当前位置:文档之家› 在机械零件的模糊可靠性优化设计方法

在机械零件的模糊可靠性优化设计方法

在机械零件的模糊可靠性优化设计方法
在机械零件的模糊可靠性优化设计方法

课程论文

题目在机械零件的模糊可靠性优化设计方法学院自动化与电气工程学院

专业自动化

班级自0901

学生刘同磊

学号20090321139

指导教师任宏伟

二〇一二年六月八日

在机械零件的模糊可靠性优化设计方法

济南大学自动化0901 刘同磊 20090321139

摘要通过对目前常用的几种机械零件设计方法存在的不完善性分析, 阐明模糊可靠性优化设计方法在理论上的科学性、在设计方法上的先进性和在机械零件设计中应用的必然性与必要性。根据模糊可靠性设计理论,对机械零件的模糊可靠性设计计算方法进行了初步探讨,同时就机械零件的模糊可靠性优化设计的具体方法作了分析和阐述可靠性模糊优化设计既考虑随机因素对产品的影响,又考虑了模糊因素对产品的影响,优化结果往往比普通优化设计、可靠性设计、模糊优化设计要好。可靠性优化设计是一种值得推广的优化设计方法。

关键词: 机械零件可靠性模糊优化

0引言

传统的机械设计是把载荷、应力、零件尺寸等参数视为确定量,按一定的强度条件进行设计或验算。实际上,由于各种客观因素的影响,各设计参数都不是确定量,而是随机变量或模糊变量。前者是一种概率意义上的非确定性设计变量,其不确定性表现在它取值的随机性,通常用统计学的方法来把握这种不确定性。后者是由于边界不清楚即模糊性所造成的一种非确定性设计变量,它是事物发展过程中存在的中介过渡状态的结果。例如某零件的许用拉应力=240MPa,当计算应力σ=240.1MPa 时就不满足强度条件,而σ=239.9MPa时则满足强度条件。实际上二者并无明显的差异,从完全许用到完全不许用之间,应有一个中间过渡过程。当考虑这一过程时,许用拉应力就成了一个模糊量,其边界就是一

个模糊边界。我们把这种很难用一个确定的值给出的变量称为模糊变量,它可用模糊集合与隶属函数来表示。

模糊可靠性优化设计是在传统设计、常规可靠性与优化设计的理论与方法基础上, 引入模糊设计理论和方法而形成的一种新型设计方法, 也是对上述设计理论、方法的深化与发展。

1、几种优化设计方法比较

机械可靠性设计把常规设计中的一些变量,如载荷、材料的强度、零部件的几何尺寸等,都作为随机变量处理,进行设计反依据的数据来自试验或实践,并经统计分析,考虑了工况变化及各种随机因素的影响。机械可靠性设计与优化设计相结合形成了可靠性优化设计,既能定量地预测产品的可靠性,又能使产品的设计参数获得优化解。但是,可靠性优化设计,忽略了从不许用到许用的中介过渡状态,未考虑模糊因素对产品的影响,致使处于中介过渡状态的优秀方案被计算机无情地抛弃了。

2、几种常用机械零件设计方法的不完善性分析

在零件设计中广泛存在着随机性和模糊性两类性质完全不同的不确定性。正确分析处理两类不确定性, 并给予恰当的表征和度量, 将直接影响零件设计结果的优劣。运用传统设计、常规可靠性及优化设计等方法进行零件设计时, 恰好在这个问题处理上存在不同程度的不完善性。传统设计方法是以静态分析理论和二值逻辑为基础, 其做法是把实际工作状态的零件简化为某种特定工况下的静态力学模型, 并据此把相关的设计变量均作为相应工况下的单值处理。虽然在选择设计变量数值时考虑了不同工况下取值的差异, 但仍旧在很大程度上抹杀了零件实际工作

过程中瞬息万变的动态特征, 这是其不完善性之一。其二是在考察与评判零件状态时, 依据二值逻辑作有二值状态假设, 即零件只有/ 完全正常0与/ 完全失效0的两种截然不同的状态。藉此又把设计变量的取值范围划分为/ 完全许用0 和/ 完全不许用0两部分。显然, 对于设计变量取值范围的划分及对变量的单值处理方法都是十分粗糙的; 而且因忽略了设计变量实际存在的不确定性, 在许多情况下是严重脱离实际的。以致使设计结果存在极大的不确定性, 也使其与零件的实际工作状态的接近程度很差。就优化设计方法而言, 其实质是传统设计理论与优化算法的结合, 依旧把设计变量置于静态力学模型下进行处理。其差异仅仅是把以前作单值处理的设计变量作为多值/ 变量0, 并在变化中寻优, 可在较高精度上对过去主要由设计人员凭经验才能确定的设计变量, 通过定量分析计算加以确定。其结果并未使设计变量还其随机性和模糊性的本质, 仍然把模糊性、随机性问题简化为确定型问题处理。所采用依然是二值逻辑, 即其判据仍旧是严格而分明的。尤其是在考虑机械零件的可靠性问题时, 往往不能满足设计者的意图,甚至所确定的最优设计方案并非最优, 或成为根本不可行方案。常规可靠性设计方法是以概率论与统计学为理论基础的一种计方法。设计时把诸如零件的工作应力、许用应力等设计变量作为随机变量, 用概率分布函及均值、均方差或标准离差来描述。经此处理, 对设计中具有随机性的不确定性可以给予定量的表征与度量。但是, 零件设计中尚有许多属于模糊性的不确定性, 对该性质的不确定性也用概率统计方法进行描述与度量, 显然是不能完全反映实际情况的。甚至在一些问题上因不恰当的使用这种处理方法, 导致设计结

果与实际情况相背离。这是其不完善性之一。此外,进行零件设计与考察时, 仍旧是以二值逻辑为理论基础, 判别的界限依然是清晰分明的。结果是抹杀了设计中存在的模糊性, 以致使设计结果与实际状况难以接近。

3、机械零件的模糊可靠性优化设计概述

无论是机械的结构, 还是其规定的功能与所执行的任务都将日趋复杂。结果不仅对零件的要求越来越高, 而且影响零件工作性能的因素越来越多, 其影响效应也越来越复杂多变, 导致对其描述与度量难以精确化。而精确化的能力越低, 便意味着模糊性越强。因

此, 对于零件的工作性能与影响因素间关系的分析与设计必然要涉及模糊问题。模糊可靠性优化设计方法不仅能够利用概率统计理论的概率分布函数及其均值、均方差或标准离差等

分布参数对随机变量进行定量分析、处理和度量; 而且还可以利用模糊集合理论与隶属函数对模糊性设计变量进行定量表征和度量。从而使零件的分析与设计越趋近客观实际、更优化合理。

4、可靠性模糊优化设计方法

机械零件( 或产品) 可靠性受材质好坏、设计水平、制造水平等诸多模糊因素影响,致使可靠度的下界具有模糊性,存在从不许用到许用的中介过渡状态。可靠性设计和模糊优化设计相结合,便形成了可靠性模糊优化设计,它是常规可靠性优化设计的深化。用可靠性模糊优

优化设计方法建立的数学模型,既反映随机因素对机械零件( 或产品) 影响,又反映模糊因素对机械零件( 或产品) 影响,能更好地符合客观实际。可靠性模糊优化设计是一种较理想的设计方法。可靠性模糊优化设

计有三种方法:(1)按机械零件( 或产品) 的可靠性指标建立一个目标函数,约束条件有模糊约束条件和普通约束条件组成;(2)将机械零件( 或产品) 功能参数的可靠性指标作为模糊约束条件;(3)可靠性指标为一个目标函数,按其他要求建立一或几个目标函数,其他可靠性指标还可作为模糊约束条件。

5、机械零件的模糊可靠性优化设计方法应用

模糊可靠性优化设计与常规优化设计一样, 首先要建立优化数学模型, 即确定设计变量、目标函数和约束条件; 而后利用最优化算法寻求最优设计方案。二者间的差异或前者应增添的任务为: 1) 利用概率理论和模糊集合论、隶属函数对机械零件设计中存在的随机性、模糊性给予定量描述和度量; 2) 确定零件的模糊可靠度计算式, 并以此作为优化设计的目标函数或约束函数; 3) 应用概率论和模糊集合论把随机性、模糊性的优化数学模型转化为确定型优化模型, 以简化寻优过程。

(1)机械零件的模糊可靠性优化设计

数学模型机械零件的模糊可靠性优化设计数学模型也是由设计变量、目标函数和约束条件三方面构成的。其通用表达形式为:

)

(

min x

f

)

( min x

f

S,t

)

(

)

(X

R

X

R≥

)

(≥

X

Gj)

....

