当前位置:文档之家› 多普勒测风激光雷达系统.pdf

多普勒测风激光雷达系统.pdf

多普勒测风激光雷达系统.pdf
多普勒测风激光雷达系统.pdf

49

多普勒测风激光雷达系统

1.研究背景

大气风场信息是一项重要的资源,精确可靠的大气风场测量设备可提高风电可再生能源领域的利用率,改进气候气象学模型建立的准

确性,增强飞行器运行的安全性,因此在风电、航空航

天、气候气象、军事等领域都有着重要的意义。

风场信息测量的手段主要分为被动式和主动式两大类。传统的被动式测量装置有风速计、风向标和探空仪,主动式测量装置有微波雷达、声雷达等。风速计和风向标只能实现单点测量,借助测风塔后实现对应高度层的风场信息检测,这类传统装置易受冰冻天气影响,测风塔的搭建和维护也需要花费大量的人力物力,还存在移动困难和前期征地手续复杂等问题;微波雷达以电磁波作为探测介质,由于微波雷达常用波长主要为厘米波,与大气中的大尺寸粒子(如云、雨、冰等)相互作用产生回波,无法与大气中的分子或气溶胶颗粒产生作用,而晴空时大气中大尺寸粒子较少,因此微波雷达在晴空天气条件下将出现探测盲区。另外,微波雷达还具备庞大的收发系统也导致其移动困难;声雷达与微波雷达测量原理相似,不同的是将探测介质由微波改为了声波。声雷达的探测方式使得在夜间和高海拔地区易出现信噪比降低的情况甚至无法测量。因此,迫切需要补充新型的风场测量手段替代传统测风装置实现大气风场信息的测量。2. 测风激光雷达系统

2015年,南京牧镭激光科技有限公司成功研制出国产化测风激光雷达产品Molas B300,该产品基于多普勒原理可实现40~300 m 风场信息测

■ 黄晨,朱海龙,周军 南京牧镭激光科技有限公司

第一作者 黄晨

量,风速测量精度可达0.1 m/s ,风向测量精度可达1°,数据更新率为1 Hz ,风速测量范围可达0~60 m/s 。测风激光雷达定位为外场应用装备,对环境适应性有较高要求,Molas B300可在外界温度范围为-40℃~50℃,相对湿度为0%~100%的环境条件下正常工作。除此以外,Molas B300体积小质量轻(约50 kg )方便运输安装便捷,可显著降低项目前期施工时间。测风激光雷达采用激光作为探测介质,可与空气中微小颗粒发生相互作用,具有时空分辨率高、自动化程度高、安装简单易维护、移动便携性好等优势,可有效提高项目实施效率,

因此成为了最具前景的风场信息测量手段。

表1 各类风场探测技术的优缺点

探测技术优势

劣势风速计、风向标较高的水平分辨率,

成本低单点测量微波雷达三维风场探测,测量距离

可达100 km

晴空条件下不能使用,体积庞大声雷达三维风场探测探测距离较近,易受大气环境影响

测风激光雷达

三维风场探测,晴空下仍

能测量,移动便携性好

图1 测风激光雷达Molas B300

50

图1和图2分别为测风激光雷达的实物图和

原理框图,其基本原理为:光纤激光器产生的信

号光通过光学天线和扫描机构发射到待测空气中,

脉冲激光与大气中的气溶胶颗粒相互作用产生携

带其速度信息的后向散射信号。由多普勒原理可

知,回波信号的多普勒频移fd与气溶胶颗粒运动

速度(即风速)成正比,因此光学天线接受到的

后向散射信号通过和系统内光纤激光器产生的本

振光拍频进行数字解调即可进行算法处理得到待

测目标的风场信息。

提取多普勒频移即可计算出当前方位的视向风速,

从而根据风速反演算法推出该点风速风向等信息。

Molas B300可同时提供40~300 m内用户自定

义12个高度层的风速风向信息,图4(a)为实测

风廓线图,可通过风廓线直观观测到不同高度层风

速的变化。图4(b)为Molas B300客户端软件界

面,该界面可实时显示实测风廓线、风向廓线以及

雷达工作状态、位置信息、方向信息等基本情况,

用户登录客户端还可实现测风激光雷达远程控制,

实时下载数据等功能。

3.测风激光雷达在风电场的应用

在风电可再生能源领域,测风激光雷达可用于

风电场前期微观选址、风功率曲线测试、风电场后

评估等需要精确风场信息的阶段。

1)前期选址

目前,风电行业普遍采用的测风设备是风杯风

速计。在风电场前期选址的过程中,通常通过树立

测风塔来获取观测数据以评估该区域的风能储量,

但随着风电项目开发的迅速推进,越来越多项目开

始向地形复杂地区延伸,这种情况下使用测风塔导

致的问题则愈加凸显。首先,复杂地形区域测风塔

材料的运输更加困难;其次,搭建测风塔对施工地

点要求较高。而测风激光雷达自动化程度高,移动

便携性好,设备安装快速简单,可显著降低项目施

工实施时间,有效提高项目实施效率。

2)风功率曲线测试

风电场广泛使用的测风塔多为80 m,传统通

过测风塔实现风功率曲线测试需要经过外推法计算

轮毂高度处的风速,而功率曲线的评估对风速精度

的要求很高,0.1 m/s的风速误差都将给风电场带

来巨大的损失。而测风激光雷达可直接测量40 m

至300 m处的风速,从原理上来说,测风激光雷

达为主动式遥感探测技术,风速由激光直接测量获

得,应具有更高的准确度。

2017年3月,IEC出台的新标准——IEC

61400-12-1:2017已接纳测风激光雷达作为风场信

息测量装置为风电场进行风功率曲线测试和风资源图2 测风激光雷达原理图

(a)(b)

图3(a)测试现场图;(b)回波信号频谱图

(a)(b)

图4 (a)实测风廓线;(b)Molas B300

软件控制界面

图3(a)为某地实际测试现场图,Molas

B300为风电场提供前期微观选址服务,观测数据

用于评估该区域风资源储量,为风电场设计提供数

据支撑。图3(b)为实际测试时获取第七方位角

的回波信号频谱图,峰值处即为发射信号与气溶胶

颗粒相互作用产生携带风速信息的回波信号,通过

51

评估,并为激光雷达的应用提供具有指导意义的技术基础。因此测风激光雷达代替传统测风塔进行风电场功率曲线预测具有直接的经济效益。

3)风电场后评估

风电场后评估主要用于评估项目建成后是否达到设计发电能力,通常需要补测大量风场数据,有时补测数据的地方前期并没有树立测风塔,若重新树立测风塔将耗费大量时间,而采用测风激光雷达可快速便捷安装设备实现风场数据的测量。4.测风激光雷达的其他应用1) 航空航天领域

