当前位置:文档之家› 信号与系统MATLAB仿真拉普拉斯变换

信号与系统MATLAB仿真拉普拉斯变换

信号与系统MATLAB仿真拉普拉斯变换
信号与系统MATLAB仿真拉普拉斯变换

信号系统MATLAB 仿真

——拉普拉斯变换

实验名称:离散系统的S 域分析与MATLAB 实现

实验目的:1掌握用MATLAB 实现信号的拉氏变换以及逆拉氏变换; 2通过用MATLAB 分析系统的仿真,比较拉氏变换及傅里

叶变换,分析信号的频谱特性。

实验内容:

一、 用MATLAB 绘制拉普拉斯变换的曲面图

例1:已知连续时间信号f (t ) =sin(t)()t ε,求出该信号的拉普拉斯变换,并用MATLAB 绘制拉普拉斯变换的曲面图。

解:

该信号的拉普拉斯变换为(注:题中e (t )当作阶跃函数t ε()处理):

()()2()sin()2()2111()21,(,)1st jt jt st s j t s j t F s t t e

dt e e t e dt j

e e t dt j

j s j s j

j j s εεε+∞--∞-+∞

--∞---++∞-∞

=()-=()-=()=--+=?>?>-+???

Matlab 仿真:

clf

a=-0.5:0.08:0.5;

b=-1.99:0.08:1.99;

[a,b]=meshgrid(a,b);

d=ones(size(a));

c=a+i*b;

c=c.*c;

c=1./c;

c=abs(c);

mesh(a,b,c);

surf(a,b,c);

axis([-0.5,0.5,-2,2,0,15]);

title('单边正弦信号拉氏变换曲面图');

colormap(hsv);

二、 由拉普拉斯曲面图观察频域与复频域的关系

例2:试利用MATLAB 绘制信号()()(2)f t t t εε=--的拉普拉斯变换的曲面图,观察曲面图在虚轴剖面上的曲线,并将其与信号傅里叶变换F ( jw )绘制的振幅频谱进行比较。 解:

该信号的拉普拉斯变换:

(2)222()22(2)111,(0)st st st s t s s

s F s t e dt t e

dt t e dt t e

e d t e e s s s

εεεε+∞-+∞--∞-∞+∞-+∞----∞-∞--=()-(-)=()-(-)--=-=?>????

matlap 仿真:

Clf;

a=-0:0.1:5;

b=-20:0.1:20;

[a,b]=meshgrid(a,b);

c=a+i*b;

c=(1-exp(-2*c))./c;

Mesh(a,b,c);

Surf(a,b,c);

View(-60,20);

Axis([-0,5,-20,20,0,2]);

title('拉普拉斯变化s 域像函数'); Colormap(hsv);

傅立叶变换:

()2()j F j Sa e ωωω-=

Matlap 仿真:

W=-20:0.1:20;

Fw=(2*sin(w).*exp(i*w))./w;

Plot(w,abs(Fw));

Title(‘傅立叶变换(振幅频谱曲线)’); Xlabel (‘频率w ’);

比较可知f (s )拉普拉斯变换F (s )中令 0?=,即s=jw 就可以得到信号的傅立叶变换。

基于Matlab的脑电波信号处理

做脑电波信号处理滴嘿嘿。。Matlab addicted Codes %FEATURE EXTRACTER function [features] = EEGfeaturetrainmod(filename,m) a = 4; b = 7; d = 12; e = 30; signals = 0; for index = 1:9; % read in the first ten EEG data because the files are numbered as ha11test01 rather than ha11test1. s = [filename '0' num2str(index) '.dat']; signal = tread_wfdb(s); if signals == 0; signals = signal; else signals = [signals signal]; end end for index = 10:1:m/2; % read in the rest of the EEG training data s = [filename num2str(index) '.dat']; signal = tread_wfdb(s); if signals == 0;

signals = signal; else signals = [signals signal]; end end %%%%% modification just for varying the training testing ratio ------ for index = 25:1:25+m/2; % read in the rest of the EEG training data s = [filename num2str(index) '.dat']; signal = tread_wfdb(s); if signals == 0; signals = signal; else signals = [signals signal]; end end %%%%%end of modification just for varying the training testing ratio----- for l = 1:m % exrating features (power of each kind of EEG wave forms) [Pxx,f]=pwelch(signals(:,l)-mean(signals(:,l)), [], [], [], 200); % relative power fdelta(l) = sum(Pxx(find(fa))); falpha(l) = sum(Pxx(find(fb))); fbeta(l) = sum(Pxx(find(fd))); fgama(l)= sum(Pxx(find(f>e))); % gama wave included for additional work

信号处理实验一:用matlab描述基本信号

哈尔滨工程大学 实验报告 实验名称:用matlab描述基本信号 班级:电子信息工程4班 学号: 姓名: 实验时间:2016年10月10日 成绩:________________________________ 指导教师:栾晓明 实验室名称:数字信号处理实验室哈尔滨工程大学实验室与资产管理处制