2,1

(m

j=

)

(≥

x

Gk)

.....

2

,1

(q

m

k

m

k+

=

+

=

]

,.....

2

,1

,

,.....

2

,1

[Xn

Xm

Xm

Xm

X

X

x+

+

=

(1)

其中带符号者均属模糊性的函数或设计量。

应该说明, 设计变量、目标函数和约束条件三者可以都具有模糊性, 也

可只有一个为模糊性。只要其中之一含有模糊性因素, 则该优化数学模

型及设计问题就属于模糊可靠性设计的范畴。

(2) 随机变量函数型目标函数的建立

在零件的模糊可靠性优化设计中, 可把零件的体积、重量、成本、

承载能力等技术经济性能指标或设计参数作为优化的目标。当零件的技

术经济性能指标或设计的特征参数是随机变量函数时, 其自身也成为随

机变量。设有机械零件的性能指标或设计特征参数为:

)(Xi Y ?= ).....2,1(n i = (2) 根据概率论获得其分布函数。但因描述零件性能指标或设计参数的函数

往往都比较复杂, 以致随机变量函数的分布从理论上推导存在一定困难。

在目前条件下, 根据实验数据的统计结果或凭设计者的使用经验和直觉

选用近似的分布规律, 是目前常用的简单而实用的方法。于是, 便可由

随机变量函数的数字特征求得所需的指标或特征参数表述式。其目标函

数的型

式则可有如下几种:

均值型: )

,.....2,1()(min Uxn Ux Ux Y E ?≈

∑=??+n i i x x 122)(21?

方差型:

=

??

?

n

i i

Y x

x

Y

V

1

)

(

)

(

min

?

(4)

概率型:

dy

y

f

y

Y

F

x

P?=

=)

(

)

(

)

(

max

(5)

究竟采用上述目标函数中的哪种作为优化目标函数, 需按实际问题的要求而定。

(3)随机函数型约束函数的建立

进行机械零件的模糊可靠性优化设计时, 某些约束函数也属于随机变量函数。因此, 在设计中须计算设计性能指标或特征参数满足要求的概率。

(4)模糊优化模型向非模糊优化模型的转化

在机械零件的模糊可靠性优化设计中, 把模糊优化模型转化为非模糊优化模型是解模糊可靠性优化问题的基本途径。目前, 实现这种转化的方法中应用较广的是最优水平截集法。该方法不仅可以实现由模糊优化模型向确定型优化模型的转化, 且可提供多种优化设计方案供设计者选择。如前所述, 模糊产生于事物差异之间的中介过渡过程, 一旦在某过渡过程中取定一具体的差异状态, 则对于所取定的差异状态而言,原本具有模糊性的东西便转化为确定性的、不再是模糊的了。倘若以上所指的差异过渡过程是零件的模糊可靠性优化设计中由模糊约束所给定的、从完全可用到完全不可用的过程, 则可根据模糊集合理论及设计

变量的具体情况, 确定用于描述该过渡过程的隶属函数, 并通过最优水平截集截取一系列不同许用程度的阈值。于是, 对于某一确定阈值下的确定差异状态, 便表示了某一确定的许用程度。模糊约束也就因此不再

是模糊的了, 而是在该确定的许用程度上对设计变量取值的限制, 或称判据了。显然, 对于每个确定的许用程度, 便是一相应许用程度下的非模糊优化模型, 经过优化算法的处理便可得到相应的优化设计方案。在机械零件的模糊可靠性优化设计中, 可以利用最优水平截集法获得不同阈值下的、不同性能水平的优化设计方案, 从而在实现模型转化的同时又给设计者在最优化设计方案的选择上留有较大余地和灵活性。利用最优水平截集法实现优化数学模型转化的关键是确定最优水平阈值K* 。可供确定最优水平阈值K* 的方法很多, 经实践证明, 比较有效又切实可行的方法是工程设计参数的二级模糊综合评判法, 简称为二级模糊综合评判法。其基本思路是, 首先把影响零件设计变量取值的因素按其性质和程度分为若干等级, 并把每个因素及其各个等级均视为等级论域上的模糊子集。然后, 按各个等级模糊子集进行一级模糊综合评判, 而且把其评判的结果作为单因素的评判集。继而按全部因素进行二级模糊综合评判, 从而获得确定设计变量的评判指标, 即最优水平阈值K* 。至此将具有模糊性的优化数学模型转化为确定性的优化数学模型,

并可很容易地在计算机上完成寻优的设计计算。

6、结论

本文从理论上论述了可靠性模糊优化设计方法,并与优化设计、可靠性优化设计、模糊优化设计进行了比较。可靠性模糊优化设计既考虑随机因素、又考虑模糊因素对机械产品的影响,是一种更加科学、更加符合实际的设计方法。

参考文献

1 郑文林等. 机械零件设计中存在的不确定性分析与对策. 河北机械, 1996

2 王才华, 宋连天. 模糊论方法学. 北京: 中国建筑工业出版社, 1998

3 沈恒范. 概率论讲义. 北京: 人民教育出版社, 1980

4 卢玉明. 机械零件的可靠性优化设计. 北京: 高等教育出版社, 1989

5 陈李宙, 张英会. 机械优化设计. 上海科学技术出版社, 1982

6 杨伦标, 高英仪. 模糊数学原理与应用. 广州: 华南理工大学出版社, 1995

可靠性与优化设计

可靠性与优化设计 【摘要】 改革开放为我国的机械工程制造业带来了良好的发展机遇,经过三多年的努力,机械工程制造业已经取得了很大的发展成果,成为国民经济中重要的支柱。在机械工程制造业当中,对其进行的可靠性优化设计具有非常重要的作用。本文就机械工程中的可靠性优化设计问题进行了探讨,以供参考。 【关键词】 机械工程;可靠性;优化设计 1、前言 当今社会,科学技术飞速发展,人们不仅对多功能产品有强烈的需求,也需要多功能产品可以实现其应具备的功能。产品的可靠性优化设计是以产品功能的可靠性使用为目的而应运而生的产物,从产生开始到现在,已经得到了迅速的发展与广泛地使用[1]。在进行机械工程的产品设计时,将可靠性理论与技术应用于其中,并根据需要与可能,将产品的可靠性使用作为优先考虑的设计准则;在满足时间、费用及性能的基础上,让设计出的机械工程产品符合可靠性的要求。可靠性的设计问题在涉及传统的设计技术的同时,也与价值工程、系统工程、环境工程及质量控制工程等有着密切的关系。因此,可靠性设计是多学科与多技术相互交叉融合的一种新兴技术。