在航空航天领域,低空风场中的风切变是飞机失事的主要原因,精确掌握飞机下滑道的风场信息可避免飞机起降时风切变引发的事故,加强航空飞行的安全性,提高机场吞吐量。测风激光雷达配备三维扫描头可实现下滑道扫描,实时监测下滑道风场信息的变化,实现风切变预警。美国Lockhead-Martin 公司从2002年进入该领域,已经在香港、东京、大阪、伦敦、纽约、旧金山、拉斯维加斯、法兰克福、柏林等地机场安装了测风激光雷达设备以提高航空安全,国内暂时没有机场安装测风激光雷达,潜在市场容量巨大。2) 气候气象学

在气候气象学领域,风场信息探测设备主要有探空仪、风廓线雷达、声波雷达等。由于各类仪器均存在一定弊端,测风激光雷达可作为补充测试设备用于长期业务化的风场数据观测,保证数据的完整性。除此以外,由于测风激光雷达具备较高的时空分辨率,还可用于优化气候气象学模型。3) 军事安全

在军事安全领域,炮弹发射阵地的风场对射击精度有重要影响,风场测量数据可用于弹道修正。在航空母舰和其它的舰船上,机群的安全起降也依赖于周围大气风场的精确测量。在卫星、

导弹发射时,实时的风场数据不仅是成功发射的安全保障,也是提高发射成功率和导弹命中率的重要因素。可以预见,军事领域也将成为测风激光雷达巨大的应用市场。5.产业化情况

当前,国内还鲜有从事激光雷达商业化开发的公司,国外公司的产品在国内市场上处于早期推广阶段,售价较高,而且测风激光雷达属于资源探测系统,采用国外产品在军用场合或其他敏感场合存在泄漏国家安全大数据的隐患。牧镭激光自主研制的测风激光雷达产品Molas B300已在全国30余处实现累计长达4万小时的外场观测测试,并于2016年底委托风电行业第三方检测机构——德国WindGuard 股份有限公司进行认证测试,雷达测量数据与国际IEC 标准一类风杯风速计所测数据相关性都高达0.99以上。Molas B300具有全面的自主知识产权,可提高国家激光雷达行业的整体技术水平和国际竞争力,还可满足国防、科研等领域用户的需求,提升整体的研究和应用水平,推动产业的升级换代。6.总结

随着激光与光电子技术、信号处理技术的发展,测风激光雷达必将成为风场探测相关领域技术革命

的推动者,为风场测量提供更完美的解决方案。

最新多普勒雷达系统仿真

多普勒雷达系统仿真

精品好文档,推荐学习交流 摘要 现代通信系统要求通信距离远、通信容量大、传输质量好,作为其关键技术之一的调制解调技术一直是人们研究的一个重要方向。本文以MATLAB为软件平台,充分利用其提供的通信工具箱和信号处理工具箱中的模块,对数字调制解调系统进行Simulink设计仿真,并且进行误差分析。 数字化正交数字化正交调制与解调是通信系统中十分重要的一个环节,针对不同的信道环境选择不同的数字化正交数字化正交调制与解调方式可以有效地提高通信系统中的频带利用率,改善接收信号的误码率。本设计运用Simulink仿真软件对二进制调制解调系统进行模型构建、系统设计、仿真演示、结果显示、误差分析以及综合性能分析,重点对BASK,BFSK,BPSK进行性能比较和误差分析。在实际应用中,视情况选择最佳的调制方式。 本文首先介绍了课题研究的背景,然后介绍系统设计所用的Simulink仿真软件,随后介绍了载波数字调制系统的原理,并根据原理构建仿真模型,进行数字调制系统仿真,最后对设计进行总结,并归纳了Simulink软件使用中需要注意的事项。本文的主要目的是对Simulink的学习和对数字调制解调理论的掌握和深化,为今后在通信领域继续学习和研究打下坚实的基础。 关键字:排通信系统,Simulink仿真,数字化调制解调,BASK,BFSK

精品好文档,推荐学习交流 ABSTRACT TheThe Modern communication systems require communication distance, large communication capacity, good transmission quality, as one of its key technologies modem technology has been an important direction for researchers. In this paper, MATLAB software platform, providing full use of its communications toolbox and signal processing toolbox module, digital modulation and demodulation system Simulink design simulation and error analysis. Modulation and demodulation is a very important part of the communication system, for different channel environment to select different modulation and demodulation system can effectively improve the spectrum efficiency in a communication system, improve the bit error rate of the received signal. This design using Simulink simulation software binary modulation and demodulation system modeling, system design, simulation demo showed that the error analysis and comprehensive performance analysis, focusing on the BASK, BFSK, BPSK performance comparison and error analysis. In practice, as the case may select the best modulation. This paper describes the background of the research, then describes the system design using Simulink simulation software, then introduced the carrier digital modulation system of principles, and build a simulation model based on the principle of digital modulation system simulation, and finally the design summary and induction Simulink software matters that need attention. The main purpose of this paper is to study and Simulink digital modem theory of mastery and deepening for the future to continue learning and research in the field of communication and lay a solid foundation. Key Words: queuing theory, demand management, telecom offices

