面、完备的安全性指标,难以实现对安全状态的描述,以至于在验证阶段,无法建立适用的安全性评估模型和评估准则,评估仅仅停留在对具体定性要求的满足率考核上,难以对型号当前状态下的安全性状态进行全面、准确、快速的评估。另外,由于飞机安全性评估是一个复杂的多因素决策分析问题,主要包括飞机系统、各类人员、外部环境3个方面,且各因素及相互之间存在着极大的不确定性,造成各因素教练关系复杂,变化趋势难以确定,状态评估工作难以开展。 1问题的解决方案 为了更全面、系统地给出航空电子设备与飞机和人员之间相互的安全影响,通过研究,将“人-机-环境”系统理论应用到机载航空电子设备的安全性评估中。“人-机-环境”系统工程的研究可用图1来形象地描述,它包括人本身特性、机器特性、环境特性、人-机器之间关系、人-环境之间关系、机器-环境之间关

介电常数测量

测量介电常数的方法探究 班级: 姓名: 序号: 学号: 学院:

测量介电常数的方法探究 介电常数应用在科技的方方面面,但是如何测得介电常数以保证需要呢,本文就几种主流测量方法进行了探究。 主流的测量介电常数的方法即空间波法和探针法。 空间波法:空间波法是一种介电常数的实地检测法。用该方法测量介电常数时,可以将测量仪器拿到被测物所在位置进行无损的实地测量,可获得最接近微波遥感真实值的介电常数。 微波遥感的典型目标,如土壤、沙地岩石、水体、冰雪、各类作物、各类草地、森林等,当其表面统计粗糙度远远小于所使用的波长时可用菲涅尔反射系数描述其介电常数与观测角之间的关系: R ∥ =(cosθ- εr?sin2θ)/(cosθ+ εr?sin2θ)(1) R ⊥ =(εr cosθ- εr?sin2θ)/(εr cosθ+ εr?sin2θ)(2) 其中εr为目标物的相对介电常数,R ∥为水平极化反射系数,R ⊥ 为垂直极化反 射系数,θ为入射角。只要测得以上参数,经过绝对定标或者相对定标后,通过数学运算就可以反演得到介电常数。 空间波测量介电常数是利用菲涅尔反射定律进行的,要求所用波长大于被测目标的统计粗糙度,在粗糙度大时会影响精度,这时必须引入粗糙度修正量。可以利用加大观测角以提高粗糙表面物的测量精度,从实际中,对土壤、草丛、冰的测量结果看是比较好的。 探针法:在探针法实地测量介质介电常数时,探针的位置一般有两种:即全部没入待测介质中和探针位于空气和介质构成的接触面上。在两种情况下,样品的介电常数都可以通过在非谐振时测量的反射波、传输波或者谐振时测量的谐振频率和3dB带宽等参数来反演得到。 探针法测量介电常数,可以使用的探针有:单极振子、波导和同轴线等。相对于其他探针,单极振子的结构简单,测量方便,且可以获得相对比较精确地测量结果,是目前探针法实地测量介电常数研究中的一个热点。 单极振子:用单极振子探针法测量介电常数主要是通过测量反射系数ρ、 天线的输入阻抗Z n (或导纳Y)、S参数、天线谐振长度h r 和激励电阻抗R r 或谐 振频率f s 和3dB带宽的变化等来反眼。这些放发根据原理和测量值的不同可以 分为反射法、传输发和谐振法。 波导探针:微波可以穿透介质并且在不连续点产生的反射波与介质的电特性有关,由此发展了许多使用微波非破坏性技术来测量材料在微波频率的电磁性质。现有一种在8-12GHz频率范围内使用一个边缘开端矩形波导探针同时测材料的复介电常数和导磁率的技术。在该技术中,由非连续接触面的边界条件,得到了关于未知孔径电厂的两个积分等式(EFLE`s)。假定探针孔径中的总电场不仅包 括TE 10 模,而且还有无限的高阶模式,由矩量法可以解决EFLE`s。当孔径的电厂精确决定之后,其他相关的系数如主模下探针的输入导纳和反射系数等,都可以计算出来,从而很容易得到介质的介电常数。

