当前位置:文档之家› 液力变矩器故障和工作原理

液力变矩器故障和工作原理

液力变矩器故障和工作原理
液力变矩器故障和工作原理

4.1 液力变矩器构造和工作原理

4.1.1液力变矩器构造

1、三元一级双相型液力变矩器

三元是指液力变矩器是由泵轮、涡轮和导轮三个主要元件组成的。一级是指只有一个涡轮(部分液力偶合器里装有两个涡轮,工作时油液容易发生紊乱)。双相是指液力变矩器的工作状态分为变矩区和偶合区。

*

图4-1为液力变矩器三个主要元件的零件图。

2、液力变矩器的结构和作用

泵轮的叶片装在靠近变速器一侧的变矩器壳上,和变矩器壳是一体的。变矩器壳是和曲轴或曲轴上的挠性板用螺栓连接的,所以泵轮叶片随曲轴同步运转。发动机工作时,它引导液体冲击涡轮叶片,产生液体流动功能,是液力变矩器的

主动元件。

*

1-变速器壳体2-泵轮3-导轮4-变速器输出轴5-变矩器壳体

6-曲轮7-驱动端盖8-单向离合器9-涡轮

涡轮装在泵轮对面,二者的距离只有3~4mm,在增矩工况时悬空布置,被泵轮的液流驱动,并以它特有的速度转动。在锁止工况时它被自动变速器油挤到离合器盘上,随变矩器壳同步旋转。它是液力变矩器的输出元件。涡轮的花键毂负责驱动变速器的输入轴(涡轮轴)。它将液体的动能转变为机械能。

导轮的直径大约是泵轮或涡轮直径的一半。并位于两者之间。导轮是变矩器中的反作用力元件,用来改变液体流动的方向。

导轮叶片的外缘一般形成三段式油液导流环内缘。分段导流环可以引导油液平稳的自由流动,避免出现紊流。

导轮支承在与花键和导轮轴连接的单向离合器上。单向离合器使导轮只能与泵轮同向转动。涡轮的油液流经导轮时改变了方向,使液流返回泵轮时,液流的流向和导轮旋转方向一致,可以使泵轮转动更有效。

*

图4-3为液力变矩器油液流动示意图。

观看液力变矩器油液流动

图上通过箭头示意液体流动方向。油液由泵轮的外端传入涡轮的外端,经涡轮内端传到导轮时改变了油液的流动方向,经导轮传给泵轮的油液的流动方向恰

好和泵轮的旋转方向一致。

*

3、液力变矩器的锁止和减振

液力变矩器用油液作为传力介质时,即使在传递效果最佳时,也只能传递90%的动力。其余的动力都被转化为热量,散发到油液里。为提高偶合工况的传动效率,变矩器设置了锁止离合器。液力变矩器进入偶合工况后,变矩器内的闭锁离合器就有可能进入锁止工况。而变矩器一旦进入锁止工况,发动机的动力就可以100%的传给传动系。可以避免液力传动过程中不可避免的动力损失,提高液力变

矩器的工作效率。

液力变矩器根据锁止形式的不同,负责锁止的闭锁离合器分为液力锁止、离

心力锁止和粘液离合器锁止三种形式。

(1)液力锁止离合器

液力锁止的闭锁离合器出现于20世纪70年代,是目前使用最为广泛的变矩器

锁止形式。

液力锁止的结构是在涡轮背面加装一个摩擦式压盘(被习惯称之为离合器盘),压盘上粘有一圈摩擦环。液力锁止离合器进入锁止工况的示意图,见图4-4。进入锁止工况时,变矩器内工作油液压加大,油液将压盘用力推向变矩器的后壳体,在油压和摩擦环摩擦力矩的双重作用下,压盘开始和变矩器同步旋转。而压盘外端的卡口和涡轮上的卡口是相互咬合的,于是涡轮在压盘的带动下,也开始随变矩器壳同步旋转。涡轮由液力传动改为机械传动,而变矩器完全进入锁止工

况。

*

电控自动变速器必须满足五个方面的条件,TCU才能令液力锁止离合器进入

锁止工况。

1)发动机冷却液温度不得低于53~65℃(因车型而异)。

2)空挡开关指示变速器处于行驶档(N位和P位不能锁止)。

3)制动开关必须指示没有进行制动。

4)车速必须高于37~65km/h(因车型而异,大部分自动变速器在三档进入锁止工况,少数变速器在二档是进入锁止工况)。

5)来自节气门开度传感器的信号,必须高于最低电压,以指示节气门处于

开启状态。

装在次级调压阀上的负责变矩器锁止的锁止电磁阀是常开式的。在未进入锁止工况前它保持常开,来自主调压阀的液压油大都经锁止电磁阀泄入油底壳,使进入液力变矩器油的油压保持在较低压力状态。

满足了上述五个方面条件后,TCU便接通锁止电磁阀负极,锁止电磁阀进入密封状态。进入变矩器的油压升高,压盘被紧紧地压在变矩器的后壳体上。由于压盘的卡口和涡轮的卡口始终保持着接连状态(互相咬合),压盘便开始带动涡轮

旋转。

汽车行驶过程中只要轻踩制动踏板臂和制动开关脱离接触,TCU会立刻断开锁止电磁阀负极,液力变矩器内油压急剧下降,离开了油压的支持,压盘离开后壳体,变矩器解除锁止。液力锁止离合器解除锁止工况的示意图,见图4-5。

*

(2)离心力锁止离合器

环绕在离心力锁止离合器组件外边缘的是若干块离合器蹄铁,随着涡轮转速的升高,离合器蹄铁在离心力作用下向外移动,与变矩器壳接触,把涡轮与变矩器壳锁止在一起。锁止力矩大小取决于离心力的大小,而离心力的大小取决于转速。随转速的变化涡轮与变矩器壳可以完全锁止,也可以一半锁止或1/4锁止。

离心力锁止液力变矩器的结构见图4-6。

*

使用离心力锁止离合器的汽车主要有本田和捷达等汽车。

(3)粘液锁止离合器

粘液锁止离合器的操纵方式和液力锁止离合器相同。粘液锁止离合器的组件包括转子、离合器体、离合器盖和硅油。硅油被封在离合器盖与离合器体之间,硅油粘液可以缓和离合器接合时的冲击。

粘液锁止离合器是利用液体的粘性或油膜的剪切来传递动力的。离合器接合时迫使压盘与变矩器壳接触。发动机的动力从压盘通过粘液偶合作用传递到变速器的输入轴。离合器的液力偶合件是利用封闭在压盘和壳体之间的粘稠硅油的粘

性传递动力的。

4、离合器的减振

液力变矩器在进入锁止工况前,靠液力传递转矩,属于软连接,靠油液衰减

振动。

进入锁止工况后变矩器和摩擦式、干式离合器一样靠减振弹簧减振。变矩器

的减振弹簧被均匀地布置在离合盘上(大部分是布置在外端),被夹在两个铆接在一起地钢片之间。一个钢片固定在离合器组件毂上,另一个固定在离合器盘上。锁止时,突然作用在一个钢片上的转矩被弹簧的压缩作用所吸收,后一个钢片在弹簧压缩后才转动。发动机的扭转振动在减振弹簧压缩过程中被衰减了。使发动机和传动系之间的刚性联系变成弹性联系,使离合器接合柔和。

5、装有行星齿轮机构的变矩器

在别克和福特等轿车上都使用过装有行星齿轮机构的液力变矩器。该种变矩器中齿圈和变矩器壳相连,齿圈因此和发动机同步运动。行星架和中间轴的花键相连,太阳轮则通过花键与涡轮相连。把输入的转矩在机械传动和液力传动时分

流。

在变矩器中两根来自变速器的中空轴以花键与独立的行星齿轮机构元件连接。行星齿轮机构中心是太阳轮,太阳轮以花键与变速器输入轴相连,该轴由太阳轮和涡轮驱动。中间轴以花键和行星齿轮架相连,行星齿轮架通过中间轴把机械力传给变速器。此类变矩器的内部结构见图4-7。

*

一档和倒档时,发动机输出的全部转矩由液力负责传递。二档时38%的转矩由液力传动,62%的转矩由机械传动。三档时93%的转矩由机械传动,7%的转矩为液力传动。

这种装有行星齿轮机构的变矩器,一旦变矩器中行星齿轮损坏,行星齿轮就退出工作。这时由于一档和倒档本来就是由液力传动的,所以一档和倒档工作不受影响,二档的转矩38%由液力传动,所以也能勉强挂上。而三档是绝对不可能挂上的。

对于此类故障,更换变矩器即可排除故障。

4.1.2液力变矩器的工作原理

1、液力偶合器为什么没有增矩效果

液力偶合器里只有泵轮和涡轮,而没有改变涡轮油液流动方向的导轮。工作时泵轮油液传给涡轮,然后又经涡轮返回泵轮,经涡轮返回泵轮的油液改变了旋转的方向,液流流向和泵轮旋转方向正好相反。发动机曲轴在旋转的同时,还需克服来自涡轮油液的反向阻力。发动机动力被削弱了。所以液力偶合器只有偶合工况,而永远不会有增矩工况。