6、多普勒天气雷达原理与应用

第六部分多普勒天气雷达原理与应用(周长青) 我国新一代天气雷达原理;天气雷达图像识别;对流风暴的雷达回波特征;新一代天气雷达产品 第一章我国新一代天气雷达原理 一、了解新一代天气雷达的三个组成部分和功能 新一代天气雷达系统由三个主要部分构成:雷达数据采集子系统(RDA)、雷达产品生成子系统(RPG)、主用户处理器(PUP)。 二、了解电磁波的散射、衰减、折射 散射:当电磁波束在大气中传播,遇到空气分子、大气气溶胶、云滴和雨滴等悬浮粒子时,入射电磁波会从这些粒子上向四面八方传播开来,这种现象称为散射。 衰减:电磁波能量沿传播路径减弱的现象称为衰减,造成衰减的物理原因是当电磁波投射到气体分子或云雨粒子时,一部分能量被散射,另一部分能量被吸收而转变为热能或其他形式的能量。 折射:电磁波在真空中是沿直线传播的,而在大气中由于折射率分布的不均匀性(密度不同、介质不同),使电磁波传播路径发生弯曲的现象,称为折射。 三、了解雷达气象方程 在瑞利散射条件下,雷达气象方程为: 其中Pr表示雷达接收功率,Z为雷达反射率,r为目标物距雷达的距离。Pt表示雷达发射功率,h为雷达照射深度,G为天线增益,θ、φ表示水平和垂直波宽,λ表示雷达波长,K表示与复折射指数有关的系数,C为常数,之决定于雷达参数和降水相态。 四、了解距离折叠 最大不模糊距离:最大不模糊距离是指一个发射脉冲在下一个发射脉冲发出前能向前走并返回雷达的最长距离,Rmax=0.5c/PRF, c为光速,PRF为脉冲重复频率。 距离折叠是指雷达对雷达回波位置的一种辨认错误。当距离折叠发生时,雷达所显示的回波位置的方位角是正确的,但距离是错误的(但是可预计它的正确位置)。当目标位于最大不模糊距离(Rmax)以外时,会发生距离折叠。换句话说,当目标物位于Rmax之外时,雷达却把目标物显示在Rmax以内的某个位置,我们称之为‘距离折叠’。 五、理解雷达探测原理。 反射率因子Z值的大小,反映了气象目标内部降水粒子的尺度和数密度,反射率越大,说明单位体积中,降水粒子的尺度大或数量多,亦即反映了气象目标强度大。 反射率因子(回波强度): 即反射率因子为单位体积内中降水粒子直径6次方的总和。 意义:一般Z值与雨强I有以下关系: 层状云降水 Z=200I1.6 地形雨 Z=31I1.71 雷阵雨 Z=486I1.37 新一代天气雷达取值 Z=300I1.4 六、了解雷达资料准确的局限性、资料误差和资料的代表性 由于雷达在探测降水粒子时,以大气符合标准大气情况为假定,与实际大气存在一定的差别,使雷达资料的准确度具有一定的局限性,且由于雷达本身性能差异及探测方法的固有局限,对探测目标存在距离折叠及速度模糊现象,对距离模糊和速度模

多普勒测速仪开题报告

1.结合毕业设计课题情况,根据所查阅的文献资料,撰写2000字左右的文献综述: 文献综述 一、本课题的研究背景及意义 随着我国经济建设的高速发展,人民生活的不断提高,道路上各式各样的车辆数目也在大幅上升,也使得交通违章不断增加,给道路交通和人民的生活带来了极大的威胁。由于汽车工业的不断进步,行驶在道路上的车辆速度越来越快,交通事故发生的频率也不断增加。众所周知,交通事故的发生大部分是由驾驶员的超速驾驶造成的。为提高汽车运行的安全性,减少交通事故的发生以及快速检测车辆行驶中的速度,所以有了测速仪的问世。 随着科技的进步,由雷达传感器制作的测速仪已经广泛应用于车辆测速的行业中,实现对车辆速度准确,快速的测量。该测速仪结构简单,可靠性高,操作方便,可广泛应用于摩托车、汽车等机动车辆的速度测量中。测速仪的发展动向是把测速仪的准确性,稳定性和可靠性作为重要的质量指标。 二、本课题国内外研究现状 我国测速仪的应用和研究起源于八十年代,伴随着我国经济发展,由最初的简单雷达测速仪发展到现在的超声波,激光等多种测速仪,同时在误差补偿,超速报警,便捷等多个方面的研究和发展取得了长足的进步,由以前的单一,简单,笨重的测速仪演变为如今的多样,复杂,小巧,为我国的交通做出了巨大贡献,同时涌现了广州科能,西安光伟等一大批骨干测速仪制造企业,基本上形成了中国测速仪目前的发展格局。 雷达测速仪是根据接收到反射波频移量的计算而得出物体的运动速度,雷达测速易于捕捉目标,无须精确瞄准,可以采用手持的方式,在车辆的运动中进行测速。在中国的雷达测速仪发展中,雷达测速仪越来越向着高精度,高智能,高便捷的方向快速发展。 面对风起云涌的国内外市场及日新月异的中国经济,我国测速仪的发展和应用依然存在着非常严峻的问题。在2010年的国家测速仪调查报告中,我们可以看到我国的测速仪采用国外进口的测速仪占很大的比例,其中居多来自美国,日本。主要是因为我国的测速仪在质量,测量误差,报警设计方面离国外的测速仪还有一定的差距,但在近年的研究中,我国的测速仪发展还是取得了好大的进步。

雷达系统仿真matlab代码.docx

% ====================================================== =====================================% % 该程序完成16个脉冲信号的【脉压、动目标显示/动目标 检测(MTI/MTD)】 % ====================================================== =====================================% % 程序中根据每个学生学号的末尾三位(依次为XYZ)来决定仿真参数,034 % 目标距离为[3000 8025 9000+(Y*10+Z)*200 8025],4个目标 % 目标速度为[50 0 (Y*10+X+Z)*6 100] % ====================================================== =====================================% close all; %关闭所有图形 clear all; %清除所有变量 clc; % ====================================================== =============================% % 雷达参 数 % % ====================================================== =============================% C=3.0e8; %光速(m/s) RF=3.140e9/2; %雷达射频 1.57GHz Lambda=C/RF;%雷达工作波长 PulseNumber=16; %回波脉冲数 BandWidth=2.0e6; %发射信号带宽带宽B=1/τ,τ是脉冲宽度TimeWidth=42.0e-6; %发射信号时宽 PRT=240e-6; % 雷达发射脉冲重复周期(s),240us对应 1/2*240*300=36000米最大无模糊距离 PRF=1/PRT; Fs=2.0e6; %采样频率

