当前位置:文档之家› 第5章 传输层

第5章 传输层

第5章 传输层协议与传输层软件编程方法(练习)

第5章传输层协议与传输层软件编程方法(练习) 【例1】以下关于应用进程、传输层接口与套接字的描述中,错误的是()。 A)应用进程是在应用程序开发者控制下工作的,它不依赖于主机操作系统 B)传输层的TCP或UDP协议是在主机操作系统控制下工作的 C)一个IP地址与一个进程标识叫做一个“套接字”或“套接字地址” D)套接字也叫做应用程序编程接口(API) 设计该例题的目的是加深读者对应用进程、传输层接口与套接字的理解。 【例2】以下关于网络环境中应用进程标识的描述中,错误的是()。 A)IANA定义的端口号有:熟知端口号、注册端口号和临时端口号 B)客户程序使用的临时端口号的数值范围在49 152~65 535 C)服务器程序分配的熟知端口号值的范围在0~1023 D)所有的传输层协议都使用了统一的熟知端口号和临时端口号 设计该例题的目的是加深读者对网络环境中应用进程标识的理解。 【例3】以下关于TCP与UDP协议特点的比较中,错误的是()。 A)TCP面向连接,UDP无连接 B)TCP基于字节流,UDP基于报文 C)TCP提供可靠的报文传输,UDP提供的是尽力而为地交付 D)TCP传输速率高于UDP传输速率 设计该例题的目的是加深读者对TCP与UDP协议特点的理解。 【例4】假设IJDP报头的十六进制数为06 32 00 45 00 1C E2 17。求: 1)源端口号与目的端口号。 2)用户数据长度。 3)这个数据报是客户端发出还是服务器端发出的? 4)使用UDP协议的服务器是哪种类型? 设计该例题的目的是检查读者对UDP协议报头结构,以及UDP协议熟知端口号的理解。 【例5】以下关于UDP协议适用范围的描述中,错误的是()。 A)系统对性能的要求高于对数据安全性的要求 B)需要“简短快捷”的数据交换 C)需要多播和广播的应用 D)适用于实时语音与视频传输的传输层协议

第五章:传输层复习题(答案)

第五章:传输层习题集 1.传输层的基本概念: 1.(90) 在 OSI 模型中,提供端到端传输功能的层次是( C ) A.物理层 B .数据链路层 C .传输层 D .应用层 2.(90) TCP 的主要功能是( B ) A .进行数据分组 B .保证可靠传输 C .确定数据传输路径 D .提高传输速度 3.(90)TCP/IP 模型分为四层,最高两层是应用层、运输 层。 4.(90)传输层使高层用户看到的就是好像在两个运输层实体之间有一条端 到端、可靠的、全双工通信通路。 5.(90)运输层位于数据链路层上方(F) 6.(90)传输层是属于网络功能部分,而不是用户功能部分(F) 2.端口的概念: 7.(90)应用层的各种进程通过(B)实现与传输实体的交互 A 程序 B 端口 C 进程 D 调用 8.(60)传输层与应用层的接口上所设置的端口是一个多少位的地址(B) A 8位 B 16位 C 32位 D 64位 9.(90)熟知端口的范围是(C) A 0~100 B 20~199 C 0~255 D 1024~49151 10.(90)以下端口为熟知端口的是(C) A 8080 B 4000 C 161 D 256 11.(90)TCP/IP 网络中,物理地址与网络接口层有关,逻辑地址与网 际层有关,端口地址和运输层有关。 12.(90)UDP和TCP都使用了与应用层接口处的端口与上层的应用进程进 行通信。 13.(90)在TCP连接中,主动发起连接建立的进程是客户 14.(90)在TCP连接中,被动等待连接的进程是服务器。 15.(90)一些专门分配给最常用的端口叫熟知端口。 16.(60)TCP使用连接,而不仅仅是端口来标识一个通信抽象。 17.(20)一个连接由两个端点来标识,这样的端点叫插口或套接字。 18.(20)现在常使用应用编程接口作为传输层与应用层 19.(60)主机中的进程发起一个TCP连接,其源端口可以重复(F)

实验五、传输层协议分析

南华大学计算机学院 实验报告 课程名称计算机网络原理 姓名周宝 学号 20144330103 专业物联网 任课教师谭邦 日期 2016年5月21日 成绩 南华大学

