当前位置:文档之家› Indirect flow cytometry protocol

Indirect flow cytometry protocol

Indirect flow cytometry protocol
Indirect flow cytometry protocol

Cell FCM protocol 2015/3/11

Indirect flow cytometry protocol

General procedure for flow cytometry using a primary antibody and conjugated secondary antibody.

Indirect labelling requires two incubation steps, firstly with a primary antibody then with a compatible secondary antibody. The secondary (and not the primary) antibody has the fluorescent dye (FITC, PE, Cy5?, etc.) conjugated. Please note that this is a general protocol and you may need to adapt it for your applications.

General procedure:

1.Harvest and wash the cells then determine the total cell number.

Cells are usually stained in polystyrene round bottom 12 x 75 mm2 Falcon tubes. However, they can be stained in any container for which you have an appropriate centrifuge e.g. test tubes, eppendorf tubes, and

96 well, round-bottomed microtiter plates. In general, cells should be spun down hard enough so that the

supernatant fluid can be removed with little loss of cells, but not so hard that the cells are difficult to resuspend.

It is always useful to check the viability of the cells which should be around 95% and not less than 90%.

2.Resuspend the cells to approximately 1-5 x 106 cells/ml in ice cold PBS, 10% FCS, 1% sodium azide.

Use ice cold reagents/solutions and keep cells at 4°C as low temperature and presence of sodium azide prevent the modulation and internalization of surface antigens which can produce a loss of fluorescence intensity.

3.Add 100 μl of cell suspension to each tube.

4.Add 0.1-10 μg/ml of the primary antibody. Dilutions, if necessary, should be made in 3% BSA/PBS.

5.Incubate for at least 30 min at room temperature or 4°C in the dark.

6.Wash the cells 3 times by centrifugation at 400 g for 5 min and resuspend them in ice cold PBS. You may

need to adjust the conditions of the centrifugation (force and time) for the cell types used.

7.Dilute the fluorochrome-labeled secondary antibody in 3% BSA/PBS at the optimal dilution (according to

the manufacturer’s instructions) and then resuspend the cells in this solution.

8.Incubate for at least 20-30 min at room temperature of 4°C. This incubation must be done in the dark.

9.Wash the cells 3 times by centrifugation at 400 g for 5 min and resuspend them in ice cold PBS, 3% BSA,

1% sodium azide.

10.Store the cell suspension immediately at 4°C in the dark.

11.Analysis: For best results, analyze the cells on the flow cytometer as soon as possible.

We recommend analysis on the same day. For extended storage (16 hr) as well as for greater flexibility in planning time on the cytometer, resuspend cells in 1% paraformaldehyde to prevent deterioration.

FIXATION:

If you need to wait longer than 1 hr before analysis, you may need to fix the cells after step 5. This can preserve them for several days (this will stabilize the light scatter and inactivate most biohazardous agents). Controls will required fixation using the same procedure. Cells should not be fixed if they need to remain viable. There are several methods available. The fixation for different antigens will require optimization by the user.

1.Paraformaldehyde 0.01% to 1% for 10-15 min only, 100 μl per sample.

2.Acetone or methanol:

N/B polystyrene/plastic tubes are not suitable for use with acetone

Add 1ml ice cold acetone to each sample.

Mix gently. Place at -20°C for 5-10 min.

Centrifuge, wash twice in PBS 1% BSA.

Do not add sodium azide to buffers if you are concerned with recovering cell function e.g. if cells are to be collected for functional assays. It inhibits metabolic activity.

Flow cytometry intracellular staining protocol

General procedure describing detection of intracellular proteins in flow cytometry.

Fixing and permeabilization:

For intracellular staining, cells can be fixed first to ensure stability of soluble antigens or antigens with a short half-life (see the special recommendations below for important exceptions). This should retain the target protein in the original cellular location.

Detection of intracellular antigens requires a cell permeabilization step prior to staining. Antibodies should be prepared in permeabilization buffer to ensure the cells remain permeable. When gating on cell populations, the light scatter profiles of the cells on the flow cytometer will change considerably after permeabilization.

N.B. Cell surface staining should be performed prior to fixation.

