当前位置:文档之家› 物探名词解释

物探名词解释

物探名词解释
物探名词解释

1、均方根速度:把水平层状介质情况下的反射波时距曲线近似当作双曲线时,求出的波速就是这一水平层状介质的均方根速度。它是用各分层的层速度加权再取均方根值得到的。VR

2、射线速度:波沿射线传播的速度,Vr

3、平均速度:地震波垂直穿过地层的总厚度与单程传播所需的总时间之比

4、自激自收时间:时距曲线在t轴上的截距,在地震勘探中称为t0时间,表示波沿界面法线传播的双程旅行时间,t0=2h0/v

5、真速度:波沿射线方向传播的速度,也称射线速度。

6、视速度:地震勘探中,一般是在地面或海面观测波的传播,观测方向往往和波射线方向不一致,这时沿观测方向测得的波速度称为视速度。

7、倾角时差:这种在激发点两侧对称位置观测到的来自同一界面的反射波的时差由界面倾角引起的,称为倾角时差。

正常时差:任一接收点的反射旅行时间tx和同一反射界面的双程垂直时间t0的差,用△tn 表示

8、波的对比:在时间剖面上根据反射波同相轴的一些特征来识别和追踪同一反射界面反射波的工作,就叫做波的对比。波的对比是地震资料解释中的一项最重要的基础工作,对比工作的正确与否将直接影响地质成果的可靠程度。

9、地震资料地层岩性解释

概念:---动力学信息主要是指地震波的振幅、频率、极性等;

----地震剖面上反射波总的特征如同相轴的连续性、反射波的内部和外部几何形态等信息;

----地层岩性解释可分为地层解释和岩性解释两方面(即地震地层学和地震岩性学);10、构造发育史图:又称为古地理-古构造恢复剖面,就是将某些有地质意义的层位认为是古时期的沉积平面,然后将这一层位向上时移拉平,就可得到古构造剖面,其目的是研究这一层在其沉积时期与其它各层之间的关系。

11、振动图:在某一确定距离r处质点位移随时间而变化的曲线

12、波剖图:在某一固定时刻t,介质中不同位置处的质点的位移状态变化曲线

13、多次覆盖技术:多次覆盖技术也称共中心点叠加,共深度点叠加,共反射点叠加,其基本思想是在地面上不同的观测点或以不同的方式对地下某点的地质信息进行重复观测,这样可以保证即使个别观测点受到干扰也能得到地下每一点的信息。

14、时距图(时距曲面):如果在一点激发,而同时在一个面上的许多点进行接收,就可以记录下某一个波到达观测面上的各点的时间,若观测面是平面,在直角坐标系中此面上每一点的位置可用它的坐标(x,y)表示,这样,波的到达时间t就是观测点坐标(x,y)的二元函数t = f(x,y),显然,函数t = f(x,y)的图形是一个曲面,称为时距曲面,函数t = f(x,y)称为时距曲面方程。

15、介质吸收

概念:实际地层介质并非完全弹性介质,弹性波在非完全弹性介质中传播时,介质中质点振动的能量因质点之间相互摩擦,有一部分能量要转化为热能而损失掉,这种现象称为介质对地震波的吸收。这种具有吸收性能的非理想弹性介质就是前面所讲的“粘弹性介质”。

表明:①吸收作用使振幅按指数规律衰减,衰减程度取决于α的大小

②介质吸收对频率具有选择性,高频吸收强,振幅衰减快。所以波在传播距离较远时,高频损失多,相对低频较丰富。

③频谱频带变窄,分辨率降低。

大地(低通)滤波作用

概念:地震波在地层中传播时高频损失快,低频损失慢,波形拉长,频带变窄

16、波前扩散(球面扩散、几何扩散)

概念:在均匀介质中,点源的波前为球面,随着传播距离的增大,球面逐渐扩展,但总能量仍保持不变,使单位面积上的能量减小,振动的振幅将随之减小,这种现象称为球面扩散(波前扩散或几何扩散)。

表明:球面波的强度与传播距离的平方成反比,振幅与传播距离成反比。

17、观测系统:地震勘探中把激发点和接收排列的相对位置关系叫做观测系统

道间距:相邻两道检波器的间距叫做道间距,一般用x ?表示。

排列长度:第一道到最后一道检波器的距离叫做排列长度,用L 表示。如果工作中确定了某种型号地震仪的接收道数N 以后,那么排列长度L 为:x N L ??-=)1(

偏移距:炮点离最近一个检波器之间的距离叫做偏移距,一般用X1表示。

炮检距:炮点与检波点之间的距离;

最大炮检距:离炮点最远的检波点与炮点的距离叫做最大炮检距,一般用Xmax 表示。 如果某一段界面上的反射波能被排列接收,称这段界面受到覆盖或受到追踪。

18、常规处理剖面质量高低的评价标准为:三高一准,即高信噪比、高分辨率、高保真度和准确的偏移归位。

19、分辨率:分辨各种地质体和地层细节的能力,它包括纵向分辨率和横向分辨率两个方面 纵向分辨率:又称垂向或时间分辨率,是指地震记录沿垂直方向能够分辨的最薄地层的厚度,它与薄层顶、底面反射波的时差和振幅变化大小有关。

横向分辨率:又称水平或空间分辨率,是指地震记录沿水平方向能够分辨的最小地质体的宽度。

20、保真度:表征电子设备输出再现输入信号的相似程度。保真度越高,无线电接收机输出的声音或电视机输出的影像越逼真。它是指反射波同相轴所在位置及其振幅的强弱关系与地下反射界面的位置及波阻抗差强弱的吻合程度。

信噪比:指有效波与干扰波强度之比,如果S 表示有效波(有效信号)的强度,用n 表示干扰波(噪声)的强度,则信噪比为S/n ,用SNR 表示。

21、动校正拉伸:数字动校正造成的波形拉伸

切除:对拉伸率大于某个百分比的地震数据进行切除

22、多次覆盖观测系统:在O2点激发,在O1O2地段接收反射波,对反射界面R2R3进行了一次观测。如果又在O1点激发,在O2O3段接收,可用斜线段AB 表示该接收地段,这时对反射界面R2R3又进行了一次观测,即重复观测了两次,同理,可对R2R3段进行更多次的覆盖,这样对整条反射界面进行多次覆盖的系统叫做多次覆盖观测系统。