实验五、传输层协议分析 5.1. 实验目的 理解TCP报文首部格式和字段的作用,TCP连接的建立和释放过程,TCP数据传输中编号与确认的作用。 5.2 实验内容 应用TCP应用程序传输文件,截取TCP报文,分析TCP报文首部信息,TCP连接的建立过程,TCP数据的编号和确认机制。 5.3 实验原理 TCP协议是传输控制协议的简称,工作在网络层协议之上,是面向连接的,可靠的,端到端的传输层协议。 1.TCP的报文格式 TCP报文段分为头部和数据两部分,如图1: 图1 TCP报文段的总体结构 TCP报文段首部又分为固定部分和选项部分,固定部分为20B,如图2所示,这些字段的组合实现了TCP的所有功能。 图2 TCP报文段的首部 TCP采用传输输连接的方式传送TCP报文,传输连接包括连接建立、数据传输和连接释放三个阶段。 2.TCP连接的建立 TCP连接建立采用“3次握手”方式。 首先,主机A的TCP向主机B的TCP发出连接请求报文段,其首部中的同步位SYN应置1,同时选择一个序号X,表明在后面传送数据时的第一个数据字节的序号是X+1,如图3所示:

主动打开被动打开连接请求 确认 确认 图3 TCP连接建立的3次握手过程 然后,主机B的TCP收到连接请求报文段后,若同意,则发回确认。在确认报文段中应将SYN和ACK都置1,确认号应为X+1,同时也为自己选择一个序号Y。 最后,主机A的TCP收到B的确认后,要向B发回确认,其ACK置1,确认号为Y+1,而自己的序号为X+1。TCP的标准规定,SYN置1的报文段都要消耗掉一个序号。 同时,运行客户进程的主机A的TCP通知上层应用进程,连接已经建立。当主机A向B发送第一个数据报文段时,其序号仍为X+1,因为前一个确认报文段并不消耗序号。 当运行服务器进程的主机B的TCP收到主机A的确认后,也通知其上层应用进程,连接已经建立。 另外,在TCP连接建立的过程中,还利用TCP报文段首部的选项字段进行双方最大报文段长度MSS协商,确定报文段的数据字段的最大长度。双方都将自己能够支持的MSS写入选项字段,比较之后,取较小的值赋给MSS,并应用于数据传送阶段。 3. TCP数据的传送 为了保证TCP传输的可靠性,TCP采用面向字节的方式,将报文段的数据部分进行编号,每个字节对应一个序号。并在连接建立时,双方商定初始序号。在报文段首部中,序号字段和数据部分长度可以确定发送方传送数据的每一个字节的序号,确认号字段则表示接收方希望下次收到的数据的第一个字节的序号,即表示这个序号之前的数据字节均已收到。这样既做到了可靠传输,又做到了全双工通信。 当然,数据传送阶段有许多复杂的问题和情况,如流量控制、拥塞控制、重传机制等,本次实验不探究。 4.TCP连接的释放 在数据传输结束后,通信的双方都可以发出释放连接的请求。TCP连接的释放采用“4次握手”。如图

第五章传输层复习题

第五章:传输层复习题. 第五章:传输层习题集 .传输层的基本概念:1 OSI 模型中,提供端到端传输功能的层次是()在 1.(90) C .传输层 D .应用层A.物理层 B .数据链路层

2.的主要功能是()(90) TCP 提高传输速确定数据传输路径 D . C .A .进行数据分组 B .保证可靠传输度。 (90)TCP/IP 3.模型分为四层,最高两层是、 一层输实体之间有是高4.(90)传输层使层用户看到的就好像在两个 运、、通信通路。条(90)运输层位于数据链路层上方()5. 传输层是属于网络功能部分,而不是用户功能部分()6.(90).端口的概念:27.(90)应用层的各种进程通过()实现与传输实体的交互端口 C 进程 D 调用A 程序 B 8.(60)传输层与应用层的接口上所设置的端口是一个多少位的地址() D 64位位A 8位 B 16位 C 32(90)熟知端口的范围是()9. 65535 ~A 0~99 B 20~199 C 0~255 D 010.(90)以下端口为熟知端口的是()A 8080 B 4000 C 161 D 256 11.层有关,逻辑地址与(90)TCP/IP 网络中,物理地址与 层有关,端口地址和运输层有关。与上层的应用进程进行 12. (90)UDP和TCP都使用了与应用层接口处的通信。TCP13.(90)在连接中,主动发起连接建立的进程是TCP14.(90)在连接中,被动等待连接的进程 是。(90)15.一些专门分配给最常用的端口叫。(60)TCP16.使用,而不仅仅是端口来标识一个通信抽象。或。(20)17.一个连接由两个端点来标识,这样的端点叫作为传输层与应用层(20)现在常使用18.

