当前位置:文档之家› 2018高考数学一轮复习第6章不等式推理与证明第5节综合法与分析法反证法课时分层训练文

2018高考数学一轮复习第6章不等式推理与证明第5节综合法与分析法反证法课时分层训练文

2018高考数学一轮复习第6章不等式推理与证明第5节综合法与分析法反证法课时分层训练文
2018高考数学一轮复习第6章不等式推理与证明第5节综合法与分析法反证法课时分层训练文

课时分层训练(三十五) 综合法与分析法、反证法

A组基础达标

(建议用时:30分钟)

一、选择题

1.下列表述:①综合法是由因导果法;②综合法是顺推法;③分析法是执果索因法;

④分析法是逆推法;⑤反证法是间接证法.其中正确的个数有( )

A.2个B.3个

C.4个D.5个

D[由分析法、综合法、反证法的定义知①②③④⑤都正确.]

2.用反证法证明命题:若整数系数的一元二次方程ax2+bx+c=0(a≠0)有有理实数根,则a,b,c中至少有一个是偶数.下列假设中正确的是( )

【导学号:66482314】A.假设a,b,c至多有一个是偶数

B.假设a,b,c至多有两个偶数

C.假设a,b,c都是偶数

D.假设a,b,c都不是偶数

D[“至少有一个”的否定为“一个都没有”,即假设a,b,c都不是偶数.]

3.若a,b,c为实数,且a

【导学号:66482315】A.ac2ab>b2

C.1

a

<

1

b

D.

b

a

>

a

b

B[a2-ab=a(a-b),

∵a

∴a2-ab>0,

∴a2>ab.①

又ab-b2=b(a-b)>0,∴ab>b2,②

由①②得a2>ab>b2.]

4.分析法又称执果索因法,若用分析法证明:“设a>b>c,且a+b+c=0,求证b2-ac <3a”索的因应是( )

A.a-b>0 B.a-c>0

C.(a-b)(a-c)>0 D.(a-b)(a-c)<0

C[由题意知b2-ac<3a?b2-ac<3a2

?(a +c )2-ac <3a 2

?a 2

+2ac +c 2

-ac -3a 2

<0 ?-2a 2

+ac +c 2

<0 ?2a 2

-ac -c 2

>0

?(a -c )(2a +c )>0?(a -c )(a -b )>0.]

5.设x ,y ,z >0,则三个数y x +y z ,z x +z y ,x z +x y

( ) A .都大于2

B .至少有一个大于2

C .至少有一个不小于2

D .至少有一个不大于2

C [因为x >0,y >0,z >0,

所以? ????y x +y z +? ????z x +z y +? ????x z +x y =? ????y x +x y +? ????y z +z y +? ??

??x z +z x ≥6,

当且仅当x =y =z 时等号成立,则三个数中至少有一个不小于2.] 二、填空题

6.用反证法证明“若x 2

-1=0,则x =-1或x =1”时,应假设__________.

【导学号:66482316】

x ≠-1且x ≠1 [“x =-1或x =1”的否定是“x ≠-1且x ≠1”.]

7.设a >b >0,m =a -b ,n =a -b ,则m ,n 的大小关系是__________.

【导学号:66482317】

m

法二(分析法):a -b a ?a 0,显然成立.]

8.下列条件:①ab >0;②ab <0;③a >0,b >0;④a <0,b <0,其中能使b a +a

b

≥2成立的条件的个数是__________.

3 [要使b a +a b ≥2,只要b a >0,且a b

>0,即a ,b 不为0且同号即可,故有3个.] 三、解答题

9.已知a ≥b >0,求证:2a 3

-b 3

≥2ab 2

-a 2

b . [证明] 要证明2a 3

-b 3

≥2ab 2

-a 2

b 成立, 只需证:2a 3

-b 3

-2ab 2

+a 2

b ≥0, 即2a (a 2

-b 2

)+b (a 2

-b 2

)≥0, 即(a +b )(a -b )(2a +b )≥0. 8分 ∵a ≥b >0,∴a -b ≥0,a +b >0,2a +b >0, 从而(a +b )(a -b )(2a +b )≥0成立,

∴2a 3-b 3≥2ab 2-a 2

b . 12分

10. (2017·南昌一模)如图6-5-1,四棱锥S -ABCD 中,SD ⊥底面ABCD ,AB ∥DC ,AD ⊥

DC ,AB =AD =1,DC =SD =2,M ,N 分别为SA ,SC 的中点,E 为棱SB 上的一点,且SE =2EB

.