实验一用matlab 描述基本信号 一、 冲激信号 1、 原理: 最简单的信号是(移位的)单位冲激信号: δ[n -n 0] = ? ??≠=00 0 1n n n n (3.1) 在MA TLAB 中产生冲激信号,必须先确定所关注信号部分的长度。如果准备用冲激信 号δ[n ]来激励因果LTI 系统,可能需要观察从n = 0到n = L -1总共L 个点。若选择L = 31,下面的MA TLAB 代码将产生一个“冲激信号”。 1. L = 31; 2. nn = 0 : (L-1); 3. imp = zeros(L, 1); 4. imp(1) = 1; 注意,根据MA TLAB 编址约定,n =0标号必须对应imp(1)。 例:产生移位冲激信号程序(函数文件) function [x,n] = impseq(n0,n1,n2) % 产生 x(n) = delta(n-n0); n1 <=n0 <= n2 % ---------------------------------------------- % [x,n] = impseq(n0,n1,n2) % if ((n0 < n1) | (n0 > n2) | (n1 > n2)) error('参数必须满足 n1 <= n0 <= n2') end n = [n1:n2]; %x = [zeros(1,(n0-n1)), 1, zeros(1,(n2-n0))]; x = [(n-n0) == 0]; 以上函数文件可以产生指定区间内的冲激移位脉冲。 例1—1:调用这个函数文件生成并绘制: x(n) = 2δ[n+2]-δ[n -4] -5≤ n ≤ 5 程序 % x(n) = 2*delta(n+2) - delta(n-4), -5<=n<=5 n = [-5:5]; x = 2*impseq(-2,-5,5)-impseq(4,-5,5); stem(n,x); title('例 2.1a 的序列图') ylabel('x(n)'); axis([-5,5,-2,3]);text(5.5,-2,'n')

matlab与信号 处理知识点

安装好MATLAB 2012后再安装目录下点击setup.exe 会出现 "查找安装程序类时出错,查找类时出现异常"的错误提示。该错误的解决方法是进入安装目录下的bin 文件夹双击matlab.exe 对安装程序进行激活。这是可以对该matlab.exe 创建桌面快捷方式,以后运行程序是直接双击该快捷方式即可。 信号运算 1、 信号加 MATLAB 实现: x=x1+x2 2、 信号延迟 y(n)=x(n-k) 3、 信号乘 x=x1.*x2 4、 信号变化幅度 y=k*x 5、 信号翻转 y=fliplr(x) 6、 信号采样和 数学描述:y=∑=2 1)(n n n n x MATLAB 实现: y=sum(x(n1:n2)) 7、 信号采样积 数学描述:∏==2 1)(n n n n x y MATLAB 实现: y=prod(x(n1:n2)) 8、 信号能量 数学描述:∑∞ -∞ == n x n x E 2 | )(| MATLAB 实现:Ex=sum(abs(x)^2)

9、 信号功率 数学描述:∑-== 1 2 | )(|1 P N n x n x N MATLAB 实现:Px=sum((abs(x)^2)/N MATLAB 窗函数 矩形窗 w=boxcar(n) 巴特利特窗 w=bartlett(n) 三角窗 w=triang(n) 布莱克曼窗 w=blackman(n) w=blackman(n,sflag) 海明窗 w=haiming(n) W=haiming(n,sflag) sflag 用来控制窗函数首尾的两个元素值,其取值为symmetric 、periodic 汉宁窗 w=hanning(n) 凯塞窗 w=Kaiser(n,beta) ,beta 用于控制旁瓣的高度。n 一定时,beta 越大,其频谱的旁瓣越小,但主瓣宽度相应增加;当beta 一定时,n 发生变化,其旁瓣高度不变。 切比雪夫窗:主瓣宽度最小,具有等波纹型,切比雪夫窗在边沿的采样点有尖峰。 W=chebwin(n,r)

基于MATLAB的语音信号处理系统设计(程序+仿真图)--毕业设计

语音信号处理系统设计 摘要:语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科。语音信号处理的目的是得到某些参数以便高效传输或存储,或者是用于某种应用,如人工合成出语音、辨识出讲话者、识别出讲话内容、进行语音增强等。本文简要介绍了语音信号采集与分析以及语音信号的特征、采集与分析方法,并在采集语音信号后,在MATLAB 软件平台上进行频谱分析,并对所采集的语音信号加入干扰噪声,对加入噪声的信号进行频谱分析,设计合适的滤波器滤除噪声,恢复原信号。利用MATLAB来读入(采集)语音信号,将它赋值给某一向量,再将该向量看作一个普通的信号,对其进行FFT变换实现频谱分析,再依据实际情况对它进行滤波,然后我们还可以通过sound命令来对语音信号进行回放,以便在听觉上来感受声音的变化。 关键词:Matlab,语音信号,傅里叶变换,滤波器 1课程设计的目的和意义 本设计课题主要研究语音信号初步分析的软件实现方法、滤波器的设计及应用。通过完成本课题的设计,拟主要达到以下几个目的: 1.1.了解Matlab软件的特点和使用方法。 1.2.掌握利用Matlab分析信号和系统的时域、频域特性的方法; 1.3.掌握数字滤波器的设计方法及应用。 1.4.了解语音信号的特性及分析方法。 1.5.通过本课题的设计,培养学生运用所学知识分析和解决实际问题的能力。 2 设计任务及技术指标 设计一个简单的语音信号分析系统,实现对语音信号时域波形显示、进行频谱分析,