2、机械工程产品的可靠性优化设计现状分析 由于我国的特殊历史原因,机械工程制造业与西方发达国家机械制造业相比,显得相对落后,尤其是在可靠性设计的研究方面更是显得滞后。直到二世纪八年代,我国在机械工程的可靠性研究才取得了一些初步的成效,在某些个别的行业还成立了专门从事可靠性优化设计研究的组织与团体,并为社会培养了大批的可靠性优化设计研究的技术人才,制定出了整套可靠性优化设计的规范标准[2]。从总体上来看,过去的可靠性优化设计研究比较偏重于理论,但在生产实践中,对于理论的应用则是比较少,就这一点而言,与制造业相对较为发达的国家相比较,存在着许多不足之处。 3、可靠性优化设计在机械工程中的应用 机械工程产品的可靠性优化设计在产品的生产与使用周期的各环节都起着重要作用。这些环节主要有产品的设计、制造、使用及售后维修等。以下就机械工程产品的设计、制造及使用三个环节展开讨论可靠性优化设计问题。 机械工程产品设计环节可靠性优化设计 机械工程产品的设计主要包括装配整体设计与零件组装设计。对机械产品进行可靠性优化设计时,可以将其当作一个整体,设计的方法主要有两种,第一种方法为:先大致了解机械的完整系统,并分析组成整体的零部件具有多大程度的可靠性,据此推断出整体具有多大程度的可靠性;这种方法即为预测整体设

通用的可靠性设计分析方法

通用的可靠性设计分析方法 1.识别任务剖面、寿命剖面和环境剖面 在明确产品的可靠性定性定量要求以前,首先要识别产品的任务剖面、寿命剖面和环境剖面。 (1)任务剖面“剖面”一词是英语profile的直译,其含义是对所发生的事件、过程、状态、功能及所处环境的描述。显然,事件、状态、功能及所处环境都与时间有关,因此,这种描述事实上是一种时序的描述。 任务剖面的定义为:产品在完成规定任务这段时间内所经历的事件和环境的时序描述。它包括任务成功或致命故障的判断准则。 对于完成一种或多种任务的产品,均应制定一种或多种任务剖面。任务剖面一般应包括:1)产品的工作状态; 2)维修方案; 3)产品工作的时间与程序; 4)产品所处环境(外加有诱发的)时间与程序。 任务剖面在产品指标论证时就应提出,它是设计人员能设计出满足使用要求的产品的最基本的信息。任务剖面必须建立在有效的数据的基础上。 图1表示了一个典型的任务剖面。 (2)寿命剖面寿命剖面的定义为:产品从制造到寿命终结或退出使用这段时间内所经历的全部事件和环境的时序描述。寿命剖面包括任务剖面。 寿命剖面说明产品在整个寿命期经历的事件,如:装卸、运输、储存、检修、维修、任务剖面等以及每个事件的持续时间、顺序、环境和工作方式。 寿命剖面同样是建立产品技术要求不可缺少的信息。 图2表示了寿命剖面所经历的事件。

(3)环境剖面环境剖面是任务剖面的一个组成部分。它是对产品的使用或生存有影响的环境特性,如温度、湿度、压力、盐雾、辐射、砂尘以及振动冲击、噪声、电磁干扰等及其强度的时序说明。 产品的工作时间与程序所对应的环境时间与程序不尽相同。环境剖面也是寿命剖面和任务剖面的一个组成部分。 2.明确可靠性定性定量要求 明确产品的可靠性要求是新产品开发过程中首先要做的一件事。产品的可靠性要求是进行可靠性设计分析的最重要的依据。 可靠性要求可以分为两大类:第一类是定性要求,即用一种非量化的形式来设计、分析以评估和保证产品的可靠性;第二类是定量要求,即规定产品的可靠性指标和相应的验证方法。 可靠性定性要求通常以要求开展的一系列定性设计分析工作项目表达。常用的可靠性定性设计工作项目见表1。

机械零件的可靠性优化设计

题目:机械零件的可靠性优化设计 课程名称:现代设计理论与方法 机械零件 自从出现机械,就有了相应的机械零件。随着机械工业的发展,新的设计理论和方法、新材料、新工艺的出现,机械零件进入了新的发展阶段。有限元法、断裂力学、弹性流体动压润滑、优化设计、可靠性设计、计算机辅助设计(CAD)、系统分析和设计方法学等理论,已逐渐用于机械零件的研究和设计。更好地实现多种学科的综合,实现宏观与微观相结合,探求新的原理和结构,更多地采用动态设计和精确设计,更有效地利用电子计算机,进一步发展设计理论和方法,是这一学科发展的重要趋向。 机械零件是指直接加工而不经过装配的机器组成单元。机械零件是机械产品或系统的基础,机械产品由若干零件和部件组成。按照零件的应用范围,可将零件分为通用零件和专用零件二类。通用的机械零件包括齿轮、弹簧、轴、滚动轴承、滑动轴承、联轴器、离合器等。 机械零件设计就是确定零件的材料、结构和尺寸参数,使零件满足有关设计和性能方面的要求。机械零件除一般要满足强度、刚度、寿命、稳定性、公差等级等方面的设计性能要求,还要满足材料成本、加工费用等方面的经济性要求。 机械零件优化设计概述 进行机械零件的设计,一般需要确定零件的计算载荷、计算准则及零件尺寸参数。零件计算载荷和计算准则的确定,应当依据机械产品的总体设计方案对零件的工作要求进行载荷等方面的详细分析,在此基础上建立零件的力学模型,考虑影响载荷的各项因素和必要的安全系数,确定零件的计算载荷;对零件工作过程可能出现的失效形式进行分析,确定零件设计或校核计算准则。零件材料和参数的确定,应当依据零件的工作性质和要求,选准适合于零件工作状况的材料;分析零件的应力或变形,根据有关计算准则,计算确定零件的主要尺寸参数,并进行参数的标准化。 所谓机械零件优化设计是将零件设计问题描述为数学优化模型,采用优化方法求解一组零件设计参数。机械零件设计中包含了许多优化问题,例如零件设计方案的优选问题、零件尺寸参数优化问题、零件设计性能优化问题等。国内机械设计领域技术人员针对齿轮、弹簧、滚动轴承、滑动轴承、联轴器、离合器等零件优化设计问题开展了大量的工作,解决了齿轮传动比优化分配、各种齿轮参数优化、各种齿轮减速器优化设计、各种齿轮传动的可靠性优化、齿轮传动和减速

现代设计方法(第四章 可靠性设计)