23、动校正(NMO ): 动校正处理是将共反射点道集中炮检距不同的各道上来自同一界面同一点的反射波到达时间经正常时差校正后,校正为共中心点处的回声时间,以保证在叠加时它们能实现同相叠加,形成反射波能量突出的叠加道(相当于自激自收的记录道)的过程。 对于任一道来说(炮检距固定),深、浅层反射波的动校正量不同,即动校正量随时间而变;这就是动校正中所谓“动”的含义。

炮检距改变也会引起动校正量的改变,即动校正量还随空间位置而变。

24、速度分析:地震资料处理中,速度分析的目的之一是为动校正、静校正和叠加以及偏移提供速度参数。准确可靠地进行速度分析是地震资料处理的基础。对于常规处理,进行速度分析的主要方法是计算速度谱。、

25、层位标定:识别和确定反射层地质层位

——标定工作要借助于已知的钻探、测井、垂直地震剖面等资料

——在常规的地震资料解释中,通常用井的资料来标定过井地震剖面上的反射层位:即根据声波测井资料,制作过井的合成地震记录,把它置于过井的地震剖面上来标定地震层位——利用合成地震记录对测线上每口井的挂件地质层位的反射进行对比。理想情况是,对每一过测线井的同相轴都可以关联起来。

26、覆盖:如果某一段界面上的反射波能被排列接收,则称这段受到覆盖或追踪

27、波阻抗:p·v=z叫做波阻抗

28、时距曲线:地震波旅行时间与接收点坐标之间的关系曲线,即t 与x之间的关系曲线(强调的是接收点的坐标)称为时距曲线。函数t = f(x)称为时距曲线方程。

29、正常时差校正:把各接收点的时间减去相应的正常时差,这种时间上的校正为正常时差校正。

30\CDP道集:假设地下任一水平界面上的任一点A,其在地面上的投影为M。以M点为中心分别在地面O1、O2、O3、…On点激发,在对应的G1、G2、G3…Gn点接收来自界面上同一A 点的反射波,A点称为共反射点或共深度点(CDP),G1、G2、G3、…Gn各接收道称为共反射点叠加道或共深度点叠加道,其集合称为共深度点叠加道集,简称CDP道集。

覆盖次数:共反射点叠加道的道数称为覆盖次数。

《地球物理勘探》基本特点

《地球物理勘探》基本特点 (1)地球物理勘探是一种间接的勘探方法 用钻机或其它的机械手段从地下取出岩样来认识地质构造是直接的勘探方法(或称为侵入方法,invasive method)。 地球物理勘探无须从地下取出岩样,而是通过使用专门的仪器在地面(或钻孔中)观察由地下介质引起的某种物理场的分布状态,

收集和记录某些物理信息随空间或时间的变化,并对这些信息的分布特征作出解释和推断,从而揭示地球内部介质物理状态的空间变化和分布规律,以此来了解矿产资源的分布及赋存状态、查明地质构造。

(2)地球物理勘探工作具有效率高、成本低的特点以往的地球物理勘探工作为矿产资源的调查、水文地质及工程地质工作提供了大量的、获得实践检验的重要资料;尤其是在覆盖地区对研究地质构造、指导勘探、成井等方面发挥了重要作用,加快了勘探速度,降低了施工成本,提高了水文地质钻孔的成井率。

(3)地球物理勘探能更全面了解勘探目标的全貌,避 免钻孔勘探‘一孔之见’的弱点 在工程勘察中,尤其是在浅层岩溶勘察中,地球物理勘探工作能提供勘探区域内二维、甚至三维的地下岩溶分布状态,克服钻孔‘一孔之见’的局限性。 跨孔声波、电磁波透视法能了解两孔之间的岩体的完整性,能从整体上评价岩体的完整性与基础的稳定性。

(4)地球物理勘探的应用具有一定的前提条件(一)必要条件: 要有物性差异; (二)充分条件: 1、目前仪器技术条件下,能测出异常: (1)场源体要有一定的规模, (2)场源体要有一定的埋深比, (3)仪器灵敏度要高; 2、干扰要小或能分辨异常; 3、环境条件允许。

(5)反演解释具有多解性 同一物理现象(或者说同一性质的物理场的分布)可以由多种不同的因素引起。 例如,在电法勘探中,视电阻率的变化可以由被测目标体电阻率值的变化引起;也可能由于地形,产状等其他因素的变化引起。这反映了地球物理勘探资料解释具有多解性。 要克服地球物理勘探资料解释的多解性,就必须将其与钻井资料或地质资料相结合进行推断解释,必须掌握一定的地层岩矿石的物性参数。

地震勘探常用术语及计算公式

地震勘探缩写术语 2-D Two Dimensional 二维。 3-C Three Component 三分量。 3C3D 三分量三维。 3-D Three Dimensional三维。 9-C Nine Component 九分量。3分量震源╳3分量检波器=九分量。 9C3D 九分量三维。 A/D Analog to Digital模数转换。 AGC Automatic Gain Control 自动增益控制。 A V A Amplitude Variation With Angle 振幅随采集平面的方位角的变化。 A VO Amplitude Variation With Offset 振幅随偏移距的变化。 A VOA 振幅随炮检距和方位角的变化。 CDP Common Depth Point 共深度点。 CDPS Common Depth Point Stack共深度点迭加。 CMP Common Mid Point 共反射面元。共中心点。 CPU Central Processing Unit 中央控制单元。 CRP Common Reflection Point 共反射点。 D/A Digital to Analog 数模转换。 d B/octa d B/octv e 分贝/倍频程。 DMO Dip Moveout Processing 倾角时差校正。 G波G-wave 一种长周期(40—300秒)的拉夫波。通常只限于海上传播。H波H-wave 水力波。 IFP Instantaneous Floating Point 仪器上的瞬时沸点放大器。 K波K-wave 地核中传播的一种P波。 LVL Low Velocity Layer 低速层。 L波L-wave 天然地震产生的长波长面波。 NMO Normal Moveout Correction 正常时差校正,动校正。 OBS Ocean Bottom Seismometer 海底检波器。 P波P-wave 即纵波。也称初始波、压缩波、膨胀波、无旋波。 QC Quality Control 质量控制。

地震勘探名词解释(随身携带版)