利用滤波器滤除噪声、对语音信号的参数进行提取分析等功能。采用Matlab设计语言信号分析相关程序,并且利用GUI设计图形用户界面。具体任务是: 2.1.采集语音信号。 2.2.对原始语音信号加入干扰噪声,对原始语音信号及带噪语音信号进行时频域分析。 2.3.针对语音信号频谱及噪声频率,设计合适的数字滤波器滤除噪声。 2.4.对噪声滤除前后的语音进行时频域分析。 2.5.对语音信号进行重采样,回放并与原始信号进行比较。 2.6.对语音信号部分时域参数进行提取。 2.7.设计图形用户界面(包含以上功能)。 3 设计方案论证 3.1语音信号的采集 使用电脑的声卡设备采集一段语音信号,并将其保存在电脑中。 3.2语音信号的处理 语音信号的处理主要包括信号的提取播放、信号的重采样、信号加入噪声、信号的傅里叶变换和滤波等,以及GUI图形用户界面设计。 Ⅰ.语音信号的时域分析 语音信号是一种非平稳的时变信号,它携带着各种信息。在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。语音信号分析的目的就在与方便有效的提取并表示语音信号所携带的信息。语音信号分析可以分为时域和变换域等处理方法,其中时域分析是最简单的方法。 Ⅱ.语音信号的频域分析 信号的傅立叶表示在信号的分析与处理中起着重要的作用。因为对于线性系统来说,可以很方便地确定其对正弦或复指数和的响应,所以傅立叶分析方法能完善地解决许多信号分析和处理问题。另外,傅立叶表示使信号的某些特性变得更明显,因此,它能更

基于Matlab的语音信号处理与分析

系(院)物理与电子工程学院专业电子信息工程题目语音信号的处理与分析 学生姓名 指导教师 班级 学号 完成日期:2013 年5 月 目录 1 绪论 (3) 1.1课题背景及意义 (3) 1.2国内外研究现状 (3) 1.3本课题的研究内容和方法 (4) 1.3.1 研究内容 (4) 1.3.2 开发环境 (4) 2 语音信号处理的总体方案 (4) 2.1 系统基本概述 (4) 2.2 系统基本要求与目的 (4) 2.3 系统框架及实现 (5) 2.3.1 语音信号的采样 (5) 2.3.2 语音信号的频谱分析 (5) 2.3.3 音乐信号的抽取 (5) 2.3.4 音乐信号的AM调制 (5) 2.3.5 AM调制音乐信号的同步解调 (5) 2.4系统设计流程图 (6) 3 语音信号处理基本知识 (6) 3.1语音的录入与打开 (6)

3.2采样位数和采样频率 (6) 3.3时域信号的FFT分析 (7) 3.4切比雪夫滤波器 (7) 3.5数字滤波器设计原理 (8) 4 语音信号实例处理设计 (8) 4.1语音信号的采集 (8) 4.3.1高频调制与低频调制 (10) 4.3.2切比雪夫滤波 (11) 4.3.3 FIR滤波 (11) 5 总结 (12) 参考文献 (13) 语音信号的处理与分析 【摘要】语音信号处理是研究用数字信号处理技术和语音学知识对语音信号进行处理的新兴的学科,是目前发展最为迅速的信息科学研究领域的核心技术之一。通过语音传递信息是人类最重要、最有效、最常用和最方便的交换信息形式。 Matlab语言是一种数据分析和处理功能十分强大的计算机应用软件,它可以将声音文件变换为离散的数据文件,然后利用其强大的矩阵运算能力处理数据,如数字滤波、傅里叶变换、时域和频域分析、声音回放以及各种图的呈现等,它的信号处理与分析工具箱为语音信号分析提供了十分丰富的功能函数,利用这些功能函数可以快捷而又方便地完成语音信号的处理和分析以及信号的可视化,使人机交互更加便捷。信号处理是Matlab重要应用的领域之一。 本设计针对现在大部分语音处理软件内容繁多、操作不便等问题,采用MATLAB7.0综合运用GUI界面设计、各种函数调用等来实现语音信号的变频、变幅、傅里叶变换及滤波,程序界面简练,操作简便,具有一定的实际应用意义。 最后,本文对语音信号处理的进一步发展方向提出了自己的看法。 【关键词】Matlab 语音信号傅里叶变换低通滤波器

MATLAB仿真教程

一、设计目的 通过运用MATLAB对函数进行Z域分析和单边带信号的调制与解调,使我们进一步加深对MATLAB的认识和运用,以实现以下目的: 1.本次试验进一步熟悉了MATLAB软件的使用方法及相关的操作。 2.对Z变换及其反变换函数在MATLAB中的调用有了掌握。 3.理论与实际的仿真相结合,更直观的看到结果。 4.观察了单边带信号调制与解调后的图像,加深认识。 二、设计原理 MATLAB是The MathWorks公司在1984年推出的一种商品化软件,它提供了大量丰富的应用函数,并且具有扩充的开放性结构。目前,该软件包涵盖了控制系统应用、数字信号处理、数字图像处理、通讯、神经网络、小波理论分析、优化与统计、偏微分方程、动态系统实时仿真等多学科专业领域。 其中单边带调制信号是将双边带信号中的一个边带滤掉而形成的。根据方法的不同,产生单边带调制信号的方法有:滤波和相移法。 由于滤波法在技术上比较难实现所以在此我们将用相移法对单边带调制与解调系统进行讨论与设计。 三、设计内容和MATLAB图像