简述可靠性设计传统设计方法的区别。 答:传统设计是将设计变量视为确定性单值变量,并通过确定性函数进行运算。 而可靠性设计则将设计变量视为随机变量,并运用随机方法对设计变量进行描述和运算。 1.可靠性:产品在规定的条件下和规定的时间内,完成规定功能的能力。 可靠度:产品在规定的条件下和规定的时间内,完成规定功能的概率。是对产品可靠性的概率度量。 可靠度是对产品可靠性的概率度量。 2)可靠性工程领域主要包括以下三方面的内容: 1.可靠性设计。它包括了设计方案的分析、对比与评价,必要时也包括可靠性试验、生产制造中的质量控制设计及使用维修规程的设计等。 2.可靠性分析。它主要是指失效分析,也包括必要的可靠性试验和故障分析。这方面的工作为可靠性设计提供依据,也为重大事故提供科学的责任分析报告。 3.可靠性数学。这是数理统计方法在开展可靠性工作中发展起来的一个数学分支。 。可靠性设计具有以下特点: 1.传统设计方法是将安全系数作为衡量安全与否的指标,但安全系数的大小并没有同可靠度直接挂钩,这就有很大盲目性。可靠性设计与之不同,它强调在设计阶段就把可靠度直接引进到零件中去,即由设计直接决定固有的可靠度。 2.传统设计是把设计变量视为确定性的单值变量并通 过确定性的函数进行运算,而可靠性设计则把设计变量视为随机变量并运用随机方法对设计变量进行描述和 运算。 3.在可靠性设计中,由于应力S和强度R都是随机变量,所以判断一个零件是否安全可靠,就以强度R大于应力S的概率大小来表示,这就是可靠度指标。 4.传统设计与可靠性设计都是以零件的安全或失效作 为研究内容,因此,两者间又有着密切的联系。可靠性设计是传统设计的延伸与发展。在某种意义上,也可以认为可靠性设计只是在传统设计的方法上把设计变量 视为随机变量,并通过随机变量运算法则进行运算而已。 。平均寿命(无故障工作时间):指一批产品从投入运行到发生失效(或故障)的平均工作时间。 对不可修复的产品而言,T是指从开始使用到发生失效的平均时间,用MTTF表示; 对可修复的产品而言,是指产品相邻两次故障间工作时间的平均值,用MTBF表示; 平均寿命的几何意义是:可靠度曲线与时间轴所夹的面积。 6.正态分布曲线的特点是什么?什么是标准正态分布? :正态分布曲线f(x)具有连续性,对称性,其曲线与横坐标轴间围成的总面积恒等于 1.在均值μ和离均值的距离为标准差的某一指定倍数z。之间,分布有确定的百分数,均值或数学期望μ表征随机变量分布的集中趋势,决定正态分布曲线位置;标准差σ,他表征随机变量分布的离散程度,决定正态分布曲线的形状。定义μ=0,σ=1,即N(0,1)为标准正态分布。 7.系统可靠性的大小主要取决于:(1)组成系统的零部件的可靠性 (2)零部件的组合方式。 1.什么是3σ法则?已知手册上给出的16Mn的抗拉强度为1100~1400MPa,试利用3σ法则确定该材料抗拉强度的均值和标准差。 在进行可靠性计算时,引用手册上的数据,可以认为它们服从正态分布,手册上所给数据范围覆盖了该随机变量的+-3σ,即6倍的标准差,称这一原则为3σ法则。均值=(1100+1400)/2=1250MPa 标准差=(1400-1100)/6=50Mpa。从正态分布知,对应+-3σ范围的可靠度已为0.9973. 2. 简述强度—应力干涉理论中“强度”和“应力” 的含义,试举例说明之。 答:强度一应力干涉理论中“强度”和“应力”具有 广义的含义:“应力”表示导致失效的任何因素;而 “强度”表示阻止失效发生的任何因素。“强度” 和“应力”是一对矛盾的两个方面,它们具有相同的 量纲;例如,在解决杆、梁或轴的尺寸的可靠性设计 中,“强度”就是指材料的强度,“应力”就是指零件 危险断面上的应力,但在解决压杆稳定性的可靠性设 计中,“强度”则指的是判断压杆是否失稳的“临界 压力”,而“应力”则指压杆所受的工作压力。 3.说明常规设计方法中采用平均安全数的局限性。 答:平均安全系数未同零件的失效率联系起来,有很 大的盲目性。 从强度一应力干涉图可以看出 1)即使安全系数大于 1,仍然会有一定的失效概率。2)当零件强度和工作 应力的均值不变(即对应的平均安全系数不变),但 零件强度或工作应力的离散程度变大或变小时,其干 涉部分也必然随之变大或变小,失效率亦会增大或减 少。 1.所谓系统,是为完成某一功能而由若干零部件相互 有机地组合起来的综合体。系统的可靠度取决于两个 因素:一是组成系统的零部件的可靠度;二是零部件 的组合方式。 3.串联系统:若系统中诸零件的失效相互独立,但当 系统中任一个零件发生故障都会导致整个系统失效 时,则这种零件的组合形式称为串联模型。 3.串联系统的可靠度:串联系统的可靠度Rs低于组 成零件的可靠度Ri。因此,要提高串联系统的可靠 度,最有效的措施是减少组成系统的零件数目。 4.并联系统:有冗余系统和表决系统。冗余系统又可 分为工作冗余系统和非工作冗余系统。 5.工作冗余系统:在该系统中,所有零件都同时参加 工作,而且任何一个零件都能单独支持整个系统正常 工作。即在该系统中,只要不是全部零件失效,系统 就可以正常工作。 6.非工作冗余系统:在该系统中,只有某一个零件处 于工作状态,其它零件则处于非工作状态。只有当工 作的零件出现故障后,非工作的零件才立即转入工作 状态。 。非工作冗余系统的可靠度高于工作冗余系统,这是 因为工作冗余系统的零件虽然都处于不满负荷状态 下,但它们总是在工作,必然会磨损或老化。非工作 冗余系统虽不存在这个问题,却存在一个转换开关的 可靠度问题。 。r/n表决系统:在n个零件组成的并联系统中,n个 零件都参加工作,但其中要有r个以上的零件正常工 作,系统才能正常工作。它是属于一种广义的工作冗 余系统。当r=1时,就是工作冗余系统,当r=n时, 就是串联系统。 。复杂系统的可靠性预测方法:等效功能图法、布尔 真值表法; 。故障树分析的步骤:1,在充分熟悉系统的基础上, 建立故障树;2,进行定性分析,识别系统的薄弱环 节;3,进行定量分析,对系统的可靠性作出评价。 。故障树:是一种倒立的树状逻辑因果关系图,它是 用事件符号、逻辑门符号和转移符号描述系统中各种 事件之间因果关系的图。 。故障树的定性分析是寻找故障树的全部最小割集或 最小路集。其目的是为了找出引了系统故障的全部可 能的起因,并定性的识别系统的薄弱环节。 。最小割集:如果将割集中任意去掉一个基本事件后就不再 是割集。 。最小路集:路集也是一些基本事件的集合,当该集合所有 的基本事件同时不发生时,则顶事件必然不发生。如果将路 集中任意去掉一个基本事件后就不再是路集的话,则称此路 集为最小路集。 。最小割集代表系统的一种失效模式;一个最小路集代表系 统的一个正常模式。 。故障树的全部最小割集即是顶事件发生的全部可能原因, 构成了系统的故障谱。因此,在产品设计中要努力降低最小 割集发生的可能性,这就是产品的薄弱环节。反过来说,为 保证系统正常工作,必须至少保证一个最小路集存在。 。故障树的定量分析就是根据基本事件的概率求出顶事件发 生的概率,从而对系统的可靠性作出评价。 。可靠度分配按分配原则的不同,有等同分配法、加权分配 法和动态规划最优分配法; 。等同分配法:它按照系统中各单元(子系统或零部件)的 可靠度均相等的原则进行分配。其计算简单,缺点是没有考 虑各子系统现有的可靠度水平、重要性等因素。 。加权分配法:它是把各子系统在整个系统中的重要度以及 各子系统的复杂度作为权重来分配可靠度的。 。最优分配法:采用动态规划最优分配法,可以把系统的成 本、重量、体积或研制周期等因素为最小作为目标函数,而 把可靠度不小于某一给定值作为约束条件进行可靠度分配; 也可以把系统可靠度尽可能大作为目标函数,而将成本等因 素视为约束条件进行可靠度分配。这要根据具体问题来确定。 特点:机电产品的可靠性指标不仅取决于零部件的可靠度, 而且还将受制造成本、研制周期、重量、体积等因素的制约。 因此,要全面考虑这些因素的影响,必须采用优化方法分配 可靠度。 。一是可靠性设计的有效性取决于所采用的统计参数是否准 确可靠;二是应用明确规定产品失效的形式和判据。 。试简述强度和应力均为正态分布时,强度和应力干涉的三 种典型情况下手失效率情况。 1.强度的均值大于应力的均值,这时的干涉概率,即不可靠 度F小于50%。当强度的均值减去应力的均值为一定值时, 概率F的大小,随强度和应力的标准增大而增大。常规设计 的安全系数大于1时属于这种情况。这种情况下,还可能出 现失效。 2.强度的均值等于应力的均值,此时,失效率F为50% 3.强度的均值小于应力的均值,此时安全系数小于1,失效 概率大于50%,零件仍具有一定的可靠度。