第4章_传输层协议_练习

第 4 章传输层协议练习 1.TCP/IP参考模型的(传输层)主要为网络应用程序完成端到端的数据传输服务,即进 程到进程的数据传输服务。 2.传输层把应用程序交付的数据组成传输层数据报,然后交给(网络层)去完成网络传输。 3.传输层不关心报文是怎样通过网络传输的。(正确) 4.网络通信的最终对象是(网络应用程序进程)进程。程序进程在需要通信时,要通过某 种方式和对方程序进程进行通信。 5.在计算机网络中,为了使网络应用程序之间能够顺利地通信,通信的一方通常需要处于 (守候)状态,等待另一访通信请求的到来。这种一个应用程序被动地等待,另一个应用程序通过请求启动通信过程的通信模式称作(客户/服务器模式)交互模式。 6.在设计网络应用程序时,都是将应用程序设计成两部分,即(客户程序和服务器程序)。 安装有服务器程序的计算机称作(服务器),安装有客户程序的计算机称作(客户机/客户端),客户/服务器交互模式一般简写为(C / S)模式。 7.应用程序工作时,服务器一般处于(守候)状态,监视客户端的请求;若客户端发出服 务请求,服务器收到请求后执行操作,并将结果回送到客户端。 8.在Internet中,许多应用程序的客户端可以使用(浏览器)程序代替。只需要开发Web 应用程序安装在服务器上,而客户端使用浏览器(Browser)就可以和服务器通信。这种以浏览器作为客户端的网络应用程序通信模式称作(浏览器/服务器)交互模式,简称(B / S)模式。 9.根据数据传输服务的需求,TCP/IP协议传输层提供两种类型的传输协议:(面向连接的 传输控制协议/TCP)和(非连接的用户数据报协议/UDP)。两种传输层协议分别提供(连接型)传输服务和(非连接型)传输服务。 10.传输层的(连接型)传输服务类似于数据交换中的电路交换方式,需要通信双方在传输 数据之前首先建立起(连接),即交换握手信号,证明双方都在场。 11.(传输控制协议TCP)是TCP/IP协议传输层中面向连接的传输服务协议。 12.连接型传输服务在(传输数据)之前需要建立起通信进程之间的连接。在TCP协议中建 立连接过程是(比较麻烦)。首先发出建立连接请求,(服务器)收到建立连接请求后回答同意建立连接的应答报文,(客户端)收到应答报文之后还要(确认)报文,双方才能建立通信连接。这样做的主要原因是传输层报文需要通过下层网络传输,而传输层对下层网络没有足够的信任,需要自己完成(连接差错控制)。 13.在连接型传输服务中,由于通信双方建立了连接,能够保证数据正确有序地传输,应用 程序可以利用建立的连接发送连续的数据流,即支持数据流的传输。在数据传输过程中可以进行(差错控制)、(流量控制),可以提供端到端的(可靠性)数据传输服务。 14.连接型传输服务适用于(传输可靠性)要求较高的应用程序。 15.连接型传输服务虽然可以提供可靠的传输层数据传输服务,但在传输少量信息时的通信 (效率)却不尽如人意。从提高通信(通信效率)出发,TCP/IP协议的传输层设计了(面向非连接的用户数据报协议UDP)。 16.非连接型传输服务的通信过程由于通信双方没有建立连接,报文可能会丢失,所以非连 接型传输服务的(可靠性)较差。 17.对于(非连接型)传输服务,由于通信进程间没有建立连接,只是发送数据时才占用网 络资源,所以占用网络资源少。 18.非连接型传输服务传输控制简单,通信效率高,它适用于发信息较少、对传输可靠性要 求不高或为了节省网络资源的应用程序。(正确)

第五章传输层作业

5-03当应用程序使用面向连接的TCP和无连接的IP时,这种传输是面向连接的还是无连接的? 答:都是,这要分不同的层次。在运输层TCP是面向连接的。在网络层则是无连接。 5-05试举例说明有些应用程序愿意采用不可靠的UDP,而不愿意采用可靠的TCP。 答:实时视频会议。它要求源主机以恒定的速率发送数据,并且允许在网络发生拥塞时丢失一些数据,但不允许数据有太大的时延。而UDP是无连接的,正好适合这种要求。而TCP连接会增加发送数据的时延。 5-16在停止等待协议中如果不使用编号是否可行?为什么? 答:不可行。因为这样不能明确哪一个是发送出去的分组收到了确认,而哪一个分组还没有收到确认。 1、TCP协议是面向连接的,但TCP使用的IP协议却是无连接的。这两种协议都有哪些主要的区别? 答:TCP是面向连接的,但TCP所使用的网络则可以是面向连接的(如X.25网络),但也可以是无连接的(如现在大量使用的IP 网络)。 下面是TCP和IP向上提供的功能和服务的比较。