多普勒测风激光雷达系统.pdf

49 多普勒测风激光雷达系统 1.研究背景 大气风场信息是一项重要的资源,精确可靠的大气风场测量设备可提高风电可再生能源领域的利用率,改进气候气象学模型建立的准 确性,增强飞行器运行的安全性,因此在风电、航空航 天、气候气象、军事等领域都有着重要的意义。 风场信息测量的手段主要分为被动式和主动式两大类。传统的被动式测量装置有风速计、风向标和探空仪,主动式测量装置有微波雷达、声雷达等。风速计和风向标只能实现单点测量,借助测风塔后实现对应高度层的风场信息检测,这类传统装置易受冰冻天气影响,测风塔的搭建和维护也需要花费大量的人力物力,还存在移动困难和前期征地手续复杂等问题;微波雷达以电磁波作为探测介质,由于微波雷达常用波长主要为厘米波,与大气中的大尺寸粒子(如云、雨、冰等)相互作用产生回波,无法与大气中的分子或气溶胶颗粒产生作用,而晴空时大气中大尺寸粒子较少,因此微波雷达在晴空天气条件下将出现探测盲区。另外,微波雷达还具备庞大的收发系统也导致其移动困难;声雷达与微波雷达测量原理相似,不同的是将探测介质由微波改为了声波。声雷达的探测方式使得在夜间和高海拔地区易出现信噪比降低的情况甚至无法测量。因此,迫切需要补充新型的风场测量手段替代传统测风装置实现大气风场信息的测量。2. 测风激光雷达系统 2015年,南京牧镭激光科技有限公司成功研制出国产化测风激光雷达产品Molas B300,该产品基于多普勒原理可实现40~300 m 风场信息测 ■ 黄晨,朱海龙,周军 南京牧镭激光科技有限公司 第一作者 黄晨 量,风速测量精度可达0.1 m/s ,风向测量精度可达1°,数据更新率为1 Hz ,风速测量范围可达0~60 m/s 。测风激光雷达定位为外场应用装备,对环境适应性有较高要求,Molas B300可在外界温度范围为-40℃~50℃,相对湿度为0%~100%的环境条件下正常工作。除此以外,Molas B300体积小质量轻(约50 kg )方便运输安装便捷,可显著降低项目前期施工时间。测风激光雷达采用激光作为探测介质,可与空气中微小颗粒发生相互作用,具有时空分辨率高、自动化程度高、安装简单易维护、移动便携性好等优势,可有效提高项目实施效率, 因此成为了最具前景的风场信息测量手段。 表1 各类风场探测技术的优缺点 探测技术优势 劣势风速计、风向标较高的水平分辨率, 成本低单点测量微波雷达三维风场探测,测量距离 可达100 km 晴空条件下不能使用,体积庞大声雷达三维风场探测探测距离较近,易受大气环境影响 测风激光雷达 三维风场探测,晴空下仍 能测量,移动便携性好 图1 测风激光雷达Molas B300

脉冲多普勒雷达测速仿真

任务书 雷达进行PD测速主要是利用了目标回波中携带的多普勒信息,在频域实现目标和杂波的分离,它可以把位于特定距离上、具有特定多普勒频移的目标回波检测出来,而把其他的杂波和干扰滤除。因此要求雷达必须具备很强的抑制杂波的能力,能在较强的杂波背景中分辨出运动目标的回波。 如今,不管是在军用还是民用上,雷达都在发挥着它很早重要的作用,与早期雷达采用距离微分方法测速相比,基于脉冲多普勒理论的雷达测速技术具有实时性好、精度高等优点。特别是现代相控阵技术在雷达领域的应用,实现了波束的无惯性扫描和工作方式的快速切换,更便于应用脉冲多普勒技术进行雷达测速。 本篇课程设计目的在于介绍脉冲多普勒雷达测速的原理,并对这种技术进行介绍和仿真。

摘要 脉冲多普勒(PD)雷达以其卓越的杂波抑制性能受到世人瞩目。现代飞行器性能的改进和导航手段的加强,使其能在低空和超低空飞行,因此防御低空入侵己成重要问题,由此要求机载雷达,包括预警机雷达和机载火控雷达具有下视能力,即要求能在强的地杂波背景中发现微弱的目标信号,所以现代的预警机雷达和机载火控雷达皆采用PD体制。脉冲多普勒雷达包含了连续波雷达和脉冲雷达两方面的优点,它具有较高的速度分辨能力,从而可以更有效地解决抑制极强的地杂波干扰问题;此外,脉冲多普勒雷达能够同时敏感地测定距离和速度信息;能够利用多普勒处理技术实现高分辨率的合成孔径图像;而且亦具有良好的抗消极干扰能力和抗积极干扰能力。 本文介绍了脉冲多普勒雷达测速的原理,信号处理。并用matlab简单的仿真了雷达系统对信号的处理. 关键词:脉冲多普勒雷达恒虚警脉冲压缩线性调频 Abstact Pulse Doppler (PD) radar is famous for it`s outsdanding clutter suppression.Modern aircraft`s function and GPS has been strengthen.now.it makes the aircraft can fly lower and lower.So.nowadays,Defensing.Low altitude invasion has been an important problem.so we require airborne radar. Early warning radar and airborne fire control radar have the ability to look down.That is to say.The radar is be required the ability to find Weak target signal in the strong Groung clutter.So .The modern airborne early warning radar and airborne fire control radar use the PD system.Pulse Doppler (PD) radar concludes two adervantages of Continuous wave radar and impulse radar.It has a higher velocity resolution.thus it can effectively.soveing the problem of strong ground clutter.what`s more.Pulse Dppler (PD) radar can Sensitive text the Distance and speed on the same time.Itcan use Doppler processing technology to realise Synthetic aperture images with high resolution. This article sinply introduced principle of pulse Doppler radar and signal