图6-5-1

(1)证明:MN ∥平面ABCD ; (2)证明:DE ⊥平面SBC .

[证明] (1)连接AC ,∵M ,N 分别为SA ,SC 的中点,∴MN ∥AC , 又∵MN 平面ABCD ,AC 平面ABCD , ∴MN ∥平面ABCD . 5分

(2)连接BD ,∵BD 2

=12

+12

=2,BC 2

=12

+(2-1)2

=2,

BD 2+BC 2=2+2=4=DC 2,∴BD ⊥BC .

又SD ⊥底面ABCD ,BC 底面ABCD ,∴SD ⊥BC , ∴SD ∩BD =D ,∴BC ⊥平面SDB . 8分 ∵DE 平面SDB ,∴BC ⊥DE . 又BS =SD 2

+BD 2

=4+2=6, 当SE =2EB 时,EB =

63

, 在△EBD 与△DBS 中,EB BD

632

33,BD BS =26=33

, ∴EB BD =BD

BS

. 10分

又∠EBD =∠DBS ,∴△EBD ∽△DBS , ∴∠DEB =∠SDB =90°,即DE ⊥BS ,

∵BS ∩BC =B ,∴DE ⊥平面SBC . 12分

B 组 能力提升 (建议用时:15分钟)

1.已知函数f (x )=? ????12x ,a ,b 是正实数,A =f ? ????a +b 2,B =f (ab ),C =f ? ??

?

?2ab a +b ,

则A ,B ,C 的大小关系为( )

A .A ≤

B ≤

C B .A ≤C ≤B C .B ≤C ≤A

D .C ≤B ≤A

A [∵a +b

2

≥ab ≥

2ab a +b ,又f (x )=? ??

??12x

在R 上是减函数. ∴f ?

????a +b 2≤f (ab )≤f ? ??

??2ab a +b ,即A ≤B ≤C .]

2.在不等边三角形ABC 中,a 为最大边,要想得到∠A 为钝角的结论,三边a ,b ,c 应满足__________.

a 2

>b 2

+c 2

[由余弦定理cos A =b 2+c 2-a 22bc

<0,得b 2+c 2-a 2<0,即a 2>b 2+c 2

.]

3.若f (x )的定义域为[a ,b ],值域为[a ,b ](a

(1)设g (x )=12x 2-x +3

2是[1,b ]上的“四维光军”函数,求常数b 的值;

(2)是否存在常数a ,b (a >-2),使函数h (x )=

1

x +2

是区间[a ,b ]上的“四维光军”函数?若存在,求出a ,b 的值;若不存在,请说明理由.

【导学号:66482318】

[解] (1)由题设得g (x )=12(x -1)2

+1,其图像的对称轴为x =1,区间[1,b ]在对称

轴的右边,所以函数在区间[1,b ]上递增. 2分

由“四维光军”函数的定义可知,g (1)=1,g (b )=b , 即12b 2-b +3

2=b ,解得b =1或b =3. 因为b >1,所以b =3. 5分 (2)假设函数h (x )=1

x +2

在区间[a ,b ](a >-2)上是“四维光军”函数, 因为h (x )=

1

x +2

在区间(-2,+∞)上递减,

所以有???

??

h a =b ,h b =a ,

即?????

1

a +2=

b ,1b +2=a ,

10分

解得a =b ,这与已知矛盾.故不存在. 12分

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

不等式典型例题之基本不等式的证明

5.3、不等式典型例题之基本不等式的证明——(6例题) 雪慕冰 一、知识导学 1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法). (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法. (2)商值比较法的理论依据是:“若a,b∈R + ,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法. 2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B. 3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件. 4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法. 5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新????