汽车在起步和低速行驶时需要有较大的转矩,而液力偶合器无法满足这一需要。所以早期生产的配液力偶合器的汽车具有起步慢,低速区域提速慢的明显缺

点。

为了满足汽车起步和低速行驶时需较大转矩的需要,现代汽车已全部改用液力变矩器。

2、液力变矩器为什么会取得增矩效果

观看电风扇演示液力变矩器增矩原理

电风扇演示变矩器原理示意图

电风扇A通电,电风扇B不通电,电风扇A将以空气为介质带动电风扇B 转动。

如果在电风扇A与电风扇B之间加一个导管,将电风扇B出来的空气引导到A的背面,对电风扇A来说起增益作用,是有利的。如果电风扇B出来的空气引导到电风扇A的正面,对电风扇A来说起阻尼作用,是有害的。

观看电风扇演示液力变矩器增矩原理1

用空气传递动力会有能量损失,所以电风扇B的转速永远小于电风扇A的转速。如果将电风扇A与电风扇B用一个轴连接在一起,此时电风扇A可直接带动电风扇B同速转动,就没有能量损失。

电风扇A相当于液力变矩器的泵轮,电风扇B相当于涡轮,导管相当于导环,空气相当于自动变速器油,连接轴相当于锁止离合器。

观看电风扇演示液力变矩器增矩原理2

液力变矩器中泵轮快速运动时,涡轮受到载荷和行驶阻力限制转速较慢,泵轮和涡轮间产生了转速差。这个转速差存在于整个变矩区。这个转速差就形成了残余能量。即由于泵轮转数快于涡轮转数,所以泵轮流向涡轮的油液除了驱动涡轮外,还剩余一部分能量,这就是残余能量。泵轮和涡轮的转数差越大残余能量就越大。

液力偶合器里这种残余能量成为阻碍曲轴旋转的阻力,最后转化为热量,白白浪费了。

液力变矩器就不同了,泵轮和涡轮的转速差越大,残余能量就越大,油液流动的速度就越快,流动的角度就越大。在转数差较大时,涡轮的油液就冲向导轮的正面。导轮由于单向离合器的锁止作用,而不能向左旋转。这样流经导轮的油液就改变了流动的方向,直接作用于泵轮叶片的后部,于是油液的残余能量就增大了泵轮的转矩。残余能量越大,增矩效果就越好。

只有在泵轮转数高于涡转数时才能产生残余能量,才能使转矩增大。在涡轮制动时(失速点和起步点时)其变矩比达到最大值。

油液由泵轮流向涡轮,而后经导轮改变了方向后再返回泵轮,泵轮和涡轮间形成油液循环流动,如图4-8。只有存在油液的循环流动,才能产生变矩工况。

观看液力变矩器油液流动

随着涡轮转数的升高,变矩化呈线性下降。过了临界点后,涡轮和泵轮转数相等,泵轮的油液除了驱动涡轮旋转外,已没有残余能量,油液流动角度也变到了最小点,涡轮返回的油液冲向了导轮的背面。由于单向离合器只负责锁止左转,而不锁止右转,所以当油液冲击固定在单向离合器上导轮的背面时,导轮便开始旋转,导轮开始旋转的时刻叫临界点。临界点之前为变矩工况,临界点之后为偶合工况。

液力变矩器的变矩比随涡轮转速的增大而减小,又随着涡轮转数的减小而增大。即随行驶阻力矩的增大而增大,在低速区域内能够根据行驶阻力自动无级的变矩。

液力变矩器的传动效率则是随涡轮转数的增大而增大。

只有在泵轮和涡轮转速比较接近时,才会有偶合工况。偶合工况只在汽车中高速行驶才有,低速行驶时没有偶合工况。

作为增矩装置的导轮在变矩工况时保持不动,到了偶合工况便开始旋转。如果导轮在便矩工况时旋转,那就说明发生了单向离合器打滑的故障。导轮在偶合工况时是必须旋转的,如此时不旋转,就说明单向离合器发生了卡滞故障。

4.2.1单向离合器故障

1、汽车低速时车速上不去

汽车低速时加速不良,在低速区域车速上升非常缓慢,如20~30km/h 或20~40km/h(因车型不同,速度区域的宽度略有不同)时速度上不去,过了低速区,

到了中高速后汽车加速正常。这是典型的变矩器内单向离合器打滑的故障。

液力变矩器能否取得增矩效果,汽车低速行驶时的加速性能如何,主要取决于固定导轮的单向离合器。单向离合器只要不打滑,液力变矩器的增矩效果就可以得到保证,汽车低速时就会增速良好。

在增矩工况时,液流冲击导轮的正面,负责固定导轮的单向离合器一旦打滑,导轮就发生逆时针旋转(和泵轮旋转方向相反),导轮改变液流方向的任务无法实现。导轮作用的消失使液力变矩器变成液力偶合器,丧失了增矩作用。

检修时,将手指从变速器驱动毂处伸入,用手指直接旋转导轮的花键。除本田汽车为顺时针不转逆时针转动外,其余所有的汽车都是顺时针转动,逆时针转不动。如逆时针能转动,说明单向离合器滚柱或楔块磨损,锁止作用失效。必须更换液力变矩器总成。

2、汽车中高速时车速上不去

汽车低速时加速良好,到了中高速后,车速上升缓慢,到了80~90km/h时车速就几乎不再上升了。出现这种故障的原因很多,但属于液力变矩器的故障只有一种,就是支承导轮的单向离合器发生卡滞。

液力变矩器进入偶合区后,涡轮和泵轮转数相等,油液流动角度变到了最小点,由冲击导轮的正面,改为冲击导轮的背面。这时导轮应进行旋转。如果此时导轮不旋转,导轮就成了障碍物,阻碍了油液的流动,也就阻碍了车速的提高。单向离合器卡滞后,汽车在低速区域仍然能保持良好的加速性能。只有到中高速后,才会出现加速性能不足的故障。

判断单向离合器是否发生卡滞,最简单的方法,就是用手指沿单向离合器旋转方向(除本田汽车外,其余均为顺时针方向)旋转导轮花键。对于比较严重的卡滞现象,这种判断方法是很灵的。但任何故障的发展都有一过程,单向离合器的卡滞也是逐渐加重的。在单向离合器轻微卡滞时,手感往往不准。

使用专用的检查工具,便可以对单向离合器是否已开始发生卡滞作精确检测了。用图4-8所展示的专用工具,使单向离合器内座圈保持不动,在外座圈施加一定可测量的转矩。单向离合器在旋转方向的转矩必须小于2.5N,如转矩大于2.5N,说明单向离合器已经发生卡滞(图4-9)。

单向离合器在轻微卡滞阶段会和导轮发生摩擦,而产生过热,在液力变矩器驱动毂上能看见蓝色的过热斑迹。

单向离合器无论是卡滞还是打滑,都必须更换整个液力变矩器。

用手指检查单向离合器是否发生故障的方法非常简单。但使用此法必须先拆下变速器。拆装变速器非常麻烦,下面介绍2种不拆变速器就可以检查出单向离合器故障的方法:失速试验和排气节流。

4.2.2失速试验

1、失速

如果涡轮固定不动,只有泵轮在旋转,这种工况称为失速。失速转速是当涡轮处于静止状态时,发动机所能达到的最高转速(汽车没有行驶时,发动机所能达到的最高转速)。汽车的车型不同,失速转速标准值也不同。失速转速标准值比较低的只有1200r/min左右,而失速转速标准值比较高的能达到2800r/min以上。大部分汽车液力变矩器失速转速处于2000~2500r/min之间。

2、失速试验的目的

失速试验的目的是,不拆下变速器而判断故障的具体部位,到底是变矩器,还是变速器;是机械部分,还是液压控制部分;是倒档,还是前进档,是前进档中那个具体环节。

另外,失速试验也用于修复故障重新装配后,检查故障是否已经排除。

3、失速实验前的检查

1)发动机本身出故障,或安装上存在故障,千万不要做失速试验。

2)首先热车,达到自动变速器标准的工作温度(50~80℃)。当温度较低时,一些装有双金属片的自动变速器在到达预定温度前,会阻止油液流回自动变速器的冷却器,以便使自动变速器尽快达到工作温度。这类自动变速器在温度较低时,其液面高度的显示是不准确的。

3)在温度正常的前提下检查自动变速器油的液面高度,其高度应在油尺HOT标记处,同时还应检查发动机润滑油液面的高度是否正常。

4)因为发动机和自动变速器冷却较慢,因此不要在多于2个档位上做失速试验。

5)试验完后要怠速运转几分钟,使自动变速器油在熄火前冷却下来。

4、失速试验

在发动机上装一转速表,放在驾驶员能看见的位置。拉紧驻车制动器,用三角木塞住车轮,起动发动机,将制动踏板踩到底,并踏住。挂上驱动档,在D位试前进档位离合器,在R位试倒档位离合器。把节气门踏板踩到底,迅速观察转速表转速,然后立即放松节气门踏板(从踩到底到放松最好不要超过3s),使发动

机回到怠速运转。在节气门全开位置上滞留时间过长,容易造成离合器和制动器烧蚀。

如图4-10所示,用三角木塞住所有的车轮,拉紧驻车制动,踩住制动踏板,起动发动机,用眼睛盯住发动机转速表,挂档,然后迅速将加速踏板踩到底。

将加速踏板踩到底后,如失速转速明显超过指标,应立即放松加速踏板,终止该项试验,不用算全开位置上的3s。失速转速过高说明离合器或制动器已经发生打滑,继续试验会造成打滑的摩擦件烧蚀。