2、端口(port)和套接字(socket)的区别是什么? 答:套接字包含了端口,因为套接字= (IP地址,端口号)。套接字是TCP连接的端点。套接字又称为“插口”。

套接字(socket)有多种意思。当使用API时,套接字往往被看成是操作系统的一种抽象,这时,套接字和一个文件描述符是很相似的,并且是应用编程接口API的一部分。套接字由应用程序产生,并指明它将由客户还是服务器来使用。当应用进程创建一个套接字时,要指明该套接字使用的端口号。 端口则是应用层服务的的一种代号,它用来标志应用层的进程。端口是一个16 bit的整数。各种服务器使用的端口号都是保留端口号,以便使客户能够找到服务器。 3、一个套接字能否同时与远地的两个套接字相连? 答:不行。一个套接字只能和另一个远地套接字相连。 4、TCP协议能够实现可靠的端到端传输。在数据链路层和网络层的传输还有没有必要来保证可靠传输呢? 答:技术的进步使得链路的传输已经相当可靠了,因此在数据链路层和网络层重复地保证可靠传输就显得多余了。现在因特网在链路层使用的PPP协议和在网络层使用的IP协议都没有确认机制和窗口机制。如果出现差错就由运输层的TCP来处理(若使用UDP协议则运输层也不处理出错的问题)。

协议分析ip协议解码详解

协议分析-协议解码详解 一、协议简介 ,全称,中文名叫因特网协议,它工作在的网络层,它负责将数据传输到正确的目的地,同时也负责路由。无论传输层使用何种协议,都要依赖来发送和接受数据。 提供一种无连接的传输机制,这就意味着在网络传输的每个数据报都作为独立的单元来对待。并不维护服务器和客户端之间的连接细节。 不能保证数据传输的可靠性。然而,这些并不意味着分组将被毫无规则的忽略,而是仅在网络出现故障时才会发生数据丢失。 下面我们来介绍一下数据报的格式、 数据报格式,如图, (图数据报的格式) ●版本:用于传输数据的版本,大小为位; ●头部长度:用于规定报头长度; ●服务类型:用于设置数据传输的优先权或者优先级,其大小为位; ●总长度:指出数据报的总长,数据报总长报头长度数据长度,大小为位; ●标识:用于标识所有的分段,大小为位; ●分段标志:确定一个数据报是否可以分段,同时也指出当前分段后面是否还有更多分段, 大小为位; ●分段偏移量:由目标计算机用于查找分段在整个数据报中的位置,大小位位; ●生存时间:设置数据报可以经过的最多路由器数。长度为位; ●协议:指定用于创建数据字段中的数据的上层协议,大小为位; ●校验和:检查所传输数据的完整性,大小为位; ●源地址:源地址,字段长度为位; ●目标地址:目标地址,字段长度为位;

●选项:不上一个必须的字段,字段长度具体取决于所选择的选项; ●数据:包含网络中传输的数据,数据报还包括上层协议的报头信息; 二、解码详解 使用科来网络分析系统捕获数据包,其详细解码如图, (图科来网络分析系统中数据包的详细解码) 图为科来网络分析系统中数据包的详细解码,下面我们来分别说明数据包的解码信息:版本:,表示当前网络中为; 头部长度:,表示报头长度为字节; 服务类型:,表示当前数据包中没有使用服务类型字段; 总长度:,表示该数据报总长为字节; 标识:表示该数据报的标识为(进制); 分段标志:第二位为,表示该数据报不能被分段,

