当前位置:文档之家› 丘成桐:从明治维新到二战前后中日数学人才培养之比较

丘成桐:从明治维新到二战前后中日数学人才培养之比较

丘成桐:从明治维新到二战前后中日数学人才培养之比较.txt每个女孩都曾是无泪的天使,当遇到自己喜欢的男孩时,便会流泪一一,于是坠落凡间变为女孩,所以,男孩一定不要辜负女孩,因为女孩为你放弃整个天堂。朋友,别哭,今夜我如昙花绽放在最美的瞬间凋谢,你的泪水也无法挽回我的枯萎~~~丘成桐:从明治维新到二战前后中日数学人才培养之比较

序言

在牛顿(1642~1727)和莱布尼茨(1646~1716)发明微积分以后,数学产生了根本性的变化。在18到19世纪200年间,欧洲人才辈出,在这期间诞生的大数学家不可胜数,重要的有:尤拉(Euler,1707~1783),高斯(Gauss,1777~1855),阿贝尔(Abel,1802~1829),黎曼(Riemann,1826~1866),庞卡莱(Poincare,1854~1912),希尔伯特(Hilbert,1862~1943),格拉斯曼(Grassmann,1809~1877),傅立叶(Fourier,1768~1830),伽罗华(Galois,1811~1832),嘉当(E.Cartan,1869~1951),伯努利(D. Bernoulli,1700~1782),克莱姆(G. Cramer,1704~1752),克莱罗(A. Clairaut,1713~1765),达朗贝尔(d’Alembert,1717~1783),兰伯特(J. Lambert,1728~1777),华林(E. Waring,1734~1798),范德蒙德(Vandermonde,1735~1796),蒙日(Monge,1746~1818),拉格朗日(Lagrange,1736~1814),拉普拉斯(Laplace,1749~1827),勒让德(Legendre,1752~1833),阿冈(R. Argand,1768~1822),柯西(Cauchy,1789~1857),莫比乌斯(M?觟bius,1790~1868),罗巴切夫斯基(Lobachevsky,1792~1856),格林(Green,1793~1841),波尔约(J. Bolyai,1802~1860),雅可比(Jacobi,1804~1851),狄利克雷(Dirichlet,1805~1859),哈密尔顿(W. Hamilton,1805~1865),刘维尔(Liouville,1809~1892),库默尔(Kummer,1810~1893),魏尔斯特拉斯(Weierstrass,1815~1897),布尔(G. Boole,1815~1864),斯托克斯(G. Stokes,1819~1903),凯莱(Cayley,1821~1895),切比谢夫(Chebyshev,1821~1894),埃尔米特(Hermite,1822~1901),爱森斯坦(Eisenstein,1823~1852),克罗内克(Kronecker,1823~1891),开尔文(Kelvin,1824~1907),麦克斯威尔(J.Maxwell,1831~1879),富克斯(L. Fuchs,1833~1902),贝尔特拉米(E. Beltrami,1835~1900)等。

他们将数学和自然科学融合在一起,引进了新的观念,创造了新的学科。他们引进的工具深奥而有力,开创了近300年来数学的主流。数学的发展更推进了科学的前沿,使之成为现代文化的支柱。

在这期间,东方的数学却反常地沉寂。无论中国、印度或者日本,在17世纪到19世纪这200年间,更无一个数学家的成就可望上述诸大师之项背。其间道理,值得深思。数学乃是科学的基础,东方国家的数学不如西方,导致科学的成就不如西方,究竟是什么原因呢?这是一个大问题。

这里我想讨论一个现象:在明治维新以前,除了江户时代关孝和(Takakazu Seki Kowa,1642~1708)创立行列式外,日本数学成就远远不如中国,但到了19世纪末,中国数学反不如日本,这是什么原因呢?在这里,我们试图用历史来解释这个现象。

19世纪中日接受西方数学的过程

1859年,中国数学家李善兰(1811~1882)和苏格兰传教士伟烈亚力(Alexander Wyle,1815~1889)翻译了由英国人De Morgan(1806~1871)所著13卷的《代数学》和美国人Elias Loomis 所著18卷的《代微积拾级》。他们将欧几里得的《几何原本》全部翻译出来,完成了明末徐光启(1562~1633)与利玛窦未竟之愿,在1857年出版。

就东方近代数学发展史来说,前两本书(《代数学》、《代微积拾级》)有比较重要的意义,《代数学》引进了近代代数,《几何原本》、《代微积拾级》则引进了解析几何和微积分。

李善兰本人对三角函数、反三角函数和对数函数的幂级数表示有所认识,亦发现所谓尖锥体积术和费尔马小定理,可以说是清末最杰出的数学家,但与欧陆大师的成就不能相比拟,没有能力在微积分基础上发展新的数学。

此后英人傅兰雅(John Fryee,1839~1928)与中国人华蘅芳(1833~1902)也在1874年翻译了英人华里司(William Wallis,1768~1843)所著的《代数术》25卷和《微积溯源》8卷,他翻译的书有《三角数理》12卷和《决疑数学》10卷,后者由英人Galloway和Anderson 著作,是介绍古典概率论的重要著作,在1896年出版。

这段时期的学者创造了中国以后通用的数学名词,也建造了一套符号系统(如积分的符号用禾字代替)。他们又用干支和天地人物对应英文的26个字母,用二十八宿对应希腊字母。

这些符号的引进主要是为了适合中国国情,却也成为中国学者吸收西方数学的一个严重障碍。事实上,在元朝时,中国已接触到阿拉伯国家的数学,但没有吸收它们保存的希腊数学数据和它们的符号,这是一个憾事。

当时翻译的书籍使中国人接触到比较近代的基本数学,尤其是微积分的引进,更有其重要性。遗憾的是在中国洋务运动中占重要地位的京师同文馆(1861)未将学习微积分作为重要项目。