机载电子设备三防设计应用研究

106环境技术/Environmental Technology 环境试验设备nvironmental Test Equipment E Abstract:This paper systematically expounds the three-proofing design of electronic equipment, and the classified discussion is carried out from the aspects of selection control of raw materials, chassis structure design, seal design, dissimilar metal overlapping design and surface coating design, etc., in order to improve the three-proofing performance of electronic equipment, and preliminarily summarizes the matters needing attention in the three-proofing test of electronic equipment. And the relevant experience can be used for the verification and reference of the three-proof design and the environmental test for the similar equipment. Key words:electronic equipment; three-proof design; environmental testing 摘要:对电子设备的三防设计进行系统性阐述,从原材料的选型控制、机箱结构设计、密封设计、异种金属搭接设计和表面涂镀层设计等方面进行分类讨论,以提高电子设备整体的耐三防性能,并对电子设备三防试验注意事项进行了初步总结,相关经验可供同类设备的三防设计及环境试验验证借鉴和参考。 关键词:电子设备;三防设计;环境试验 中图分类号:V216.5 文献标识码:A 文章编号:1004-7204(2019)03-0106-04 机载电子设备三防设计应用研究 Research on the Three-proof Design and Application of Airborne Electronic Equipment 白乃贵,司卫征,黄栋,郭伟科 (广东省智能制造研究所,广州510070) BAI Nai-gui,SI Wei-zheng,HUANG Dong,GUO Wei-ke (Guangdong Institute of Intelligent Manufacturing,Guangzhuo 510070) 引言 随着新型装备应用环境的不断变化,对装备中各种 电子设备的使用寿命、使用环境都提出了更高的要求。 在沿海地区使用的武器装备,为适应新的战略环境要 求,其电子设备不仅需要集成更多复杂的功能,满足高 可靠性、小型化、轻量化、便于维修保障等要求,还要 适应更加严酷的湿热、霉菌、盐雾、酸性大气等环境的 考验。在我国南海海域环境条件下,电子设备的故障中 有80 %与整机的环境因素有关,电子设备的环境适应 性直接影响到了装备的战术指标和使用寿命[1]。严酷的 外部环境需要科学合理的三防设计技术来保证电子设备的环境适应性。现如今电子设备的三防设计已经由简单的工艺防护逐步发展为一项涉及总体、硬件电路、结构、工艺、管理等多方面的系统性工程。本文从三防环境分析、原材料元器件选型控制、机箱结构设计、密封设计、异种金属搭接设计、表面涂镀层设计等方面阐述了机载电子设备三防设计技术,并进一步总结了三防环境试验过程中的注意事项,可供相关设计工作者借鉴和参考。1 三防设计技术1.1 三防环境分析 项目资助:广东省科技计划项目(2014B070705007、2018A050506057),广东省科学院项目(2016GDASPT-0106、2019GDASYL-0105072)