振动图:从某一确定距离观察该处指点位移随时间变化的图形。 波剖面:某一确定时刻观察质点位移与波传播距离关系的图形。 隐伏层:指初至折射波法中不能探测到的地层。(两类:一类是层状介质 中的低速夹层,由于V 上>V 下,因而在低速夹层的上界面不能产 生折射波而形成隐伏层。另一类;虽然波速逐层递增,但其中某 层厚度很小,所形成的折射波不能出现在初至区,而是隐藏在续 至区中难以识别) 波前扩散:地震波由震源向周围介质传播,波前面越来越大,就是说越来 越远地离开震源,其振幅也越来越少。 吸收系数:吸收作用使地震波的振幅随传播距离成指数减小,而减小的快 慢又与岩石的物理性质和波的振动频率有关,常用吸收系数表示 波损失:反射波在离开反射点的振动方向相对于入射波到达入射点的振动 相差半个周期。 转换波:当一入射波入射到反射界面时,会产生与其类型相同的反射波或 透射波,也会产生类型不同的,与其类型不同的称为转换波. 瑞雷面波:分布在自由界面附近并沿自由界面传播的面波。 勒夫面波:当存在一速度低于下层介质的表面时,在低速带顶、底界面之 间产生一种平行于 界面的波动。 散射波:相对于波长较小或可比时则发生散射。 斯奈尔定理:是描述反射波和透射波射线几何关系的一个定律,所以又称 为反射透射定律。其主要内容有以下三个方面:①入射线、反射线、透射线在同一平面内(即射线平面)②入射角=反射角③透射角取决于入射角和界面上、下介质的波速比值 P V V V =='=2 1 1 sin sin sin β αα 式中v1、v2分别为界面上、 下介质的波速,p 为射线参量 纵向分辨率:地震记录沿垂直方向可分辨的最小地层厚度 横向分辨率:地震记录沿水平方向可分辨最窄的地质体的宽度 第一菲涅尔带:地表点震源发出的球面波到达界面时的波前面,与前面相 距1/4波长先期到达的另一波前面在界面上形成的圆 杨氏模量:当弹性体在弹性限度内单向拉伸时,应力与应变的比值。 泊松比:介质的横向应变与纵向应变的比值。 体积模量:所加压力P 与体积相对变化之比 剪切模量:固体剪切力与切应变之比 拉梅常数:当研究的弹性体是各向同性介质时,这时弹性系数可减少到只 剩2个,可用 和 来表示 单相介质:只有同一种岩相的介质 双相介质:由两种岩相组成的介质 初至波:最先到达接收点的波 临界距离:刚出现初至波的距离 截距时间:折射波时距曲线延长到时间轴的截距 回声时间:波沿界面法线传播的双程旅行时间 连续介质:水平层状介质中层与层之间的波速变化不大,可近似认为波速 为连续函数 回折波:自震源出发,在介质中沿曲射线传播,没有遇到界面就直接观测 到的波 绕射波:地震波在地下岩层传播时,当遇到岩性突变点,如断层的断棱, 地层尖灭点,不整合面上起伏点等,这些点会成为新震源,而产生一种新的球面波,这种波称为绕射波 动态范围:仪器最大允许输入信号的振幅 假频:某一连续信号在进行离散采样时,由于采样频率小于信号频率的两 倍,于是在连续信号的每个周期内采样不足两个,信号采样后变成另一种频率的新信号。 时间采样率:能够记录到的不会出现假频的最高频率 空间采样率:检波器的道间距 视距平面法:用视距曲线的方式来表示的观测系统 综合平面法:把激发点标在水平直线上,然后从激发点向两侧坐斜线组成 坐标网,当在测线上某点激发而在某地段接收时,将投影线段表示接收地段 有效波:在地震勘探中用来解决地质任务的波 干扰波:对有效波起干预和破坏作用的波 多次反射:地下存在强波阻抗界面时会发生多次反射 水平叠加:在测线上不同激发点激发、不同接收点接收来自地下界面相同 发射点的多个地震记录道进行叠加。 垂直叠加:在地面上同一点重复激发,在同一排列上重复接收,利用浅层 地震仪的垂直叠加处理功能,把同一点上重复激发,同一排列上重复接收到的信号依次叠加在一起,达到增强有效波的目的 覆盖次数:在水平叠加法中,覆盖次数n 与炮点距有如下关系:v=S*N/2n, S 为系数,v 为每次炮点移动道数,N 为仪器道数 最佳技术窗口:为了使面波、声波、直达波和折射波产生较少的干扰,可 以把接收地段选择在既较少受面波影响,也较少受折射波影响的地段 最佳偏移距技术:在最佳窗口内选择一个公共偏移距,然后移动震源,保 持所选定的偏移距,最后得到一张多道记录,各道具有相同的偏移距 波阻抗:波阻抗:指的是介质(地层)的密度和波的速度的乘积(Zi=ρiVi)。 波的反射和透射与分界面两边介质的波阻抗有关。只有在Z1 ≠ Z2的条件下,地震波才会发生反射,差别越大,反射也越强。 波振面:振动状态完全相同的点组成的 面。 波系:相邻几套稳定的波组 波形曲线:选定一个时刻t1,我们用纵坐标表示各质点离开平衡位置的距 离,就得到一条曲线,这条曲线就叫做波在t1时刻沿x 方向的波形曲线. 波前:某一时刻介质中各点刚好开始振动,这一曲面叫波前,也叫波阵面。 波后:某一时刻介质中各点的振动刚好停止,这一曲面叫波后,也叫波尾。 波面:把某一时刻介质中所有相同状态的点连成曲面,这个曲面就叫做这 个时刻的波面,也叫等相面。 不等灵敏度组合:采用某些办法使同一组内各检波器接收到的信号幅度不 一样 采样间隔:地震勘探中检波器接受的模拟信号转换为数字信号储存,需要 采样离散化,这个采样间隔就称为地震采样间隔。 地震测线:根据地震勘探的程度、目的和要求,在地面确定下来的地震勘 探野外工作的路线。可分为炮点线和接收点线 层状介质:指地质剖面是层状结构的,在每一层内速度是均匀的,但层与 层之间速度是不相同 地震波运动学:研究在地震波传播过程中的地震波波前的空间位置与其传 播时间的关系,即研究波的传播规律,以及这种时空关系与 地下地质构造的关系。 波的动力学特征:研究地震波的波形·振幅·频率·相位等与空间位置的 关系。 地震波动力学:研究地震波在传播过程中波形、振幅、频率、相位等特征 的及其变化规律,以及这些变化规律与地下的地层结构, 岩石性质及流体性质之间存在的联系。 地震子波:震源激发、沿着地层向下传播,传播一段距离后波形逐渐稳定 下来,形成具有一定形状和延续时间的波形,在地面、井中接收,接收到的振动信号就称为地震子波。 地震组合:把多个检波器的信号迭加在一起作为一道输出 多次覆盖:在测线上不同点激发相应点接收来自地下界面相同反射点的多 个多个地震记录道进行叠加。 多次覆盖观测系统:对整条反射界面进行多次覆盖的观测系统。 多次覆盖技术:压制多次反射波之类的特殊干扰波,以提高地震记录的信 噪比。 多次波记录:从震源出发,到达接收点时,在地下界面之间发生了一次以 上反射的波。多次反射波、反射-折射波、折射-反射波和绕射-反射波等等统称为多次波 地震波:由震源激发的机械振动在地下岩层中向四周传播的运动过程,这 一过程就是机械波,习称地震波。 道间距:相邻两道检波器的间距 地震勘探:通过人工方法激发地震波,研究地震波在地层中传播的情况,以 查明地下的地质构造,力寻找油气田或其他勘探目的服务的一种物探方法. 叠加原理:震源和检波器的位置可以互相交换,此种情况下,同一波的射 线路径保持不变.可用于均匀各向同性的完全弹性介质,也可用于任意形状界面的弹性介质,不均匀介质和各向异性介质。 低速带、降速带:地表附近的地层,由于长期受地质风化的作用,变得较 疏松,其波的传播速度比下层未风化层的速度要低很多,称该低速层为低速带. :某些地区,在低速带与相对高速地层之间还有一层速度偏低的过渡区,称为降速带。 单边观测系统:在炮点一方接收的观测系统。 非纵测线:激发点和接收点不在同一条直线上。 费马原理:地震波沿射线的旅行时与沿其他任何路径的旅行时相比为最 小,也是波沿旅行时最小的路径传播。 各向同(异)性介质:凡弹性性质与空间方向无关(有关)的介质 共反射点叠加:将不同接收点接收到的来自地下同一反射点的地震记录, 经过动校正后叠加起来。 共中心点叠加:将不同接收点接收到的来自地下同一中心点的地震记录, 经过动校正后叠加起来。 观测系统:观测系统是指地震波的激发点和接收点的相互位置关系。或激 发点与接收排列的相对空间位置关系。观测系统分单边和双边放炮两大类,以上两观测系统又可根据有无偏移距分为端点观测系统和有偏移距观测系统。 规则干扰:具有一定频谱和视速度,能在地震记录以上一定同相轴出现的 干扰波. 共炮点反射道集:在同一炮点激发,不同接收点上接收的反射波记录,称 为共炮点道集。在野外的数据采集原始记录中,常以这种记录形式。可分单边放炮和中间放炮。 广角反射:在第一临界角附近反射纵波和反射横波的强度都很强 滑行波:由透射定律可知,如果V2>V1 ,即sin θ2 > sin θ1 ,θ2 > θ 1。当θ1还没到90o时, θ2 到达90o,此时透射波在第二种介质中沿界面滑行,产生的波为滑行波。 横波:质点振动方向与波的传播方向垂直,速度比纵波慢,也称剪切波、 旋转波、横波或S-波,速度小于纵波约0.7倍。 横波分为SV 和SH 波两种形式。 回转波:p