1、数字系统的响应 源代码如下: b=[0 1 2 1 0]; a=[1 -0.5 0 0.3 -0.005]; subplot(421);zplane(b,a); title('系统的零极点图'); subplot(422);impz(b,a,21); title('单位脉冲响应'); subplot(423);stepz(b,a,21); title('单位阶跃响应');

N=21;n=0:N-1; x=exp(-n); x0=zeros(1,N); y0=[1,-1]; xi=filtic(b,a,y0); y1=filter(b,a,x0,xi); xi0=filtic(b,a,0); y2=filter(b,a,x,xi0); y3=filter(b,a,x,xi); [h w]=freqz(b,a,21); subplot(424);stem(n,y1); title('零输入响应');grid on; subplot(425);stem(n,y2); title('零状态响应');grid on; subplot(426);stem(n,y3); title('系统的全响应');grid on; subplot(427);plot(w,abs(h)); title('幅频特性曲线');grid on; subplot(428);plot(w,angle(h)); title('相频特性曲线');grid on;

MATLAB在数字信号处理中的应用:连续信号的采样与重建

MATLAB 在数字信号处理中的应用:连续信号的采样与重建 一、 设计目的和意义 随着通信技术的迅速发展以及计算机的广泛应用,利用数字系统处理模拟信号的情况变得更加普遍。数字电子计算机所处理和传送的都是不连续的数字信号,而实际中遇到的大都是连续变化的模拟量,现代应用中经常要求对模拟信号采样,将其转换为数字信号,然后对其进行计算处理,最好在重建为模拟信号。 采样在连续时间信号与离散时间信号之间其桥梁作用,是模拟信号数字化的第一个步骤,研究的重点是确定合适的采样频率,使得既要能够从采样信号(采样序列)中五失真地恢复原模拟信号,同时由要尽量降低采样频率,减少编码数据速率,有利于数据的存储、处理和传输。 本次设计中,通过使用用MATLAB 对信号f (t )=A1sin(2πft)+A2sin(4πft)+A3sin(5πft)在300Hz 的频率点上进行采样,并进行仿真,进一步了解MA TLAB 在数字信号处理上的应用,更加深入的了解MA TLAB 的功能。 二、 设计原理 1、 时域抽样定理 令连续信号 xa(t)的傅立叶变换为Xa (j Ω),抽样脉冲序列p(t)傅立叶变换为P (j Ω),抽样后的信号x^(t)的傅立叶变换为X^(j Ω)若采用均匀抽样,抽样周期Ts ,抽样频率为Ωs= 2πfs ,有前面分析可知:抽样过程可以通过抽样脉冲序列p (t )与连续信号xa (t )相乘来完成,即满足:x^(t)p(t),又周期信号f (t )傅立叶变换为: F[f(t)]=2[(]n s n F j n π δ∞ =-∞Ω-Ω∑ 故可以推得p(t)的傅立叶变换为: P (j Ω)=2[(]n s n P j n π δ∞ =-∞Ω-Ω∑ 其中: 根据卷积定理可知: X (j Ω)=12π Xa (j Ω)*P(j Ω) 得到抽样信号x (t )的傅立叶变换为: X (j Ω)= [()]n n s n P X j n ∞=-∞Ω-Ω∑ 其表明:信号在时域被抽样后,他的频率X (j Ω)是连续信号频率X (j Ω)的形状以抽样频率Ωs 为间隔周期重复而得到,在重复过程中幅度被p (t )的傅立叶级数Pn 加权。因为只是n 的函数,所以X (j Ω)在重复过程中不会使其形状发生变化。 假定信号x (t )的频谱限制在-Ωm~+Ωm 的范围内,若以间隔Ts 对xa (t )进行抽样信号X^(j Ω)是以Ωs 为周期重复。显然,若早抽样过程中Ωs<Ωm ,则 X^ (j Ω)将会发生频谱混叠的现象,只有在抽样的过程中满足Ωs>2Ωm 条件,X^(j Ω)才不会产生混频的混叠,在接收端完全可以有x^(t )恢复原连续信号xa (t ),这就是低通信号的抽样定理的核心内容。

信号与系统的MATLAB仿真

成绩
课程设计说明书(计算书、论文)
题 目 信号与系统的 MATLAB 仿真
课 程 名 称 院 (系)
信号与系统 电子通信工程学院
专 业 班 级 学 生 姓 名 学 号
设 计 地 点 指 导 教 师
设计起止时间:

月 日





1.
课程设计应达到的目的
(1)熟悉 Matlab 软件的运行环境 (2)掌握采用 Matlab 软件程序实现信号与系统分析的方法 (3)掌握正确的编程过程和仿真分析 (4)总结对比软件仿真与硬件实验的区别及特点 2.课程设计题目及要求 《信号与系统》课程设计选题主要是要体现本课程的主要教学 内容中的重点部分,同时要求选题能过反映出信号仿真的代表性, 系统分析的应用性, 灵活性, 并且能与原本理论教学中繁琐的数学 计算相比较, 体现出软件计算的方便快捷性, 本课程设计主要包括 四个小设计部分,分别是: (1)信号的产生与简单运算:产生一个方波周期为 4π ,t[0 50]。
(2)?求解微分方程:y"(t)+3y'(t)+2y(t)=2e-2 ε(t)求 yzs; ?求卷积:e-2 ε (t)*e-3 ε (t)
t t
t
(3)求 H (s) ?
2s 2 ? 1 s 3 ? 4s 2 ? 6s ? 9
?求零、极点 ?并绘图 ?冲激响应

(4)求解差分方程:y(n)-y(n-1)-2y(n-2)=f(n) ?f(n)=( 1 )nε (n)
3
?f(n)=δ (n)
3.课程设计思路 利用信号与系统中的 matlab 常用命令集求解微分方程,并利用结 果和绘图命令绘图。
4.课程设计原理 设计原理 (1)设计一个简单程序能实现方波信号的生成。 利用Matlab软件的信号处理工具箱(Signal Processing Toolbox)中的专用函数产生 信号并绘出波形。
(2) ?对于求方程的零状态响应,即是求解常微分方程。Matlab 解常微分方程式的语法是 dsolve('equation','condition'),其中equation代表常微分方程式即 y'=g(x,y), 且须以Dy代表一 微分项y'',condition则为初始条件。 ?利用MATLAB中conv命令求解卷积。 阶微分项y' D2y代表二阶

语音信号处理matlab实现

短时能量分析matlab源程序: x=wavread('4.wav'); %计算N=50,帧移=50时的语音能量 s=fra(50,50,x);%对输入的语音信号进行分帧,其中帧长50,帧移50 s2=s.^2;%一帧内各种点的能量 energy=sum(s2,2);%求一帧能量 subplot(2,2,1); plot(energy) xlabel('帧数'); ylabel('短时能量E'); legend('N=50'); axis([0,500,0,30]) %计算N=100,帧移=100时的语音能量 s=fra(100,100,x); s2=s.^2; energy=sum(s2,2); subplot(2,2,2); plot(energy) xlabel('帧数'); ylabel('短时能量E'); legend('N=100'); axis([0,300,0,30]) %计算N=400,帧移=400时的语音能量 s=fra(400,400,x); s2=s.^2; energy=sum(s2,2); subplot(2,2,3); plot(energy) xlabel('帧数'); ylabel('短时能量E'); legend('N=400'); axis([0,60,0,100]) %计算N=800,帧移=800时的语音能量 s=fra(800,800,x); s2=s.^2; energy=sum(s2,2); subplot(2,2,4); plot(energy) xlabel('帧数'); ylabel('短时能量E'); legend('N=800'); axis([0,30,0,200]) 分帧子函数: function f=fra(len,inc,x) %对读入语音分帧,len为帧长,inc为帧重叠样点数,x为输入语音数据 fh=fix(((size(x,1)-len)/inc)+1);%计算帧数 f=zeros(fh,len);%设一个零矩阵,行为帧数,列为帧长 i=1;n=1; while i<=fh %帧间循环 j=1; while j<=len %帧内循环 f(i,j)=x(n); j=j+1;n=n+1; end n=n-len+inc;%下一帧开始位置 i=i+1; end

直流电动机的MATLAB仿真..

第一章课程设计内容及要求 1. 直流电动机的机械特性仿真; 2. 直流电动机的直接起动仿真; 3. 直流电动机电枢串联电阻启动仿真; 4. 直流电动机能耗制动仿真; 5.直流电动机反接制动仿真; 6. 直流电动机改变电枢电压调速仿真; 7. 直流电动机改变励磁电流调速仿真。 要求:编写M文件,在Simulink环境画仿真模型原理图,用二维画图命令画仿真结果图或用示波器观察仿真结果,并加以分析

第二章直流电动机的电力拖动仿真绘制 1)直流电动机的机械特性仿真 clear; U_N=220;P_N=22;I_N=115; n_N=1500;R_a=;R_f=628; Ia_N=I_N-U_N/R_f; C_EPhi_N=(U_N-R_a*Ia_N)/n_N; C_TPhi_N=*C_EPhi_N; Ia=0;Ia_N; n=U_N/C_EPhi_N-R_a/(C_EPhi_N)*Ia; Te=C_TPhi_N*Ia; P1=U_N*Ia+U_N*U_N/R_f; T2_N=9550*P_N/n_N; figure(1); plot(Te,n,'.-'); xlabel('电磁转矩Te/'); ylabel('转矩n/rpm'); ylim([0,1800]); figure(2); plot(Te,n,'rs'); xlabel('电磁转矩Te/'); ylabel('转矩n/rpm');