而福州船政学堂(1866)则聘请了法国人L.Medord授课,有比较先进的课程。1875年,福州船政学堂派学生到英法留学,如严复在1877年到英国学习数学和自然科学,郑守箴和林振峰到法国得到巴黎高等师范的学士学位,但对数学研究缺乏热情,未窥近代数学堂奥。

日本数学在明治维新(1868年)以前虽有自身之创作,大致上深受中国和荷兰的影响。1862年日本学者来华访问,带回李善兰等翻译的《代数学》和《代微积拾级》,并且广泛传播。他们迅即开始自己的翻译,除用中译本的公式和符号外,也利用西方的公式和符号。

明治天皇要求国民向全世界学习科学,他命令“和算废止,洋算专用”,全盘学习西方数学。除了派留学生到欧美留学外,甚至有一段时间聘请了3000个外国人到日本帮忙。日本和算学家如高久守静等虽然极力抵制西学,但政府坚持开放,西学还是迅速普及,实力迅速超过中国。

日本人冢本明毅在1872年完成《代数学》的日文译本,福田半则完成《代微积拾级》的日文译本,此外还有大村一秀和神田孝平。神田在1865年已经完成《代微积拾级》的译本,还修改了中译本的错误,并加上荷兰文的公式和计算。日本人治学用心,由此可见一斑。

此后日本人不但直接翻译英文和荷兰文的数学书,Fukuda Jikin还有自己的著作,例如Fukuda Jikin在1880年完成《笔算微积入门》的著作。

日本早期数学受荷兰和中国影响,明治维新期间则受到英国影响,其间有两个启蒙的数学家,第一个是菊池大麓(Dairoku Kikuchi,1855~1917),第二个是藤沢利喜太郎(Rikitaro Fujisawa,1861~1933),他们都在日本帝国大学(Imperial University)的科学学院(The Science College)做教授,这间大学以后改名为东京大学(日本京都帝国大学到1897年才成立)。

菊池在英国剑桥大学读几何学,他的父亲是Edo时代的兰学家(Dutch Scholar),当时英国刚引进射影几何,他就学习几何学,并在班上一直保持第一名,他和同班同学虽然竞争剧烈,却彼此尊重。

根据菊池的传记,说他一生不能忘怀这种英国绅士的作风,以后他位尊权重,影响了日本学者治学的风骨。

他在剑桥得到学士和硕士,在1877年回到日本,成为日本第一个数学教授,日本的射影几何传统应该是由他而起,以后中国数学家苏步青留日学习射影、微分几何,就是继承这个传统。

菊池家学渊源,亲戚、儿子都成为日本重要的学者,他在东京帝国大学做过理学院长、校长,也做过教育部长、京都帝大校长、帝国学院(Academy)的院长。

他对明治维新学术发展有极重要的贡献,他思想开放,甚至有一阵子用英文授课。

藤沢利喜太郎在1877年进入日本帝国大学学习数学和天文,正好也是菊池在帝大开始做教授那一年。他父亲也是兰学家,在菊池的指导下,他在东京大学学习了五年时间,然后到伦敦大学念书,数个月后再到德国柏林和法国的 Strasbourg。在柏林时,他师从库默尔(Kummer)、克罗内克(Kronecker)和魏尔斯特拉斯(Weierstrass),这些人都是一代大师。

藤沢利喜太郎1887年回到日本,开始将德国大学做研究的风气带回日本。他精通椭圆函数论,写了14篇文章,并于1925年成为日本参议员,于1932年当选为日本的院士。

菊池和藤沢利喜太郎除了对日本高等教育有重要贡献外,也对中学和女子教育有贡献,编写了多本教科书。

20世纪初叶的日本和中国数学

1.日本数学

20世纪初叶最重要的日本数学家有林鹤一(Tsuruichi Hayashi,1873~1935)和高木贞治(Teiji Takagi,1875~1960)。林鹤一创办了东北帝国大学的数学系,并用自己的收入创办了Tohoku数学杂志。

但日本近代数学的奠基人应该是高木贞治。他在农村长大,父亲为会计师。他在1886年进中

学,用的教科书有由Todhunter写的Algebra for Beginners和由Wilson写的Geometry。到了1891年,他进入京都的第三高中,三年后他到东京帝大读数学。

根据高木的自述,他在大学的书本为Durègi写的《椭圆函数》和Salmon写的《代数曲线》,他不知道这些书籍与射影几何息息相关。当时菊池当教育部长,每周只能花几个小时授课,因此由藤沢主管,用德国式的方法来教育学生。他给学生传授Kronecker以代数学为中心的思想。高木从Serret写的Algebra Supérieure(法语)书中学习阿贝尔方程,并且学习H. Weber 刚完成的两本关于代数学的名著。

1898年,高木离开日本到德国柏林师从Frobenius,当时Fuchs和Schwarz还健在,学习的内容虽然和日本相差不大,但与名师相处,气氛确实不同。

1900年,高木访问G?觟ttingen(哥廷根),见到了数学大师Klein和Hilbert。欧洲年轻的数学家大多聚集在此,讨论自己的创作。高木自叹日本数学不如此地远甚,相距有半个世纪之多。然而一年半以后,他大有进步,能感觉自如矣。可见学术气氛对培养学者的重要性。

高木师从Hilbert,学习代数数论,印象深刻。他研究Lemniscate函数的complex multiplication。他在1903年完成博士论文,由东京大学授予博士学位(1900年时东京大学已经聘请他为副教授)。

1901年,高木回到东京,将Hilbert在G?觟ttingen(哥廷根)领导研究的方法带回东京大学,他认为研讨会(Colloquia)这种观念对于科研至为重要,坚持数学系必须有自己的图书馆和喝茶讨论学问的地方。1904年他被升等为教授,教学和研究并重。他的著作亦包括不少教科书,对日本数学发展有很深入的影响。