地震勘探原理复习题答案

绪论 一、名词解释 1.地球物理方法(ExplorationMethods):利用各种仪器在地表观测地壳上的各种物理现象,从而推断、了 解地下的地质构造特点,寻找可能的储油构造。它是一种间接找油的方法。特点:精度和成本均高于 地质法,但低于钻探方法。 2、地震勘探:就是利用人工方法激发的地震波(弹性波),研究地震波在地层中传播的规律,以查明地下的地质构造,从而来确定矿藏(包括油气、矿石、水、地热资源等)等的位置,以及获得工程地质信息。 二、简答题 1、了解地下资源信息有那些主要手段。 (1)、地质法(2)、地球物理方法(3)、钻探法(4)、综合方法:地质、物探(物化探)、钻探 结合起来,进行综合勘探。其中,地质法贯穿始终,物探是关键,钻探是归宿。 2有几种主要地球物理勘探方法,它们的基本原理。 地球物理勘探方法是以岩矿石(或地层)与其围岩的物理性质差异为物质基础,用专门的仪器设备 观测和研究天然存在或人工形成的物理场的变化规律,进而达到查明地质构造寻找矿产资源和解决工 程地质、水文地质以及环境监测等问题为目的勘探,叫地球物理勘探,简称物探。相应的各种勘探方法,叫地球物理勘探方法,简称为物探方法,有地震勘探、重力勘探、磁法勘探、电法勘探、地球物 理测井。 (1)重力勘探:利用岩石、矿物(地层)之间的密度差异,引起重力场变化,产生重力异常,用重 力仪测量其异常值,根据异常变化情况反演地下地质构造情况。 (2)磁法勘探:利用岩石、矿物(地层)之间的磁性差异,引起磁场变化,产生磁力异常,用磁力 仪测量其异常值,根据异常变化情况反演地下地质构造情况。 (3)电法勘探:利用岩石、矿物(地层)之间的电性差异,引起电(磁)场变化,产生电性异常,用 电法(磁)仪测量其异常,根据异常变化情况反演地下地质构造情况。 (4)地震勘探:利用岩石、矿物(地层)之间的弹性差异,引起弹性波场变化,产生弹性异常(速 度不同),用地震仪测量其异常值(时间变化),根据异常变化情况反演地下地质构造情况。 (5)地球物理测井:电测井;电磁测井;放射性测井;声波测井;地温测井;密度测井。 3、地震勘探的主要工作环节。 (1)野外数据采集(2)室内资料处理(3)地震资料解释