There are several methods available:

1.Formaldehyde followed by detergent:

Fixation in 0.01% formaldehyde for 10-15 min (this will stabilize proteins), followed by disruption of membrane by detergent.

Detergents:

Triton or NP-40 (0.1 to 1% in PBS). These will also partially dissolve the nuclear membrane and are therefore very suitable for nuclear antigen staining. It should be noted that loss of cell membrane and cytoplasm will result in decreased light scattering and also in reduced non-specific fluorescence.

Tween 20, Saponin, Digitonin and Leucoperm are mild membrane solubilizers. Use at 0.5% v/v in PBS. These give large enough pores for antibodies to go through without dissolving plasma membrane. Suitable for antigens in the cytoplasm or the cytoplasmic face of the plasma membrane. Also suitable for soluble nuclear antigens.

2.Formaldehyde (0.01%) followed by methanol (SEE 3)

3.Methanol followed by detergent:

Add 1 ml ice cold methanol to each sample

Mix gently. Place at -20°C for 10 min

Centrifuge, wash twice in PBS 1% BSA

4.Acetone fixation and permeabilization:

Add 1 ml ice cold acetone to each sample

Mix gently. Place at -20°C for 5 to 10 min

Centrifuge, wash twice in PBS 1% BSA

N.B. Polystyrene/plastic tubes are not suitable for use with acetone.

SPECIAL RECOMMENDATIONS:

Antigens close to the plasma membrane and soluble cytoplasmic antigens will require mild cell permeabilization without fixation.

Cytoskeletal, viral and some enzyme antigens usually give optimal results when fixed with acetone, alcohol or formaldehyde (high concentration).

Antigens in cytomplasmic organelles and granules will require a fixation and permeabilization method depending on the antigen. The epitope needs to remain accessible.

Intracellular staining procedure:

1.Add 100 μl of fixative. Incubate for 10 min at required temperature (see above)

2.Add 100 μl detergent-based permeabilizing agent and incubate in the dark at room at room temperature

for 15 min

3.Wash the cells by adding 2 ml of PBS (containing 0.1% triton or other permeabilizing detergent), centrifuge

at 300 g (2000 rpm) for 5 min, discard supernatant and re-suspend the pellet in the volume remaining

4.Follow antibody staining procedure as indicated in our ‘direct’ and ‘indirect’ protocols

Antibodies should be prepared in permeabilization buffer to ensure the cells remain permeable.

Detection of secreted proteins:

Detection of secreted proteins is difficult as the protein will be released from the cell before detection, or may degrade rapidly. Brefaldin A and other compounds are often used as a Golgi-Block. Cells are incubated with Brefaldin A which prevents proteins being released from the Golgi apparatus. Any cells expressing the protein can then be detected.

HAN

scifinder使用介绍

6.6.1 内容简介 SciFinder Scholar是美国化学学会所属的化学文摘服务社CAS(Chemical Abstract Service)出版的化学资料电子数据库学术版。它是全世界最大、最全面的化学和科学信息数据库。 《化学文摘》(CA)是涉及学科领域最广、收集文献类型最全、提供检索途径最多、部卷也最为庞大的一部著名的世界性检索工具。CA报道了世界上150多个国家、56种文字出版的20000多种科技期刊、科技报告、会议论文、学位论文、资料汇编、技术报告、新书及视听资料,摘录了世界范围约98%的化学化工文献,所报道的内容几乎涉及化学家感兴趣的所有领域。 CA网络版SciFinder Scholar,整合了Medline医学数据库、欧洲和美国等30几家专利机构的全文专利资料、以及化学文摘1907年至今的所有内容。涵盖的学科包括应用化学、化学工程、普通化学、物理、生物学、生命科学、医学、聚合体学、材料学、地质学、食品科学和农学等诸多领域。 SciFinder Scholar 收集由CAS 出版的数据库的内容以及MEDLINE?数据库,所有的记录都为英文(但如果MEDLINE 没有英文标题的则以出版的文字显示)。 6.6.2 通过 SciFinder Scholar 可以得到的信息:

6.6.3 SciFinder? Scholar? 使用的简单介绍 主要分为Explore 和Browse。如图6.6.1 一、Explore Explore Tool 可获取化学相关的所有信息及结构等,有如下: 1、Chemical Substance or Reaction – Retrieve the corresponding literature 2、By chemical structure 3、By substance identifier 4、By molecular formula