失速试验是一种大负荷试验,对于一些使用年代比较久,车况特别差的车,不要做该试验。

5、失速试验结果的判断

(1)失速转速低于指标,说明液力变矩器输出转矩不足。故障起因可能源于两个方面:固定导轮的单向离合器打滑;或发动机自身输出动力不足。具体分析如下。

1)失速转速明显低于指标,通常为固定导轮的单向离合器打滑,使单向离合器锁止左转的作用丧失。

汽车起步和低速运转时,液力变矩器处于增矩工况,涡轮来的油液冲击导轮正面,导轮应锁止不转,油液才能改变液流方向,使液流方向和泵轮旋转方向一致。单向离合器打滑后,在增矩工况导轮应有的反作用就消失了。涡轮来的液流流经导轮时没有改变方向,直接返回泵轮,液流方向和泵转旋转方向不一致,妨

碍了泵轮旋转,使发动机动力受阻,转速减慢,转矩变小,使发动机的失速转速明显低于指标。

2)、失速转速略低于指标,应重点检查发动机,看发动机动力是否充足。另外,失速试验时闭锁离合器如略有卡滞也会造成转速略低。

(2)、失速转速高于指标

失速转速高于指标,说明自动变速器的离合器、制动器或单向离合器打滑。具体分析如下。

1)、在R位失速转速正常,在D位上失速转速却明显高于指标,说明倒档方面正常,故障出在前进档方面。

失速转速是在涡轮不旋转时,泵轮所能达到的最高转速。所以D位上做失速实验检查是前进档中负责抵挡的离合器和单向离合器。而不包括专门负责高档的超速档制动器,强制降档制动带,高档离合器,高档倒档离合器等。

此种故障的检查重点应放在:

Ο前轮驱动汽车的抵档离合器。

Ο后轮驱动汽车的前进档离合器。

Ο这两种汽车的低档单向离合器。

由于低档单向离合器(后轮驱动变速器里的2号单向离合器)只负责一档,所以应在2位上再做一次失速试验。

D位上失速转速高,2位上失速转速正常,说明低档单向离合器打滑。

D位和2位上失速转速都高,说明前轮驱动汽车的低档离合器,后轮驱动汽车的前进档离合器打滑。

2)在D位上失速转速正常,在R位上失速转速高,说明前进档正常,故障在倒档方面。

此种故障的检查重点应放在:

Ο低档、倒档制动器。

Ο前轮驱动汽车的倒档离合器。

Ο后轮驱动汽车的高档、倒档离合器。

低档、倒档制动器除负责倒档制动外,还负责手动档L位制动。当R位失速转速高时,在L位再做一次失速试验。

R位失速转速过高,L位失速转数正常,说明故障不在抵档、倒档制动器,而是负责倒档的离合器打滑了。

R位和L位失速转速都高,D位失速转速正常说明抵档、倒档制动器都打滑了。

刚修复完的变速器出现这种故障,通常是由于该制动器为带式,装配时推杆没有完成入位(装配不当或制动带变形)或工作间隙过大,推杆从卡槽中脱出。

片式抵档、倒档制动器不会发生类似故障。

自动变速器每一个档位上都有2种或2种以上施力装置负责操作。只要其中的一个施力装置打滑,就会引起失速转速过高。所以分出是前进档还是倒档失速转速过高后,还需进一步查明造成失速转速过高的具体原因。

3)D位和R位失速转速都过高,则说明主油路油压过低,造成所有的离合器和制动器都打滑。

造成主油路压边过低的可能因素有:

Ο主调压阀卡滞在泄油位置。

Ο主调压阀调压弹簧过软。

Ο节气门拉索过松。

主调压阀和阀孔配合间隙过大

主调压阀至滤网间有泄油处。

主油压电磁阀密封不良。

油泵过度磨损。

自动变速器油液面过低,空气大量浸入。

自动变速器油滤清器堵塞造成供油量和油压下降。

以上9个方面,只要有一个方面出了故障就会造成主油压过低。如D位上失速转速正常,车速上不去,应检查变矩器单向离合器是否打滑。失速试验中噪声

大是正常的,但如果出现金属的异响声就不正常了。应立即放松节气门。

在失速试验时油液快速流动是噪声大的原因。而强烈的金属噪声则可能是源自变矩器内部出现的运动干涉。

失速试验时涡轮和涡轮轴都处于静止状态,变速器内部分施力装置虽处于工作状态,但所有的传动件并没有旋转,所以金属噪声不可能来自变速器。

失速试验中出现金属噪声,需作进一步检查。把车辆举升起来,将变速器置于P位和N位,在小的节气门开度下,仔细听来自液力变矩器壳体的噪声。或参照本章中4.2.6内描述的方法作进一步检查。只要确定金属噪声源于变矩器,就必须更换变矩器总成。

如果出现单向离合器卡滞,起步和低速时车速正常,但中速以后,特别是到了中高速时,车速就上不去了。

单向离合器打滑时,汽车在低速时车速上不去,但中速以后车速上升就变得正常了。

单向离合器打滑,除低速时车速上不去外,起步、重载上坡或重载走泥泞路时也明显感觉动力不足。

单向离合器无论是打滑,还是卡滞,一经发现必须立即更换液力变矩器。单向离合器损坏后,不仅会造成自动变速器工作不良,磨损产生的沉淀物还可能堵塞自动变速器的油道,造成新的故障。

4.2.3用排气节流检查单向离合器是否打滑

用排气节流的方法,即检查发动机负荷是否发生变化的方法,检查固定导轮的单向离合器是否发生打滑,是一种简便宜行,又不会带来损伤的检查方法。

热机后,在发动机进气歧管上接上真空表,把表固定在驾驶员能看到的部位。支架驱动车轮,放在保险支承,用三角木塞住非驱动轮,起动发动机,保持怠速运转过程中,观察怠速时进气歧管的真空度读数,迅速将加速踏板踩到底,同时再次观察真空度读数,然后迅速放松加速踏板,在节气门刚刚关闭的瞬间进气歧管的真空度读数应上升5cm汞柱。

进气歧管的真空度变化直接反映的是发动机负荷的变化。支承导轮的单向离合器是负责变矩器增矩的,单向离合器打滑后变矩器丧失增矩作用,节气门(油门)迅速开启和关闭时发动机的负荷也就没有变化。

光伏电站常见故障及解决方法

光伏电站常见故障及解决方法

光伏电站常见故障及解决方法 关键词: 光伏电站光伏发电光伏运维 第一章影响光伏电站发电量的因素 光伏电站发电量计算方法,理论年发电量=年平均太阳辐射总量*电池总面积*光电转换效率。但由于各种因素的影响,光伏电站发电量实际上并没有那么多,实际年发电量=理论年发电量*实际发电效率。那么影响光伏电站发电量有哪些因素?以下是我结合日常的设计以及施工经验,给大家讲一讲分布式电站发电量的一些基础常识。 1.1、太阳辐射量 太阳能电池组件是将太阳能转化为电能的装置,光照辐射强度直接影响着发电量。各地区的太阳能辐射量数据可以通过NASA气象资料查询网站获取,也可以借助光伏设计软件例如 PV-SYS、RETScreen得到。 1.2、太阳能电池组件的倾斜角度

从气象站得到的资料,一般为水平面上的太阳辐射量,换算成光伏阵列倾斜面的辐射量,才能进行光伏系统发电量的计算。最佳倾角与项目所在地的纬度有关。大致经验值如下: A、纬度0°~25°,倾斜角等于纬度 B、纬度26°~40°,倾角等于纬度加5°~10° C、纬度41°~55°,倾角等于纬度加10°~15° 1.3、系统损失 和所有产品一样,光伏电站在长达25年的寿命周期中,组件效率、电气元件性能会逐步降低,发电量随之逐年递减。除去这些自然老化的因素之外,还有组件、逆变器的质量问题,线路布局、灰尘、串并联损失、线缆损失等多种因素。 一般光伏电站的财务模型中,系统发电量三年递减约5%,20年后发电量递减到80%。 1.3.1组合损失

现阶段光伏电站的清洁主要有,洒水车,人工清洁,机器人三种方式。 1.3.3温度特性 温度上升1℃,晶体硅太阳电池:最大输出功率下降0.04%,开路电压下降0.04%(-2mv/℃),短路电流上升0.04%。为了减少温度对发电量的影响,应该保持组件良好的通风条件。 1.3.4线路、变压器损失 系统的直流、交流回路的线损要控制在5%以内。为此,设计上要采用导电性能好的导线,导线需要有足够的直径。系统维护中要特别注意接插件以及接线端子是否牢固。 1.3.5逆变器效率 逆变器由于有电感、变压器和IGBT、MOSFET 等功率器件,在运行时,会产生损耗。一般组串式逆变器效率为97-98%,集中式逆变器效率为98%,变压器效率为99%。 1.3.6阴影、积雪遮挡