地球物理勘探与工程物探

地球物理勘探与工程物探 一、地球物理勘探分类 (一)地球物理学 地球物理学是运用物理学的原理和方法来研究地球的学问,是一门横跨物理学和地质学的边缘、交叉科学。地球物理学所研究的对象极为广泛,上达数百公里高空的游离层,下至地球深处,包括重力、电场、地磁、地震和放射性等物性特征,都属于其研究的领域和对象。 (二)地球物理勘探 将研究地球的各种物理方法用来寻找地下矿藏,或者用来探测岩体的赋存状况,以满足工程建设的需求,就产生了应用地球物理学,或称为地球物理勘探,简称物探。地球物理勘探是以地下岩体的物理性质的差异为基础,通过探测地表或地下地球物理场、分析其变化规律,来确定被探测地质体在地下赋存的空间范围(大小、形状、埋深等)和物理性质,达到寻找矿产资源或解决水文、工程、环境问题为目的的一类探测方法。 (三)地球物理勘探分类 (1)按探测对象、应用领域的不同,物探可分为: ①石油物探 ②煤田物探 ③金属非金属物探 ④放射性物探 ⑤水文物探 ⑥工程物探 ⑦环境物探 (2)按工作环境的不同,物探可分为: ①地面物探 ②航空物探 ③海洋物探 ④地下物探 二、地球物理勘探方法 根据所探测对象(如岩溶、构造、矿体等各类目的体以及地层等)的物理性质的不同,可将地球物理勘探分为重力勘探、磁法勘探、电法勘探、放射性勘探、地震勘探、地球物理测井和地热勘探等多种方法。 (一)重力勘探 重力勘探是研究由地下岩层与其相邻层之间、各类地质体与围岩之间的密度差而引起的重力场的变化(即“重力异常”)来勘探矿产、划分地层、研究地质构造的一种物探方法。重力异常是由密度不均匀引起的重力场的变化,并迭加在地球的正常重力场上。 重力观测方法主要有动力法和静力法两种。 ⑴动力法是观测物体的运动,直接测定的量是时间。 ⑵静力法是观测物体的平衡,直接测定的量是线位移或角位移。静力法只能用于重力的相对测

油气田勘探的基本方法参考资料全

油气田勘探 2009-11-27 15:03 名词解释 现代油气勘探:是在油气田形成模式与分布规律理论的指导下,运用各种手段和方法进行资料的采集、处理与综合分析,判断油气田形成的基本条件是否存在,不断缩小勘探靶区,最终发现和探明油气田 复式油气聚集带:是指位于同一构造单元之上,彼此具有相同的成藏地质背景和密切成因联系的若干个油气藏的集合,其中以一种油气藏类型为主,而以其它类型油气藏为辅,具有成群成带分布的特点,在平面上和剖面上构成了不同层系、不同类型油气藏叠加连片的含油气带。 低熟油气:系指所有非干酪根晚期热降解成因的各类低温早熟的非常规油气。 油气化探:主要是通过油气在扩散和运移过程中所引起的一系列物理—化学变化规律,即油气藏与周围介质(大气圈、水圈、岩石圈、生物圈)之间相互关系的研究,利用地球化学异常来进行油气勘探调查,确定勘探目标和层位的一种油气勘探方法。 综合录井技术:是在钻井过程中应用电子技术、计算机技术及分析技术,通过在钻台上、钻井液循环通道上、钻具等相关部位安装一定的采集仪器,来获得工程信息、钻井液循环动态信息、钻井液性质信息、气测信息和随钻测量信息等,进而达到发现油气层、评价油气层和实时钻井监控目的的一项随钻技术。 非地震地质调查技术:是指除地震勘探技术以外的其他所有地质调查技术,包括地面测量、油气资源遥感、非地震物探、地球化学勘探等 油气显示:是指石油、天然气及其石油沥青矿物在地表的天然露头和钻井的人工露头。直接油气显示主要包括地面油气苗、井下油气显示、荧光显示、气测异常显示等。 含油岩石:是指被液态原油浸染的岩石。 含沥青岩石:是指在岩石孔隙中充填有分散固态沥青的岩石。 泥火山:地下聚集的高压气体沿断层和裂隙伴随水、粘土、沙粒和岩块一起喷出地表,井形成锥形堆积体,这便是泥火山 油矿物:石油氧化或热变质过程所衍生山的一系列有机矿物叫石油沥青矿物,简称油矿物 气测录井:用精密的色谱气测仪器或其他仪器直接检测钻井液中可燃气体含量的方法检测叫气测录井。 勘探程序:我们将油气田勘探各阶段之间的相互关系和工作的先后次序称为勘探程序 区域勘探:是指在一个大区域、含油气盆地或坳陷,从基本石油地质调查开始直到优选出有利的生油凹陷的过程,是整个勘探工作中的第一步 大区勘探:是指从众多盆地的地质调查开始,通过科学探索井钻探,优选出有利含油气盆地的过程。勘探对象是盆地。 盆地勘探:是在一个含油气盆地部通过进一步的普查工作,识别和划分出含油气系统,直到优选出有利含油气凹陷的全过程。勘探对象是含油气系统和凹陷。 圈闭预探:是指经盆地区域勘探优选出的有利含油气凹陷进行勘探,经过圈闭准备到圈闭钻探获得工业油气流的全过程。

地球物理勘探方法

地球物理探矿法 一、地球物理探矿法的基本原理 物探的基本特点是研究地球物理场或某些物理现象。如地磁场、地电场、放射性场等,而不是直接研究岩石或矿石,它与地质学方法有着本质上的不同。通过场的研究可以了解掩盖区的地质构造和产状。它的理论基础是物理学或地球物理学,系把物理学上的理论(地电学、地磁学等)应用于地质找矿。因此具有下列特点和工作前提: (一)物探的特点 1.必须实行两个转化才能完成找矿任务。先将地质问题转化成地球物理探矿的问题,才能使用物探方法去观测。在观测取得数据之后(所得异常),只能推断具有某种或某些物理性质的地质体,然后通过综合研究,并根据地质体与物理现象间存在的特定关系,把物探的结果转化为地质的语言和图示,从而去推断矿产的埋藏情况与成矿有关的地质问题,最后通过探矿工程验证,肯定其地质效果。 2.物探异常具有多解性。产生物探异常的原因,往往是多种多样的。这是由于不同的地质体可以有相同的物理场,故造成物探异常推断的多解性。如磁铁矿、磁黄铁矿、超基性岩,都可以引起磁异常。所以工作中采用单一的物探方法,往往不易得到较肯定的地质结论。一般情况应合理地综合运用几种物探方法,并与地质研究紧密结合,才能得到较为肯定的结论。 3.每种物探方法都有要求严格的应用条件和使用范围。因为矿床地质、地球物理特征及自然地理条件因地而异,从而影响物探方法的有效性。 (二)物探工作的前提 在确定物探任务时,除地质研究的需要外,还必须具备物探工作前提,才能达