SciFinder使用说明

SciFinder使用说明 SciFinder简介 SciFinder?由美国化学会(American Chemical Society, ACS)旗下的美国化学文摘社(Chemical Abstracts Service, CAS)出品,是一个研发应用平台,提供全球最大、最权威的化学及相关学科文献、物质和反应信息。SciFinder涵盖了化学及相关领域如化学、生物、医药、工程、农学、物理等多学科、跨学科的科技信息。SciFinder收录的文献类型包括期刊、专利、会议论文、学位论文、图书、技术报告、评论和网络资源等。 通过SciFinder,可以: ?访问由CAS全球科学家构建的全球最大并每日更新的化学物质、反应、专利和期刊数据库,帮助您做出更加明智的决策。 ?获取一系列检索和筛选选项,便于检索、筛选、分析和规划,迅速获得您研究所需的最佳结果,从而节省宝贵的研究时间。 无需担心遗漏关键研究信息,SciFinder收录所有已公开披露、高质量且来自可靠信息源的信息。 通过SciFinder可以获得、检索以下数据库信息:CAplus SM(文献数据库)、CAS REGISTRY SM (物质信息数据库)、CASREACT? (化学反应数据库)、MARPAT?(马库什结构专利信息数据库)、CHEMLIST? (管控化学品信息数据库)、CHEMCATS?(化学品商业信息数据库)、MEDLINE?(美国国家医学图书馆数据库)。 专利工作流程解决方案PatentPak TM已在SciFinder上线,帮助用户在专利全文中快速定位难以查找的化学信息。 SciFinder 注册须知: 读者在使用SciFinder之前必须用学校的email邮箱地址注册,注册后系统将自动发送一个链接到您所填写的email邮箱中,激活此链接即可完成注册。参考“SciFinder注册说明”。

浙江大学scifinder使用教程

浙江大学scifinder使用教程 1、输入网址:https://www.doczj.com/doc/2914222395.html,/ 如图1,点击继续浏览 图1 2、进入浙大的入口,输入用户名密码(卖家提供) 图2 3、登陆进去是图3这个页面。注意此时会自动安装插件,切记要一路放行。登陆成功的标志是屏幕右上角有个蓝框绿蓝S的LOGO! 如果未出现S,那么请根据图2的手动安装组件,下载安装组件!

图3 4、登陆页面不要覆盖,新标签页打开浙江大学图书馆 https://www.doczj.com/doc/2914222395.html,/libweb/点数据库导航,找到scifinder页面,进入 图4

5、点击图5红框中的链接https://www.doczj.com/doc/2914222395.html,/cgi-bin/casip,看下IP是不是浙大的IP,一般是61或者210开头,确定是,那就可以输入链接https://https://www.doczj.com/doc/2914222395.html,/登陆了 图5 6、scifinder登陆页面输入用户名密码(卖家提供),您就可以使用scifinder啦 图6

常见问题以及解决方法 1.浏览器不支持JavaScript,提示“您的浏览器不支持JavaScript(或它被 禁止了)请确认您的浏览器能支持JavaScript”,请启用“工具- >Internet选项->安全->自定义级别->活动脚本”选项。 2.浏览器不支持Cookie,提示“你的浏览器禁止了Cookie,必须设置为允许 才可以继续使用”,请在“工具->Internet选项->隐私->高级”启用 Cookie支持 3.浏览不支持BHO,提示:"您的浏览器没有启用第三方扩展",关闭IE时无法 自动注销用户。请在 "工具->Internet选项->高级->启用第三方浏览器扩展”前打勾启用! 4.APP服务不可用,可能是控件不是最新的,请您关闭IE,重新登陆VPN 5.IP服务不可用,可能你安装的IP服务控件不是最新的。请点击“程序- >SINFOR SSL VPN->卸载CS应用支持”和“程序->SINFOR SSL VPN->卸载SSL VNIC”,手动卸载IP服务控件,然后再重新登陆VPN。 6.IP服务可能与某些杀毒软件冲突。请在杀毒软件中放行IP服务的客户端程 序,或者在使用时暂时禁用杀毒软件。