不等式证明的基本方法

绝对值的三角不等式;不等式证明的基本方法 一、教学目的 1、掌握绝对值的三角不等式; 2、掌握不等式证明的基本方法 二、知识分析 定理1 若a,b为实数,则,当且仅当ab≥0时,等号成立。 几何说明:(1)当ab>0时,它们落在原点的同一边,此时a与-b的距离等于它们到原点距离之和。 (2)如果ab<0,则a,b分别落在原点两边,a与-b的距离严格小于a与b到原点距离之和(下图为ab<0,a>0,b<0的情况,ab<0的其他情况可作类似解释)。 |a-b|表示a-b与原点的距离,也表示a到b之间的距离。 定理2 设a,b,c为实数,则,等号成立 ,即b落在a,c之间。 推论1

推论2 [不等式证明的基本方法] 1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的。 比较法有差值、比值两种形式,但比值法必须考虑正负。 比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述。 如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到判别式法证。 2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用。 所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述。 综合法和分析法是两种思路截然相反的证明方法,其中分析法既可以寻找解题思路,如果表述清楚,也是一个完整的证明过程.注意综合法与分析法的联合运用。 3、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。 4、放缩法:欲证A≥B,可通过适当放大或缩小,借助一个或多个中间量,使得,,再利用传递性,达到证明的目的.这种方法叫做放缩法。 【典型例题】 例1、已知函数,设a、b∈R,且a≠b,求证:

证明基本不等式的方法

2.2 证明不等式的基本方法——分析法与综合法 ●教学目标:1、理解综合法与分析法证明不等式的原理和思维特点. 2、理解综合法与分析法的实质,熟练掌握分析法证明不等式的方法与步骤. ●教学重点:综合法与分析法证明不等式的方法与步骤 ●教学难点:综合法与分析法证明不等式基本原理的理 ●教学过程: 一、复习引入: 1、复习比较法证明不等式的依据和步骤? 2、今天学习证明不等式的基本方法——分析法与综合法 二、讲授新课: 1、综合法:一般地,从已知条件出发,利用定义、公理、定理、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫做综合法综合法又叫顺推证法或由因导果法。 用综合法证明不等式的逻辑关系是:例1、已知a,b,c是不全相等的正数,求证: . 分析:观察题目,不等式左边含有“a2+b2”的形式,我们可以创设运用基本不等式:a2+b2≥2ab;还可以这样思考:不等式左边出现有三次因式:a2b,b2c,c2a,ab2,bc2,ca2的“和”,右边有三正数a,b,c的“积”,我们可以创设运用重要不等式:a3+b3+c3≥3abc.(教师引导学生,完成证明) 解:∵a>0,b2+c2≥2bc∴由不等式的性质定理4,得a(b2+c2)≥2abc.① 同理b(c2+a2)≥2abc,②c(a2+b2)≥2abc.③ 因为a,b,c为不全相等的正数,所以以上三式不能全取“=”号,从而①,②,③三式也不能全取“=”号. 由不等式的性质定理3的推论,①,②,③三式相加得:a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc. 点评:(1)综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法。基本不等式以及一些已经得证的不等式往往与待证的不等式有着这样或那样的联系,作由此及彼的联想往往能启发我们证明的方向.尝试时贵在联想,浮想联翩,思潮如涌。 (2)在利用综合法进行不等式证明时,要善于直接运用或创设条件运用基本不等式,其中拆项、并项、分解、组合是变形的重要技巧. 变式训练:已知a,b,c是不全相等的正数,求证:例2、已知且,求证:分析:观察要证明的结论,左边是个因式的乘积,右边是2的次方,再结合,发现如果能将左边转化为的乘积,问题就能得到解决。 2、分析法:从要证的结论出发,逐步寻求使它成立的充分条件,直至所需条件为已知条件或一个明显成立的事实(定义、公理或已证明的定理、性质等),从而得出要证的命题成立,这种证明方法叫做分析法这是一种执果索因的思考和证明方法。 ①用分析法证明不等式的逻辑关系是:②分析法论证“若A则B”这个命题的模式是:为了证明命题B为真,这只需要证明命题B1为真,从而有……这只需要证明命题B2为真,从而又有……这只需要证明命题A为真,而已知A为真,故B必真。 例3.求证:分析:观察结构特点,可以利用分析法。 点评:①分析法的思维特点是:执果索因.对于思路不明显,感到无从下手的问题宜用分析法探究证明途径.另外,不等式的基本性质告诉我们可以对不等式做这样或那样的变形,分析时贵在变形,不通思变,变则通! ②证明某些含有根式的不等式时,用综合法比较困难,常用分析法. ③在证明不等式时,分析法占有重要的位置.有时我们常用分析法探索证明的途径,然后用综