1914年第一次世界大战爆发,日本科学界与西方隔绝,他不以为苦,认为短期的学术封闭对他反而有很大的帮助,可以静下心来深入考虑class field理论。在这期间,他发现Hilbert 理论有不足之处,在1920年Strasbourg世界数学大会中,他发表了新的理论。两年后他的论文得到Siegel的赏识,建议Artin(Emil Artin)去研读,Artin(Emil Artin)因此推导了最一般的互反律,完成了近代class field理论的伟大杰作。

高木的学生弥永昌吉(Shokichi Iyanaga)于1931年在东京帝国大学毕业,到过法德两国,跟随过Artin,在1942年成为东京大学教授。他的学生众多,影响至巨。

日本在上世纪30年代以后60年代以前著名的学者有如下几位:

东京大学毕业的有:吉田耕作(Kosaku Yoshida,1931),中山传司(Tadashi Nakayama,1935),伊藤清(Kiyoshi Ito,1938),岩堀永吉(Nagayoshi Iwahori,1948),小平邦彦(Kunihiko Kodaira,1949),加藤敏夫(Tosio Kato,1951),佐藤斡夫(Mikio Sato,1952),志村五郎(Goro Shimura,1952),铃木道雄(Michio Suzuki,1952),谷山丰(Yutaka Taniyama,1953),玉河恒夫(Tsuneo Tamagawa,1954),佐竹一郎(Ichiro Satake,1950),伊原康隆(Yasutaka Ihara);京都大学毕业的有:冈洁(Kiyoshi Oka,1924),秋月康夫(Yasuo Akizuki,1926),中野重雄(Shigeo Nakano),户田芦原(Hiroshi Toda),山口直哉(Naoya Yamaguchi),沟沺茂(Sigeru Mizohata),荒木不二洋(Fujihiro raki),广中平佑(Heisuke Hironaka 硕

士,1953),永田雅宜(Masayoshi Nagata 博士,1950);名古屋大学毕业的有:角谷静夫(Shizuo Kakutani,1941),仓西正武(Masatake Kuranishi,1948),东谷五郎(Goro Azumaya,1949),森田纪一(Ki~iti Morita,1950);东北大学毕业的有:洼田忠彦(Tadahiko Kubota,1915),茂雄佐佐木(Shigeo Sasaki,1935);大阪大学毕业的有:村上真悟(Shingo Murakami),横田洋松(Yozo Matsushima,1942)。

东京大学和京都大学的学者继承了高木开始的传统,与西方学者一同创造了20世纪中叶数学宏大的基础,这些学者大都可以说是数学史上的巨人。

其中小平邦彦和广中平佑都是Fields medal(菲尔茨奖)的获得者,他们都在美国有相当长的一段时间,广中平佑在哈佛大学得到博士,20世纪90年代后回日本。小平邦彦则在1967年回国,他在美国有4位博士生,而在日本则有13位之多,著名的有K.Ueno,E.Horikawa,I.Nakamura,F.Sakai,Y.Miyaoka,T.Fujita,T.Katsura等,奠定了日本代数几何的发展。

M.Sato的学生有T.Kawai、T.Miwa、M.Jimbo和M.Kashiwara,都是代数分析和可积系统的大师。Nagata的学生有S.Mori、S.Mukai、M.Maruyama。其中Mori更得到菲尔茨奖。

2.中国数学

李善兰(1811~1882)和伟烈亚力翻译Loomis的《微积分》以后,数学发展不如日本,京师同文馆(1861年创办)和福州船政学堂(1866年创办)课程表都有微积分,但影响不大。

严复(1854~1921)毕业于福州船政学堂后到朴茨茅斯和格林威治海军专门学校读数学和工程,却未遇数学名家。容闳(1828~1912)在1871年带领幼童赴美留学,以工程为主,回国后亦未能在数学和科技上发展所长。

甲午战争后,中国派遣大量留学生到日本留学,在1901年张之洞和刘坤一上书光绪皇帝:“……切托日本文部参谋部陆军省代我筹计,酌批大中小学各种速成教法,以应急需。”

1906年,留日学生已达到8000人,同时又聘请大量日本教师到中国教学。冯祖荀大概是最早到日本念数学的留学生,他在1904年就读于京都帝国大学,回国后,他在1913年创办北京大学数学系。

1902年,周到达日本考察其数学,访问日本数学家上野清和长泽龟之助,发表了《调查日本算学记》,记录了日本官校三年制理科大学的数学课程:

第一年:微分、积分、立体及平面解析几何,初筹算学、星学及最小二乘法、理论物理学初步,理论学演习、算学演习。

第二年:一般函数论及代数学、力学、算学演习、物理学实验。

第三年:一般函数论及椭圆函数论、高等几何学、代数学、高等微分方程论、高等解析杂论、力学、变分法、算学研究。

这些课程,除了没有包括20世纪才出现的拓朴学外,其内容与当今名校的课程不遑多让。中国当时大学还在萌芽阶段,更谈不上这样有深度的内容。

周达又从与上野清交流中得知华蘅芳翻译《代数术》时不应删除习题。周达的三子周炜良以后成为中国20世纪最伟大的代数几何学家。

现在看来,全面学习日本不见得是当年洋务运动的一个明智选择,日本在19世纪末、20世纪之交期间的科学虽然大有进步,但与欧洲还有一大段距离。中国为了节省用费,舍远求近,固可理解,然而取法乎其中,鲜有得乎其上者。

紧接着中国开始派学生到美国,其中有胡敦复(1886~1978)和郑之蕃(1887~1963),前者在哈佛念书,后者在Cornell大学再到哈佛访问一年,他们两人先后(1911和1920年)在清华大学任教,1927年清华大学成立数学系时,郑之蕃任系主任。