第5章运输层-答案

第5章运输层 一、单项选择题 CCABC DACAC DCDBD DDCAA ACDCD 二、填空题 1. 比特、帧、IP数据报/分组、报文。 2. 面向连接的、可靠的、全双工的数据流传输_ _服务。 3. 面向非连接的、不可靠的服务。 4. TCP/IP 。其中IP 协议,TCP 。 5. IP地址和端口号。 6. 复用和分用、差错控制、流量控制和拥塞控制。 7. 目的端口,。 8. 套接字所确定。 9. 第一个字节的序号。 10. 第一个数据字节的序号。 11. 65495 字节。 12. 首部和数据这两部分。 13. 节点存储容量不够、处理机速度太低、线路带宽不够。 14. 开环控制和闭环控制两种方法。 15. 慢开始、拥塞避免、快重传和快恢复。 16. 复用和分用、差错检测 三、综合题 1.TCP协议是面向连接的,但TCP使用的IP协议却是无连接的。回答下列问题 (1)面向连接和无连接有哪些区别? (2)因特网使用的IP协议是无连接的,因此其传输是不可靠的,使人感到因特网很不可靠,为什么不让IP协议也是面向连接的? (3)TCP协议采用什么措施保证可靠性的?UDP有该措施吗? 答:(1)TCP是面向连接的,但TCP所使用的网络则可以是面向连接的,但也可以是无连接的。面向连接和无连接区别主要有: 面向连接通信分为三个阶段,第一是建立连接,在此阶段,发出一个建立连接的请求。只有在连接成功建立之后,第二阶段才传输数据。当数据传输完毕,必须释放连接。而无连接通信没有这么多阶段,它直接进行数据传输。 面向连接的通信具有数据的保序性,而无连接的通信不能保证接收数据的顺序与发送数据的顺序一致。 (2)如果主机A向主机B传送一个文件时,即使通信网络非常可靠并不能保证文件从主机A硬盘到主机B硬盘的传送是可靠的。因为如在磁盘存储系统中的硬件出现了故障,主机A不能正确地读出数据等等很多原因使数据出错。 所以应当把网络设计得简单些,而让具有智能的终端来完成“使传输变得可靠”的任务。在网络上实现“端到端的可靠传输”,就是在传输层使用面向连接的TCP协议,它可保证端到端的可靠传输。只要主机B的TCP发现了数据的传输有差错,就告诉主机A将出现差错的那部分数据重传,直到这部分数据正确传送到主机B为止。

实验三传输层TCP协议的讲解

沈阳工程学院 学生实验报告 实验室名称:信息学院网络实验室 实验课程名称:计算机网络 实验项目名称:实验三传输层TCP协议的分析 班级:姓名:学号: 实验日期:2015 年11月24日实验台编号:指导教师:批阅教师(签字):成绩:

一.实验目的 ●掌握传输层TCP协议分析方法,了解传输层TCP协议内容 二.实验内容 ●捕获传输层TCP协议数据 ●并分析传输协议原理 三.实验前的准备 ●了解传输层TCP协议的数据单元格式 ●了解传输层TCP协议规程 ●熟悉至少一种网络抓包软件的使用方法。 四.实验要求及实验软硬件环境 【基本要求】 ●按实验内容进行知识准备 ●按照预订实验步骤操作,并记录实验结果 ●分析实验记录,并得出结论 ●完成此项实验,完成实验报告。 【实验组织方式】 ●个人实验 【实验条件】 ●微机与网络环境。 五.实验步骤 1.建立网络模型: 2.连接以后进行三次握手建立连接,传输数据和释放连接,并且截下各个部分所捕获的数据 3.利用PC0向SERVERO获取数据,捕捉在由PCO传向SERVERO的TCP协议报文以及反向的TCP协议报文。 4.分析捕捉的TCP协议报文的格式。

六.实验结果记录 1.由PCO向SERVERO的TCP协议报文。 图2 PCO向SERVERO的TCP协议报文。 2. 由SERVERO向PCO的TCP协议报文。

图3 SERVERO向PCO的TCP协议报文

七.结果分析 通过分析在试验结果的TCP协议报文的知道了TCP协议报文的格式,TCP 协议报文由TCP首部和数据部分组成。并且TCP首部报文的前二十字节是固定的,如图4所示。 图4 TCP前20字节的固定报文 1.分析上图的TCP协议的报文得到如下结论: 源端口号( 16位):它(连同源主机 IP地址)标识源主机的一个应用进程。图片中的来源端口地址为 80。 目的端口号( 16位):它(连同目的主机 IP地址)标识目的主机的一个应用进程。这两个值加上 IP报头中的源主机 IP地址和目的主机 IP地址唯一确定一个 TCP连接。图片中的目的端口为1025。 顺序号( 32位):用来标识从 TCP源端向 TCP目的端发送的数据字节流,它表示在这个报文段中的第一个数据字节的顺序号。如果将字节流看作在两个应用程序间的单向流动,则 TCP用顺序号对每个字节进行计数。序号是 32bit的无符号数,序号到达 2 32- 1后又从 0开始。当建立一个新的连接时, SYN标志变 1,顺序号字段包含由这个主机选择的该连接的初始顺序号 ISN( Initial Sequence Number)。图片中的序号为0。 确认号( 32位):包含发送确认的一端所期望收到的下一个顺序号。因此,确认序号应当是上次已成功收到数据字节顺序号加 1。只有 ACK标志为 1时确认序号字段才有效。 TCP为应用层提供全双工服务,这意味数据能在两个方向上独立地进行传输。因此,连接的每一端必须保持每个方向上的传输数据顺序号。上图的确认号为1。 TCP报头长度( 4位):给出报头中 32bit字的数目,它实际上指明数据