放缩法证明不等式的基本策略

放缩法”证明不等式的基本策略 近年来在高考解答题中, 常渗透不等式证明的内容, 而不等式的证明是高中数学中的一个难点, 以考察学生逻辑思维能力以及分析问题和解决问题的能力。特别值得一 提的是,高考中可以用 证明不等式的频率很高,它是思考不等关系的朴素思想和基本出发点 能体现出创造性。 放缩法”它可以和很多知识内容结合, 而且要恰到好处,目标往往要从证明的结论考察,放缩时要注意适度, 些高考试题,例谈 放缩”的基本策略,期望对读者能有所帮助。 1、添加或舍弃一些正项(或负项) 2、先放缩再求和(或先求和再放缩) 子分母均取正值的分式。如需放大,则只要把分子放大或分母缩小即可;如需缩小,则只要把分子缩小或 分母放大即可。 3、先放缩,后裂项(或先裂项再放缩) n J k 例 3、已知 a n =n ,求证:k=1 a k V 3- 它可 放缩法” ,有极大的迁移性,对它的运 用往往 对应变能力有较高的要求。 因为放缩必须有目标, 否则就不能同向传递。下面结合一 例1、已知 a n 2n 1(n N ).求证: a 1 a ^ a 2 a 3 丑(n N a n 1 ). 证明:Q 皀 a k 1 2k 1 2k 1 2(2k1 1) 1 3.2k 2k 2 1,2,..., n. a_ a 2 a 2 a 3 a n a n 1 1 ( 1 1 二(二 二 1 a_ 3 a 2 a 2 a 3 多项式的值变小。由于证 若多项式中加上一些正的值,多项式的值变大, 多项式中加上一些负的值, 明不等式的需要,有时需要舍去或添加一些项,使不等式一边放大或缩小,利用不等式的传递性,达到证 明的目的。本题在放缩时就舍去了 2k 2,从而是使和式得到化简 例2、函数f (x ) =±- 1 4x ,求证: (1)+f ( 2) +…+f (n ) 证明:由 f(n)= 羊7=1-- 1 4n 1 得 f (1) +f (2) + …+f (n ) n 2(1 4 1 1 丄 2 21 2 22 1 1 * 芦 >1 此题不等式左边不易求和 ,此时根据不等式右边特征 ,先将分子变为常数,再对分母进行放缩,从而对 左边可以进行求和.若分子, 分母如果同时存在变量时 ,要设法使其中之一变为常量,分式的放缩对于分

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

证明不等式的基本方法(20200920095256)

12. 4 证明不等式的基本方法 T 懈不评式证明的基車方诜:比较法,综合建、井析媒 ttMK MMM ■■座用它们证明一些简 厲的不等式. Kiff <年斋号悄况来看.本讲尼岛号血埶的一个热点一 fO 灿讪卜将芸号僧::1;与躺碓不零式结, 证 期不等式:2>M 破立,探索性问題结合,ttaAMML 厲中档題團L E 基础知识过关 [知识梳理] 1. 证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法. 2. 三个正数的算术-几何平均不等式 (1) 定理:如果a , b , c € R +那么a + ?+1需辰,当且仅当a = b = c 时,等号 a + b + c Q 成立.即三个正数的算术平均 3 不小于它们的几何平均Vabc. (2) 基本不等式的推广 对于n 个正数a i , a 2, , , a ,它们的算术平均数不小于它们的几何平均数, 即a 〔 + 汁‘ + 》^a 1a 2,—,当且仅当 a 1 = a 2 =, = a n 时,等号成立. n 3. 柯西不等式 (1)设 a , b , c , d 均为实数,则(a 2 + b 2)(c 2 + d 2)>(ac + bd)2,当且仅当 ad = bc 时等号成立. f n 「n J 「n ' ⑵若a i, b(i € N *)为实数,贝则 18 15 A l^a b i 2,当且仅当 I "八=1丿 T =1丿 (当a i = 0时,约定b i = 0, i = 1,2, , , n)时等号成立. (3) 柯西不等式的向量形式:设 a B 为平面上的两个向量,则|如3》|a ? (3当 且仅当a, 3共线时等号成立. 善纲解谨 君向预测 b^_ b2_ a 1 a 2 b n =a ;