浅谈机械工程的可靠性优化设计

浅谈机械工程的可靠性优化设计 近年来,随着我国科技水平的不断提升,各行各业都得到了不同程度的发展。尤其是工业机械水平的提升,使得我国机械制造领域发生了巨大的变化。为了促进我国机械工程的进一步发展,获取更多的经济效益和社会效益,应当对机械工程的可靠性进行优化。文章从我国机械工程产品的可靠性优化设计现状入手,对于可靠性优化设计在机械工程中的具体应用进行了简要的分析与探讨,以供有关工作人员参考与借鉴。 标签:机械工程;可靠性;优化设计;探讨 引言 当前,随着我国社会经济的不断发展,人们的生活水平有了很大程度的提高。在科学技术快速发展的背景下,人们对于多功能机械产品的需求也有所增加。然而,从实际情况来看,现如今还存在一部分多功能机械产品的实际应用功能难以实现。因此,我国机械制造业的发展还有待于进一步提高。作为综合多学科与多技术的新兴设计技术之一,可靠性设计在机械工程的产品设计过程中已经得到了广泛的应用。文章对机械工程可靠性优化设计进行了相应的分析与探讨,以期通过可靠性优化设计方法,能够提高机械工程产品的质量。 1 机械工程产品的可靠性优化设计现状分析 随着社会的不断发展,科学技术的进步推动着产品的更新与换代。人们生活水平的逐渐提高,对于产品的多功能性与可靠性提出了更高的要求。在科技水平不断提高的背景下,现有生产过程中所产出的机械工程产品的结构呈现出复杂化的特点。不但各式各样的优秀工艺被应用到生产制造中,而且产品的更新速度也在不断的加快。产品的结构复杂化特点,对于机械工程的可靠性设计提出了更高的要求。具体来讲,可靠性主要是指在特定要求的状态下,产品能够实现特定功效的水平。在机械制造领域中,生产单位要想生产出符合客户需求的产品,首先应当展开细致的规划设计,对于产品设计过程中潜在的问题要进行严格的控制,从而有效提升其稳定性,实现预期的目标。 然而,从我国机械制造业的发展历程来看,相较于一些发达国家而言,我国机械制造业的起步较晚,仍然存在着一定的差距。在此背景下,与机械制造相关的可靠性分析工作同样进展的比较缓慢。自二十世纪八十年代以后,我国在机械制造方面有了一定程度的突破,并成立了专门的研究机构。从总体上来看,对于机械工程可靠性优化设计研究的重点主要在于理论方面。然而,从实践的角度出发可以发现,在机械工程生产过程中运用理论来解决实际问题的现象比较少见。因此,侧重于理论层面的机械工程可靠性优化设计与研究,是存在很大的局限性的,对于我国机械工程可靠性优化设计构成了比较严重的制约。 2 可靠性研究的发展过程

可靠性设计的基本概念与方法

4.6 可靠性设计的基本概念与方法 一、结构可靠性设计概念 1.可靠性含义 可靠性是指一个产品在规定条件下和规定时间内完成规定功能的能力;而一个工业产品(包括像飞机这样的航空飞行器产品)由于内部元件中固有的不确定因素以及产品构成的复杂程度使得对所执行规定功能的完成情况及其产品的失效时间(寿命)往往具有很大的随机性,因此,可靠性的度量就具有明显的随机特征。一个产品在规定条件下和规定时间内规定功能的概率就称为该产品的可靠度。作为飞机结构的可靠性问题,从定义上讲可以理解为:“结构在规定的使用载荷/环境作用下及规定的时间内,为防止各种失效或有碍正常工作功能的损伤,应保持其必要的强刚度、抗疲劳断裂以及耐久性能力。”可靠度则应是这种能力的概率度量,当然具体的内容是相当广泛的。例如,结构元件或结构系统的静强度可靠性是指结构元件或结构系统的强度大于工作应力的概率,结构安全寿命的可靠性是指结构的裂纹形成寿命小于使用寿命的概率;结构的损伤容限可靠性则一方面指结构剩余强度大于工作应力的概率,另一方面指结构在规定的未修使用期间内,裂纹扩展小于裂纹容限的概率.可靠性的概率度量除可靠度外,还可有其他的度量方法或指标,如结构的失效概率F(c),指结构在‘时刻之前破坏的概率;失效率^(().指在‘时刻以前未发生破坏的条件下,在‘时刻的条件破坏概率密度;平均无故障时间MTTF(MeanTimeToFailure),指从开始使用到发生故障的工作时间的期望值。除此而外,还有可靠性指标、可靠寿命、中位寿命,对可修复结构还有维修度与有效度等许多可靠性度量方法。 2..结构可靠性设计的基本过程与特点 设计一个具有规定可靠性水平的结构产品,其内容是相当丰富的,应当贯穿于产品的预研、分析、设计、制造、装配试验、使用和管理等整个过程和各个方面。从研究及学科划分上可大致分为三个方面。 (1)可靠性数学。主要研究可靠性的定量描述方法。概率论、数理统计,随机过程等是它的重要基础。 (2)可靠性物理。研究元件、系统失效的机理,物理成固和物理模型。不同研究对象的失效机理不同,因此不同学科领域内可靠性物理研究的方法和理论基础也不同. (3)可靠性工程。它包含了产品的可靠性分析、预测与评估、可靠性设计、可靠性管理、可靠性生产、可靠性维修、可靠性试验、可靠性数据的收集处理和交换等.从产品的设计到产品退役的整个过程中,每一步骤都可包含于可靠性工程之中。 由此我们可以看出,结构可靠性设计仅是可靠性工程的其中一个环节,当然也是重要的环节,从内容上讲,它包括了结构可靠性分析、结构可靠性设计和结构可靠性试验三大部分。结构可靠性分析的过程大致分为三个阶段。 一是搜集与结构有关的随机变量的观测或试验资料,并对这些资料用概率统计的方法进行分析,确定其分布概率及有关统计量,以作为可靠度和失效概率计算的依据。

实现机械工程的可靠性优化设计参考文本

实现机械工程的可靠性优化设计参考文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

实现机械工程的可靠性优化设计参考文 本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 自改革开放之后,中国的工程机械行业得到了前所未 有的发展,经过30多年的不懈努力,机械工程制造业取得 了巨大的发展成果,在国民经济中占有很大的比重。在机 械工程行业里面,对其可靠性进行优化设计是十分必要 的。在本文中,深入探讨了工程机械可靠性优化设计中的 问题,以便参考。 现代社会,科学技术的发展已不可同日而语,人们不 仅对多功能产品的强烈需求,还希望多功能产品的各项能 力非常突出。以提高产品的功能可靠性为目的,促使了产 品产品的可靠性优化设计应运而生,从其概念的产生到如 今,得到了迅速发展和广泛使用。在开展工程机械产品的