固体激光测风雷达扫描镜旋转控制系统

固体激光测风雷达扫描镜旋转控制系统 X 张 博 刘智深 张凯临 黄海龙 (中国海洋大学海洋遥感研究所,海洋遥感教育部重点实验室,青岛266003)摘 要: 多普勒激光测风雷达是近年来方兴未艾的1种全新的大气风场探测手段。但是激光测风雷达直接测量的是视线方向上的激光反射光的频移(视线风速)。在这个基础上,激光雷达还必须能够获得多方位的风速数据才能够反演出风场。这就需要相应的光学扫描系统,它在保证发射、接收视场重叠的前提下,控制激光束投射到指定的方向,使激光雷达获得不同视线角度的风速数据。本文介绍的激光雷达测风系统中的光学扫描部分实现了上述要求,在水平旋转和俯仰控制上的精度都达到了<0.5°。完全能够满足激光测风系统的实用需要。 关键词: 激光测风雷达;扫描镜;单片机;扫描控制 中图法分类号: P 715.7 文章编号: 1001-1862(2003)04-621-06 多普勒激光测风雷达是1种全新的大气风场探测手段。激光测风雷达直接测量的是视线方向的激光频移(视线风速),既然要探测大气的风场,激光测风雷达必须能够探测多方位的风速数据来反演风场。要保证这一点,就需要相应的光学机械扫描、接收系统。 法国CNRS (科学研究院)著名的测风激光雷达不使用扫描转镜系统[1],而是整个发射与接收系统三维转动。美国国家天文与电离层中心著名的测风激光雷达[2] 使用的是双转镜系统。本文讨论的即是双转镜系统。 激光测风雷达集成了精密的光学发射、接收系统,因而整个光学扫描系统在实现多方位(2P 立体角)扫描的同时,还要保证发射视场和接收视场的严格重合。另外由于整个系统要在室外,甚至野外工作,对各种恶劣条件下的防尘、防雨问题也应有必要的考虑。 整个激光雷达测风系统的扫描、数据采集、处理都由计算机控制,目的是要实现一定的自动化,因此光学扫描系统的程序控制和精确的角度定位是必不可少的。另外,为了实验调试的方便,还开发了附加的手动控制系统,它的好处是操作直观、灵活性大。 本激光雷达测风系统中的光学扫描部分在水平旋转和俯仰控制上都达到了<0.5°的精度。从实际使用情况来看,该系统工作可靠,操作灵活,定位准确。1 扫描镜系统的构成 整个扫描系统主要由机械扫描转镜、控制系统和PC 机软件(接口)3部分组成: 其中第1部分是整个扫描系统的机械框架,它通过两面反射镜实现了发射、接收视场在半第33卷 第4期  2003年7月 青岛海洋大学学报JOURNAL OF OCEAN UNIVERS ITY OF QINGDAO 33(4):621~626 J uly,2003 X 国家高技术研究发展计划(863)十三主题项目(2002AA135280);国家自然科学基金项目(40176011)资助收稿日期:2002-06-17;修订日期:2003-04-18 张 博,男,1977年11月出生,硕士。

雷达信号matlab仿真

雷达信号matlab仿真

雷达系统分析大作 作 者: 陈雪娣 学号:0410420727 1. 最大不模糊距离: ,max 1252u r C R km f == 距离分辨率: 1502m c R m B ?= = 2. 天线有效面积: 22 0.07164e G A m λπ == 半功率波束宽度: 3 6.44o db G θπ == 3. 模糊函数的一般表示式为 () ()()2 2* 2 ;? ∞ ∞ -+= dt e t s t s f d f j d πττχ 对于线性调频信号 ()21 j t p p t s t ct e T T πμ??= ? ??? 则有: ()()2 21 ;Re Re p j t T j t d p p p t t f ct ct e e dt T T T πμπμτ χτ∞+-∞????+= ? ? ? ????? ? () ()()sin 1;11d p p d p d p p f T T f T f T T τπμττχττπμτ????+- ? ? ? ???????=- ? ?????+- ? ? ? ? 分别令0,0==d f τ可得()()2 2 0;,;0τχχd f ()() sin 0;d p d d p f T f f T πχπ=

()sin 1 ;01 1p p p p p T T T T T τπμττχττπμτ?? ??- ? ? ? ???????=- ? ?????- ? ?? ? 程序代码见附录1的T_3.m, 仿真结果如下:

4. 程序代码见附录1的T_4.m, 仿真结果如下:

多普勒雷达原理

汽笛声变调的启示--多普勒雷达原理 1842年一天,奥地利数学家多普勒路过铁路交叉处,恰逢一列火车从他身 旁驰过,他发现火车由远而近时汽笛声变响,音调变尖(注:应为“汽笛声的音频频率变高”);而火车由近而远时汽笛声变弱,音调变低(应为“汽笛声的音频频率降低了”)。他对这种现象感到极大兴趣,并进行了研究。发现这是由于振源与观察者之间存在着相对运动,使观察者听到的声音频率不同于振源频率的缘故,称为频移现象。因为这是多普勒首先提出来的,所以称为多普勒效应。 由于缺少实验设备,多普勒当时没有用实验进行验证。几年后有人请一队小号手在平板车上演奏,再请训练有素的音乐家用耳朵来辨别音调的变化,验证了该效应。 为了理解这一现象,需要考察火车以恒定速度驶近时,汽笛发出的声波在传播过程中表现出的是声波波长缩短,好像波被“压缩”了。因此,在一定时间间隔内传播的波数就增加了,这就是观察者为什么会感受到声调变高的原因;相反,当火车驶向远方时,声波的波长变大,好像波被“拉伸”了。因此,汽笛声听起来就显得低沉。 用科学语言来说,就是在一个物体发出一个信号时,当这个物体和接收者之间有相对运动时,虽然物体发出的信号频率固定不变,但接收者所接收到的信号频率相对于物体发出的信号频率出现了差异。多普勒效应也可以用波在介质中传播的衰减理论解释,波在介质中传播,会出现频散现象,随距离增加,高频向低频移动。 多普勒效应不仅适用于声波,它也适用于所有类型的波,包括电磁波。 多普勒效应被发现以后,直到1930年左右,才开始应用于电磁波领域中。常见的一种应用是医生检查就诊人用的“彩超”,就是利用了声波的多普勒效应。简单地说,“彩超”就是高清晰度的黑白B超再加上彩色多普勒。超声振荡器产生一种高频的等幅超声信号,向人体心血管器官发射,当超声波束遇到运动的脏器和血管时,便产生多普勒效应,反射信号为换能器所接受,根据反射波与发射波的频率差可以求出血流速度,根据反射波的频率是增大还是减小判定血流方向。 20世纪40年代中期,也就是多普勒发现这种现象之后大约100年,人们才将多普勒效应应用于雷达上。多普勒雷达就是利用多普勒效应进行定位,测速,测距等的雷达。当雷达发射一固定频率的脉冲波对空扫描时,如遇到活动目标,回波的频率与发射波的频率出现频率差(称为多普勒频率),根据多普勒频率的大小,可测出目标对雷达的径向相对运动速度;根据发射脉冲和接收的时间差,可以测出目标的距离。20世纪70年代以来,随着大规模集成电路和数字处理技术的发展,多普勒雷达广泛用于机载预警、导航、导弹制导、卫星跟踪、战场侦察、靶场测量、武器火控和气象探测等方面,成为重要的军事装备以及科学研究、业务应用装置。 多普勒天气雷达,是以多普勒效应为基础,当大气中云雨等目标物相对于雷达发射信号波有运动时,通过测定接收到的回波信号与发射信号之间的频率差异就能够解译出所需的信息。它与过去常规天气雷达仅仅接收云雨目标物对雷达发射电磁波的反射回波进了一大步。这种多普勒天气雷达的工作波长一般为5~10厘米,除了能起到常规天气雷达通过回波测定云雨目标物空间位置、强弱分布、垂直结构等作用,它的重大改进在于利用多普勒效应可以测定降水粒子的运