经典不等式证明的基本方法

不等式和绝对值不等式 一、不等式 1、不等式的基本性质: ①、对称性: 传递性:_________ ②、 ,a+c >b+c ③、a >b , , 那么ac >bc ; a >b , ,那么ac <bc ④、a >b >0, 那么,ac >bd ⑤、a>b>0,那么a n >b n .(条件 ) ⑥、 a >b >0 那么 (条件 ) 2、基本不等式 定理1 如果a, b ∈R, 那么 a 2+b 2≥2ab. 当且仅当a=b 时等号成立。 定理2(基本不等式) 如果a ,b>0,那么 当且仅当a=b 时,等号成立。即两个正数的算术平均不小于它们的几何平均。 结论:已知x, y 都是正数。(1)如果积xy 是定值p ,那么当x=y 时,和x+y 有最小值 ; (2)如果和x+y 是定值s ,那么当x=y 时,积xy 有最大值 小结:理解并熟练掌握基本不等式及其应用,特别要注意利用基本不等式求最值时, 一 定要满足“一正二定三相等”的条件。 3、三个正数的算术-几何平均不等式 二、绝对值不等式 1、绝对值三角不等式 实数a 的绝对值|a|的几何意义是表示数轴上坐标为a 的点A 到原点的距离: a b b a c a c b b a >?>>,R c b a ∈>,0>c 0> d c 2,≥∈n N n 2,≥∈n N n 2 a b +≥2 1 4 s 3 ,,3a b c a b c R a b c +++∈≥==定理如果,那么当且仅当时,等号成立。 即:三个正数的算术平均不小于它们的几何平均。2122,,,,n n n a a a a a n a a ++≥=== 11把基本不等式推广到一般情形:对于n 个正数a 它们的算术平均不小于它们的几何平均,即: 当且仅当a 时,等号成立。

高中数学基本不等式证明

不等式证明基本方法 例1 :求证:221a b a b ab ++≥+- 分析:比较法证明不等式是不等式证明的最基本的方法,常用作差法和作商法,此题用作差法较为简便。 证明:221()a b a b ab ++-+- 2221[()(1)(1)]02 a b a b =-+-+-≥ 评注:1.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论 2.作差后的变形常用方法有因式分解、配方、通分、有理化等,应注意结合式子的形式,适当选 用。 例2:设c b a >>,求证:b a a c c b ab ca bc 2 22222++<++ 分析:从不等式两边形式看,作差后可进行因式分解。 证明:)(222222b a a c c b ab ca bc ++-++ =)()()(a b ab c a ca b c bc -+-+- =)()]()[()(a b ab c b b a ca b c bc -+-+-+- =))()((a c c b b a --- c b a >>Θ,则,0,0,0<->->-a c c b b a ∴0))()((<---a c c b b a 故原不等式成立 评注:三元因式分解因式,可以排列成一个元的降幂形式: =++-++)(222222b a a c c b ab ca bc )())(()(2a b ab b a b a c a b c -++-+-,这样容易发现规律。 例3 :已知,,a b R +∈求证:11()()2()n n n n a b a b a b ++++≤+ 证明:11()()2()n n n n a b a b a b ++++-+ 11n n n n a b ab a b ++=+-- ()()n n a b a b a b =-+- ()()n n a b b a =--

分析法证明不等式

分析法证明不等式 山东 林 博 分析法是不等式证明的基本方法,但它不失为不等式证明的重要方法.下面以几道不等式证明题作为分析法的范例加以阐释. 例1 已知:a b c +∈R ,,, 求证:3223a b a b c ab abc +++????-3- ? ????? ≤. 分析:这道题从考查思维的角度来看,方法基本,只要从分析法入手———步步变形,问题极易解决. 证明:为了证明3223a b a b c ab abc +++????-3- ? ????? ≤, 只需证明323ab c abc --≤, 即证明332abc c ab c ab ab +=++≤. 而3333c ab ab c ab ab abc ++=≥成立,且以上各步均可逆, ∴32323a b a b c ab abc +++????-- ? ????? ≤. 点评:分析法是思考问题的一种基本方法,容易找到解决问题的突破口. 例2 已知关于x 的实系数方程2 0x ax b ++=有两个实根αβ,,证明: (1)如果||2α<,||2β<,那么2||4a b <+,且||4b <; (2)如果2||4a b <+,且||4b <,那么||2α<,||2β<. 分析:本题涉及参数较多,应注意它们之间的等量关系. 证明:∵αβ,是方程20x ax b ++=的两个实根, ∴a αβ+=-,b αβ=. (1)欲证2||4a b <+,且||4b <. 只要证2||4αβαβ+<+,且||4αβ<, 而||2α<,||2β<,从而有||4αβ+<,40αβ+>. 故只要证224()(4)αβαβ+<+,只要证22(4)(4)0αβ-->.