设计时,需要把可靠性理论和技术融合起来,并依据具体的要求,可以优先考虑产品的可靠性;在延误开发时间,增加成本和性能的前提下,使工程机械产品的设计尽量满足可靠性的要求。由于可靠性设计是一个跨多学科,多技术的新兴技术,所以可靠性的设计涉及诸多问题。 1.机械工程设计的可靠性常用方法 1.1.鲁棒设计方法 这种设计方法主要是降低产品的敏感性。使产品的性能不会因为制造期间在变异或是使用环境的变化而变得不稳定,并且让产品在额定的使用期限内,不会因为产品的结构发生变化,参数变动,系统老化等问题而影响到工作的设计方法。该方法是基于统计分析为基础由日本的机械设计师田口玄一提出的,它根据产品的可用性对用户造成多大的经济损失来判断设计的可靠,这是它的基本原理,其中的损失通常是可靠的用户流失的可用性正比于产品的

机械工程的可靠性优化设计探讨

机械工程的可靠性优化设计探讨 自从进入到新的发展时期之后,我们大力发展机械制造业,获取了非常显著的成就。作为国家经济的关键构成要素,机械项目的可靠性设计开始被人们广泛关注。文章具体分析了该设计的特征以及要注意的要点和存在的缺陷等等。 标签:机械工程;可靠性;优化设计 1 产品可靠性设计的现状和研究背景 1.1 产品可靠性设计的现状 因为受到过去的很多问题的干扰,我们国家的机械制造行业发展得不是很好,尤其是比对西方国家来看,差距更是明显。与之相关的可靠性分析工作更是发展得非常缓慢。一直到1980年之后,我们国家才在這方面有了一定的突破,而且还成立了专门研究机构,培养了许多优秀的工作者。不过从总的层面上来看,此类研究过分地看重理论层面的内容,没有注重发展实践,和西方国家比对来看还是有着很多的差异。 1.2 产品可靠性设计的研究背景 由于社会不断发展,科技一直进步,此时产品更新的速度也在加快。在这种背景之下,人们可以随意地选择多种类型的产品,而且此时人们更加地关注它们的可靠性特点,因此就出现了可靠性设计这个理念。由于科技发展速度不断加快,此时生产出的产品的结构也开始朝着复杂化发展。工作者们开始将各种优秀的工艺运用到生产工作之中,此时得到的产品也更加复杂,它们的更新速度也较之于以往加快了很多。当我们开展设计工作的时候,要积极深化,不断完善。当我们制造出一类商品以后,并不是直接的投入市场,先要接受试验,当测试性能等达标之后才可以将其投放市场。之所以要对其试验,是因为许多产品本身并不是很可靠,有一些设计或是工艺等层面的问题。所以,作为生产单位在生产产品的时候,先要展开细致的规划设计,将潜在的问题控制住,进而提升其稳定性,实现预期目的。因此在这种背景之下,可靠性设计工作就开始被人们所熟知。具体来讲,可靠性指的是产品在要求的状态之下,实现特定功效的水平。我们可将特定零件看成是测试对象,也可以将某个系统或是装备等当成是测试对象。在具体的开展设计工作的时候,在符合功效以及时限等的规定的背景之下,确保产品的稳定性符合人们的要求,这即是可靠性设计。它牵扯的范围非常广,不但涵盖传统技术,还涵盖环境工程以及电脑等等。 2 可靠性的发展过程 人类最初开始分析可靠性工艺已经是七十年之前的事情了。通过分析它的发展历程我们可以将其分成三个时期。第一,初期探索时期:在二战中,英美等国家的很多重要武器在作战的时候经常发生机械问题,这就会影响作战,从那时开

失效分析思路_张峥

理化检验-物理分册PTCA(PART:A PH YS.T EST.)2005年第41卷3专题讲座 失效分析思路 FAILURE ANA LYSIS M ETH ODOLOGY 张峥 (北京航空航天大学材料学院,北京100083) 中图分类号:T B303文献标识码:E文章编号:1001-4012(2005)03-0158-04 失效分析在生产建设中极其重要,失效分析的限期往往要求很短,分析结论要正确无误,改进措施要切实可行。导致零部件或系统失效的因素往往很多,加之零部件相互间的受力情况很复杂,如果再考虑外界条件的影响,这就使失效分析的任务更加繁重。此外,大多数失效分析的关键性试样十分有限,只容许一次取样、一次观察和测量。在分析程序上走错一步,可能导致整个分析的失败。由此可见,如果分析之前没有一条正确的分析思路,要能如期得出正确的结论几乎是不可能的。 有了正确的分析思路,才能制定正确的分析程序。大的事故需要很多分析人员按照分工同时进行,做到有条不紊,不走弯路,不浪费测试费用。所以从经济角度也要求有正确的分析思路。 1失效分析思路的内涵 世界上任何事物都是可以被认识的,没有不可以认识的东西,只存在尚未能够认识的东西,机械失效也不例外。实际上失效总有一个或长或短的变化发展过程,机械的失效过程实质上是材料的累积损伤过程,即材料发生物理的和化学的变化。而整个过程的演变是有条件的、有规律的,也就是说有原因的。因此,机械失效的客观规律性是整个失效分析的理论基础,也是失效分析思路的理论依据。 失效分析思路是指导失效分析全过程的思维路线,是在思想中以机械失效的规律(即宏观表象特征和微观过程机理)为理论依据,把通过调查、观察和实验获得的失效信息(失效对象、失效现象、失效环 收稿日期:2005-02-07 作者简介:张峥(1965-),男,教授,博士生导师。境统称为失效信息)分别加以考察,然后有机结合起来作为一个统一整体综合考察,以获取的客观事实为证据,全面应用推理的方法,来判断失效事件的失效模式,并推断失效原因。因此,失效分析思路在整个失效分析过程中一脉相承、前后呼应,自成思考体系,把失效分析的指导思路、推理方法、程序、步骤、技巧有机地融为一体,从而达到失效分析的根本目的。 在科学的分析思路指导下,才能制定出正确的分析程序;机械的失效往往是多种原因造成的,即一果多因,常常需要正确的失效分析思路的指导;对于复杂的机械失效,涉及面广,任务艰巨,更需要正确的失效分析思路,以最小代价来获取较科学合理的分析结论。总之,掌握并运用正确的分析思路,才可能对失效事件有本质的认识,减少失效分析工作中的盲目性、片面性和主观随意性,大大提高工作的效率和质量。因此,失效分析思路不仅是失效分析学科的重要组成部分,而且是失效分析的灵魂。 失效分析是从结果求原因的逆向认识失效本质的过程,结果和原因具有双重性,因此,失效分析可以从原因入手,也可以从结果入手,也可以从失效的某个过程入手,如/顺藤摸瓜0,即以失效过程中间状态的现象为原因,推断过程进一步发展的结果,直至过程的终点结果;/顺藤找根0,即以失效过程中间状态的现象为结果,推断该过程退一步的原因,直至过程起始状态的直接原因;/顺瓜摸藤0,即从过程中的终点结果出发,不断由过程的结果推断其原因;/顺根摸藤0,即从过程起始状态的原因出发,不断由过程的原因推断其结果。再如/顺瓜摸藤+顺藤找根0 /顺根摸藤+顺藤摸瓜0/顺藤摸瓜+顺藤找根0等。 # 158 #