第5章作业的参考答案

《计算机网络技术》课程 作业参考答案 第五章运输层 5.1 试说明运输层在协议栈中的地位和作用。运输层的通信和网络层的通信有什么重要的区别?为什么运输层是必不可少的? 答案: (1)运输层是OSI七层模型中最重要最关键的一层,是唯一负责总体数据传输和控制的一层。运输层要达到两个主要目的:第一提供可靠的端到端的通信;第二,向会话层提供独立于网络的运输服务。在讨论为实现这两个目标所应具有的功能之前,先考察一下运输层所处的地位。首先,运输层之上的会话层、表示层及应用层均不包含任何数据传输的功能,而网络层又不一定需要保证发送站的数据可靠地送至目的站;其次,会话层不必考虑实际网络的结构、属性、连接方式等实现的细节。根据运输层在七层模型中的目的和地位,它的主要功能是对一个进行的对话或连接提供可靠的传输服务;在通向网络的单一物理连接上实现该连接的利用复用;在单一连接上进行端到端的序号及流量控制;进行端到端的差错控制及恢复;提供运输层的其它服务等。运输层反映并扩展了网络层子系统的服务功能,并通过运输层地址提供给高层用户传输数据的通信端口,使系统间高层资源的共享不必考虑数据通信方面的问题。 (2)运输层提供应用进程间的逻辑通信,也就是说,运输层之间的通信并不是真正在两个运输层之间直接传送数据。运输层向应用层屏蔽了下面网络的细节(如网络拓扑、所采用的路由选择协议等),它使应用进程看见的就是好像在两个运输层实体之间有一条端到端的逻辑通信信道。 网络层为主机之间提供逻辑通信,而运输层为应用进程之间提供端到端的逻辑通信。(3)运输层的最终目标是为用户提供有效、可靠和价格合理的服务。在一个系统中,运输实体通过网络服务与其它运输实体通信,向运输层用户(可以是应用进程,也可以是会话层协议)提供运输服务。运输层的服务包括的内容有:服务的类型、服务的等级、数据运输、用户接口、连接管理、快速数据运输、状态报告、安全保密等。因此,运输层是必不可少的。 5.9 端口的作用是什么?为什么端口号要划分为三种? 1

网络数据包协议分析

网络数据包协议分析 一、实验目的 1.学习网络协议分析工具Ethereal的使用方法; 2.截获数据并对它们观察,分析其中2中协议(arp&tcp)数据包包头各数据位的含义, 了解协议的运行机制。 二、实验步骤 1.安装并打开Ethereal软件; 2.利用”运行cmd”打开命令提示符,输入“ping”确认网络连接是否完成; 3.点击capture->options选择网卡(默认有线); 4.点击capture开始抓包; 5.打开浏览器,访问一个网站,这样才可以抓到tcp的数据包; 6.点击stop停止抓包。 三、实验结果分析 1.Arp---address resolution protocol,地址解析协议的缩写,就是主机在发送帧前将目 标IP地址(32位)转换成目标MAC地址(48位)的过程。它属于链路层的协议。

ARP协议数据包包头数据位分析: 1.第一栏显示帧信息。 Frame 280 (60 bytes on wire,60 bytes capture)是指该数据包含有60个字节,ethereal软件截获了60个字节。点击打开,里面包括了到达时间、相对前一个包的时间延迟、传输时间、帧号280、包长度(60字节)和捕获到的长度(60字节)。 2.第二栏显示以太网信息。 源MAC地址是f4:6d:04:3a:62:33,目的MAC地址是ff:ff:ff:ff:ff:ff。 3.第三栏显示因特网协议信息。 它包括了硬件类型:以太网;协议类型是IP协议和发送方的IP地址与MAC地址,也包括了目的IP地址和MAC地址。 2.tcp—transition control protocol,传输控制协议的缩写。是一种面向连接(连接导向) 的、可靠的、基于字节流的传输层通信协议。

SRIO协议解析

Serial RapidIO协议解析 1.物理层特性 1.1Two transmitters(short run and long run) and a single receiver are specified for each of three baudrates, 1.25, 2.50, and 3.125 GBaud. 1.2The short run transmitter should be used mainly for chip-to-chip connections on either the same printed circuit board or across a single connector. 1.3The long run transmitter specifications use larger voltage swings that are capable of driving signals across backplanes. This allows a user to drive signals across two connectors and a backplane. 1.4The most common equalization techniques that can be used ?Pre-emphasis on the transmitter ? A passive high pass filter network placed at the receiver. This is often referred to as passive equalization. ?The use of active circuits in the receiver. This is often referred to as adaptive equalization. 2.信号定义 Signal pin descriptions for a RapidIO 1x/4x LP-Serial port. The interface is defined either as a single- or four-lane, full duplex, point-to-point interface using differential signaling. A single-lane implementation consists of 4 wires and a four-lane implementation consists of 16 wires.