3051压力变送器的常见故障及排除

3051压力变送器的常见故障及排除 3051压力变送器广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介 绍一些常用变送器的常见故障及排除方法。 压力变送器的常见故障及排除 1)压力上去,变送器输出上不去加压变送器输出不变化,再加压变送器输出突然变化,泄 压变送器零位回不去。 这种情况应检查压力接口是否漏气或者被堵住,在检查接线方式和电源,如果正常再察看传感器零位是否有输出,或者进行简单加压看输出是否变化,有变化证明传感器没有损坏,如果无变化传感器即已经损坏。最后在考虑还可能是仪表损坏,或者整个系统的其他环节的问题。 2)3051压力变送器输出信号不稳 出现这种情况应考虑A.压力源本身是一个不稳定的压力B.仪表或压力传感器抗干扰能力不强C.传感器接线不牢D.传感器本身振动很厉害E.传感器故障 3)加压变送器输出不变化,再加压变送器输出突然变化,泄压变送器零位回不去,检查传感器器密封圈,一般是因为密封圈规格原因(太软或太厚),传感器拧紧时,密封圈被压缩到传感器引压口里面堵塞传感器,加压时压力介质进不去,但是压力很大时突然冲开密封圈,压力传感器受到压力而变化,而压力再次降低时,密封圈又回位堵住引压口,残存的压力释放不出,因此传感器零位又下不来。排除此原因方法是将传感器卸下看零位是否正常,如果正常更换密 封圈再试。 4)3051压力变送器接电无输出 a)接错线(仪表和传感器都要检查) b)导线本身的断路或短路 c)电源无输出或电源不匹配 d)仪表损坏或仪表不匹配 e)传感器损坏 5)3051压力变送器的误差 确认正常误差范围的方法:计算出压力表的误差值例如:压力表量程为30bar,精度1.5%,最小刻度为0.2bar 正常的误差为:30bar*1.5%+ 0.2*0.5(视觉误差)=0. 55bar 压力变送器的误 差值。 总体来说对3051压力变送器在使用过程中出现的一些故障分析和处理主要由以下几种方 法。 a)替换法:准备一块正常使用的3051压力变送器直接替换怀疑有故障的这样可以简单快捷 的判定是3051压力变送器本身的故障还是管路或其他设备的故障。 b)断路法:将怀疑有故障的部分与其它部分分开来,查看故障是否消失,如果消失,则确定故障所在,否则可进行下一步查找,如:智能差压变送器不能正常Hart远程通讯,可将电源从仪表本体上断开,用现场另加电源的方法为变送器通电进行通讯,以查看是否电缆是否叠加 约2kHz的电磁信号而干扰通讯。 c)短路检测:在保证安全的情况下,将相关部分回路直接短接,如:差变送器输出值偏小,可将导压管断开,从一次取压阀外直接将差压信号直接引到差压变送器双侧,观察变送器输出, 以判断导压管路的堵、漏的连通性。

轮式装载机液力变矩器故障与维修

工程机械上使用液力变矩器,具有起步平稳、操作方便、可在较大范围内实现无级变速等优点。因此,液力变矩器在工程机械中得到了广泛的应用。国内轮式装载机上应用的双导轮综合式液力变矩器,具有高效区宽广、变矩过渡至偶合工况平稳的特点。但这种变矩器在使用时间较长以后,易出现过热、工作无力、内部元件损坏等故障。由于变矩器的拆装与维修比较困难,在维修液力变矩器时,必须在弄懂其工作原理和正确地分析故障原因的基础上才能保证维修质量。本文以双导轮综合式液力变矩器为例,介绍液力变矩器的工作原理,分析变矩器工作过程中的常见故障现象、原因和诊断维修方法。 1 双导轮综合式变矩器的工作原理 该变矩器主要由泵轮、涡轮、第一导轮、第二导轮及导轮座等组成。 工作过程中,液压油自变速器壳底部通过滤网被油泵吸入,从油泵输出的具有一定压力的液压油通过液压油滤清器、主调压阀后进入导轮座的进油孔,然后流向泵轮。柴油机的动力通过相啮合的齿轮传给泵轮,泵轮的旋转将进入其内部的液压油压入涡轮,冲击涡轮叶片,使涡轮旋转,动力由涡轮轴输出。从涡轮出来的液压油,一部分通过变矩器出口经液压油冷却器后进入离合器壳体,再润滑轴承、齿轮及冷却离合器摩擦片后流回变速器壳底;另一部分经第一、第二导轮传给泵轮,液压油在循环圆内传递动力。当涡轮的液体冲向导轮叶片时,导轮不转,导轮给予液体一定的反作用力矩。这个力矩和泵轮给予液体的力矩合在一起,全部传给涡轮,从而使涡轮起到了增大扭矩的作用,即变矩。当涡轮转速继续增高,涡轮传给导轮的液流方向发生变化至冲击导轮背面时,第一、二导轮在超越离合器的作用下,先后开始旋转,变矩工况变成偶合工况。从主调压阀出来的另一路液压油是流向变速器操纵阀的。 2 液力变矩器的故障诊断 液力变矩器的故障通常表现在三个方面:装载机动力不足,高速档起步困难;油温过高;液力变矩器不工作。液力变矩器出现故障时,一般从液压油路方面(包括液压油路是否通畅、密封是否良好等)开始检查。

逆变器常见故障及处理方法

逆变器常见故障及处理方法在采用DC600V供电系统的旅客列车上每节车厢都设置一台三相逆变器将机车供给的DC600V的直流电逆变为380V/50HZ三相交流电给客车空调以及其它一些三相用电设备供电。 逆变器设两台互为独立的热备逆变器单元(硬卧车、行李车为一台无热备),逆变器容量:2*35KV A逆变器+隔离变压器(高寒车及餐车为15KV A、非高寒车为5KV A),当某一台逆变器发生故障造成停止输出时,另一台逆变器可通过转换向两路负载供电,以确保客车用电设备的正常工作。 一、逆变器的操作要求: 为了确保逆变器的可靠工作,必须按照逆变器的操作规程进行操作。上电的时候,先给110V控制电然后再给600V 的大电;断电的时候先断600V的大电,再断110V控制电,即遵行先弱电、后强电,先轻载,再重载的操作原则。为了确保检修人员和设备的安全,逆变器的检修必须在断电五分钟后进行。 一、逆变器常见故障的处理 1.正常工作时,逆变器报代码为“OO”,输入欠压时报 “O2”,除此之外,出现其它代码均为故障状态。 2.如果逆变器报“O5”,断开负载,看能否正常工作,如 正常,检查负载是否有问题,如仍有“O5”故障,则

更换驱动板或控制板,如仍有问题,更换输出电流传感器LT208。如减载后两路都报“O5”故障,是负载有问题,检查负载。 3.如果逆变器报“O7”,空载情况下,如果复位后能重启, 检查负载是否有问题(短路、断路、绝缘不良)。如果不能进行重启,车上四合一电气柜显示屏直接报“O7”,打开相关逆变单元的散热器,检查IGBT是否完好,如IGBT完好,则驱动板故障,更换驱动板。 4.如果逆变器报“OC”,用万用表测量熔断器,如果坏, 更换熔断器,然后,打开对应单元的散热器,测量IGBT 是否有损坏,有损坏则进行更换,同时检查驱动板是否正常,有问题更换。 5.如果逆变器报“OE”,检查相应单元的接触器触头和触 点是否异常,检查散热器箱内左侧的电源板插头是否有松动,如果接触器触头有粘连现象,要检查散热器上的IGBT是否有问题,同时检查驱动板。如都正常,测量相应单元的固态继电器,有问题则更换相应单元箱的固态继电器。 6.如果逆变器报“FE”,打开相应散热器,检查控制板是 否工作,不工作,更换控制板。 7.另外,还有三种故障现象,表现为逆变器上传的代码为 “OO”,但仍为故障的状态:第一种为逆Ⅰ或逆Ⅱ无输

液力变矩器常见故障诊断

液力变矩器常见故障诊断 朱建山 摘要:本文结合作者在福建可门港物流有限责任公司顶岗实习期间的实践,阐述了装载机液力变矩器的基本结构及其工作原理,在此基础上,对其故障进行分析诊断并提出相应的改进建议。 关键词:故障分析设计改进建议 引言: 装载机是一种广泛用于公路、铁路、建筑、水电、港口、矿山等建设工程的土石方施式机械,它主要用于铲装土壤、砂石、石灰、煤炭等散状物料,也可对矿石、硬土等作轻度铲挖作业。换装不同的辅助工作装置还可进行推土、起重和其他物料如木材的装卸作业。在道路、特别是在高等级公路施工中,装载机用于路基工程的填挖、沥青混合料和水泥混凝土料场的集料与装料等作业。此外还可进行推运土壤、刮平地面和牵引其他机械等作业。由于装载机具有作业速度快、效率高、机动性好、操作轻便等优点,因此它成为工程建设中土石方施工的主要机种之一。 工程机械上使用液力变矩器,具有起步平稳、操作方便、可在较大范围内实现无级变速等优点。因此,液力变矩器在工程机械中得到了广泛的应用。国内轮式装载机上应用的双导轮综合式液力变矩器,具有高效区宽广、变矩过渡至偶合工况平稳的特点。但这种变矩器在使用时间较长以后,易出现过热、工作无力、内部元件损坏等故障。由于变矩器的拆装与维修比较困难,在维修液力变矩器时,必须在弄懂其工作原理和正确地分析故障原因的基础上才能保证维修质量。本文以双导轮综合式液力变矩器为例,介绍液力变矩器的工作原理,分析变矩器工作过程中的常见故障现象、原因和诊断维修方法。