可靠性设计的一些内容

可靠性设计的一些内容 一、可靠性评价分析技术的应用 由于设计阶段对产品的可靠性将起到奠基作用,故在设计过程中,应不断对产品的可靠性进行定性和定量的评价分析)以便及时了解产品的可靠性指标是否有了保证,所采取的各种可靠性设计措施是否有效,有效程度如何,设计中是否还存在薄弱环节和潜在缺陷,产品在今后使用中可能会发生什么样的故障,以及故障一旦发生时,其影响和危害程度如何等等。弄清以上问题将有助于及时发现缺陷,及时改进设计,防止“带病”投产,保证预定的可靠性指标得到满足。 下面介绍几种主要的评价分析技术的应用: 1 .可靠性预计与分配 可靠性预计是在设计阶段,根据设计中所选用的电路程式、元器件、可靠性结构模型、工作环境、工作应力以及过去积累的统计数据,推测产品可能达到的可靠性水平。预计的目的不是在于了解在什么时候将发生什么样的失效,而是在于从设计开始就采取措施以防止失效的发生,并用定量的方法评价可靠性设计的效果。 可靠性分配是将可靠性指标或预计所能达到的目标值加以分解,用科学的方法,合理分配给分系统、设备、部件直至各元器件和每一个连接点、焊接点,以保证可靠性既定目标得以实现。通过分配,不仅可以层层落实设计指标,还可发现设计的薄弱环节和尚能挖掘的潜力。可靠性预计的方法一般有相似设备法、相似电路法。有源

器件法、元器件计数法及元器件应力分析法等,它们分别适用于不同的设计阶段:当产品处于方论证阶段时,可用相似设备法、相似电路法、有源器件法等快速预计法进行可行性预计,以评价设计方案的可行性;当产品处于旱期的详细设计阶段时,可用元器件计数法进行初步设计预计,以了解元器件的初步选择是否恰当,并为可靠性分配打下预计的基础,而当产品处于详细设计阶段的中期和后期,可用元器件应力分析法进行详细的设计预计,以便及时发现设计的薄弱环节或潜在能力,及时改进设计,以期达到优化设计 的目的。 下面就三种预计方法作一些简略的介绍: (1)有源器件法 所谓有源器件法,即按设备为完成规定功能所需的串联有源器件的数目预计设备失效的方法。预计公式为 λs = N* K (11.1) 式中:λs --设备的预计失效率; N--串联有源器件的数目; K ---各种设备中每个有源器件的失效率。 (2) 元器件计数法 所谓元器件计数法就是根据组成设备的各类元器件的通用失效率及其使用数量,来预计设备失效率的方法 。(3)元器件应力分析法预计 元器件应力分析法预计是考虑了温度、电应力、环境条件、元器件选

机械设计习题及答案

机械设计习题及答案 第一篇总论 第一章绪论 一.分析与思考题 1-1 机器的基本组成要素是什么? 1-2 什么是零件?什么是构件?什么是部件?试各举三个实例。 1-3 什么是通用零件?什么是专用零件?试各举三个实例。 第二章机械设计总论 一.选择题 2-1 机械设计课程研究的内容只限于_______。 (1) 专用零件的部件 (2) 在高速,高压,环境温度过高或过低等特殊条件下工作的以及尺寸特大或特小的通用零件和部件 (3) 在普通工作条件下工作的一般参数的通用零件和部件 (4) 标准化的零件和部件 2-2 下列8种机械零件:涡轮的叶片,飞机的螺旋桨,往复式内燃机的曲轴,拖拉机发动机的气门弹簧,起重机的起重吊钩,火车车轮,自行车的链条,纺织机的纱锭。其中有_____是专用零件。 (1) 3种 (2) 4种 (3) 5种 (4) 6种 2-3变应力特性可用σmax,σmin,σm, σa, r 等五个参数中的任意_____来描述。 (1) 一个 (2) 两个 (3) 三个 (4) 四个 2-4 零件的工作安全系数为____。 (1) 零件的极限应力比许用应力 (2) 零件的极限应力比零件的工作应力 (3) 零件的工作应力比许用应力 (4) 零件的工作应力比零件的极限应力 2-5 在进行疲劳强度计算时,其极限应力应为材料的____。 (1) 屈服点 (2) 疲劳极限 (3) 强度极限 (4) 弹性极限 二.分析与思考题 2-1 一台完整2-3 机械零件主要有哪些失效形式?常用的计算准则主要有哪些? 2-2 机械零件主要有哪些失效形式?常用的计算准则主要有哪些? 2-3 什么是零件的强度要求?强度条件是如何表示的?如何提高零件的强度? 2-4 什么是零件的刚度要求?刚度条件是如何表示的?提高零件刚度的措施有哪些? 2-5 机械零件设计中选择材料的原则是什么? 2-6 指出下列材料的种类,并说明代号中符号及数字的含义:HTl50,ZG230-450,2-7 机械的现代设计方法与传统设计方法有哪些主要区别? 第三章机械零件的强度 一.选择题 3-1 零件的截面形状一定,如绝对尺寸(横截面尺寸)增大,疲劳强度将随之_____。 (1) 增高 (2) 不变 (3) 降低 3-2 零件的形状,尺寸,结构相同时,磨削加工的零件与精车加工相比,其疲劳强度______。 (1) 较高 (2) 较低 (3) 相同

实现机械工程的可靠性优化设计

实现机械工程的可靠性 优化设计 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

实现机械工程的可靠性优化设计自改革开放之后,中国的工程机械行业得到了前所未有的发展,经过30多年的不懈努力,机械工程制造业取得了巨大的发展成果,在国民经济中占有很大的比重。在机械工程行业里面,对其可靠性进行优化设计是十分必要的。在本文中,深入探讨了工程机械可靠性优化设计中的问题,以便参考。 现代社会,科学技术的发展已不可同日而语,人们不仅对多功能产品的强烈需求,还希望多功能产品的各项能力非常突出。以提高产品的功能可靠性为目的,促使了产品产品的可靠性优化设计应运而生,从其概念的产生到如今,得到了迅速发展和广泛使用。在开展工程机械产品的设计时,需要把可靠性理论和技术融合起来,并依据具体的要求,可以优先考虑产品的可靠性;在延误开发时间,增加成本和性能的前提下,使工程机械产品的设计尽量满足可靠性的要求。由于可靠性设计是一个跨多学科,多技术的新兴技术,所以可靠性的设计涉及诸多问题。 1.机械工程设计的可靠性常用方法 1.1.鲁棒设计方法

这种设计方法主要是降低产品的敏感性。使产品的性能不会因为制造期间在变异或是使用环境的变化而变得不稳定,并且让产品在额定的使用期限内,不会因为产品的结构发生变化,参数变动,系统老化等问题而影响到工作的设计方法。该方法是基于统计分析为基础由日本的机械设计师田口玄一提出的,它根据产品的可用性对用户造成多大的经济损失来判断设计的可靠,这是它的基本原理,其中的损失通常是可靠的用户流失的可用性正比于产品的功能和目标,简单而言就是损失越多说明偏差越大,从侧面反映出产品的质量不过关,减小偏差则是提高产品质量的有效办法,大多是通过严格控制材料和生产工艺,以达到最大限度地减少错误的目的。然而,这种方法的缺点同样十分明显,经费相对昂贵以及技术太过复杂,难以完成。经过人们不断的摸索和实验,提高自身的抗干扰能力已成为此方法的主要途径,此方法的途径也非常的多,它是将很多的办法融合起来。良好的机械强度会比较高增强产品的可靠性。 1.2.降额设计 这个方法是当产品工作时其零件所受的应力都在其额定范围之内,为了达到降低应力的目的可以使零部件的所承受的应力降低或是提高零部件的质量。根据大量的工程实践表明,机械故障率非常低的产品其机械零件都是在低于其设定的工作压力之下进行工作的,而可靠性也随之升高。为了找到最好的降额办法,就需要不断的进行反复的实验。这是就