比较PageRank算法和HITS算法的优缺点

题目:请比较PageRank算法和HITS算法的优缺点,除此之外,请再介绍2种用于搜索引擎检索结果的排序算法,并举例说明。 答: 1998年,Sergey Brin和Lawrence Page[1]提出了PageRank算法。该算法基于“从许多优质的网页链接过来的网页,必定还是优质网页”的回归关系,来判定网页的重要性。该算法认为从网页A导向网页B的链接可以看作是页面A对页面B的支持投票,根据这个投票数来判断页面的重要性。当然,不仅仅只看投票数,还要对投票的页面进行重要性分析,越是重要的页面所投票的评价也就越高。根据这样的分析,得到了高评价的重要页面会被给予较高的PageRank值,在检索结果内的名次也会提高。PageRank是基于对“使用复杂的算法而得到的链接构造”的分析,从而得出的各网页本身的特性。 HITS 算法是由康奈尔大学( Cornell University ) 的JonKleinberg 博士于1998 年首先提出。Kleinberg认为既然搜索是开始于用户的检索提问,那么每个页面的重要性也就依赖于用户的检索提问。他将用户检索提问分为如下三种:特指主题检索提问(specific queries,也称窄主题检索提问)、泛指主题检索提问(Broad-topic queries,也称宽主题检索提问)和相似网页检索提问(Similar-page queries)。HITS 算法专注于改善泛指主题检索的结果。 Kleinberg将网页(或网站)分为两类,即hubs和authorities,而且每个页面也有两个级别,即hubs(中心级别)和authorities(权威级别)。Authorities 是具有较高价值的网页,依赖于指向它的页面;hubs为指向较多authorities的网页,依赖于它指向的页面。HITS算法的目标就是通过迭代计算得到针对某个检索提问的排名最高的authority的网页。 通常HITS算法是作用在一定范围的,例如一个以程序开发为主题的网页,指向另一个以程序开发为主题的网页,则另一个网页的重要性就可能比较高,但是指向另一个购物类的网页则不一定。在限定范围之后根据网页的出度和入度建立一个矩阵,通过矩阵的迭代运算和定义收敛的阈值不断对两个向量authority 和hub值进行更新直至收敛。 从上面的分析可见,PageRank算法和HITS算法都是基于链接分析的搜索引擎排序算法,并且在算法中两者都利用了特征向量作为理论基础和收敛性依据。

scifinder使用手册

研发工具Scifinder 《使用说明书》 第一章 Scifinder数据库介绍 1.1 Scifinder数据库 1.1.1 检索系统 支持的检索方式:主题检索、物质名称检索、分子式检索、结构式检索、亚结构式检索、相似结构式检索、反应式检索、类反应式检索、分析与二次检索。作者、机构名称、杂志名称、专利号、CA号 检索结果后处理系统:Scifinder不仅仅包含有分子式、反应式和结构式(包括亚结构检索)等多种检索功能,而且在得到初步检索结果的基础上还可以进一步利用超过20个选项的后处理功能以最快的速度找到最精确的答案。它已经超越了检索工具的范畴,而成为研发人员不可或缺的研发工具。 包含的信息量:大于2600万条文章记录;3000多万个有机无机物质,5800多万生物序列,1100多万条单步多步反应。 信息时效:1907年-至今 1.1.2 原文下载系统 Scifinder具有强大的期刊和专利链接,收录了全世界9500多种主要期刊和50多家合法专利发行机构的专利文献中公布的研究成果,占全球化工信息的98%。其中能直接链接原文的化工类核心期刊1365种,约占全球英文版电子化工类期刊总数的90%,几乎包含了所有高影响因子期刊。 1.2 Scifinder的化学学科覆盖 事实上,Scifinder数据库囊括了自20世纪以来所有与化学相关的资料,以及大量生命科学及及其它科学学科方面的信息。