在哈佛大学读书的学生亦有秦汾,曾任北京大学教授,1935年中国数学会之发起人中有他们三人,胡敦复曾主持派送三批留美学生,共180人。

1909年美国退回庚子赔款,成立中国教育文化基金,列强跟进后,中国留学欧美才开始有严谨的计划。严格的选拔使得留学生质素提高。哈佛大学仍然是当时中国留学生的主要留学对象,胡明复(1891~1927)是中国第一个数学博士,从事积分方程研究,跟随Osgood和B?觝cher。第二位在哈佛读书的中国数学博士是姜立夫(1890~1978),他跟随Coolidge,念的是几何学。

俞大维(1897~1993)也在哈佛哲学系跟随Sheffer和Lewis读数理逻辑,在1922年得到哲学系的博士学位。刘晋年(1904~1968)跟随Birkhoff在1929年得到博士学位。江泽涵(1902~1994)跟随Morse学习拓扑学,1930年得到博士学位。申又枨(1901~1978)跟随Walsh学习分析,1934年得到博士学位。

芝加哥大学亦是中国留美学生的一个重要地点,其中杨武之(1896~1973)师从Dickson读数论,1926年得到博士。孙光远跟随Ernest Lane读射影微分几何,1928年获得博士。胡坤升跟随Bliss学分析,1932年获得博士。此外在芝加哥获得博士学位的还有曾远荣和黄汝琪,先后在1933和1937年得到博士学位。

除了哈佛和芝加哥两所大学外,中国留学生在美国获得数学博士学位的还有:20世纪20年代,孙荣(1921,Syracuse)、曾昭安(1925,Columbia);30年代,胡金昌(1932,加州大学)、刘叔廷(1930,密歇根)、张鸿基(1933,密歇根)、袁丕济(1933,密歇根)、周西屏(1933,密歇根)、沈青来(1935,密歇根)。

留法的博士有:刘俊贤(1930)在里昂大学研究复函数;范会国(1930)在巴黎大学研究函数论;赵进义(1927)在里昂大学研究函数论。

留法诸人中最具影响力的是熊庆来,他1926年到清华任教,1928年做系主任,1932年到法国留学,1933年获得法国国家理科博士学位后,在1934年回国继续任清华大学数学系主任。他的著名的学生有杨乐和张广厚,奠定了中国复变函数的基础。

德法两国当时的数学领导全世界,Courant在G?觟ttingen(哥廷根)大学带领了不少中国数学家,例如魏时珍(1925)、朱公谨(1927)、蒋硕民(1934),论文都在微分方程这个领域。

曾炯之(1898~1940)在哥廷根大学师事Noether,1934年得到博士学位,他的论文在数学上有重要贡献。程毓淮(1910~1995)亦在哥廷根得到博士学位,研究分析学。1935年夏,吴大任到德国汉堡,与陈省身第三次同学,在布拉施克教授指导下做研究,1937年回国。

留学日本的有陈建功(1882~1971),在东北大学师从藤原松三郎研究三角级数,1929年获得博士;苏步青(1902~2003)在东北大学师从洼田忠彦学习射影微分几何,1931年获得博士,回国后陈建功和苏步青先后任浙江大学数学系主任。

苏步青的著名学生有熊全治、谷超豪、胡和生。留日的还有李国平、杨永芳、余潜修、李文清等人。

总的来说,中国第一批得到博士学位的留学生大部分都回国服务,对中国数学起了奠基性的作用。在代数方面有曾炯之,在数论方向有杨武之,在分析方面有熊庆来、陈建功、胡明复、朱公谨,在几何方面有姜立夫、孙光远、苏步青,在拓扑学方面有江泽涵。

江泽涵成为北京大学系主任,姜立夫在1920年创办南开大学数学系,孙光远成为中央大学系主任,陈建功成为浙江大学系主任,曾昭安成为武汉大学系主任。

通过他们的关系,中国还邀请到Hadamard、Weiner、Blaschke、Sperner、G.D.Birkhoff、Osgood等大数学家访华,对中国数学发展有极大影响力。在此以前,法国数学家Painlevé和英国数学家罗素在1920年和1921年间访问中国,但影响不如以上诸人。

紧跟着下一代的数学家就有陈省身、华罗庚、周炜良等一代大师,他们的兴起意味着中国数学开始进入世界数学的舞台。许宝騄在1935年毕业于清华大学,成为中国统计学的创始人,他的工作在世界统计学界占有一席地位。在西南联大时,他们也培养了一批优秀的数学家,其中包括王宪忠、万哲先、严志达、钟开莱等人。冯康则在中央大学毕业,成为有限元计算法的创始人之一。

稍后浙江大学则有谷超豪、杨忠道、夏道行、胡和生、王元、石钟慈等。在中央研究院时,培养的杰出学生还有吴文俊等人。其中陈省身、华罗庚、许宝騄等都是清华的学生,也是我尊重的中国学者。陈省身在海外的学生有廖山涛、郑绍远等。华罗庚则在解放初年回国后,带领陆启铿、陈景润等诸多杰出学者,成为新中国数学的奠基者。

结语

与日本比较,中国近代数学的奠基可以说是缓慢而迟滞的,微积分的引进早于日本,却被日本反超。这与日本政府在1868年明治维新公开要求百姓全面向西方学习有一定的关系。中国人直到现在还不能忘怀“中学为体,西学为用”的信念,因此在追求真理的态度上始终不能全面以赴。

菊池等在英国除了学习几何和分析外,也将英国的绅士(gentleman)精神带回本国学术界,高木贞治师从德国大师,成功地将哥廷根的数学研究和研究方法传到东京大学,回国15年后,他本人的研究亦臻世界一流,他对数学的热情非当时中国诸公可比拟。事实上,中国留学生在1935年以前的论文能够传世的,大概只有曾炯之的曾氏定理。不幸的是,曾炯之回国后未受到重视,很早就去世了。