机械零件的失效分析-学习领悟

机械零件的失效分析 失效:零件或部件失去应有的功效零件在工作过程中最终都要发生失效。所谓失效是指:①零件完全破坏,不能继续工作;②严重损伤,继续工作很不安全;③虽能安全工作,但已不能满意地起到预定的作用。只要发生上述三种情况中的任何一种,都认为零件已经失效。一般称呼失效大多是特指零件的早期失效,即未达到预期的效果或寿命,提前出现失效的过程。 失效分析:探讨零件失效的方式和原因,并提出相应的改进措施。根据失效分析的结果,改进对零件的设计、选材、加工和使用,提高零部件的使用寿命,避免恶性事故的发生,带来相应的经济效益和社会效益。 一、零件的失效形式 失效形式分3种基本类型:变形、断裂和表面损伤。 1、变形失效与选材(机件在正常工作过程中由于变形过大导致失效) ①弹性变形失效(由于发生过大的弹性变形而造成的零件失效) 弹性变形的大小取决于零件的几何尺寸及材料的弹性模量。金刚石与陶瓷的弹性模量最高,其次是难溶金属、钢铁,有色金属则较低,有机高分子材料的弹性模量最低。因此,作为结构件,从刚度及经济角度看,选择钢铁是比较合适。 ②塑性变形失效(零件由于发生过大的塑性变形而不能继续工作的失效) 塑性变形失效是零件中的工作应力超过材料的屈服迁都的结果。一般陶瓷材料的屈服强度很高,但脆性非常大,因此,不能用来制造高强度结构件。有机高分子材料的强度很低,最高强度的塑料也不超过铝合金。因此,目前用作高强度结构的主要材料还是钢铁。 2、断裂失效 ①塑性断裂 零件在受到外载荷作用时,某一截面上的应力超过了材料的屈服强度,产生很大的塑性变形后发生的断裂; ②脆性断裂 脆性断裂发生时,事先不产生明显的塑性变形,承受的工作应力通常远低于材料的屈服强度,所以又称为低应力脆断; ③疲劳断裂 在低于材料屈服强度的交变应力反复作用下发生的断裂称为疲劳断裂; ④蠕变断裂 在应力不变的情况下,变形量随时间的延长而增加,最后由于变形过大或断裂而导致的失效; 3、表面损伤 ①磨损失效 磨损主要是在机械力的作用下,相对运动的接触表面的材料以细屑形式逐渐磨耗,而使零件尺寸不断变小的一种失效方式。磨损可能是被硬质点切削下来,也可能是在大的压力下焊合撕开,所以材料表面的硬度愈高,抵抗磨损的能力愈强。 磨粒磨损:相对运动的零件表面间嵌入硬质颗粒而造成的磨损 粘着磨损:两个相对运动零件表面的微观凸起发生粘合而撕裂 ②表面疲劳(在交变接触应力作用下,使机件表面产生点蚀而发生磨损)

可靠性设计心得

可靠性设计学习心得 随着科学技术的发展,对产品的要求不断提高,不仅要具有好的性能,更要具有高的可靠性水平。采用可靠性设计弥补了常规设计的不足,使得设计方案更加贴近生产实际。所谓可靠性是指“产品在规定时间内,在规定的使用条件下,完成规定功能的能力或性质”。可靠性的概率度量称为可靠度。可靠性工程的诞生已近半个世纪的历史, 以电子产品可靠性设计为先导的可靠性工程迄今发展得比较成熟, 已形成一门独立的学科。相比之下, 机械产品的可靠性设计与研究则起步较晚。所谓机械可靠性,是指机械产品在规定的使用条件下、规定的时间内完成规定功能的能力。由于工程材料特性的离散性以及测量、加工、制造和安装误差等因素的影响,使机械产品的系统参数具有固有的不确定性,因此考虑这种固有随机性的可靠性设计技术至关重要。据有关方面统计,产品设计对产品质量的贡献率可达70%~80%,可见设计决定了产品的固有质量特性(如:功能、性能、寿命、安全性和可靠性等),赋予了产品“先天优劣”的本质特性。上世纪60年代, 对机械可靠性问题引起了广泛的重视并开始对其进行了系统研究。虽然国内外都投入了研究力量, 取得了一定的进展,但终因机械产品可靠性涉及的领域太多、可靠性研究的范围大、基础性数据缺乏等原因,机械可靠性设计在工程实际中应用得并不广泛。本文简要介绍了可靠性技术在机械领域中的应用,主要介绍了一些在机械产品设计中应用的较为成熟的可靠性技术和可靠性设计方法,并且结合当今可靠性工程学科的发展,指出了可靠性技术在机械领域中的发展和趋势。 常规设计中,经验性的成分较多,如基于安全系数的设计。 常规设计可通过下式体现: S E l F f lim ][...),,,(σσμσ=≤= 计算中,F 、l 、E 、μ、slim 等各物理量均视为确定性变量,安全系数则是一个经验性很强的系数。 上式给出的结论是:若s≤[s]则安全;反之则不安全。 应该说,上述观点不够严谨。首先,设计中的许多物理量明是随机变量;基

机械零件设计的一般步骤

机械零件设计的一般步骤
机械零件的设计大体要经过以下几个步骤: 1)根据零件的使用要求,选择零件的类型和结构.为此,必须对各种零件的不同 用途,优缺点,特性与使用范围等,进行综合对比并正确选用. 2)根据机器的工作要求,计算作用在零件上的载荷. 3)根据零件的工作要求及对零件的特殊要求,选择适当的材料. 4)根据零件可能的失效形式确定计算准则,根据计算准则进行计算,确定出零件 的基本尺寸. 5)根据工艺性及标准化等原则进行零件的结构设计. 6)细节设计完成后,必要时进行详细的校核计算,以判定结构的合理性. 7)画出零件的工作图,并写出计算说明书. 在进行设计时,对于数值的计算除少数与几何尺寸精度要求有关外,对于手算工作 一般以两,三位有效数字的计算精度为宜. 必须再度强调指出,结构设计是机械零件的重要设计内容之一,在有些情况下,它 占用了设计工作量中的一个较大比例,一定要给予足够的重视. 绘制的零件工作图应完全符合制图标准,并满足加工的要求. 写出的设计说明书要条理清晰,语言简练,数字正确,格式统一,并附有必要的结 构草图和计算草图.重要的引用数据,一般要指明来源出处.对于重要的计算结果,要 写出简短的结论.
1.3 机械零件的计算准则
在设计时对零件进行计算所依据的准则, 无疑地是与零件的失效形式紧密地联系在 一起的.概括地讲,大体有以下准则: (一)强度准则 强度准则就是指零件中的应力不得超过允许的限度.即: σ≤σlim 其中:σlim 为材料的极限应力,对于脆性材料:σlim=σB(强度极限),对于塑 性材料:σlim=σS(屈服极限). 考虑到各种偶然性或难以精确分析的影响,上式右边要除以设计安全系数(简称安 全系数),即: σ≤σlim/S 即 σ≤[σ] 式中:安全系数 S 为大于 1 的数,S 过大,虽安全但浪费材料;S 过小,虽节省材 料但趋危险,故 S 的选取应适当.[σ]称为许用应力. (二)刚度准则 零件在载荷作用下产生的弹性变形量 y,小于或等于机器工作性能所允许的极限值 [y](许用变形量),就叫做满足了刚度要求,或符合刚度计算准则.其表达式为: y≤[y]

相关主题
文本预览
相关文档 最新文档