hold on; R_c=0; for coef=1:;; U=U_N*coef; n=U/C_EPhi_N-(R_a+R_c)/(C_EPhi_N*C_TPhi_N)*Te; plot(Te,n,'k-'); str=strcat('U=',num2str(U),'V'); s_y=1650*coef; text(50,s_y,str); end figure(3); n=U_N/C_EPhi_N-(R_a+R_c)/(C_EPhi_N*C_TPhi_N)*Te; plot(Te,n,'rs'); xlabel('电磁转矩Te/'); ylabel('转矩n/rpm'); hold on; U=U_N;R_c=; for R_c=0::; n=U/C_EPhi_N-(R_a+R_c)/(C_EPhi_N*C_TPhi_N)*Te; plot(Te,n,'k-'); str=strcat('R=',num2str(R_c+R_a),'\Omega'); s_y=400*(4-R_c*; text(120,s_y,str);

基于MATLAB的信号与系统仿真及应用

本科毕业(论文) 题 目 (中、英文 ) in The Signal System 分类 号 学号 密级 公开 学校代码 1107044431 TN911.6 基于MATLAB 的信号系统仿真及应用 The Application of MATLAB in The Signal System 工科 作者姓名 指导教师 学科门类 专业名称 电气工程及其自动化 提交论文日期 成绩评定 二零一五年五月

摘要 当前的科学信息技术正在日新月异的高速发展,而通过应用数字信号处理的方法,已成为一个非常重要的技术手段被广泛应用在通信、音频和图像、遥感,视频等领域。为了更好地了解信号与系统的基本理论和掌握其方法,从而更好地理解和掌握数字信号处理的理论知识,因此在实验过程中我们就需要通过MATLAB 计算机辅助设计平台。 本论文主要探究MATALB在信号与系统中的连续信号和离散信号中的应用,主要从连续和离散两方面入手,进一步掌握信号系统中的相关知识。同时引进计算机软件—MATLAB,对信号系统二阶系统的时域和频域分析,通过它在计算机上对程序进行仿真,阐述信号与系统理论应用与实际相联系。以此激发学习兴趣,变被动接受为主动探知,从而提升学习效果,培养主动思维,学以致用的思维习惯,也可以让人们进一步了解MATLAB软件 关键词:采样定理;MATLAB;信号与系统;抽样定理

Abstract Current, the rapid development of science and information technology are changing and through the application of digital signal processing method, has become a very important technology is widely used in communication, audio and video, remote sensing, video, etc. In order to better understand the basic theory of signal and system, and grasp the method, to better understand and master the theoretical knowledge of digital signal processing, so we need in the process of experiment by MATLAB computer aided design platform. This thesis mainly explores MATALB in signal and system, the application of discrete and continuous signals, mainly from the two aspects of the continuous and discrete, further to master relevant knowledge of signal system. Introduction of computer software - MATAB at the same time, the signal system of second order system time domain and frequency domain analysis, through its d on program on computer simulation, signal and system theory associated with the actual application. To stimulate interest in learning, change passive accept to active detection, so as to improve learning effect, active thinking, to practice habits of thinking, also can let people learn more about MATLAB software. Key words:Sampling theorem; MATLAB; Signals and systems; The sampling theorem

基于MATLAB的语音信号采集与处理

工程设计论文 题目:基于MATLAB的语音信号采集与处理 姓名: 班级: 学号: 指导老师:

一.选题背景 1、实践意义: 语音信号是一种非平稳的时变信号,它携带着各种信息。在语音编码、语音合成、语音识别和语音增强等语音处理中无一例外需要提取语音中包含的各种信息。语音信号分析的目的就在于方便有效地提取并表示语音信号所携带的信息。所以理解并掌握语音信号的时域和频域特性是非常重要的。 通过语音相互传递信息是人类最重要的基本功能之一.语言是人类特有的功能.声音是人类常用工具,是相互传递信息的最重要的手段.虽然,人可以通过多种手段获得外界信息,但最重要,最精细的信息源只有语言,图像和文字三种.与用声音传递信息相比,显然用视觉和文字相互传递信息,其效果要差得多.这是因为语音中除包含实际发音容的话言信息外,还包括发音者是谁及喜怒哀乐等各种信息.所以,语音是人类最重要,最有效,最常用和最方便的交换信息的形式.另一方面,语言和语音与人的智力活动密切相关,与文化和社会的进步紧密相连,它具有最大的信息容量和最高的智能水平。 语音信号处理是研究用数字信号处理技术对语音信号进行处理的一门学科,处理的目的是用于得到某些参数以便高效传输或存储;或者是用于某种应用,如人工合成出语音,辨识出讲话者,识别出讲话容,进行语音增强等. 语音信号处理是一门新兴的学科,同时又是综合性的多学科领域,