雷达测速仪有哪些特点

我国河流湖泊众多,水网密布,而要测量水流的流速,记录水文数据资料,就需要用到测速仪。雷达测速仪就是众多测速仪中的一种,雷达测流运用的原理是多普勒效应。多普勒效应是为纪念奥地利物理学家克里斯琴约翰.多普勒而命名的。在声学领域中,当声源与接收体(即探头和反射体)之间有相对运动时,回声的频率将有所变化,此种频率的变化称之为频移,即多普勒效应。如下图所示,当雷达流速仪与水体以相对速度V发生对运动时,雷达流速仪所收到的电磁波频率与雷达自身所发出的电磁波频率有所不同, 此频率差称为多普勒频移。通过解析频移与V的关系,得到流体表面流速。 雷达测速仪被广泛应用在河道、灌渠、防汛等水文测量;江河、水资源监测;环保排污、地下水道管网监测;城市防洪、山区暴雨性洪水监测;地质灾害预警监测等诸多领域。 今天我们主要来看看雷达测速仪的特点,主要有如下几个特点: 1、非接触、安全低损、少维护、不受泥沙影响; 2、能胜任洪水期高流速条件下的测量; 3、具有防反接、防雷保护功能; 4、系统功耗低,一般太阳能供电即可满足测流需要; 5、多种接口方式,既有数字接口又具有模拟接口,方便接入系统; 6、无线传输功能(可选),可将数据无线传输到3.5km以外;

7、测速范围宽,测量距离远达40m; 8、多种触发模式:周期、触发、查询、自动; 9、安装特别简单,土建量很少; 10、全防水设计,适合野外使用。 非接触雷达测流方式测速时设备不受污水腐蚀,不受泥沙影响,少受水毁影响,土建简单,便于维护,保障人员安全,特殊的天线设计使得功耗超低,大大降低了供电需求。不仅可用于平时流速监测,而且特别适合承担急难险重观测任务。 航征科技是目前国内具有自主知识产权的雷达方案提供商, 拥有多项专利和软件著作权。航征面向水文、水利、环境保护、城市排水管网等行业用户, 提供雷达流速流量在线监测解决方案。航征分别在上海、无锡建立了运营和研发测试中心,拥有完整的技术研发体系和阵容强大的科研队伍,与清华大学、国防科技大学、上海交通大学等知名院校达成长期战略合作,有多位业内专家作为公司的技术后盾,立志成为全球优秀的智能传感解决方案提供商。

自制直接探测多普勒测风激光雷达的总体结构和技术参数介绍

自制直接探测多普勒测风激光雷达的总体结构和技术参数介绍引言风是研究大气动力学和气候变化的一个重要参量,利用风的数据,可以获得大气的变化,并预见其改变,促进人类对能量、水、气溶胶、化学和其它空气物质圈的了解,提高气象分析和预测全球气候变化的能力。目前的风场数据主要来源于无线电探空测风仪、地面站、海洋浮标、观测船、飞行器以及卫星,它们在覆盖范围和观测频率上都存在很大限制。对全球进行直接三维风场测量已经提到日程上来,世界气象组织提出了全球范围的高分辨率大气风场数据的迫切需要,迄今为止,多普勒测风激光雷达是唯一能够获得直接三维风场廓线的工具,具有提供全球所需数据的发展潜力[1]。 激光雷达是探测大气的有力工具,随着激光技术、光学机械加工技术、信号探测、数据采集以及控制技术的发展,激光雷达技术的发展也日新月异。多普勒测风激光雷达具有实用性、高分辨率和三维观测等优点,是其它探测手段难以比拟的[2,3,4]。 新研制的1064 nm直接探测多普勒测风激光雷达,利用双边缘技术对对流层三维风场进行探测[5]。本文介绍了该激光雷达的总体结构及其各部分的功能,并对其探测对流层风场的初步结果进行了分析和讨论。 1 总体结构和技术参数1064 nm直接探测多普勒测风激光雷达从整体上由激光发射单元、二维扫描单元,回波信号接收单元、信号探测和数据采集单元及控制单元五部分组成,其结构示意图和外观照片分别见图1和图2,主要的技术参数见表1。 激光发射单元、回波信号接收单元、信号探测和数据采集单元放置在光学平台上,保证其光学稳定性。Nd:YAG激光器的中心波长是1064 nm,工作在此波长,可以有较大的激光输出功率,并且气溶胶的后向散射截面比较大。脉冲重复频率为50 Hz,可以节省探测的时间,能捕捉短时间内风速的变化,有利于提高风速探测的准确度。同时,激光器内部注入种子激光可以保证激光器的频率稳定。 二维扫描单元安置在实验房的房顶,接收望远镜的上方。由两个镀有1064 nm波长全反的

脉冲多普勒雷达的总结

脉冲多普勒雷达的总结 1、适用范围 脉冲多普勒(PD)雷达是在动目标显示雷达基础上发展起来的一种新型雷达体制。这种雷达具有脉冲雷达的距离分辨力和连续波雷达的速度分辨力,有更强的抑制杂波的能力,因而能在较强的杂波背景中分辨出动目标回波。 2、PD雷达的定义及其特征 (1)定义:PD雷达是一种利用多普勒效应检测目标信息的脉冲雷达。 (2)特征:①具有足够高的脉冲重复频率(简称PRF),以致不论杂波或所观测到的目标都没有速度模糊。 ②能实现对脉冲串频谱单根谱线的多普勒滤波,即频域滤波。 ③PRF很高,通常对所观测的目标产生距离模糊。 3、PD雷达的分类 图1 PD雷达的分类图 ①MTI雷达(低PRF):测距清晰,测速模糊 ②PD雷达(中PRF):测距模糊,测速模糊,是机载雷达的最佳波形选择 ③PD雷达(高PRF):测距模糊,测速清晰 4、机载下视PD雷达的杂波谱分析 机载下视PD雷达的地面杂波是由主瓣杂波、旁瓣杂波和高度线杂波所组成的。 、PRF 的选择 (1)高、中、低脉冲重复频率的选择 ①机载雷达在没有地杂波背景干扰的仰视情况下,通常采用低PRF加脉冲压缩。 ②迎面攻击时高PRF优于中PRF。尾随时,在低空,中PRF优于高PRF ;在高空,高PRF优于中PRF。 ③交替使用中、高PRF的方法,或者再加上在下视时采用低PRF的方法,并在低、中PRF时配合采用脉冲压缩技术,将是在所有工作条件下得到远距离探测性能的最有效的方