1液力变矩器的基本结构和工作原理 1.1 双导轮液力变矩器的基本结构 该变矩器主要由泵轮、涡轮、第一导轮、第二导轮及导轮座等组成。 1.2 液力变速器的工作原理 工作过程中,液压油自变速器壳底部通过滤网被油泵吸入,从油泵输出的具有一定压力的液压油通过液压油滤清器、主调压阀后进入导轮座的进油孔,然后流向泵轮。柴油机的动力通过相啮合的齿轮传给泵轮,泵轮的旋转将进入其内部的液压油压入涡轮,冲击涡轮叶片,使涡轮旋转,动力由涡轮轴输出。从涡轮出来的液压油,一部分通过变矩器出口经液压油冷却器后进入离合器壳体,再润滑轴承、齿轮及冷却离合器摩擦片后流回变速器壳底;另一部分经第一、第二导轮传给泵轮,液压油在循环圆内传递动力。当涡轮的液体冲向导轮叶片时,导轮不转,导轮给予液体一定的反作用力矩。这个力矩和泵轮给予液体的力矩合在一起,全部传给涡轮,从而使涡轮起到了增大扭矩的作用,即变矩。当涡轮转速继续增高,涡轮传给导轮的液流方向发生变化至冲击导轮背面时,第一、二导轮在超越离合器的作用下,先后开始旋转,变矩工况变成偶合工况。从主调压阀出来的另一路液压油是流向变速器操纵阀的。 2 液力变矩器的常见故障分析 2.1变矩器过热故障的检查诊断

液力变矩器的故障检测与维修

液力变矩器的故障检测与维修液力变矩器常见的故障主要有:油温过高、供油压力过低、漏油、机器行驶速度过低或行驶无力,以及工作时内部发出异常响声等5种。 1、油温过高 油温过高表现为机器工作时油温表超过120°C或用手触摸感觉 汤手,主要有以下几种原因:变速器油位过低;冷却系中水位过低;油管及冷却器堵塞或太脏;变矩器在低效率范围内工作时间太长; 工作轮的紧固螺钉松动;轴承配合松旷或损坏;综合式液力变矩器 因自由轮卡死而闭锁;导轮装配时自由轮机构化机构缺少零件。

液力变矩器油温过高故障的诊断和排除方法如下:出现油温过 高时,首先应立即停车,让发动机怠速运转,查看冷却系统有无泄漏,水箱是否加满水;若冷却系正常,则应检查变速器油位是否位 于油尺两标记之间。若油位太低,应补充同一牌号的油液;若油位 太高,则必须排油至适当油位。如果油位符合要求,应调整机器, 使变矩器在高效区范围内工作,尽量避免在低效区长时间工作。如 果调整机器工作状况后油温仍过高,应检查油管和冷却器的温度, 若用手触摸时温度低,说明泄油管或冷却器堵塞或太脏,应将泄油 管拆下,检查是否有沉积物堵塞,若有沉积物应予以清除,再装上 接头和密封泄油管。若触摸冷却器时感到温度很高,应从变矩器壳 体内放出少量油液进行检查。若油液内有金属末,说明轴承松旷或 损坏,导致工作轮磨损,应对其进行分解,更换轴承,并检查泵轮 与泵轮毂紧固螺栓是否松动,若松动应予以紧固。以上检查项目均 正常,但油温仍高时,应检查导轮工作是否正常。将发动机油门全开,使液力变矩器处于零速工况,待液力变矩器出口油温上升到一 定值后,再将液力变矩器换入液力耦合器工况,以观察油温下降程度。若油温下降速度很慢,则可能是由于自由轮卡死而使导轮闭锁,应拆解液力变矩器进行检查。

液力变矩器故障和工作原理

4.1 液力变矩器构造和工作原理 4.1.1液力变矩器构造 1、三元一级双相型液力变矩器 三元是指液力变矩器是由泵轮、涡轮和导轮三个主要元件组成的。一级是指只有一个涡轮(部分液力偶合器里装有两个涡轮,工作时油液容易发生紊乱)。双相是指液力变矩器的工作状态分为变矩区和偶合区。 * 图4-1为液力变矩器三个主要元件的零件图。 2、液力变矩器的结构和作用 泵轮的叶片装在靠近变速器一侧的变矩器壳上,和变矩器壳是一体的。变矩器壳是和曲轴或曲轴上的挠性板用螺栓连接的,所以泵轮叶片随曲轴同步运转。发动机工作时,它引导液体冲击涡轮叶片,产生液体流动功能,是液力变矩器的 主动元件。 *

1-变速器壳体2-泵轮3-导轮4-变速器输出轴5-变矩器壳体 6-曲轮7-驱动端盖8-单向离合器9-涡轮 涡轮装在泵轮对面,二者的距离只有3~4mm,在增矩工况时悬空布置,被泵轮的液流驱动,并以它特有的速度转动。在锁止工况时它被自动变速器油挤到离合器盘上,随变矩器壳同步旋转。它是液力变矩器的输出元件。涡轮的花键毂负责驱动变速器的输入轴(涡轮轴)。它将液体的动能转变为机械能。 导轮的直径大约是泵轮或涡轮直径的一半。并位于两者之间。导轮是变矩器中的反作用力元件,用来改变液体流动的方向。 导轮叶片的外缘一般形成三段式油液导流环内缘。分段导流环可以引导油液平稳的自由流动,避免出现紊流。 导轮支承在与花键和导轮轴连接的单向离合器上。单向离合器使导轮只能与泵轮同向转动。涡轮的油液流经导轮时改变了方向,使液流返回泵轮时,液流的流向和导轮旋转方向一致,可以使泵轮转动更有效。 *

图4-3为液力变矩器油液流动示意图。 观看液力变矩器油液流动 图上通过箭头示意液体流动方向。油液由泵轮的外端传入涡轮的外端,经涡轮内端传到导轮时改变了油液的流动方向,经导轮传给泵轮的油液的流动方向恰 好和泵轮的旋转方向一致。 * 3、液力变矩器的锁止和减振 液力变矩器用油液作为传力介质时,即使在传递效果最佳时,也只能传递90%的动力。其余的动力都被转化为热量,散发到油液里。为提高偶合工况的传动效率,变矩器设置了锁止离合器。液力变矩器进入偶合工况后,变矩器内的闭锁离合器就有可能进入锁止工况。而变矩器一旦进入锁止工况,发动机的动力就可以100%的传给传动系。可以避免液力传动过程中不可避免的动力损失,提高液力变 矩器的工作效率。 液力变矩器根据锁止形式的不同,负责锁止的闭锁离合器分为液力锁止、离

液力变矩器故障的处理正式版

Guide operators to deal with the process of things, and require them to be familiar with the details of safety technology and be able to complete things after special training.液力变矩器故障的处理正 式版

液力变矩器故障的处理正式版 下载提示:此操作规程资料适用于指导操作人员处理某件事情的流程和主要的行动方向,并要求参加施工的人员,熟知本工种的安全技术细节和经过专门训练,合格的情况下完成列表中的每个操作事项。文档可以直接使用,也可根据实际需要修订后使用。 (1)功率不足。一是失速造成的。二是发动机转速过低或达不到额定转速。三是旋转件的平衡度不符合要求。在变矩器的维修中,常以失速试验来检验变矩器的性能,失速会造成工作油温升高,因此试验时间不要太长。 此外,变矩器的泵轮、罩壳和涡轮都是高速旋转件,其平衡度不得超过 15g?cm,在使用中切不可随意用长、短螺钉及增、减垫片来改变泵轮和涡轮的连接,以免破坏平衡度造成功率损失。其摆动量对传动效率也有影响,制造时,泵轮

轴承座端面、涡轮接盘端、壳体与导轮座轴承连接端的摆差不得大于0.02 mm,因此安装时必须检查。 (2)油温过高。液力变矩器正常的工作油温一般在100℃以下。造成变矩器油温过高的原因主要有以下几个方面:一是冷却器的冷却效果不佳。二是油压失常(变矩器的进油口压力为0.5 4MPa,出口压力为0.22 MPa,在修理时应检查,必要时更换)。三是工作油量不足、油质不佳。 (3)异响。液力变矩器常见异响有振动撞击声和尖叫声。振动撞击声主要由轴承松旷或损坏、紧固螺栓松动引起,应及时处理。尖叫声是变矩器叶片气蚀或零件损坏引起的。发出尖叫声一般伴有油温升高

自动变速箱与液力变矩器工作原理

自动变速箱 自动变速箱简称AT,全称Auto Transmission,它是由液力变扭器、行星齿轮和液压操纵系统组成,通过液力传递和齿轮组合的方式来达到变速变矩。 和手动挡相比,自动变速箱在结构和使用上有很大不同。手动挡主要通过调节不同齿轮组合来更换挡位,而自动变速箱是通过液力传递和齿轮组合的方式来达到变速的目的。其中液力变扭器是自动变速箱最具特点的部件,它由泵轮、涡轮和导轮等构件组成,泵轮和涡轮是一对工作组合,泵轮通过液体带动涡轮旋转,而泵轮和涡轮之间的导轮通过反作用力使泵轮和涡轮之间实现转速差并实现变速变矩功能,对驾驶者来说,您只需要以不同力度踩住踏板,变速箱就可以自动进行挡位升降。由于液力变矩器自动变速变矩范围不够大,因此在涡轮后面再串联几排行星齿轮提高效率,液压操纵系统会随发动机工作变化自行操纵行星齿轮,从而实现自动变速变矩。为了满足行驶过程中的多种需要(如泊车、倒车)等,自动变速箱还设有一些手动拨杆位置,像P挡(停泊)、R挡(后挡)、N挡(空档)、D挡(前进)等。 从性能上说自动变速箱的挡位越多,车在行驶过程中也就越平顺,加速性也越好,而且更加省油。除了提供轻松惬意的驾驶感受,自动变速箱也有无法克服的缺陷。自动变速箱的动力响应不够直接,这使它在“驾驶乐趣”方面稍显不足。此外,由于采用液力传动,这使自动挡变速箱传递的动力有所损失。 手自一体自动变速箱 手自一体变速箱的出现其实就是为了提高自动变速箱的经济性和操控性而增加的设置,让原来电脑自动决定的换挡时机重新回到驾驶员手中。同时,如果在城市内堵车情况下,还是可以随时切换回自动挡。