第五章 传输层 习题

第五章传输层 1、试说明运输层在协议栈中的地位和作用,运输层的通信和网络层的通信有什 么重要区别?为什么运输层是必不可少的? 答:运输层处于面向通信部分的最高层,同时也是用户功能中的最低层,向它上面的应用层提供服务 运输层为应用进程之间提供端到端的逻辑通信,但网络层是为主机之间提供逻辑通信(面向主机,承担路由功能,即主机寻址及有效的分组交换)。 各种应用进程之间通信需要“可靠或尽力而为”的两类服务质量,必须由运输层以复用和分用的形式加载到网络层。 2、接收方收到有差错的UDP用户数据报时应如何处理? 答:丢弃 3、如果应用程序愿意使用UDP来完成可靠的传输,这可能吗?请说明理由 答:可能,但应用程序中必须额外提供与TCP相同的功能。 4、为什么说UDP是面向报文的,而TCP是面向字节流的? 答:发送方 UDP 对应用程序交下来的报文,在添加首部后就向下交付 IP 层。UDP 对应用层交下来的报文,既不合并,也不拆分,而是保留这些报文的边界。 接收方 UDP 对 IP 层交上来的 UDP 用户数据报,在去除首部后就原封不动地交付上层的应用进程,一次交付一个完整的报文。 发送方TCP对应用程序交下来的报文数据块,视为无结构的字节流(无边界约束,课分拆/合并),但维持各字节 5、端口的作用是什么? 答:端口的作用是对TCP/IP体系的应用进程进行统一的标志,使运行不同操作系统的计算机的应用进程能够互相通信。 熟知端口,数值一般为0~1023.标记常规的服务进程; 登记端口号,数值为1024~49151,标记没有熟知端口号的非常规的服务进程; 6、试说明运输层中伪首部的作用。 答:用于计算运输层数据报校验和。 7、某个应用进程使用运输层的用户数据报UDP,然而继续向下交给IP层后,又 封装成IP数据报。既然都是数据报,可否跳过UDP而直接交给IP层?哪些功能UDP提供了但IP没提提供? 答:不可跳过UDP而直接交给IP层 IP数据报IP报承担主机寻址,提供报头检错;只能找到目的主机而无法找到目的进程。 UDP提供对应用进程的复用和分用功能,以及提供对数据差分的差错检验。

传输层协议的简单应用

沈阳工程学院 学生实验报告 课程名称:计算机网络 实验题目:传输层协议的简单应用 班级学号姓名 地点指导教师 实验日期: 年月日

一、实验目的 掌握套接字编程方法。 二、实验环境 F605机房Cisco Packet Tracer软件。 三、实验内容与要求 任务1:编写程序实现单客户聊天室 步骤1. 阅读下面的关于TCP编程的Java知识 TCP通信使用Scoket套接字实现。套接字代表计算机之间网络连接的对象,它提供了很多方法实现计算机之间的网络通信。下面介绍使用Scoket套接字实现网络通信的步骤。 ⑴创建服务器端套接字 服务器端套接字是ServerSocket类的实例对象,用于实现服务器程序,ServerSocket类监视指定的端口,并建立客户端到服务器端套接字的连接,也就是负责客户端的呼叫任务。 ServerSocket类有很多常用构造方法,下面只介绍一种。注意,服务器端所有的构造方法均需要处理IOExceptipon异常。 例如: try{ ServerSocket ss=new ServerSocket(1880); //监听端口号为1880的端口,ss为服务器端套接字的对象 }catch(IOException e) {//在此编写脚本处理输入输出异常

⑵创建客户端套接字 客户端端套接字是Socket类的实例对象,用于实现客户端程序。 Socket类常用构造方法很多,下面只介绍一种。同样,客户端所有的构造方法均需要处理IOExceptipon异常。 try{ Socket mysocket=new Socket("http://192.168.0.78",1880); //建立于IP地址为192.168.0.78,端口号为1880的服务器的连接 }catch(IOException e) {//在此编写脚本处理输入输出异常 } 当客户端套接字连接建立后,一条服务器与客户端的通信线路就建立起来了。 ⑶服务器端接受客户端请求 在服务器端利用其accept()方法接收客户端的套接字连接请求。 例如,上面创建的服务器端套接字ss接受客户端请求,代码如下: try{ mysocket =ss.accept();//ss为上面创建的服务器套接字对象,accept()接收 }catch(IOException e) {//在此编写脚本处理输入输出异常

JESD204B character 传输协议讲解(简单透彻)