1.2.1 生命科学领域 遗传学、基因组学、酶学、蛋白质组学、实验内科学、生物化学、生物技术学、分子生物学、微生物学、细胞生物学、药理学等 能够保证将9大主要专利组织2日内发布的与生物加工方法、蛋白质组技术、新遗传学工艺,及其它对现代药品开发至关重要的课题等相关的专利收录进来; 通过Scifinder访问遗传学、酶学、生物化学、生物技术学及更多科学信息。 用户可查找:摘自细胞、科学、核酸研究、现代药品开发资料及其它知名期刊的科学信息。 1.2.2 传统化学领域 有机化学 高分子——聚合物、塑料、纺织、橡胶粘合剂等 应用化学和化学工程——加工、工业化学、金属/合金、陶瓷、环境等 物理化学、无机化学和分析化学

scifinder使用简介

SciFinder Scholar使用简介 一、SciFinder?Scholar? Content SciFinder Scholar 收集由CAS出版的数据库的内容以及MEDLINE?数据库(by the National Library of Medicine ,NLM),所有的记录都为英文(但如果MEDLINE没有英文标题的则以出版的文字显示)。

二、What You Can Find with SciFinder Scholar 通过SciFinder Scholar 您可以得到以下信息: 注意:检索结果可以打印、保存,但如要保存需注意文件名和文件所在的文件夹(包括上层目录)名都必须是英文,否则可能会出现无法保存,试用期内也不能保存。

三、SciFinder ? Scholar? 使用的简单介绍: 主要分为Explore 和Browse : 3.1、Explore Explore Tool 可获取化学相关的所有信息及结构等,有如下方式:(如上图所示) ? Chemical Substance or Reaction – Retrieve the corresponding literature ? By chemical structure ? By substance identifier ? By molecular formula ? Research Topic – to find literature relevant to a topic of interest. ? Author Name – to locate literature written by a specific author. ? Document Identifier – to find literature for a specific CA Accession Number or Patent Number. ? Company Name / Organization – to locate literature for a specific company, university, governmental agency, or other organization. 3.2、Browse Journal Table of Contents 可直接浏览1800多核心期刊的摘要及其引文等编目内容,如果带有 则可直接点击,就会通过ChemPort ? Connection .SM 获取全文(in-house ) Explore Browse 菜单

pagerank算法实验报告

PageRank算法实验报告 一、算法介绍 PageRank是Google专有的算法,用于衡量特定网页相对于搜索引擎索引中的其他网页而言的重要程度。它由Larry Page 和Sergey Brin在20世纪90年代后期发明。PageRank实现了将链接价值概念作为排名因素。 PageRank的核心思想有2点: 1.如果一个网页被很多其他网页链接到的话说明这个网页比较重要,也就是pagerank值会相对较高; 2.如果一个pagerank值很高的网页链接到一个其他的网页,那么被链接到的网页的pagerank值会相应地因此而提高。 若页面表示有向图的顶点,有向边表示链接,w(i,j)=1表示页面i存在指向页面j的超链接,否则w(i,j)=0。如果页面A存在指向其他页面的超链接,就将A 的PageRank的份额平均地分给其所指向的所有页面,一次类推。虽然PageRank 会一直传递,但总的来说PageRank的计算是收敛的。 实际应用中可以采用幂法来计算PageRank,假如总共有m个页面,计算如公式所示: r=A*x 其中A=d*P+(1-d)*(e*e'/m) r表示当前迭代后的PageRank,它是一个m行的列向量,x是所有页面的PageRank初始值。 P由有向图的邻接矩阵变化而来,P'为邻接矩阵的每个元素除以每行元素之和得到。 e是m行的元素都为1的列向量。 二、算法代码实现

三、心得体会 在完成算法的过程中,我有以下几点体会: 1、在动手实现的过程中,先将算法的思想和思路理解清楚,对于后续动手实现 有很大帮助。 2、在实现之前,对于每步要做什么要有概念,然后对于不会实现的部分代码先 查找相应的用法,在进行整体编写。 3、在实现算法后,在寻找数据验证算法的过程中比较困难。作为初学者,对于 数据量大的数据的处理存在难度,但数据量的数据很难寻找,所以难以进行实例分析。