液力变矩器的工作原理就像两个风扇相对,一个风扇工作,然后将另一个不工作的风扇吹动。这个比喻可以很形象的解释液力变矩器中泵轮和涡轮之间的工作关系。不过详细解释其工作原理,则有些复杂。 动力输出之后,带动与变矩器壳体相连的泵轮,泵轮搅动变矩器中的自动变速箱油(以下简称ATF),带动涡轮转动,ATF在壳体中是一个循环的动作,由于泵轮旋转时的离心力,ATF会在泵轮的作用下,甩向外侧,冲向前方的涡轮,再流向轴心位置,回到泵轮一侧,如此周而复始的循环,将动力传向与齿轮箱连接的涡轮。 不过只有该零部件和传动方式,只能称为液力耦合器,若想成为液力变矩器,必然要改变涡轮叶片的形状,这样一来,ATF在经过涡轮再循环回泵轮时,会与泵轮旋转方向相反,因而造成冲击,所以为了成为液力变矩器还需另一个部件:导轮。导轮是存在于泵轮和涡轮之间的一个部件,用于调节壳体中ATF液流方向,通过单向离合器与箱体固定。 有了导轮,才有了“变矩”的灵魂所在,在泵轮与涡轮转速差较大时,动力输出的扭矩也变大了,此时的变矩器想当一个无级变速器,通过转速差来提升扭矩,此时导轮处于固定状态,用以调节ATF回流;而当转速差降低,涡轮泵轮耦合或锁止时,扭矩接近对等,无需增矩,导轮随泵轮和涡轮同向转动,避免自身搅动ATF,造成动力的损耗。 至此我们了解到了液力变矩器的最大特点——软连接,而这种动力的传输方式起到了两大功能:1、从静止到低速时的平稳起步;2、在加速过程中,较大动力输出时,起到增大扭矩的作用。如果与MT上的离合器相比较,则需注意的是,第一条起到了并优化了MT 上离合器的功能,但第二条则是离合器无法实现的。

液力变矩器故障分析

液力变矩器故障分析 1.液力变矩器内支撑导轮的单向离合器打滑(1)故障现象当车辆出现在 30~50 km/h以下加速不良,车速上升缓慢,过了低速区后加速良好的故障时, 很可能是液力变矩器内支撑导轮的单向离合器打滑。(2)故障诊断方法发动机热机后,将4个车轮用三角木或砖头塞住,拉紧驻车制动器,踩住脚制动踏板, 用眼睛盯住发动机转速表,将油门完全踩到底,如发动机的失速转速明显低于 规定值,说明液力变矩器内支撑导轮的单向离合器打滑。(3)故障分析图1导轮变矩器低速增扭,靠的是导轮(图1)改变液流方向,变矩器内支撑导轮的单向 离合器打滑后,导轮没有了单向离合器的支撑,在增扭工况时无法改变液流的 方向。这样经导轮返回的液流流向和泵轮旋转方向相反,发动机需克服反向液 流带来的附加载荷,于是液力变矩器变成了液力偶合器,低速增扭变成了低速 降扭,所以汽车在低速区(变矩器增加扭矩工况区域)加速不良。(4)维修方法更换液力变矩器总成或用车床剖开液力变矩器,然后更换导轮和单向离合器即可 排除故障。2.液力变矩器内支撑导轮的单向离合器卡滞(1)故障现象汽车起动和中低速行驶正常,但没有高速,温和踩油门最高车速只有80~90 km/h左右;加大节气门开度,最高车速也只有110~120 km/h左右。(2)故障诊断方法支撑导 轮的单向离合器卡滞时,在感觉上有一点像发动机排气不畅,但发动机排气不 畅时冷车起动困难。打开空气滤清器上盖,拆下滤芯,发动机急加速时此处能 看见废气返流,而支撑导轮的单向离合器卡滞,不会导致废气返流。从油液颜 色看一切正常,用故障诊断仪也找不到故障,发动机失速转速正常。(3)维修方法更换液力变矩器总成或用车床剖开液力变矩器,然后更换导轮和单向离合器 即可排除故障。3.液力变矩器内锁止离合器的锁止力矩不足(1)故障现象汽车低速行驶和发动机冷机时没有异响,热机车速提高后能听到"嗡嗡"的异响声,20 min后发动机冷却液过热,报警装置开始报警。(2)故障诊断方法发动机热机后,车速在30~50 km/h后若听到"嗡嗡"的异响声,轻轻地踩下制动踏板,使制动踏板臂和制动灯开关分开即可(制动灯开关负责解除变矩器锁止工况)。若踩下制 动踏板时"嗡嗡"的异响声立即终止,抬起制动踏板时"嗡嗡"的异响声立即恢复,说明异响是由于液力变矩器内锁止离合器的锁止力矩不足造成的。(3)故障分析图2 4L60E型变速器锁止电磁阀控制阀中的锁止继动阀控制液力变矩器进入锁 止工况的时机,锁止电磁阀(图2)决定锁止油压的大小。若锁止电磁阀密封不

福伊特液力变矩器的结构及工作原理的使用0

第一章福伊特液力传动箱简介 T211re.4液力传动箱是德国福伊特公司是专门为铁路车辆设计的涡轮传动装置。它是350kW性能级别的轨道车专用传动箱。 第一节 T211re.4液力传动箱的技术指标 一、T211re.4液力传动箱的主要技术参数

: 二、T211re.4液力传动箱的特性参数 第二节 T 211re.4液力传动箱的特点 一、命名规则: T211re.4液力传动箱是铁路工程车辆专用设备,其命名

规则如下: 二、T211re.4液力传动箱的特点 T211re.4液力传动箱其输入功率科大350kW,采用全新的福伊特驱动控制器(VTDC)可以直接安装在传动箱上并录入运行数据。另外还具有监控诊断功能,液力制动可以通过联合制动的方式整合进入车辆制动系统以及性能的高可靠性。

第二章 T211re.4液力传动箱的结构 第一节 T211re.4液力传动箱的组成 一、液力传动箱组成 T211re.4液力传动箱由液力制动、液力液力变扭器、液力耦合器、换向机构、电气控制模块VTIC及部分组成,其外形如图2-1所示。其输入、输出侧分别如图2-2、2-3所示。 图2-1 T211re.4液力传动箱外形图

其液力传动箱包括机械部分和液力部分组件,其结构如图2-4所示。 二、机械组件 机械组件包括增速齿轮、扭转减振器、换向装置、齿轮变速器。 图2-2 T211re.4液力传动箱输入侧 1-输入装置

图2-3 T211re.4液力传动箱输出侧 2-输出装置 图2-4 转动装置组件 1-输出装置;2-增速齿轮;3-输入装置;4-液力偶合器;5-液力变扭器 6-机械部件;7-换向装置的幵关轴 传动箱输入轴(3)直接与柴油机相连,通过一对增速齿轮(2)将转速提升至液力元件的工作转速,变扭器(5)和偶合器(4)的泵轮都装在泵轮轴上,两者的涡轮都装在与传动箱输出相连的涡轮轴上,涡轮轴再通过一系列的机械齿轮最终驱动传动箱输出(1),通过换向离合器(7)的作用,使传动链里机械齿轮(6)的数量增减,实现换向。

液力变矩器的故障检测与维修方法

液力变矩器的故障检测与维修方法 液力变矩器常见的故障主要有:油温过高、供油压力过低、漏油、机器行驶速度过低或行驶无力,以及工作时内部发出异常响声等5种。 1、油温过高 油温过高表现为机器工作时油温表超过120°C或用手触摸感觉汤手,主要有以下几种原因:变速器油位过低;冷却系中水位过低;油管及冷却器堵塞或太脏;变矩器在低效率范围内工作时间太长;工作轮的紧固螺钉松动;轴承配合松旷或损坏;综合式液力变矩器因自由轮卡死而闭锁;导轮装配时自由轮机构化机构缺少零件。 液力变矩器油温过高故障的诊断和排除方法如下:出现油温过高时,首先应立即停车,让发动机怠速运转,查看冷却系统有无泄漏,水箱是否加满水;若冷却系正常,则应检查变速器油位是否位于油尺两标记之间。若油位太低,应补充同一牌号的油液;若油位太高,则必须排油至适当油位。如果油位符合要求,应调整机器,使变矩器在高效区范围内工作,尽量避免在低效区长时间工作。如果调整机器工作状况后油温仍过高,应检查油管和冷却器的温度,若用手触摸时温度低,说明泄油管或冷却器堵塞或太脏,应将泄油管拆下,检查是否有沉积物堵塞,若有沉积物应予以清除,再装上接头和密封泄油管。若触摸冷却器时感到温度很高,应从变矩器壳体内放出少量油液进行检查。若油液内有金属末,说明轴承松旷或损坏,导致工作轮磨损,应对其进行分解,更换轴承,并检查泵轮与泵轮毂紧固螺栓是否松动,若松动应予以紧固。以上检查项目均正常,但油温仍高时,应检查导轮工作是否正常。将发动机油门全开,使液力变矩器处于零速工况,待液力变矩器出口油温上升到一定值后,再将液力变矩器换入液力耦合器工况,以观察油温下降程度。若油温下降速度很慢,则可能是由于自由轮卡死而使导轮闭锁,应拆解液力变矩器进行检查。 2、供油压力过低 现象为:当发动机油门全开时,变矩器进口油压仍小于标准值。主要由以下几种原因引起:供油量少,油位低于吸油口平面;油管泄漏或堵塞;流到变速器的油过多;进油管或滤油网堵塞;液压泵磨损严重或损坏;吸油滤网安装不当;油液