Understanding control characters in JESD204B Here's a closer examination of the control characters that are employed in the JESD204 interface. By Jonathan Harris Product Applications Engineer Analog Devices Inc. The shift to JESD204B as the digital interface of choice for high speed data converters is well underway. The JESD204 interface was released in its original form, JESD204, in 2006 revised to JESD204A in 2008, and in August 20011 revised once more to the current JESD204B. The interface brings efficiency and offers several advantages over preceding technologies like LVDS. Designs employing JESD204B enjoy the benefits of a faster interface to keep pace with the faster sampling rates of converters. There is a reduction in package pin count which leads to smaller packages and less trace routes. The standard applies to both analogue-to-digital converters (A/D) as well as digital-to-analogue converters (D/A), and is primarily intended as a common interface to field programmable gate arrays (FPGAs) – for example the Xilinx Kintex or Vertex platforms – but it may also be used with ASICs. JESD204B differs from its predecessors in up-front complexity due to the new terms and parameters that it introduces. In this article, we'll take a closer examination of the control characters that are used in the JESD204 interface. Understanding the control characters helps provide a better understanding of how a link is synchronised and aligned. This helps designers to understand how to debug link issues that may arise when prototyping a design with the JESD204 interface. Each of the control characters performs a different function and helps maintain the alignment of data on the link as well as synchronisation and error monitoring. If an expected character is missed or an unexpected character is received, the receiver knows that an error exists. How it works is that the JESD204B words get mapped into valid 8b/10b encoded words and are set up in frames and multi-frames with specific rules. In the process, the 8b/10b encoding provides some benefits for the serial data link by using control characters that provide the ability to perform various lane alignment functions. There are five main control characters utilised in the 8b/10b encoding that allow for various functions in the JESD204B data stream. These characters are /K/, /F/, /A/, /R/, and /Q/ control characters. What a bunch of characters! The /K/ = /K28.5/ control character is used in the code group synchronisation process via the synchronisation interface (by asserting !SYNC). Once the receiver issues a synchronisation request, the transmitter begins emitting /K/ = /K28.5/ characters. The receiver synchronises and will wait for at least four consecutive /K/ = /K28.5/ characters. The receiver then deactivates its synchronisation request. This process is done according to the subclass of operation. For subclass 0 (no deterministic latency), the receiver deactivates the synchronisation request on any frame boundary after four consecutive /K/ = /K28.5/ characters have been received. For subclass 1 and 2 (deterministic latency with SYSREF or !SYNC, respectively), the receiver deactivates the synchronisation request on any local multi-frame clock boundary after four consecutive /K/ = /K28.5/ characters have been received. Figure 1: /K/ control character streaming.

第五章传输层

第五章传输层 一、选择题 1、在OSI参考模型的各层次中,()的数据传送单位是报文。 A.物理层B.数据链路层 C.网络层D.运输层 2、文件传输协议是()上的协议。 A.网络层B.运输层C.应有层D.物理层 3、TCP/IP体系结构中的TCP和IP所提供的服务分别为( ) A.链路层服务和网络层服务 B.网络层服务和运输层服务 C.运输层服务和应用层服务 D.运输层服务和网络层服务 4、TCP采用的滑动窗口() A.是3位的滑动窗口 B.仅用于流量控制 C.传输过程中窗口大小不调整 D.窗口大小为0是合法的 5、在TCP/IP协议簇的层次中,解决进程之间通信问题是在() A.网络接口层 B.网际层 C.传输层 D.应用层 7、采用有序接收的滑动窗口协议,设序号位数为n,则发送窗口最大尺寸为() A. 2n-1 B. 2n-1 C. 2n D. 2n+1 8、下面关于停止等待协议的说法错误的是() A. 停止等待协议的发送窗口和接收窗口大小都为1 B. 停止等待协议中的计数器的功能主要是防止产生死锁 C. 连续请求重传的效率一定比停止等待协议高 D. 对数据帧进行编号主要是为了防止接收端收到重复的数据 9、主机甲和主机乙之间建立一个TCP连接,TCP最大段长度为1000字节,(勤思考研)若主机甲的当前拥塞窗口为4000字节,在主机甲向主机乙连续发送2个最大段后,成功收到主机乙发送的第一段的确认段,确认段中通告的接收窗口大小为2000字节,则此时主机甲还可以向主机乙发送的最大字节数是() A、1000 B、2000 C、3000 D、4000 10、TCP是互联网中的传输层协议,TCP协议进行流量控制的方法是_______。 A.使用停等ARQ协议 B.使用后退N帧的ARQ协议 C.使用固定大小的滑动窗口协议 D.使用可变大小的滑动窗口协议 协议的类型号。

相关主题
文本预览
相关文档 最新文档