从菊池开始,留学生回日本国后得到政府重用,从基础数学做起,无论对中学还是对大学的教育都极为尽力(高木以一代大师之尊,竟然著作中学教科书14本之多)。到20世纪40年代已经有多样开创性工作,与欧美诸国不遑多让了。有一点值得中国注意的:基本上所有日本的名学者在做副教授以前都到欧美访问一段时间,直接接触学问的最前沿。

本人接触过的日本数学大师有伊藤清、岩泽健吉、小平邦彦、加藤敏夫、志村五郎、佐竹一郎、广中平佑等,都是谦谦君子,谈吐言行都以学问为主题,弥足敬佩。

反观中国,早期学习西方,以应用科技为主,缺乏对数学的热情,一直到上世纪20年代,中国留学生还没有认识到当代最先进的数学,而在19世纪来华的传教士,对数学认识不深,中国学者没有寻根究底,始终未接触到学问的前沿。在教育年轻学者方面也不如日本学者。中国留学生在甲午战争后以留日为主,在庚子赔款早期则以美国为主,亦有到德法的留学生。

在20世纪早期日美数学远不如德法,而中国留学生却以日美为主,可见当时留学政策未有把握到求学的最佳方向。幸而这些早期留学生学成后都回国服务,到40年代中国数学已经奠基成功。

值得注意的是,日本和美国数学的迅速兴起和他们的学习方法有密切的关系。一方面接受英国式的绅士教育,一方面又接受德国式研究型大学的精神,在以研究为高尚目标的环境下,学者对学问投入浓厚的兴趣。

举例来说,中国留学生在哈佛留学的同时,哈佛的学生有Whitney和Morse研习拓扑,Morrey 和Doob研究方程学和概率论,他们都成为一代大师,但他们的中国同学回国后在数学上的造诣不逮他们远甚。

解放后在华罗庚教授带领下,中国数学在某些方向已开始进入国际水平,“文革”后则元气大伤,近30年来在本国产生的数学研究难与西方相比,而留学生中杰出者远不如陈、华、周诸大师,又不愿全面回国。本国培养的博士生,质素好的有相当大部分放洋去国,造成今日数学界的困境。

人才的引进需要与本国的精英教育挂钩。美国大学成功的重要因素在于本科生和研究生的培养,也就是孔子说的教学相长,有大师而无杰出的年轻学生,研究是无法深入的。没有做学问的热情,没有崇高的志愿,也不可能产生杰出的研究,这些热情不是金钱可以购买的。

这一段历史给我们看到很多重要的事情,求学必须到精英荟萃之处认真学习、不慕名利,教学相长,庶几近之。

近年来,中国高校学术抄袭、作假之事不断,这种学风不改,中国数学要赶上世界水平,恐

怕还有相当长的时间。

然而政府已经决定对培养人才投入更多的经费,希望在公元2020年前成为人才大国,在经费充裕和年轻一代得到重用的背景下,我深信中国学术环境会有大改变,很快就会迎头赶上最先进的国家。但是百年树人,一方面要大力投入,一方面也要有耐心,学问才能做好。

近年来韩国和越南政府开始大量投入基础科学的研究,据估计,明年世界数学家大会将会有从这些国家出身的年轻数学家得到菲尔茨奖。他们的文化,与中国息息相关,中国何时才能够在本土培养出这种水平的数学家,固然是政府和我们老百姓所关心的事情。

反过来说,得到国际大奖固是一个重要指标,但在基础学问或研究上,我们要看得更远更崇高,才能成就大事业,儒家说“天人之际”,中国学者能够达到这个境界,始无负于古圣先贤的教诲!

作为一个中国数学家,看着我们有些有能力有才华的学者为了蝇头小利,竟争得头破血流,不求上进,使人感伤。很多有权位的学者,更以为自己代表泱泱大国,可以傲视一切,看不起第三世界的学者。然而“学如逆水行舟,不进则退”,学问的评判自有其客观性,我们面对有学问的专家时,自然知道自己的长处和缺点。

汉唐时代,中国不单是经济军事大国,也是文化大国,亚洲国家称中国为父母之国。经过60年的建设,中国终于成为经济大国,在世界强国环伺下,举足轻重。然而在数学研究上,我们远远比不上上世纪40和60年代陈、华领导的光景。

今日中国数学的前途,端赖于年轻一代数学家的培养,研究生的培养则溯源于中学生的教育。历史上数学名家都在30岁前发表过重要工作,望政府留意焉。

50年前我读《红楼梦》,虽然“不解其中意”,但是贾宝玉说“何我堂堂须眉,诚不若彼裙钗哉?”使我感慨良深。

今日我们在清华园重新燃烧起我国人对数学的热情,让我们忘记了名利的追求,忘记了人与人间的纠纷,校与校间的竞争,国与国间的竞争。让我们建立一个为学问而学问,一个热烈追求真和美的数学中心,也希望在中央和学校的支持下,在我们国内外朋友的帮助下,让这个重新燃起的火光永恒不熄,也让我们一起在数学史上留下值得纪念的痕迹。

(本文由卢小兵根据丘成桐先生2009年12月17日下午于清华大学的演讲录音整理)

《科学时报》 (2010-2-3 A3 观察)

读丘成桐先生文章随感

□刘源张

我读到丘成桐先生的文章,感慨万分。

不过,我要声明,我根本不是数学家,也没有专攻过数学。

丘文中提到一位留学日本的数学家李文清。上世纪40年代我留学京都帝国大学,与李是同窗好友。我常到他宿舍房间找他聊天。自然听他谈过一些日本数学界和数学家的故事。丘文比较中日两国的数学成就和差距,也给了我一些知识。我不能从数学的角度去评论这些差距,我却愿意从社会的现象来说一下。