PageRank算法的核心思想

如何理解网页和网页之间的关系,特别是怎么从这些关系中提取网页中除文字以外的其他特性。这部分的一些核心算法曾是提高搜索引擎质量的重要推进力量。另外,我们这周要分享的算法也适用于其他能够把信息用结点与结点关系来表达的信息网络。 今天,我们先看一看用图来表达网页与网页之间的关系,并且计算网页重要性的经典算法:PageRank。 PageRank 的简要历史 时至今日,谢尔盖·布林(Sergey Brin)和拉里·佩奇(Larry Page)作为Google 这一雄厚科技帝国的创始人,已经耳熟能详。但在1995 年,他们两人还都是在斯坦福大学计算机系苦读的博士生。那个年代,互联网方兴未艾。雅虎作为信息时代的第一代巨人诞生了,布林和佩奇都希望能够创立属于自己的搜索引擎。1998 年夏天,两个人都暂时离开斯坦福大学的博士生项目,转而全职投入到Google 的研发工作中。他们把整个项目的一个总结发表在了1998 年的万维网国际会议上(WWW7,the seventh international conference on World Wide Web)(见参考文献[1])。这是PageRank 算法的第一次完整表述。 PageRank 一经提出就在学术界引起了很大反响,各类变形以及对PageRank 的各种解释和分析层出不穷。在这之后很长的一段时间里,PageRank 几乎成了网页链接分析的代名词。给你推荐一篇参考文献[2],作为进一步深入了解的阅读资料。

PageRank 的基本原理 我在这里先介绍一下PageRank 的最基本形式,这也是布林和佩奇最早发表PageRank 时的思路。 首先,我们来看一下每一个网页的周边结构。每一个网页都有一个“输出链接”(Outlink)的集合。这里,输出链接指的是从当前网页出发所指向的其他页面。比如,从页面A 有一个链接到页面B。那么B 就是A 的输出链接。根据这个定义,可以同样定义“输入链接”(Inlink),指的就是指向当前页面的其他页面。比如,页面C 指向页面A,那么C 就是A 的输入链接。 有了输入链接和输出链接的概念后,下面我们来定义一个页面的PageRank。我们假定每一个页面都有一个值,叫作PageRank,来衡量这个页面的重要程度。这个值是这么定义的,当前页面I 的PageRank 值,是I 的所有输入链接PageRank 值的加权和。 那么,权重是多少呢?对于I 的某一个输入链接J,假设其有N 个输出链接,那么这个权重就是N 分之一。也就是说,J 把自己的PageRank 的N 分之一分给I。从这个意义上来看,I 的PageRank,就是其所有输入链接把他们自身的PageRank 按照他们各自输出链接的比例分配给I。谁的输出链接多,谁分配的就少一些;反之,谁的输出链接少,谁分配的就多一些。这是一个非常形象直观的定义。

scifinder使用介绍

美国化学文摘(CA)网络版-SciFinder Scholar数据库 6.6.1 内容简介 SciFinder Scholar是美国化学学会所属的化学文摘服务社CAS(Chemical Abstract Service)出版的化学资料电子数据库学术版。它是全世界最大、最全面的化学和科学信息数据库。 《化学文摘》(CA)是涉及学科领域最广、收集文献类型最全、提供检索途径最多、部卷也最为庞大的一部著名的世界性检索工具。CA报道了世界上150多个国家、56种文字出版的20000多种科技期刊、科技报告、会议论文、学位论文、资料汇编、技术报告、新书及视听资料,摘录了世界范围约98%的化学化工文献,所报道的内容几乎涉及化学家感兴趣的所有领域。 CA网络版SciFinder Scholar,整合了Medline医学数据库、欧洲和美国等30几家专利机构的全文专利资料、以及化学文摘1907年至今的所有内容。涵盖的学科包括应用化学、化学工程、普通化学、物理、生物学、生命科学、医学、聚合体学、材料学、地质学、食品科学和农学等诸多领域。 SciFinder Scholar 收集由CAS 出版的数据库的内容以及MEDLINE?数据库,所有的记录都为英文(但如果MEDLINE 没有英文标题的则以出版的文字显示)。

6.6.2 通过 SciFinder Scholar 可以得到的信息:

6.6.3 SciFinder? Scholar?使用的简单介绍 主要分为Explore 和Browse。如图6.6.1 一、Explore Explore Tool 可获取化学相关的所有信息及结构等,有如下: 1、Chemical Substance or Reaction – Retrieve the corresponding literature 2、By chemical structure 3、By substance identifier 4、By molecular formula 5、Research Topic – to find literature relevant to a topic of interest

相关主题
文本预览
相关文档 最新文档