法。 (2)高PRF时重复频率的选择 ①使迎面目标谱线不落人旁瓣杂波区中: ②为了识别迎面和离去的目标: A、当接收机单边带滤波器对主瓣杂波频率固定时: B、当接收机单边带滤波器相对发射频率是固定时: 注:单边带滤波器的通带范围应从,单边带滤波器的中心频率是固定的,但偏离应为。 6、PD雷达的信号处理系统 PD雷达的信号处理系统主要由单边带滤波器、主瓣杂波抑制滤波器、零多普勒频率抑制滤波器、多普勒滤波器组、检波积累、转换器和门限等部分组成,下面总结各组成部分的特点及其实现方法。 (1)单边带滤波器 特点:带宽近似等于脉冲重复频率fr, 一般设置在中频; 从回波频谱中只滤出单根谱线; 避免了后面信号处理过程中可能产生的频谱折叠效应; 距离选通波门必须设在单边带滤波器之前; 要求带外抑制至少要大于60dB; 实现方法:采用石英晶体滤波器 (2)主瓣杂波抑制滤波器 特点:比目标回波能量要高出60-80dB; 主瓣杂波抑制滤波器的幅一频特性应是主瓣杂波频谱包络的倒数; 相当于一个白化滤波器,经过主瓣杂波抑制之后,后面的多普勒滤波器可以 按照白噪声中的匹配滤波理论来进行设计; 实现方法:首先确定它的频率,用一个混频器先消除变化的,就可以用一个固定频率的滤波器将其滤除. 确定主瓣杂波中心频率有两种方法:一种方法是利用频率跟踪; 另一种是由天线指向和载机飞行速度计算出主瓣杂波应有的多普勒频移,直接控制压 控振荡器去产生的振荡濒率。 (3)零多普勒频率抑制滤波器 特点:用于高度杂波的滤除; 同时抑制发射机直接进人到接收机的泄漏; 实现方法:①只需断开滤波器组中落人高度杂波区的那些子滤波器的输出; ②使用可防止检测高度线杂波专用的CFAR电路; ③使用航迹消隐器除去最后输出的高度线杂波。 (4)多普勒滤波器组 特点:是覆盖预期的目标多普勒频移范围的一组邻接的窄带滤波器; 起到了实现速度分辨和精确测量的作用; 可以设在中频,也可以设在视频;

DSP多普勒雷达测速测距

DSP 实验课大作业设计 一 实验目的 在DSP 上实现线性调频信号的脉冲压缩、动目标显示(MTI )和动目标检测(MTD),并将结果与MATLAB 上的结果进行误差仿真。 二 实验内容 2.1 MATLAB 仿真 设定带宽、脉宽、采样率、脉冲重复频率,用MATLAB 产生16个脉冲的LFM ,每个脉冲有4个目标(静止,低速,高速),依次做 2.1.1 脉压 2.1.2 相邻2脉冲做MTI ,产生15个脉冲 2.1.3 16个脉冲到齐后,做MTD ,输出16个多普勒通道 2.2 DSP 实现 将MATLAB 产生的信号,在visual dsp 中做脉压,MTI 、MTD ,并将结果与MATLAB 作比较。 三 实验原理 3.1 脉冲压缩原理及线性调频信号 雷达中的显著矛盾是:雷达作用距离和距离分辨率之间的矛盾以及距离分辨率和速度分辨率之间的矛盾。雷达的距离分辨率取决于信号带宽。在普通脉冲雷达中,雷达信号的时宽带宽积为一常量(约为1),因此不能兼顾距离分辨率和速度分辨力两项指标。脉冲压缩(PC )采用宽脉冲发射以提高发射的平均功率,保证足够的最大作用距离,而在接收时则采用相应的脉冲压缩法获得窄脉冲,以提高距离分辨率,因而能较好地解决作用距离和分辨能力之间的矛盾。 一个理想的脉冲压缩系统,应该是一个匹配滤波系统。它要求发射信号具有非线性的相位谱,并使其包络接近矩形;要求压缩网络的频率特性(包括幅频特性和相频特性)与发射脉冲信号频谱(包括幅度谱和相位谱)实现完全的匹配。 脉冲压缩按信号的调制规律(调频或调相)分类,可分为以下四种: (1)线性调频脉冲压缩 (2)非线性调频脉冲压缩 (3)相位编码脉冲压缩 (4)时间频率编码脉冲压缩 本实验采用的是线性调频脉冲压缩。 线性调频信号是指频率随时间的变化而线性改变的信号。线性调频可以同时保留连续信号和脉冲的特性,并且可以获得较大的压缩比,有着良好的距离分辨率和径向速度分辨率,所以将线性调频信号作为雷达系统中一种常用的脉冲压缩信号。 接收机输入端的回波信号是经过调制的宽脉冲,所以在接收机中应该设置一个与发射信号频率匹配的滤波器,使回波信号变成窄脉冲,同时实现了宽脉冲的能量和窄脉冲的分辨能力。解决了雷达发射能量及分辨率之间的矛盾。 匹配滤波器是指输出信噪比最大准则下的最佳线性滤波器。根据匹配理论, 匹配滤波器的传输特性: 0)()(*t j e KS H ωωω-=