日本是从明治时代继承和培养出一种尊重知识尊重人才的传统的。例如,实验室中,寻常助手,如标本切片者,若属能手,亦可评为国宝。小学教师,遍有弟子感恩之盛举。丘文中所提菊池、高木等数学大师垂先示范,更加促使社会和政府对大学教授的极度尊重。战前日人升任帝大副教授后必定由官费派往外国留学一至二年,加强其与海外学术界的联系,不论其是否曾有留学之经验。日人在帝大及国立大学任教职,皆在官位勋功序列之内。据此一例,可知日本社会对如教授者之尊崇。彼等亦自持甚高,和而不同。如此环境下,学术怎能不突飞猛进。战后开展民主,官位勋功皆被取消,但尊重知识尊重人才之风未见稍减。

反观我国,学术界不知洁身自爱,社会亦不加爱护,政府更是莫名所以。教授一职,几乎人人可当。至于乡村小学,教师距乞丐不远。如是风气,何谈学术。

以上所述,愤不择言,还望见谅。

李文清现已从厦大退休,去年与他通电话,他已耳背,难以交谈了。附带一句,陈景润是他推荐来数学所的。

注:本文是85岁高龄的中国工程院院士刘源张(1949年毕业于日本国立京都大学)阅读丘成桐演讲稿后的感言,标题为编者所加。

本站材料仅为本院教师与学生教学所用,请勿它用!

2019年学科竞赛奖科技竞赛奖评选方案

2017年度学科竞赛奖、科技竞赛奖评选方案 一、评选原则 1、学科竞赛奖、科技竞赛奖均为了鼓励广大同学通过积极参与各类赛事,提高自身素质,为校争光。 2、学科竞赛奖分为三个等级,一等奖3000元/人,二等奖2000元/人,三等奖1000元/人;科技竞赛奖分为三个等级,一等奖3000元/人,二等奖2000元/人,三等奖1000元/人。各个等级获奖人数按照当年参与竞赛的学生人数与获得奖励的质量确定。总获奖人数不超过总参赛人数的60%,总奖励金额均不超过20万元。 3、不能出现下列现象: A、某同学获得多个不同低赛事、低等级的竞赛奖,累加后得分相对较高,甚至高于某单个高赛事的得分。 B、某团队的成员在团队贡献上相对较低,但其单项得分与其他成员相同。 C、某团队的同一作品获得同一类型赛事奖励,在计算得分时出现累加情况。 D、非在校本科生参与评选。 二、各指标分值确定 1、影响因子 影响因子的确定两个部门比较一致,它与竞赛的名称有关,最高值为5分,以分为刻度。以下为各个竞赛的影响因子:

2、等级分值 等级分值与竞赛级别和获奖等级均有关,最高值为100分,以

10分为刻度。以下为各个等级的分值: 3、作者排序 作者排序只与团队参与竞赛的作者排序有关,如提供作者排序的奖项,第一作者值为1,以后按照的分值递减,即第二作者值为,第三为……

4、附加 获得不同竞赛奖励的同学,在累加得分时,减去附加值,附加值计算为:50*(获得竞赛奖励次数-1),如某同学获得3项奖励,则附加值为50*(3-1)=100。(因为竞赛最低得分不低于50分,故以50定为因子,若有竞赛得分低于50分,则直接取其竞赛项目最高分为最终得分)。 根据评选原则,为避免同一赛事相互累加,同一名同学在同一时间同一赛事不同项目获奖或者获得多个奖项,取该名同学在该赛事中获得的最高级奖项计算。

明治维新与洋务运动成败原因探究

明治维新与洋务运动成败原因探究 【摘要】 19世纪60年代中日两国同属封建专制国家,都受西方列强的侵略。两国处于相似的基础上或起点上,但明治维新和洋务运动的结果却完全不同。一个是国力全面上升,走上了发展资本主义的道路,一个却是国力停滞不前,依然停留在半封建半殖民地的社会状态。本文分析了明治维新和洋务运动改革过程中的差异,对其成败原因做了探究。 【关键词】 明治维新;洋务运动;改革;成败原因 19世纪60年代,发端于英国的世界工业化浪潮正席卷世界各地,而中国正处在内外交困的两半社会时期,在经历了两次鸦片战争和轰轰烈烈的太平天国运动后,腐朽的清政府为了巩固其统治,统治阶级内部兴起了一股“洋务”思潮,于是一场仿制求强的洋务运动开始了。此时此刻的日本,也仍然是一个闭关自守,封建落后的国家。在德川幕府的统治下,统治者公然说:“把农民弄得不死不活,是政治的秘诀。”这就是当时日本的基本形态。1853年,美国大炮轰开了闭关已久的日本国门,日本民族独立也受到威胁,有继中国而沦为半殖民地的危险。明治政府在60年代末70年代初开始了“明治维新”。到19世纪末,日本通过明治维新基本完成了国家民族的独立。在经济结构上,虽然保留了许多封建关系,但资本主义制度已经占据了统治地位,初步建立了近代科技文明体系。然而中国在这期间,却在半殖民地化的道路上越陷越深,尤其是在甲午战争以后,中国不仅受到西方列强的侵略,而且还受到一衣带水的日本的侵略和压迫。中日两国几乎是在同一时期、同一状况起步,却在不到50年的时间里发生截然不同的变化。其原因究竟是什么。本文对中日两国改革道路上的异同点兹略加以比较,探究其原因所在。 一、中日两国的改革背景的差异 洋务运动和明治维新前,中国与日本文化传统相同,都是封建专制国家;经济基础相同,都是封建经济占统治地位;民族命运相同,同遭西方殖民势力的侵略。但由于日本经济发展的普遍水平略高于中国,因此它实现近代化的条件也比中国更有利一些。 由于社会生产力的发展,从18世纪中期起,日本商业性的农业生产有了很大发展,农村手工业也迅速发展起来,并逐步同农业分离,从而引起了农村自然经济的日益解体,资本主义生产关系逐步形成和发展,为明治维新准备了一定的社会经济前提。商业性农业和手工业的发展,引起了农村自然经济的日益解体,在日本,从18世纪上半期起,就开始在封建社会内部出现了资本主义的萌芽,资本主义的手工工场便形成了。到德川幕府统治末期,在日本经济较为发达的许多地区和部门,手工工场的发展已经十分广泛。如,当时在制丝、纺