是一门涉及面很广的交叉学科.虽然从事达一领域研究的人员主要来自信息处理及计算机等学科.但是它与语音学,语言学,声学,认知科学,生理学,心理学及数理统计等许多学科也有非常密切的联系. 语音信号处理是许多信息领域应用的核心技术之一,是目前发展最为迅速的信息科学研究领域中的一个.语音处理是目前极为活跃和热门的研究领域,其研究涉及一系列前沿科研课题,巳处于迅速发展之中;其研究成果具有重要的学术及应用价值. 数字信号处理是利用计算机或专用处理设备,以数值计算的方法对信号进行采集、抽样、变换、综合、估值与识别等加工处理,借以达到提取信息和便于应用的目的。它在语音、雷达、图像、系统控制、通信、航空航天、生物医学等众多领域都获得了极其广泛的应用。具有灵活、精确、抗干扰强、度快等优点。 数字滤波器, 是数字信号处理中及其重要的一部分。随着信息时代和数字技术的发展,受到人们越来越多的重视。数字滤波器可以通过数值运算实现滤波,所以数字滤波器处理精度高、稳定、体积小、重量轻、灵活不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊功能。数字滤波器种类很多,根据其实现的网络结构或者其冲激响应函数的时域特性,可分为两种,即有限冲激响应( FIR,Finite Impulse Response)滤波器和无限冲激响应( IIR,Infinite Impulse Response)滤波器。 FIR滤波器结构上主要是非递归结构,没有输出到输入的反馈,系统函数H (z)在处收敛,极点全部在z = 0处(因果系统),因而只能

数字信号处理MATLAB中FFT实现

MATLAB中FFT的使用方法 说明:以下资源来源于《数字信号处理的MATLAB实现》万永革主编 一.调用方法 X=FFT(x); X=FFT(x,N); x=IFFT(X); x=IFFT(X,N) 用MATLAB进行谱分析时注意: (1)函数FFT返回值的数据结构具有对称性。 例: N=8; n=0:N-1; xn=[43267890]; Xk=fft(xn) → Xk= 39.0000-10.7782+6.2929i0-5.0000i 4.7782-7.7071i 5.0000 4.7782+7.7071i0+5.0000i-10.7782-6.2929i Xk与xn的维数相同,共有8个元素。Xk的第一个数对应于直流分量,即频率值为0。 (2)做FFT分析时,幅值大小与FFT选择的点数有关,但不影响分析结果。在IFFT时已经做了处理。要得到真实的振幅值的大小,只要将得到的变换后结果乘以2除以N即可。 二.FFT应用举例 例1:x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t)。采样频率fs=100Hz,分别绘制N=128、1024点幅频图。

clf; fs=100;N=128;%采样频率和数据点数 n=0:N-1;t=n/fs;%时间序列 x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);%信号 y=fft(x,N);%对信号进行快速Fourier变换 mag=abs(y);%求得Fourier变换后的振幅 f=n*fs/N;%频率序列 subplot(2,2,1),plot(f,mag);%绘出随频率变化的振幅 xlabel('频率/Hz'); ylabel('振幅');title('N=128');grid on; subplot(2,2,2),plot(f(1:N/2),mag(1:N/2));%绘出Nyquist频率之前随频率变化的振幅xlabel('频率/Hz'); ylabel('振幅');title('N=128');grid on; %对信号采样数据为1024点的处理 fs=100;N=1024;n=0:N-1;t=n/fs; x=0.5*sin(2*pi*15*t)+2*sin(2*pi*40*t);%信号 y=fft(x,N);%对信号进行快速Fourier变换 mag=abs(y);%求取Fourier变换的振幅 f=n*fs/N; subplot(2,2,3),plot(f,mag);%绘出随频率变化的振幅 xlabel('频率/Hz'); ylabel('振幅');title('N=1024');grid on; subplot(2,2,4) plot(f(1:N/2),mag(1:N/2));%绘出Nyquist频率之前随频率变化的振幅 xlabel('频率/Hz'); ylabel('振幅');title('N=1024');grid on; 运行结果:

Matlab Simulink 仿真步骤

MATLAB基础与应用简明教程 张明等编著 北京航空航天大学出版社(2001.01) MATLAB软件环境是美国New Mexico大学的Cleve Moler博士首创的,全名为MATrix LABoratory(矩阵实验室)。它建立在20世纪七八十年代流行的LINPACK(线性代数计算)和ESPACK(特征值计算)软件包的基础上。LINPACK和ESPACK软件包是从Fortran语言开始编写的,后来改写为C语言,改造过程中较为复杂,使用不便。MA TLAB是随着Windows环境的发展而迅速发展起来的。它充分利用了Windows环境下的交互性、多任务功能语言,使得矩阵计算、数值运算变得极为简单。MA TLAB语言是一种更为抽象的高级计算机语言,既有与C语言等同的一面,又更为接近人的抽象思维,便于学习和编程。同时,它具有很好的开放性,用户可以根据自己的需求,利用MA TLAB提供的基本工具,灵活地编制和开发自己的程序,开创新的应用。 本书重点介绍了MA TLAB的矩阵运算、符号运算、图形功能、控制系统分析与设计、SimuLink仿真等方面的内容。 Chap1 MATLAB入门与基本运算 本章介绍MATLAB的基本概念,包括工作空间;目录、路径和文件的管理方式;帮助和例题演示功能等。重点介绍矩阵、数组和函数的运算规则、命令形式,并列举了可能得到的结果。由于MA TLAB的符号工具箱是一个重要分支,其强大的运算功能在科技领域有特殊的帮助作用。 1.1 MATLAB环境与文件管理 1.2 工作空间与变量管理 1.2.1 建立数据 x1=[0.2 1.11 3]; y1=[1 2 3;4 5 6]建立一维数组x1和二维矩阵y1。分号“;”表示不显示定义的数据。 MATLAB还提供了一些简洁方式,能有规律地产生数组: xx=1:10 %xx从1到10,间隔为1 xx=-2:0.5:1 %xx从-2到1,间隔为0.5 linespace命令等距离产生数组,logspace在对数空间中等距离产生数组。对于这一类命令,只要给出数组的两端数据和维数就可以了。 xx=linespace(d1,d2,n) %表示xx从d1到d2等距离取n个点 xx=logspace(d1,d2,n) %表明xx从10d1到10d2等距离取n个点 1.2.2 who和whos命令 who: 查看工作空间中有哪些变量名 whos: 了解这些变量的具体细节 1.2.3 exist命令 查询当前的工作空间内是否存在一个变量,可以调用exist()函数来完成。 调用格式:i=exist(…A?); 式中,A为要查询的变量名。返回的值i表示A存在的形式: i=1 表示当前工作空间内存在一个变量名为A的矩阵; i=2 表示存在一个名为A.m的文件; i=3 表示MATLAB的工作路径下存在一个名为A.mex的文件;