到预期的目的。物探工作的前提主要有下列几方面: 1.物性差异,即被调查研究的地质体与周围地质体之间,要有某种物理性质上的差异。 2.被调查的地质体要具有一定的规模和合适的深度,用现有的技术方法能发现它所 引起的异常。若规模很小、埋藏又深的矿体,则不能发现其异常;有时虽然地质体埋藏较深,但规模很大,也可能发现异常。故找矿效果应根据具体情况而定。 3.能区分异常,即从各种干扰因素的异常中,区分所调查的地质体的异常。如铬铁矿和纯橄榄岩都可引起重力异常,蛇纹石化等岩性变化也可引起异常,能否从干扰异常中找出矿异常,是方法应用的重要条件之一。 二、地球物理探矿法的应用及其地质效果 (一)应用物探找矿的有利条件与不利条件 1.物探找矿有利条件:地形平坦,因物理场是以水平面做基面,越平坦越好;矿体形态规则;具有相当的规模,矿物成分较稳定;干扰因素少;有较详细的地质资料。最好附近有勘探矿区或开采矿山,有已知的地质资料便于对比。 2.物探找矿的不利条件:物性差异不明显或物理性质不稳定的地质体;寻找的地质体或矿体过小过深,地质条件复杂;干扰因素多,不易区分矿与非矿异常等。 (二)物探方法的种类、应用条件及地质效果简要列于表4—5。 物探方法的选择,一般是依据工作区的下列三方面情况,结合各种物探方法的特点进行选择:一是地质特点,即矿体产出部位、矿石类型(是决定物探方法的依据)、矿体的形态和产状(是确定测网大小、测线方向、电极距离大小与排列方式等决定因素);二是地球物理特性,即岩矿物性参数,利用物性统计参数分析地质构

《油气田勘探》名词解释 简答题)(主管题资料)

《油气田勘探》期末复习题及答案 一、填空题 1.石油地质学与油气田勘探的关系是理论与实践的关系。石油地质学是找油的理论指南,而油气田勘探是找油的方法论。 2.作为一项高科技的产业,油气勘探具有资金密集、技术密集、风险高、利润高的特征。 3.盆地找油理论的实质,是油气分布的源控理论与圈闭找油理论的有机结合。 4.资源调查时期的地质任务用六个字可以概括为:寻找、发现、探明。 5.油气调查技术主要包括:地面地质调查、油气资源遥感、地球物理勘探、地球化学勘探等。 6.非地震物化探是:重力勘探、磁法勘探、电法勘探、地球化学勘探的简称。 7.总体上,在三大类岩石中岩浆岩的磁化率较高,而沉积岩的磁化率较低。 8.在岩浆岩中,从超基性岩-基性岩-中性-酸性岩,岩石的磁性具有依次降低的特点。 9.录井技术依据其学科原理的差别,可以分为基于地质学原理的录井、基于物理学原理的录井、基于化学原理的录井三大类。 10.随钻测量信息主要用于几何导向和地质导向等方面。 11.根据测试时机的差别,测试工作可以分为:中途测井和完井测试。根据取样方法的差别,测试又可以分为:钻杆测试和电缆测试等。 12.勘探阶段划分的主要依据包括:勘探对象、地质任务、资源-储量目标。 13.油气勘探的对象包括不同级别的含油气地质单元,从大到小可以分为:大区、含油气盆地、含油气系统、含油气区带、油气田、油气藏。 14.资源调查时期的地质任务可以简单地概括为:择盆、选凹、定带。 15.工业勘探时期的地质任务可以简单地概括为:发现油气田和探明油气田。 16.大区概查阶段应以板块构造学说为基础,重点研究烃源岩的形成条件,包括古纬度、古气候、古地理条件。 17.盆地普查该阶段具有三个基本特点:一是勘探范围的广阔性;二是勘探任务

地震勘探原理名词解释(2)

第一章 地球物理方法(Exploration Methods): 利用各种仪器在地表观测地壳上的各种物 理现象,从而推断、了解地下的地质构造特点,寻找可能的储油构造。它是一种间接找油的方法。特点:精度和成本均高于地质法,但低于钻探方法。 地震勘探:就是利用人工方法激发的地震波(弹性波),研究地震波在地层中传播的规律,以查明地下的地质构造,从而来确定矿藏(包括油气、矿石、水、地热资源等)等的位置,以及获得工程地质信息。 第二章 地震勘探:通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下的地质构造,力寻找油气田或其他勘探目的服务的一种物探方法. 地震波:在岩层中传播的弹性波。 反射定律:入射波与反射波分居法线两侧,反射角等于入射角,条件为:上下界面波阻抗存在差异,入射波与反射波类型相同. 地震子波:震源产生的信号传播一段时间后,波形趋于稳定,我们称这时的地震波为地震子波。 爆炸时产生的尖脉冲,在爆炸点附近的介质中以冲击波的形式传播,当传播到一的距离后,波形逐渐稳定,我们称这时的地震波为地震子波。 几何地震学:地震波的运动学是研究地震波,波前的空间位置与传播时间的关系,他与几何光学相似,也是引用波前,射线等几何图形来描述波的运动过程和规律,因此又叫几何地震学. 波形曲线:选定一个时刻t1,我们用纵坐标表示各质点离开平衡位置的距离,就得到一条曲线,这条曲线就叫做波在t1时刻沿x方向的波形曲线. 正常时差的定义:第一种定义:界面水平情况下,对界面上某点以炮检距x进行观测得到的反射波旅行时同以零炮检距(自激自收)进行观测得到的反射波旅行时之差,这纯粹是因为炮检距不为零引起的时差. 第二种定义:在水平界面情况下,各观测点相对于爆炸点纯粹是由于炮检距不同而引起的反射波旅行时间差. 倾角时差:当界面倾斜时,炮检距相同,但相邻反射点传播时间不同而产生的角度差由激发点两侧对称位置观测到的来自同一界面的反射波的时差。这一时差是由于界面存在倾角引起的。 波线:在条件适当时,可以认为波及其能量是沿着一条“路径”从波源传到所考虑的一点P,