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

不等式的证明分析法与综合法习题

2.3不等式的证明(2)——分析法与综合法习题 知能目标锁定 1.掌握分析法证明不等式的方法与步骤,能够用分析法证明一些复杂的不等式; 2.了解综合法的意义,熟悉综合法证明不等式的步骤与方法; 重点难点透视 1.综合法与分析法证明不等式是重点,分析法是证明不等式的难点. 方法指导 1. 分析法 ⑴分析法是证明不等式的一种常用方法.它的证明思路是:从未知,看需知,逐步靠已知.即”执果索因”. ⑵分析法证明的逻辑关系是:结论A B B B B n ????? 21 (A 已确认). ⑶用分析法证题一定要注意书写格式,并保证步步可逆. ⑷用分析法探求方向,逐步剥离外壳,直至内核.有时分析法与综合法联合使用.当不等式两边有多个根式或多个分式时,常用分析法. 2. 综合法 ⑴综合法的特点是:由因导果.其逻辑关系是:已知条件 B B B B A n ????? 21(结论),后一步是前一步的必要条件. ⑵在用综合法证题时要注意两点:常用分析法去寻找证题思路,找出从何处入手,将不等式变形,使其结构特点明显或转化为容易证明的不等式. 一.夯实双基 1.若a>2,b>2,则ab 与a+b 的大小关系是ab( )a+b A.= B. < C.> D.不能确定 2.0>>a b 设,则下列不等式中正确的是( ) A.0 lg >b a B.a b a b ->- C. a a a a ++< +211 D. 1 1++< a b a b

3.若a,b,c + ∈R ,且a+b+c=1,那么 c b a 111+ + 有最小值( ) A.6 B.9 C.4 D.3 4.设2 6,37,2-=-== c b a ,那么a,b,c 的大小关系是( ) c b a A >>. b c a B >>. c a b C >>. a c b D >>. 5.若x>y>1,则下列4个选项中最小的是( ) A. 2 y x + B. y x xy +2 C.xy D. )11(21y x + 二.循序厚积 6.已知两个变量x,y 满足x+y=4,则使不等式m y x ≥+ 41恒成立的实数m 的取值范 围是________; 7.已知 a,b 为正数,且a+b=1则22+++b a 的最大值为_________; 8.若a,b,c + ∈R ,且a+b+c=1,则c b a ++的最大值是__________; 9.若xy+yz+zx=1,则222z y x ++与1的关系是__________; 10. b a n b a m b a -= - = >>,,0若,则m 与n 的大小关系是______. 三、提升能力 11. a 、b 、c 、d 是不全相等的正数,求证:(a b+cd)(ac+bd)>abcd 12.设x>0,y>0,求证: 2 2 y x y x +≤ + 13.已知a,b + ∈R ,且a+b=1,求证:2 25)1()1(2 2 ≥ + ++ b b a a .

4 基本不等式的证明(1)

4、基本不等式的证明(1) 目标: (,0)2 a b a b +≥的证明过程,并能应用基本不等式证明其他不等式。 过程: 一、问题情境 把一个物体放在天平的一个盘子上,在另一个盘子上放砝码使天平平衡,称得物体的质量为 a 。如果天平制造得不精确,天平的两臂长略有不同(其他因素不计) ,那么a 并非物体的实际质量。不过,我们可作第二次测量:把物体调换到天平的另一个盘上,此时称得物体的质量为b 。那么如何合理的表示物体的质量呢? 把两次称得的物体的质量“平均”一下,以2 a b A +=表示物体的质量。这样的做法合理吗? 设天平的两臂长分别为12,l l ,物体实际质量为M ,据力学原理有1221,l M l a l M l b == ,有2,M ab M == ,0a b >时,2 a b +叫,a b ,a b 的几何平均数 2 a b + 二、建构 一般,判断两数的大小可采用“比较法”: 02a b +-=≥ 2 a b +≤(当且仅当a b =时取等号) 说明:当0a =或0b =时,以上不等式仍成立。 从而有 2 a b +≤(0,0)a b ≥≥(称之“基本不等式” )当且仅当a b =时取等号。 2 a b +≤的几何解释: 如图,,2 a b OC CD OC CD +≥== 三、运用 例1 设,a b 为正数,证明:1(1)2(2)2b a a a b a +≥+≥ 注意:基本不等式的变形应用 2,2a b a b ab +??≤+≤ ???