相控阵雷达系统的仿真_王桃桃

计算机与现代化 2014年第2期 JISUANJI YU XIANDAIHUA 总第222期 文章编号:1006- 2475(2014)02-0209-04收稿日期:2013-09-29作者简介:王桃桃(1989-),女,江苏沭阳人, 南京航空航天大学自动化学院硕士研究生,研究方向:雷达系统仿真;万晓冬(1960-),女,江苏南京人, 副研究员,硕士生导师,研究方向:分布式仿真技术,实时分布式数据库技术,嵌入式软件测试技术;何杰(1988- ),男,安徽铜陵人,硕士研究生,研究方向:机载红外弱小目标检测,三维视景仿真。相控阵雷达系统的仿真 王桃桃,万晓冬,何 杰 (南京航空航天大学自动化学院,江苏南京210016) 摘要:雷达的数字仿真及雷达仿真库的建立已经成为近年来雷达领域研究的热点。本文主要进行相控阵雷达系统的仿真研究。首先根据相控阵雷达的组成和原理,建立相控阵雷达的仿真模型与数学模型。然后选择Simulink 作为仿真平台,对相控阵雷达系统进行仿真与研究。仿真的模块主要有天线模块、信号环境模块、信号处理模块以及GUI 人机交互界面模块。最终在Simulink 库中生成自己的雷达子库,形成相控阵雷达系统,为后续相控阵雷达的研究奠定基础。关键词:雷达;相控阵;信号处理中图分类号:TP391.9 文献标识码:A doi :10.3969/j.issn.1006-2475.2014.02.047 Simulation of Phased Array Radar Systems WANG Tao-tao ,WAN Xiao-dong ,HE Jie (College of Automation Engineering ,Nanjing University of Aeronautics and Astronautics ,Nanjing 210016,China )Abstract :The digital simulation of radar and the establishment of radar simulation libraries has become research hot spot in radar field in recent years.This paper mainly focuses on phased array radar system simulation.According to the composition and prin-ciple of phased array radar ,it establishes the simulation model and mathematical model of phased array radar.Then ,the paper does simulation and research on phased array radar system by choosing Simulink as the simulation platform.The simulation mod-ule mainly includes the antenna module ,the signal environment module ,the signal processing module and GUI man-machine in-terface module.Eventually it generates radar sub-libraries and forms phased array radar system ,which lay the foundation for fol-low-up phased array radar study. Key words :radar ;phased array ;signal processing 0引言 计算机仿真技术应用于雷达源于20世纪70年代,国内雷达仿真起步较晚,仿真主要是基于SPW 、Matlab 、Simulink 、ADS 、HLA 等平台,其中Simulink 是一种在国内外得到广泛应用的计算机仿真工具,它支持线性系统和非线性系统,连续和离散事件系统,或者是两者的混合系统以及多采样率系统。ADS (Ad-vanced Design System )软件可以实现高频与低频、时域与频域、噪声、射频电路、数字信号处理电路的仿真等。SPW (Signal Processing Workspace )是用于信号处理系统设计的强有力的软件包,在雷达领域有着广泛的应用。HLA (High Level Architecture )提供了基于分布交互环境下仿真系统创建的通用技术支撑框架, 可用来快速地建造一个分布仿真系统。比较4种仿 真平台,SPW 比较昂贵,只能在Unix 操作系统下使用,HLA 通信协议复杂,不同版本的RTI 可能有无法通信的问题。Simulink 应用于雷达仿真比ADS 广泛并易于推广,所以本文采用Simulink 作为仿真平台。 为了进行后期雷达与红外的数据融合,首先需要建立雷达模块以产生雷达数据源,本文根据相控阵雷达的工作原理,采用数字仿真的方法,仿真雷达模块。首先提出相控阵雷达的仿真结构图以及给出各个模块的数学模型,然后根据数学模型,利用Simulink 仿真平台,仿真实现雷达的各组成模块,从而构建一个完整的雷达系统。同时,也可以通过使用S 函数将各个模块封装,然后建成自己的雷达仿真库,从而可以形成不同类型的雷达系统,便于更好地进行雷达系统

基于Simulink的脉冲多普勒雷达系统建模仿真

基于Simulink的脉冲多普勒雷达系统建模仿真 胡海莽1,杨万海 (西安电子科技大学电子工程学院,陕西 西安 710071) 摘要:利用计算机仿真技术的可控制性,可重复性,无破坏性,安全性,经济性等特点与优势对雷达电子对抗装备及其技术与战术运用等进行仿真与效能评估,是当前和未来雷达与电子对抗领域研究中的一种重要手段。本文的工作是建立一个基于Simulink的雷达系统仿真库,因为MATLAB的使用广泛性,因此基于其上的雷达系统仿真库较易推广。该雷达系统仿真库不仅可以协助设计雷达系统而且可以帮助学生学习雷达系统。 关键词:雷达;建模;仿真 Modeling and Simulation of PD Radar System Based on Simulink HU Hai-Mang, YANG Wan-Hai (Xidian Univ, Xi’an 710071, China) Abstract: The modeling and simulation of radar systems with system simulation tools make it possible to complete scheme reasoning and performance evaluation efficiently. This paper constructs some radar function blocks and models and simulates a pulse Doppler radar system based on Simulink5.0.The software is perfectly applied in the study of algorithms in radar signal processing and displays the system’s performance. Keywords: radar; modeling; simulation; Simulink; 1 引言 在雷达信号处理系统中系统级仿真占有极其重要的地位,经过系统级仿真能够保证产品在最高层次上的设计正确性。因为外场模拟真实战场复杂电磁环境是非常困难的,同时也耗资巨大。外场试验的次数有限,难以全面反映雷达系统在各种复杂环境下的性能,外场测试和设计修改使得试验周期长,并造成巨大浪费。 以往的工作多是基于EDA平台如SPW和SystemView,这些软件专业性很强,而且价格较贵,因此基于这些平台的雷达系统仿真库也较难推广。本文的工作是建立一个基于Simulink的雷达系统仿真库,因为MATLAB的广泛性使用,因此基于其上的雷达系统仿真库较易推广。该雷达系统仿真库不仅可以协助设计雷达系统而且可以帮助学生学习雷达系统。 Simulink是一种开放性的,用来模拟线性或非线性的以及连续或离散的或者两者混合的动态系统的强有力的系统级仿真工具。它是MATLAB的一个附加组件,用来提供一个系统级的建模与动态仿真工作平台。Simulink是用模块组合的方法来使用户能够快速、准确地创建动态系统的计算机模型的。另外,Simulink还提供一套图形动画的处理方法,使用户可以方便地观察到仿真的整个过程。 Simulink5.0在软硬件的接口方面有了长足的进步,Simulink已经可以很方便地进行实时的信号控制和处理、信息通信以及DSP的处理。仿真程序经过编译可以直接下载到DSP等硬件设备中去,使得从系统级仿真到硬件实现可以一气呵成。 本文的仿真基于MATLAB6.5及其所带的Simulink5.0。 2 脉冲多普勒雷达系统仿真 脉冲多普勒(PD)雷达是在动目标显示雷达基础上发展起来的一种新型雷达体制。这种雷达具 作者简介:胡海莽(1977-),男,江苏省淮安市人,现为西安电子科技大学电路与系统学科硕士研究生,研究方向为信息处理,系统仿真。

相关主题
文本预览
相关文档 最新文档