差压流量计常见故障及处理[1]

差压流量计常见故障及处理试卷 姓名分数 一、判断题(15×2′=30′) 1、用节流式流量计测量流量时,流量越小,测量误差越小。() 2、若流量孔板接反,将导致流量的测量值增加。() 3、差压流量计导压管路阀门组成系统中,当平衡阀门泄漏时,仪表指示值将偏低。() 4、使用差压变送器反吹风方式测量流量,当负压管泄漏时,流量示值减小。() 5、智能变送器的零点和量程都可以在手持通信器上进行设定和修改,所以智能变送器不需 要压力信号进行校验。() 6、德尔塔巴流量计测量流量时,对直管段没有要求。() 7、超声波液位计不适合测量带有较高压力罐体设备的液位。() 8、流量是一个动态量,其测量过程应与流体的物理性质无关。() 9、靶式流量计适用于测量粘性介质和悬浮颗粒的介质。() 10、电磁流量计的感应信号电压方向与所加的磁场方向垂直,并且与被测流体的运动方向垂 直。() 11、电磁流量计适用测管内具有一定导电性液体的瞬时体积流量。() 12、用差压法测液位,启动变送器时应先打开平衡阀和正负压阀中的一个阀,然后关闭平衡 阀,开启另一个阀。() 13、罗斯蒙特3051C智能变送器的传感器是硅电容式,它将被测参数转换成电容的变化然 后通过测电容来得到被测差压式压力值。() 14、超声波流量计的输出信号与被测流体的流量成线性关系。() 15、电磁流量计电源的相线和中线,激励绕组的相线和中线以及变送器输出信号的1、2端 子线是不能随意对换。() 二、选择题(13×2′=26′) 1、用差压法测量容器液位时,液位的高低取决于() A、容器上下两点的压力差 B、压力差、容器截面积和介质密度 C、压力差、介质密度和取压点位置 D、容器截面积和介质密度 2、用双法兰变送器测量容器内的液位,变送器的零点和量程均已校正号,后因维护需要,仪表的安装位置上移了一段距离,则变送器() A、零点上升,量程不变 B、零点下降,量程不变 C、零点不变,量程增大 D、零点和量程都不变 3、用节流装置测量气体流量,如果实际工作温度高于设计工作温度,这时仪表的指示值将() A、大于真实值 B、小于真实值 C、没有影响 4、1151压力变送器的测量原0~100kPa,现零点迁移100%,则仪表的测量范围() A、0~100kPa B、50~100kPa C、-50~+50kPa D、100~200kPa 5、管道上安装孔板时如果将方向装反了会造成() A、差压计倒指示 B、差压计指示变小 C、差压计指示变大 D、对差压指示无影响 6、设计节流装置时为了使流量系数稳定不变,应设定()雷诺数 A、最大流量 B、最小流量 C、常用流量D中间流量 7、标准孔板的安装要求管道的内表面应清洁的直管段要求是() A、上游5D,下游10D B、上游10D,下游5D

液力变矩器的故障检测及维修

液力变矩器的故障检测及维修 液力变矩器常见的故障主要有:油温过高、供油压力过低、漏油、机器行驶速度过低或行驶无力,以及工作时内部发出异常响声等5种。 1、油温过高 油温过高表现为机器工作时油温表超过120°C或用手触摸感觉汤手,主要有以下几种原因:变速器油位过低;冷却系中水位过低;油管及冷却器堵塞或太脏;变矩器在低效率范围内工作时间太长;工作轮的紧固螺钉松动;轴承配合松旷或损坏;综合式液力变矩器因自由轮卡死而闭锁;导轮装配时自由轮机构化机构缺少零件。 液力变矩器油温过高故障的诊断和排除方法如下:出现油温过高时,首先应立即停车,让发动机怠速运转,查看冷却系统有无泄漏,水箱是否加满水;若冷却系正常,则应检查变速器油位是否位于油尺两标记之间。若油位太低,应补充同一牌号的油液;若油位太高,则必须排油至适当油位。如果油位符合要求,应调整机器,使变矩器在高效区范围内工作,尽量避免在低效区长时间工作。如果调整机器工作状况后油温仍过高,应检查油管和冷却器的温度,若用手触摸时温度低,说明泄油管或冷却器堵塞或太脏,应将泄油管拆下,检查是否有沉积物堵塞,若有沉积物应予以清除,再装上接头和密封泄油管。若触摸冷却器时感到温度很高,应从变矩器壳体内放出少量油液进行检查。若油液内有金属末,说明轴承松旷或损坏,导致工作轮磨损,应对其进行分解,更换轴承,并检查泵轮与泵轮毂紧固螺栓是否松动,若松动应予以紧固。以上检查项目均正常,但油温仍高时,应检查导轮工作是否正常。将发动机油门全开,使液力变矩器处于零速工况,待液力变矩器出口油温上升到一定值后,再将液力变矩器换入液力耦合器工况,以观察油温下降程度。若油温下降速度很慢,则可能是由于自由轮卡死而使导轮闭锁,应拆解液力变矩器进行检查。 2、供油压力过低 现象为:当发动机油门全开时,变矩器进口油压仍小于标准值。主要由以下几种原因引起:供油量少,油位低于吸油口平面;油管泄漏或堵塞;流到变速器的油过多;进油管或滤油网堵塞;液压泵磨损严重或损坏; 吸油滤网安装不当;油液起泡沫;进出口压力阀不能关闭或弹簧刚度减小。 如果出现供油压力过低,应首先检查油位:若油位低于最低刻度,应补充油液;若油位正常,应检查进、出油管有无泄漏,若有漏油,应予以排除。若进、出管密封良好,应检查进、出口压力阀的工作情况,若进、出口压力阀不能关闭,应将其拆下,检查其上零件有无裂纹或伤痕,油路和油孔是否畅通,以及弹簧刚度是否变小,发现问题应及时解决。如果压力阀正常,应拆下油管或滤网进行检查。如有堵塞,应进行清洗并清除沉积物;如油管畅通,则需检查液压泵,必要时更换液压泵。如果液压油起泡沫,应检查回油管的安装情况,如回油管的油位低于油池的油位,应重新安装回油管。 3、变矩器漏油 变矩器漏油主要是由于变矩器后盖与泵轮拼命面、泵轮与轮毂拼命处连接螺栓松动或密封件老化或损坏造成的。发现漏油应启动发动机,检查漏油部位。如果从变矩器与发动机的连接处漏油,说明泵轮与泵轮罩连接螺栓松动或密封圈老化,应紧固连接螺栓或更换O形密封圈;如果从变矩器与变速器连接处甩油,说明泵轮与泵轮毂连接螺栓松动或密封圈损坏,应紧固螺栓或检查密封圈;如果漏油部位在加油口或放油口位置,应检查螺栓连接的松紧度以及是否有裂纹等。