例2 证明: 22(1)2a b ab +≥ 此不等式以后可直接使用 1(2)1(1)1 x x x + ≥>-+ 4(3)4(0)a a a +≤-< 2 2≥ 2 2> 例3 已知,0,1a b a b >+=,求证:123a b +≥+ 四、小结 五、作业 反馈32 书P91 习题1,2,3

(完整版)导数与不等式证明(绝对精华)

二轮专题 (十一) 导数与不等式证明 【学习目标】 1. 会利用导数证明不等式. 2. 掌握常用的证明方法. 【知识回顾】 一级排查:应知应会 1.利用导数证明不等式要考虑构造新的函数,利用新函数的单调性或最值解决不等式的证明问题.比如要证明对任意∈x [b a ,]都有)()(x g x f ≤,可设)()()(x g x f x h -=,只要利用导数说明)(x h 在[b a ,]上的最小值为0即可. 二级排查:知识积累 利用导数证明不等式,解题技巧总结如下: (1)利用给定函数的某些性质(一般第一问先让解决出来),如函数的单调性、最值等,服务于第二问要证明的不等式. (2)多用分析法思考. (3)对于给出的不等式直接证明无法下手,可考虑对不等式进行必要的等价变形后,再去证明.例如采用两边取对数(指数),移项通分等等.要注意变形的方向:因为要利用函数的性质,力求变形后不等式一边需要出现函数关系式. (4)常用方法还有隔离函数法,max min )()(x g x f ≥,放缩法(常与数列和基本不等式一起考查),换元法,主元法,消元法,数学归纳法等等,但无论何种方法,问题的精髓还是构造辅助函数,将不等式问题转化为利用导数研究函数的单调性和最值问题. (5)建议有能力同学可以了解一下罗必塔法则和泰勒展开式,有许多题都是利用泰勒展开式放缩得来. 三极排查:易错易混 用导数证明数列时注意定义域.

【课堂探究】 一、作差(商)法 例1、证明下列不等式: ①1+≥x e x ②1ln -≤x x ③x x 1-1ln ≥ ④1x 1)-2(x ln +≥ x )1(≥x ⑤)2 ,0(,2sin ππ∈>x x x 二、利用max min )()(x g x f ≥证明不等式 例2、已知函数.2 2)(),,(,ln )1(1)(e x e x g R b a x a b x ax x f +-=∈+-+-= (1)若函数2)(=x x f 在处取得极小值0,求b a ,的值; (2)在(1)的条件下,求证:对任意的],[,221e e x x ∈,总有)()(21x g x f >.

比较法证明不等式.

比较法证明不等式 2013-12-07 比较法证明不等式 1.比较法比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法)。 (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a- b≤0a≤b”。其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的.正负号,最后肯定所求证不等式成立的结论。应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法。 (2)商值比较法的理论依据是:“若a,b∈R+,a/b≥1a≥b;a/b≤1a≤b”。其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1。应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法。 2.综合法利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”。其逻辑关系为:AB1 B2 B3… BnB,即从已知A逐步推演不等式成立的必要条件从而得出结论B。 a>b>0,求证:a^ab^b>(ab)^a+b/2 因a^a*b^b=(ab)^ab, 又ab>a+b/2 故a^a*b^b>(ab)^a+b/2 已知:a,b,c属于(-2,2).求证:ab+bc+ca>-4. 用极限法取2或-2,结果大于等于-4,因属于(-2,2)不包含2和-2就不等于-4,结果就只能大于-4 下面这个方法算不算“比较法”啊?