航空机载电子设备环境试验与EMC试验

民用航空机载电子设备测试 作为航空设备生产商,你需要可靠有效、放心的测试伙伴来帮助您以尽快可能及时、经济的方式将产品推向市场。广电计量科提供航空领域和智能机及设备的环境可靠性试验与电磁兼容EMC测试服务,从最初的项目阶段和测试计划拟定到预合规测试和最红合格报告开具,科为您提供全套服务。依托丰富经验及技术服务能力,我们的测试使您的产品确保合规并赢得成本及即使上市时间优势。 环境与可靠性试验 广电计量用有先进的环境与可靠性试验设备300多套,满足RTCA/DO-160E/F/G、HB6167等相关航空机载设备试验标准的要求,可为航空领域整机及设备提供可靠性试验与分析、综合环境试验、力学环境试验、气候环境试验可靠性方案、失效分析、编写试验大纲、夹具制作、故障分析和整改建议等服务。 RTCA/DO-160E/F/G环境可靠性试验项目: Section 4: Temperature and Altitude高温-温度 Section 5: Temperature Variation温度变化 Section 6: Humidity湿热试验 Section 7: Operational Shock and Crash Safety 工作冲击与坠撞安全 Section 8: Vibration振动试验 Section 9: Explosion Proofness爆炸性大气压 Section 10: Waterproofness防水试验 Section 11: Fluids Susceptibility流体敏感性 Section 12: Sand and Dust砂尘试验 Section 13: Fungus Resistance霉菌试验 Section 14: Salt Spray盐雾试验 电磁兼容测试 广电计量航空领域整机及设备电磁兼容检测的电磁干扰频率最高可达40GHz,电磁敏感度EMS最高可达300V/m,微国内多家民用飞机领域提供相关安全问题方案的技术咨询和检测服务。 整机电磁兼容试验与评估 T-PED设备在飞机系统条件下各种场景的敏感度试验; RTCA/DO-294A/B/C试验项目与评估方法; IPL(干扰耦合路径)数据测试与收集; 直通耦合敏感度评估; 前门耦合敏感度评估; 后门耦合敏感度评估; 风险/安全评估; 考虑到人员因素的PED及T-PED设备的工作状态推荐; T-PED设备在飞机系统条件下各种场景的电磁兼容试验; RTCA/DO-307试验项目与评估方法;

航概现场课笔记(机载设备)

航概现场课笔记(第二节课机载设备) (1),记载设备:由1,电子设备,2,飞行保障设备动力设备,3,地面设备,4,武器设备组成。 (2),电子设备又可再分为1,通信系统,2,导航系统,3探测系统,4电子对抗系统,5,信息综合系统,6,座舱显示控制记录系统组成 (3),座舱显示控制记录系统,若按功能分可分为1,航空仪表,2,驾驶领航仪表,3,发动机仪表,4,辅助仪表。若按原理分,则可分为1,测量仪表,2,计算仪表,3,调节仪表。 (4)仪表的发展阶段共有4个阶段,1,机械仪表阶段,30年代以前,特点:结构简单,可靠;2,电气仪表阶段,30年代以后;3,综合自动化仪表阶段,50年代以后,特点:综合指示,仪表数量减少;4,电子显示仪表阶段,70年代后,特点:自动化程度高。 (5)一些机载常见设备:1,陀螺地平仪,作用:测量偏转角,倾斜角。2,磁罗盘,作用:测量飞机的磁航向(还有个航向陀螺也起类似作用)。3,传感器,主要分为压力与温度两类,其中温度又分为电阻式温度传感器与热电偶温度传感器。 (6)信息综合系统包括1,航空电子系统(作用:充分利用信息和资源,提高可控性),其发展趋势是从联合航空电子系统→模块式综合航空电子系统;2,飞行管理系统(其又可再分为飞行管理计算机系统与自动飞行制导系统等;3,等(7)导航系统分为1,仪表导航系统;2,无线电导航系统;3,惯性导航系统;4,卫星导航系统 (8)惯性导航系统又可分为:1,平台式惯导;2,捷联式惯导 (9)GPRS卫星定位系统由24颗卫星组成。 (10)美国的卫星导航系统是GPRS,苏联是GLONASS,欧洲是Galiieo,中国是北斗 (11)防护救生系统包括1,弹射座椅;2,弹射通道清除装置;3,飞行员防护服等。 (12)地面设备中较重要的一个是飞机模拟飞行器,其又可分为飞行训练设备与飞行模拟设备,其中飞行训练设备仅仅是熟悉仪表操作而已,不是真正的模拟飞行。 (13)我国的第一架模拟器是歼六模拟器,此外,还有运七模拟器。 (14)模拟器简化系统: ↗模型→接口→操纵台 控制台→集线管→网络→视景 ↘仪表 (注意比完整版的少了运动,灯光,音响系统)

相关主题
文本预览
相关文档 最新文档