matlab信号仿真谐波

综合训练① 实验内容:利用matlab绘制频率自定的正弦信号(连续时间和离散时间),复指数信号(连续时间),并举例实际中哪些物理现象可以用正弦信号,复指数信号来表示。绘制成谐波关系的正弦信号(连续时间和离散时间),分析其周期性和频率之间的关系。实验步骤: 一、绘制谐波关系的正弦信号 分析:由于正弦信号可以表示成两个共轭的复指数信号相减,然后再除去两倍的单位虚数得到,故,我们将正弦信号设置为 X=exp(j*pi*n/4)-exp(-j*pi*n/4))/(2*j) 此信号就相当于 x=sin(pi*n/4) 设计程序如下: n=[0:32]; %设置n的取值 x=(exp(j*pi*n/4)-exp(-j*pi*n/4))/(2*j); %限定离散正弦信号 stem(n,x) %绘制该离散正弦信号 通过Matlab所得图形如下:

分析:同样的连续型的正弦信号同样也可以用类似方式绘制. x=sym('(exp(j*pi*t/T)+exp(-j*pi*t/T))/2');%函数表示正弦信号 x5=subs(x,5,'T'); %设置周期大小ezplot(x5,[0,10]) %绘制图形 所得结果如下:

二、绘制复指数信号 分析:由于复指数信号有实数部分和虚数部分,所以绘制其图形,我们采取了分别绘制的方法,将实数和虚数分别画出。 实验程序如下: t=[0:.01:10]; %产生时间轴的等差点 y=exp((1+j*10)*t); %设置复指数信号 subplot(211),plot(t,real(y)); %绘制实数信号图形 grid subplot(212),plot(t,imag(y)); %绘制虚数部分图形 grid 实验所得结果如下:

实验一 基于Matlab的数字信号处理基本

实验一 基于Matlab 的数字信号处理基本操作 一、 实验目的:学会运用MA TLAB 表示的常用离散时间信号;学会运用MA TLAB 实现离 散时间信号的基本运算。 二、 实验仪器:电脑一台,MATLAB6.5或更高级版本软件一套。 三、 实验内容: (一) 离散时间信号在MATLAB 中的表示 离散时间信号是指在离散时刻才有定义的信号,简称离散信号,或者序列。离散序列通常用)(n x 来表示,自变量必须是整数。 离散时间信号的波形绘制在MATLAB 中一般用stem 函数。stem 函数的基本用法和plot 函数一样,它绘制的波形图的每个样本点上有一个小圆圈,默认是空心的。如果要实心,需使用参数“fill ”、“filled ”,或者参数“.”。由于MATLAB 中矩阵元素的个数有限,所以MA TLAB 只能表示一定时间范围内有限长度的序列;而对于无限序列,也只能在一定时间范围内表示出来。类似于连续时间信号,离散时间信号也有一些典型的离散时间信号。 1. 单位取样序列 单位取样序列)(n δ,也称为单位冲激序列,定义为 ) 0() 0(0 1)(≠=?? ?=n n n δ 要注意,单位冲激序列不是单位冲激函数的简单离散抽样,它在n =0处是取确定的值1。在MATLAB 中,冲激序列可以通过编写以下的impDT .m 文件来实现,即 function y=impDT(n) y=(n==0); %当参数为0时冲激为1,否则为0 调用该函数时n 必须为整数或整数向量。 【实例1-1】 利用MATLAB 的impDT 函数绘出单位冲激序列的波形图。 解:MATLAB 源程序为 >>n=-3:3; >>x=impDT(n); >>stem(n,x,'fill'),xlabel('n'),grid on >>title('单位冲激序列') >>axis([-3 3 -0.1 1.1]) 程序运行结果如图1-1所示。 图1-1 单位冲激序列

相关主题
文本预览
相关文档 最新文档