2、综合法和分析法证明不等式

南化一中高三数学第一轮复习讲义55 第六章《不等式》 1 §6.2综合法和分析法证明不等式 【复习目标】 1. 熟悉证明不等式的综合法、分析法,并能应用其证明不等式; 2. 理解分析法的实质是“执果索因”;注意用分析法证明不等式的表述格式; 3. 对于较复杂的不等式,能综合使用各种方法给予证明。 【重点难点】 综合法的难点在于从何处出发进行论证并不明确,因此我们经常用分析法寻找解题的思路,再用综合法表述。分析法是“执果索因”,综合法是“由因导果”。要注意分析法的表述格式。 【课前预习】 1. “a>1”是“11

第55课:§6.2综合法和分析法证明不等式 《高中数学学案教学方法的研究》课题组编写 - - 2 例2 已知a>0,b>0,2c>a+b. 求证:c -ab c -2b>c B .b>c>a C .c>a>b D .a>c>b 2. 设0b>1,P=b a lg lg ,Q=)lg (lg 21 b a +,R=)2lg(b a + ( ) A .R0,y>0,证明:31 332122)()(y x y x +>+. 3. 已知a >0,b >0,且a 2+22 b =1,求证:a 21b +≤42 3. 4. 若x 、y 是正实数,x+y=1,求证:(1+x 1)(1+y 1 )≥9.

综合法和分析法证明不等式

1 / 2 §6.2综合法和分析法证明不等式 【复习目标】 1. 熟悉证明不等式的综合法、分析法,并能应用其证明不等式; 2. 理解分析法的实质是“执果索因”;注意用分析法证明不等式的表述格式; 3. 对于较复杂的不等式,能综合使用各种方法给予证明。 【重点难点】 综合法的难点在于从何处出发进行论证并不明确,因此我们经常用分析法寻找解题的思路,再用综合法表述。分析法是“执果索因”,综合法是“由因导果”。要注意分析法的表述格式。 【课前预习】 1. “a>1”是“110,b>0,2c>a+b. 求证:c -ab c -2b>c B .b>c>a C .c>a>b D .a>c>b 2. 设0b>1,P=b a lg lg ,Q=)lg (lg 21b a +,R=)2 lg(b a + ( ) A .R

基本不等式的证明

课题:基本不等式及其应用 一、教学目的 (1)认知:使学生掌握基本不等式a 2+b 2≥2ab(a 、b ∈R ,当且仅当a=b 时取“=”号)和 ab b a ≥+2 (a 、b ∈R +,当且仅当a=b 时取“=”号),并能应用它们证明一些不等式. (2)情感:通过对定理及其推论的证明与应用,培养学生运用综合法进行推理的能力. 二、教学重难点 重点:两个基本不等式的掌握; 难点:基本不等式的应用。 三、教材、学生分析 教材分析:两个基本不等式为以后学习不等式的证明和求函数的最大值或最小值提供了一种 方法,基本不等式的理解和掌握对以后的解题是很有帮助的。 学生分析:学生在上新课之前都预习了本节内容,对上课内容有一定的理解。所以根据这一 情况多补充了一些内容,增加了课堂容量。 四、教学过程 (一)引入新课 客观世界中,有些不等式关系是永远成立的。例如,在周长相等时,圆的面积比正方形的面积大,正方形的面积又比非正方形的任意矩形的面积大。对这些不等关系的证明,常常会归结为一些基本不等式。今天, 我们学习两个最常用的基本不等式。

(二)推导公式 1.奠基 如果a、b∈R,那么有(a-b)2≥0 ① 把①左边展开,得 a2-2ab+b2≥0, ∴a2+b2≥2ab. ② ②式表明两个实数的平方和不小于它们的积的2倍.这就是课本中介绍的定理1,也就是基本不等式1,对任何两实数a、b都成立.由于取“=”号这种特殊情况,在以后有广泛的应用,因此通常要指出“=”号成立的充要条件.②式中取等号的充要条件是什么呢? 学生回答:a=b,因为a=b a2+b2=2ab 充要条件通常用“当且仅当”来表达.“当”表示条件是充分的,“仅当”表示条件是必要的.所以②式可表述为:如果a、b∈R,那么a2+b2≥2ab(当且仅当a=b时取“=”号). 以公式①为基础,运用不等式的性质推导公式②,这种由已知推出未知(或要求证的不等式)的证明方法通常叫做综合法.以公式②为基础,用综合法可以推出更多的不等式.现在让我们共同来探索. 2.探索 公式②反映了两个实数平方和的性质,下面我们研究两个以上的实数的平方和,探索可能得到的结果.先考查三个实数.设a、b、c∈R,依次对其中的两个运用公式②,有 a2+b2≥2ab;

相关主题
文本预览
相关文档 最新文档