近地表地球物理勘探

近地表地球物理勘探复习资料 一名词解释 1.近地表地球物理勘探:主要利用地球物理学的理论和方法,以地球物理场和地球物质的物理性质差异、分布规律为物质基础,通过观察和研究各种地球物理场的变化来研究和解决近地表人类活动所面临或遇到的工程、水文、环境等方面地质问题的一门应用学科。 2.近地表弹性波勘探:研究人工震源(锤击、炸药爆炸、超声波等)激发所产生的地震波在地下岩层、土壤或其他介质中传播来解决工程、水文、环境等近地表地质问题的方法。 3.地震观测系统:地震波的激发点和接收排列的相互位置关系。 4.波阻抗:地震波在介质中传播时,作用于某个面积上的压力与单位时间内垂直通过此面积的质点流量(即面积乘质点振动速度)之比,具有阻力的含义,称为波阻抗,其数值等于介质密度p与波速V的乘积。 5.地震测井:通过人工方法激发地震波研究地震波在地层中传播的情况以查明地下的地质构造力寻找油气田或其他勘探目的服务的一种物探方法。 6.地震子波:爆炸时产生的尖脉冲,在爆炸点附近的介质中以冲击波的形式传播,当传播到一的距离后,波形逐渐稳定,我们称这种地震波为地震子波,是地震记录中的基本单元。 7.垂向分辨率:它是指地震记录沿垂直方向能够分辨的最薄层的厚度。 8.横向分辨率:它是指地震记录沿水平方向能够分辨的最小地质体。 9.炮检距:炮点与检波点的距离。 10.杨氏模量:弹性体单位长度的变形ΔL/L称为应变,单位截面积上的弹性力F/A称为应力。杨氏模量就是应力与应变之比。E=(F/A)/(ΔL/L) 11.垂直地震剖面法:将检波器置于深井中,在地面激发,深井中不同深度的检波器依次接收后,便得到深度-时间剖面图即垂直地震剖面的方法。 12.泊松比:横向相对减缩ΔD/D和纵向上相对伸长ΔL/L之比。σ=(ΔD/D)/(ΔL/L) 13.面波:只在自由表面或不同弹性的介质风界面附近观测到,其强度随离开界面的距离加大而迅速衰减的波。 14.电法勘探:是以岩、矿石之间的电学性质的差异为基础,通过观测和研究与这些差异有关的电场或电磁场在空间或时间上的分布特点和变化规律,来查明地下地质构造和寻找地下电性不均匀体的一类勘察地球物理方法。 15.电阻率测深法:是探测电性不同的岩层沿垂向分布情况的电阻率方法,该方法采用在同一测点上多次加大供电极距的方式,逐次测量视电阻率ρs的变化。 16.电阻率剖面法:采用固定极距的电极排列,沿剖面线逐点供电和

地震勘探原理及方法 复习答案

《地震勘探原理及方法》复习提纲 一、名词解释 1.反射波在不同密度的媒质分界面发生反射的波 2.透射波地球物理学透射波即透过波 3.滑行波由透射定律可知,如果V2>V1 ,即sinθ2 > sinθ1 ,θ2 > θ1。当θ1还没到90o时,θ2 到达90o,此时透射波在第二种介质中沿界面滑行,产生的波为滑行波。 4.折射波当入射波大于临界角时,出现滑行波和全反射。在分界面上的滑行波有另一种特性,即会影响第一界面,并激发新的波。在地震勘探中,由滑行波引起的波叫折射波,也叫做首波。入射波以临界角或大于临界角入射高速介质所产生的波. 5.波前振动刚开始与静止时的分界面,即刚要开始振动的那一时刻 6.射波前 7.均匀介质反射界面以上的介质是均匀的,即地震波传播速度是一个常数。 8.层状介质指地质剖面是层状结构的,在每一层内速度是均匀的,但层与层之间速度是 不相同 9.振动图形和波剖面某点振动随时间的变化的曲线称为振动曲线,也称振动图。地震勘探中,沿测线画出的波形曲线,也称波剖面。 10.同相轴和等相位面同向轴是一组地震道上整齐排列的相位,表示一个新的地震波的到达,由地震记录上系统的相位或振幅变化表示。 11.时间场和等时面 12.视速度当波的传播方向与观测方向不一致(夹角θ)时,观测到的速度并不是 波前的真速度V,而是视速度Va。即波沿测线方向传播速度。 13. 离散付氏变换 14. 时间域把信号表示为振幅随时间变化的函数,称为信号在时间域的表现形 式。 15. 频率域把信号表示为振幅和相位随频率变化的函数,称为信号在频率域上 的表现形式。 16. 褶积由地震子波和反射系数得到地震记录(输出相应) 17. 离散褶积由离散的地震子波和反射系数得到地震记录 18. 互相关用来表示两个信号之间相似性的一个度量,通常通过与已知信号比 较用于寻找未知信号中的特性。 19. 自相关随机误差项的各期望值之间存在着相关关系,称随机误差项之间存 在自相关性 20. 离散互相关 21. 离散自相关 22. 采样间隔地震勘探中检波器接受的模拟信号转换为数字信号储存,需要采 样离散化,这个采样间隔就称为地震采样间隔。 23. 频率单位时间内完成周期性变化的次数 24. 炮检距激发点(炮)点到接收点(检)点的距离。 25.偏移距指炮点离第一个检波器的距离,等于最小炮检距,μΔx 。 26.观测系统观测系统是指地震波的激发点和接收点的相互位置关系。或激发点与接收排列的相对空间位置关系。观测系统分单边和双边放炮两大类,以上两观测系统又可根据有无偏移距分为端点观测系统和有偏移距观测系统。