液力变矩器常见故障

液力变矩器常见的故障主要有:油温过高、供油压力过低、漏油、机器行驶速度过低或行驶无力,以及工作时内部发出异常响声等5种。 1、油温过高 油温过高表现为机器工作时油温表超过120°C或用手触摸感觉汤手,主要有以下几种原因:变速器油位过低;冷却系中水位过低;油管及冷却器堵塞或太脏;变矩器在低效率范围内工作时间太长;工作轮的紧固螺钉松动;轴承配合松旷或损坏;综合式液力变矩器因自由轮卡死而闭锁;导轮装配时自由轮机构化机构缺少零件。 液力变矩器油温过高故障的诊断和排除方法如下:出现油温过高时,首先应立即停车,让发动机怠速运转,查看冷却系统有无泄漏,水箱是否加满水;若冷却系正常,则应检查变速器油位是否位于油尺两标记之间。若油位太低,应补充同一牌号的油液;若油位太高,则必须排油至适当油位。如果油位符合要求,应调整机器,使变矩器在高效区范围内工作,尽量避免在低效区长时间工作。如果调整机器工作状况后油温仍过高,应检查油管和冷却器的温度,若用手触摸时温度低,说明泄油管或冷却器堵塞或太脏,应将泄油管拆下,检查是否有沉积物堵塞,若有沉积物应予以清除,再装上接头和密封泄油管。若触摸冷却器时感到温度很高,应从变矩器壳体内放出少量油液进行检查。若油液内有金属末,说明轴承松旷或损坏,导致工作轮磨损,应对其进行分解,更换轴承,并检查泵轮与泵轮毂紧固螺栓是否松动,若松动应予以紧固。以上检查项目均正常,但油温仍高时,应检查导轮工作是否正常。将发动机油门全开,使液力变矩器处于零速工况,待液力变矩器出口油温上升到一定值后,再将液力变矩器换入液力耦合器工况,以观察油温下降程度。若油温下降速度很慢,则可能是由于自由轮卡死而使导轮闭锁,应拆解液力变矩器进行检查。 2、供油压力过低 现象为:当发动机油门全开时,变矩器进口油压仍小于标准值。主要由以下几种原因引起:供油量少,油位低于吸油口平面;油管泄漏或堵塞;流到变速器的油过多;进油管或滤油网堵塞;液压泵磨损严重或损坏;吸油滤网安装不当;油液起泡沫;进出口压力阀不能关闭或弹簧刚度减小。 如果出现供油压力过低,应首先检查油位:若油位低于最低刻度,应补充油液;若油位正常,应检查进、出油管有无泄漏,若有漏油,应予以排除。若进、出管密封良好,应检查进、出口压力阀的工作情况,若进、出口压力阀不能关闭,应将其拆下,检查其上零件有无裂纹或伤痕,油路和油孔是否畅通,以及弹簧刚度是否变小,发现问题应及时解决。如果压力阀正常,应拆下油管或滤网进行检查。如有堵塞,应进行清洗并清除沉积物;如油管畅通,则需检查液压泵,必要时更换液压泵。如果液压油起泡沫,应检查回油管的安装情况,如回油管的油位低于油池的油位,应重新安装回油管。 3、变矩器漏油 变矩器漏油主要是由于变矩器后盖与泵轮拼命面、泵轮与轮毂拼命处连接螺栓松动或密封件老化或损坏造成的。发现漏油应启动发动机,检查漏油部位。如果从变矩器与发动机的连接处漏油,说明泵轮与泵轮罩连接螺栓松动或密封圈老化,应紧固连接螺栓或更换O形密封圈;如果从变矩器与变速器连接处甩油,说明泵轮与泵轮毂连接螺栓松动或密封圈损坏,应紧固螺栓或检查密封圈;如果漏油部位在加油口或放油口位置,应检查螺栓连接的松紧度以及是否有裂纹等。 4、机器行驶速度不定期低或行驶无力 这种故障主要是由以下几种原因引起的:液力变矩器内部密封件损坏,使工作腔液流冲击下降;自由轮机构卡死,造成导轮闭锁;自由轮磨损失效;工作轮叶片损坏;进、出口压力阀损坏;液压泵磨损,供油不足;液压油油位太低;变速器的磨擦式主离合器有故障。 机器挂挡起步后,如果行驶无力或行驶缓慢,应首先检查挂挡压力表的指示压力是否在

华为光伏逆变器常见故障及处理

华为光伏逆变器常见故障及处理 1、绝缘阻抗低:使用排除法。把逆变器输入侧的组串全部拔下,然后逐一接上,利用逆变器开机检测绝缘阻抗的功能,检测问题组串,找到问题组串后重点检查直流接头是否有水浸短接支架或者烧熔短接支架,另外还可以检查组件本身是否在边缘地方有黑斑烧毁导致组件通过边框漏电到地网。 2、母线电压低:如果出现在早/晚时段,则为正常问题,因为逆变器在尝试极限发电条件。如果出现在正常白天,检测方法依然为排除法,检测方法与1项相同。 3、漏电流故障:这类问题根本原因就是安装质量问题,选择错误的安装地点与低质量的设备引起。故障点有很多:低质量的直流接头,低质量的组件,组件安装高度不合格,并网设备质量低或进水漏电,一但出现类似问题,可以通过在洒粉找出**点并做好绝缘工作解决问题,如果是材料本省问题则只能更换材料。 4、直流过压保护:随着组件追求高效率工艺改进,功率等级不断更新上升,同时组件开路电压与工作电压也在上涨,设计阶段必须考虑温度系数问题,避免低温情况出现过压导致设备硬损坏。 5、逆变器开机无响应:请确保直流输入线路没有接反,一般直流接头有防呆效果,但是压线端子没有防呆效果,仔细阅读逆变器说明书确保正负极后再压接是很重要的。逆变器内置反接短路保护,在恢复正常接线后正常启动。 6、电网故障: 电网过压:前期勘察电网重载(用电量大工作时间)/轻载(用电量少休息时间)的工作就在这里体现出来,提前勘察并网点电压的健康情况,与逆变器厂商沟通电网情况做技术结合能保证项目设计在合理范围内,切勿“想当然”,特别是农村电网,逆变器对并网电压,并网波形,并网距离都是有严格要求的。出现电网过压问题多数原因在于原电网轻载电压超过或接近安规保护值,如果并网线路过长或压接不好导致线路阻抗/感抗过大,电站是无法正常稳定运行的。解决办法是找供电局协调电压或者正确选择并网并严抓电站建设质量。 电网欠压:该问题与电网过压的处理方法一致,但是如果出现独立的一相电压过低,除了原电网负载分配不完全之外,该相电网掉电或断路也会导致该问题,出现虚电压。 电网过/欠频:如果正常电网出现这类问题,证明电网健康非常堪忧。 电网没电压:检查并网线路即可。 电网缺相:检查缺相电路,即无电压线路。 三相不平衡,并网线路外加特殊设备导致并网异常震荡,超长距离并网,电网削顶过压相移。 7、最后一点——监控搭接:正确阅读各设备说明书机型线路压接,设备连接,并设置好设备的通讯地址,时间,是保证通讯稳定有效的保证! 8、发电量保证:有空擦擦板子,发电量“凸”一下就起来了。

液力变矩器的结构与工作原理

液力变矩器的结构与工作原理 (一)液力变矩器的结构 液力变矩器以液体作为介质,传递和增大来自发动机的扭矩 液力变矩器由可转动的泵轮和涡轮,以及固定不动的导轮三元件构成。各件用铝合金精密铸造或用钢板冲压焊接而成。泵轮与变矩器壳成一体。用螺栓固定在飞轮上,涡轮通过从动轴与传动系各件相连。所有工作轮在装配后,形成断面为循环圆的环状体。 (二)液力变矩器的工作原理 导涡泵 液力变矩器工作原理可以用两台电风扇作形象描述,两风扇对置,一台通电转动,产生的气流可吹动不通电的风扇,如果给其添加一个管道这就成了液力偶合器,它能传轴,并不增扭。 变矩器工作时,发动机带动泵轮转动,叶轮带动液流冲向涡轮,从而驱动涡轮转动,刚起动时扭矩最大,此时冲击力为F1,冲到涡轮的液流驱动涡轮后,由于叶片形状,冲向导轮,而导轮不动,冲击导轮的液流受到阻碍,可使涡轮受到反作用力F2,由于F1、F2都作用于涡轮,所以使涡轮所受扭矩得到增大。 涡轮转速升高后,液流变向会冲击导轮叶背,而失去增扭,并有一定阻力。所以现在所用导轮都使用单向离合器,使去冲击叶背时,导轮转过一个角度,使其继续增扭。 导轮下端装有单向离合器,可增大其变扭范围。 (三)锁止式 变矩器是用液力来传递汽车动力的,而液压油的内部摩擦会造成一定的能量损失,因此传动效率较低。为提高汽车的传动效率,减少燃油消耗,现代很多轿车的自动变速器采用一种带锁止离合器的综合式液力变矩器。这种变矩器内有一个由液压油操纵的锁止离合器。锁止离合器的主动盘即为变矩器壳体,从动盘是一个可作

轴向移动的压盘,它通过花键套与涡轮连接(如图2.3).压盘背面(如图2.3右侧)的液压油与变矩器泵轮、涡轮中的液压油相通,保持一定的油压(该压力称为变矩器压力);压盘左侧(压盘与变矩器壳体之间)的液压油通过变矩器输出轴中间的控制油道与阀板总成上的锁止控制阀相通。锁止控制阀由自动变速器电脑通过锁止电磁阀来控制。 自动变速器电脑根据车速、节气门开度、发动机转速、变速器液压油温度、操纵手柄位置、控制模式等因素,按照设定的锁止控制程序向锁止电磁阀发出控制信号,操纵锁止控制阀,以改变锁止离合器压盘两侧的油压,从而控制锁止离合器的工作。当车速较低时,锁止控制阀让液压油从油道B进入变矩器,使锁止离合器压盘两侧保持相同的油压,锁止离合器处于分离状态,这时输入变矩器的动力完全通过液压油传至涡轮,如图2.4所示。 当汽车在良好道路上高速行驶,且车速、节气门开度、变速器液压油温度等因素符合一定要求时,电脑即操纵锁止控制阀,让液压油从油道C进入变矩器,而让油道B与泄油口相通,使锁止离合器压盘左侧的油压下降。由于压盘背面(图中右侧)的液压油压力仍为变矩器压力,从而使压盘在前后两面压力差的作用下压紧在主动盘(变矩器壳体)上,如图2.5所示,这时输入变矩器的动力通过锁止离合器的机械连接,由压盘直接传至涡轮输出,传动效率为100%. 另外,锁止离合器在结合时还能减少变矩器中的液压油因液体摩擦而产生的热量,有利用降低液压油的温度。有些车型的液力变矩器的锁止离合器盘上还装有减振弹簧,以减小锁止离合器在结合时瞬间产生的冲击力。 第二节行星齿轮变速器的工作原理 液力变矩器虽能在一定范围内自动、无级地改变转矩比和转速比,但存在传动

相关主题
文本预览
相关文档 最新文档