名词解释

1、累积注采比:指注入剂(水或气)的累积注入量的地下体积与采出物(油、气、水)累积采出量的地下体系之比。它是反映注采平衡状况的重要指标。累积注采比为1时叫注采平衡,大于1时叫超注,小于1叫欠注。 2、采油速度:年采出油量与地质储量之比。 指年产油量与地质储量、可采储量、剩余可采储量的比值,用百分数表示。如按实际年产量计算,则称实际采油速度。它表示每年实际采出的油量占地质储量或可采储量的百分数,也是衡量油田开发速度的一个重要指标。如按折算年产量计算,则称折算采油速度。它表示按目前生产水平所能达到的采油速度。 3、含水上升率:含水上升率定义为每采出1%的地质储量含水率的上升值。实际油藏中使用阶段末、初的含水率之差比上阶段末、初的采出程度之差来计算。即公式I=Δfw/ΔR。 4、地层系数:地层有效厚度H(m)与有效渗透率K(mD)的乘积。 5、地层流动系数:地层有效厚度与有效渗透率的乘积,除以流体粘度。 6、滚动勘探开发:是一种针对地质条件复杂的油气田而提出的一种简化评价勘探、加速新油田产能建设的快速勘探方法。它是在少数探井和早期储量估计,在对油田有一个整体认识的基础上,将高产富集区块优先投入开发,实行开发的向前延伸;同时,在重点区块突破的同时,在开发中继续深化新层系和新区块的勘探工作,解决油气田评价的遗留问题,实现扩边连片。这种“勘探中有开发,开发中有勘探”的勘探开发程序。 7、油层动用系数: 8水驱特征曲线:累积注水量和累积产油量在对数坐标夏,呈现的线性关系曲线 9递减率:单位时间内的产量变化值 10主裁比:单位时间注入水与产出液的地下体积之比 11净网密度:单位面积上的油水井数 12驱动方式:油层在开采过程中依靠那种能量来驱油 13面积注水:油井和水井按照一定的几何形状和密度均匀地布置在开发区上 原始可采储量:又称为总可采储量或最终可采储量,它是在现代工业技术条件下,能从已探明的油气田或油气藏中,可以采出的具有经济效益的商业性油气总量。 剩余可采储量:是指已经投入开发的油气田,在某一指定年份还剩余的可采储量。 储量的计算方法:类比法,容积法,动态法。 类比法:利用已知相类似油气田的储量参数,去类推尚不确定的油气田储量。 容积法:在油气田经过早期评价勘探,基本搞清了含油气构造、油气水分布、储层类型及岩石物性与流体物性之后,计算油气田原始地质储量的方法。 储量丰度:单位面积控制的地质储量。 单储系数:单位面积和单位厚度控制的地质储量。 储采比又称为储量寿命,——某年度的剩余可采储量与当年产量之比值。 采收率:累积采油量占原始地质储量的百分比。 最终采收率:油田废弃时采出的累积总采油量与地质储量之比值。 无水采收率:油田在无水期(综合含水小于2%)采出的总油量与地质储量的比值; 阶段采收率:油田某一开采阶段采出的油量与地质储量的比值; 采出程度:截止计算时间为止所采出的总采油量和地质储量的比值。 划分开发层系:把特征相近的含油小层组合在一起,与其它层分开,用单独一套井网开发,并以此为基础,进行生产规划、动态分析和调整。 边缘注水:边缘注水指注水井按一定的方式分布在油水边界处。 边缘注水的适用条件:油田面积不大(油藏宽度不大于4~5km);构造比较完整;油层结构单一,油层稳定;边部与内部连通性好,油藏原始油水边界位置清楚;流动系数(有效渗透率×有效厚度/原油粘度)较

物探名词解释

1、均方根速度:把水平层状介质情况下的反射波时距曲线近似当作双曲线时,求出的波速就是这一水平层状介质的均方根速度。它是用各分层的层速度加权再取均方根值得到的。VR 2、射线速度:波沿射线传播的速度,Vr 3、平均速度:地震波垂直穿过地层的总厚度与单程传播所需的总时间之比 4、自激自收时间:时距曲线在t轴上的截距,在地震勘探中称为t0时间,表示波沿界面法线传播的双程旅行时间,t0=2h0/v 5、真速度:波沿射线方向传播的速度,也称射线速度。 6、视速度:地震勘探中,一般是在地面或海面观测波的传播,观测方向往往和波射线方向不一致,这时沿观测方向测得的波速度称为视速度。 7、倾角时差:这种在激发点两侧对称位置观测到的来自同一界面的反射波的时差由界面倾角引起的,称为倾角时差。 正常时差:任一接收点的反射旅行时间tx和同一反射界面的双程垂直时间t0的差,用△tn 表示 8、波的对比:在时间剖面上根据反射波同相轴的一些特征来识别和追踪同一反射界面反射波的工作,就叫做波的对比。波的对比是地震资料解释中的一项最重要的基础工作,对比工作的正确与否将直接影响地质成果的可靠程度。 9、地震资料地层岩性解释 概念:---动力学信息主要是指地震波的振幅、频率、极性等; ----地震剖面上反射波总的特征如同相轴的连续性、反射波的内部和外部几何形态等信息; ----地层岩性解释可分为地层解释和岩性解释两方面(即地震地层学和地震岩性学);10、构造发育史图:又称为古地理-古构造恢复剖面,就是将某些有地质意义的层位认为是古时期的沉积平面,然后将这一层位向上时移拉平,就可得到古构造剖面,其目的是研究这一层在其沉积时期与其它各层之间的关系。 11、振动图:在某一确定距离r处质点位移随时间而变化的曲线 12、波剖图:在某一固定时刻t,介质中不同位置处的质点的位移状态变化曲线 13、多次覆盖技术:多次覆盖技术也称共中心点叠加,共深度点叠加,共反射点叠加,其基本思想是在地面上不同的观测点或以不同的方式对地下某点的地质信息进行重复观测,这样可以保证即使个别观测点受到干扰也能得到地下每一点的信息。 14、时距图(时距曲面):如果在一点激发,而同时在一个面上的许多点进行接收,就可以记录下某一个波到达观测面上的各点的时间,若观测面是平面,在直角坐标系中此面上每一点的位置可用它的坐标(x,y)表示,这样,波的到达时间t就是观测点坐标(x,y)的二元函数t = f(x,y),显然,函数t = f(x,y)的图形是一个曲面,称为时距曲面,函数t = f(x,y)称为时距曲面方程。 15、介质吸收 概念:实际地层介质并非完全弹性介质,弹性波在非完全弹性介质中传播时,介质中质点振动的能量因质点之间相互摩擦,有一部分能量要转化为热能而损失掉,这种现象称为介质对地震波的吸收。这种具有吸收性能的非理想弹性介质就是前面所讲的“粘弹性介质”。 表明:①吸收作用使振幅按指数规律衰减,衰减程度取决于α的大小 ②介质吸收对频率具有选择性,高频吸收强,振幅衰减快。所以波在传播距离较远时,高频损失多,相对低频较丰富。 ③频谱频带变窄,分辨率降低。 大地(低通)滤波作用

相关主题
文本预览
相关文档 最新文档