数学科学系数学与应用数学专业本科培养方案-Tsinghua

数学科学系 数学与应用数学专业本科培养方案 一、培养目标 培养德才兼备并且具有强烈的社会责任感、使命意识和创新精神的学生。通过基础课程的严格训练、专业课程的深入与提高以及科研训练等以达成如下的培养目标: 1.使学生具有坚实的数学基础、宽广的自然科学知识、强烈的创新意识和优良的综合素质,具备 在现代数学及相关学科继续深造并成为学术领军人才的潜力; 2.使学生具备扎实的数学基础、从事交叉学习和研究的能力、强烈的创新意识和服务社会的综合 素质,满足社会不同职业对数学人才的需求。 二、培养成效 a.了解数学学科发展的特点,掌握大学数学的核心思想和技巧; b.对严格的数学证明有深刻的理解,具有逻辑思维的习惯和问题求解的分析技巧与丰富经验,能 够写出条理清晰、逻辑合理的数学论证; c.能体会和欣赏数学的抽象性和一般性的魅力,并具有对具体问题进行抽象思维、提出恰当数学 问题并进行适当的定性或者定量分析的能力; d.对基础数学、应用数学、概率论与数理统计、计算数学、运筹学与控制论中的至少一个专业方 向有较为深入的了解,掌握其专业基础知识并了解其发展现状; e.具备开展自学、文献调研、论文写作、学术报告等方面的综合能力; f.具有进行定量分析所必需的计算机、软件和算法的知识; g.具有有效沟通能力,善于和不同学科方向的专业人员进行学术交流; h.具有良好的团队意识和协作精神,能够在团队中发挥积极作用。 三、学制与学位授予 学制:按本科四年学制进行课程设置及学分分配。本科最长学习年限专业学制加两年。 授予学位:理学学士学位。 四、基本学分学时 本科培养总学分156学分,其中通识教育课程44学分,专业教育课程102学分,自由发展课程学分10学分。 五、课程设置与学分分布 1.通识教育44学分 (1) 思想政治理论课 14学分 10610183 思想道德修养与法律基础 3学分 10610193 中国近现代史纲要 3学分 10610204 马克思主义基本原理 4学分

丘成桐中学数学奖手册

丘成桐中学数学奖手册 引言 数学科学在当今国际科技和人才竞争力方面具有突出的重要地位,在与人类日常生活有关的科学技术中的应用也日趋广泛。我们相信,为了更好地适应未来社会的挑战,青少年应该拥有良好的数学教育。国际上很早就倡导尽可能早地培养学生的科研创新能力,并为此设奖鼓励更多的人参与进来。比如在美国,与数学有关的面向高中生科研成果的“西屋科技奖”(),这个奖项不同于普通的数学竞赛,而是注重创新与实践,鼓励团队精神,极大地促进了美国高中生、大学生的科研热情,许多获奖者后来都成为著名的科学家。据统计,“西屋科技奖”(现更名为“英特尔科技奖”)得主中有位后来成为诺贝尔科学奖获得者,人当选为美国科学院院士。 背景 任何科技发展都不能缺乏数学作为根基,数学在科技年代,地位日益重要。为鼓励华人数学研究和教育发展,激发全球华人青少年对数学的兴趣,并及早发掘与培养全世界的华人数学英才,国际数学大师丘成桐教授提出举办一个中学生数学比赛,希望通过专题研究,培养新一代中学生的数学素养,引发青年人探索知识的兴趣及提升他们的创新能力。 泰康人寿保险股份有限公司董事长陈东升先生对丘成桐教授的想法给予全面的赞赏和大力的支持。丘成桐教授与陈东升先生在北京、杭州多次会面商谈设立中学生数学奖的具体事宜,最终决定由双方协作配合,联合设立“丘成桐中学数学奖”。 泰康人寿保险股份有限公司多年来一直将“回馈社会,奉献爱心”作为企业发展的准则,积极组织、发起和参与了多项社会公益活动,曾荣获“搜狐新视角高峰论坛”颁发的“最佳社会公益奖”。 “丘成桐中学数学奖”将借鉴和采用“西屋科技奖”的组织与选拔模式,强调创新与团队精神,面向全球的华人中学生。我们将通过全国主流新闻媒体向社会广泛宣传报道,并努力将“丘成桐中学数学奖”打造成为拥有国际知名度与良好社会效应的青少年科技奖项。 年月日,“丘成桐中学数学奖”签约仪式暨新闻发布会于第四届华人数学家大会期间的在杭州举行;年月26日,将在北京举办隆重的启动仪式。第一届“丘成桐中学数学奖”颁奖仪式定于200年月日在北京举行,美国哈佛大学、布朗大学等名校的本科招生主任将会出席,并面试部分获奖学生。 主旨 ?激发全球华人中学生对于数学研究的兴趣和创造力; ?发现和培养有前途的年轻数学天才;

大学生学科竞赛种类调研明细

大学生学科竞赛种类调研明细目录: 全国大学生数学建模竞赛 5 美国大学生数学建模竞赛(MCM/ICM) 6 全国大学生数学竞赛 6 丘成桐大学生数学竞赛 7 国际大学生物理竞赛 7 中国大学生物理学术竞赛(CUPT) 8 南京大学青年物理学家锦标赛(NYPT) 9 国际全局轨道优化竞赛 9 全国深空轨道设计竞赛 10 全国大学生英语竞赛 10 国家大学生创新性实验计划 11 挑战杯系列赛事 13 大学生学术科技作品展 15 基础学科论坛 15 学生学科竞赛项目一览表:

全国大学生数学建模竞赛 主办: 教育部高等教育司中国工业与应用数学学会(CSIAM) 校管理部门: 教务处 校承办单位: 数学系 竞赛时间: 每年9月 竞赛简介: 数模竞赛是由美国工业与应用数学学会在1985年发起的一项大学生竞赛活动。我国大学生数学建模竞赛是面向全国高等院校的、每年一届的通讯竞赛。其宗

旨是:创新意识、团队精神、重在参与、公平竞争。1992载在中国创办,自从创办以来,得到了教育部高教司和中国工业与应用数学协会的得力支持和关心,呈现出迅速的发展势头。 竞赛内容一般来源于工程技术和管理科学等方面经过适当简化加工的实际问题,不要求参赛者预先掌握深入的专门知识,只需要学过普通高校的数学课程。题目有较大的灵活性供参赛者发挥其创造能力。参赛者应根据题目要求,完成一篇包括模型的假设、建立和求解、计算方法的设计和计算机实现、结果的分析和检验、模型的改进等方面的论文(即答卷)。竞赛评奖以假设的合理性、建模的创造性、结果的正确性和文字表述的清晰程度为主要标准。 竞赛形式为全国统一竞赛题目,采取通讯竞赛方式,以相对集中的形式进行;竞赛一般在每年9月末的三天内举行。大学生以队为单位参赛,每队3人,专业不限。研究生不得参加。每队可设一名指导教师(或教师组),从事赛前辅导和参赛的组织工作。 美国大学生数学建模竞赛(MCM/ICM) 主办: 美国数学及其应用联合会 竞赛简介: 美国大学生数学建模竞赛每年的比赛时间一般定在二月初,需要通过官方网站报名,而且需要有固定的指导教师。 竞赛简介:美国大学生数学建模竞赛(MCM/ICM),是一项国际级的竞赛项目,为现今各类数学建模竞赛之鼻祖。

数学科学系(2016)数学与应用数学、信息与计算科学专业

数学科学系(2016) 数学与应用数学、信息与计算科学专业本科培养方案 一、培养目标 通过基础课程的严格训练、专业课程的深入与提高以 及实践环节与科研训练,使学生了解数学学科发展的特点,掌握学习现代数学所需要的基础知识,为他们今后的发展打下坚实的基础。培养在数学的理论研究或者实际应用方面能力很强的青年人才,特别是具有良好的数学基础、较强的创新意识和能力、优良的综合素质、有潜力成为领军人才的青年学子。 二、基本要求 数学与应用数学、信息与计算科学专业本科毕业生应达到如下知识、能力和素质的要求: 在学习并掌握数学分析等十门核心基础课程后,选修基础数学、应用数学、概率论与数理统计、计算数学、运筹学与控制论五个方向之一的其他核心课程,参加相应的实践环节和科研训练。要求初步了解以上五个数学方向之一的基础知识和发展状况,具备开展自学、文献调研、论文写作、学术报告等各方面的综合能力。 三、学制与学位授予 学制:本科学制4年,按照学分制管理机制,实行弹性学习年限。 授予学位:理学学士学位。 四、基本学分学时 本科培养总学分不小于155学分,其中春、秋季学期课程总学分不小于133学分;夏季学期实践环节7学分,综合论文训练15学分。 五、专业核心课程 本专业所有方向的基础核心课程为: 数学分析(1)、数学分析(2)、数学分析(3)、高等代数与几何(1)、高等代数与几何(2)、微分方程(1)、抽象代数、复分析、测度与积分、概率论(1)。 基础数学方向的其他本科核心课程包括: 泛函分析(1)、拓扑学、偏微分方程、微分几何。 应用数学方向的其他本科核心课程包括: 泛函分析(1)、偏微分方程、数值分析、应用分析。 概率统计方向的其他本科核心课程包括: 统计推断、线性回归、应用随机过程、数值分析。

丘成桐关于奥数的观点

丘成桐:把精力放奥数上很荒谬 2011年11月11日11:15 来源:光明日报作者:丘成桐 0人参与0条评论打印转发 丘成桐:把精力放奥数上很荒谬(图片来源:光明日报)丘成桐(清华大学数学系教授) 吴正宪(北京市教科院小学数学教学研究室主任) 似乎是从上世纪八九十年代开始,“奥数班”的星星之火开始点燃在城市的每一个角落。二十年后的今天,如果你问一个学龄儿童,他们十之八九接触过奥数或正在“奥数班”苦读。这其中,诚然有热爱数学的孩子,但大多数却只是为了升学的“权宜之计”。 “全民奥数”有没有必要?讨论与反思一直持续,奥数却越发成为一道解不开的“魔咒”。有人说,“奥数锻炼思维,培养创新能力”,也有人说,“奥数是数学杂技、数学八股”。 奥数到底是一门什么样的学问?我们应该怎样对待它? 要调动学生的兴趣,而不是扼杀它,有兴趣才能学好数学 记者:数学是不少学科的基础,学好数学的关键是什么?

丘成桐:我们国家研究数学有几千年的历史了,没有哪个人是因为偶尔的灵光一现就成为数学家的。如果没有走过前人的路,没有坚实的基础,不可能成为数学家。 我认为学好数学应重视基础,但并不是说否认创新,否认考试。考试是很重要的,不考试不能自知。我在中学时也考年考,但是题目很基础,不是挖空心思难倒学生的。很多学者成才都是从中学开始的,老师要懂得调动学生的兴趣,有兴趣才能学好数学。 我们在清华大学举办以陈省身等四个数学家命名的数学讲座目的就在于吸引学生的兴趣。由于他们的影响力,我邀请到很多国际知名的数学家,他们愿意来到清华,以延续大师之风。学生们也因此晓得真正的前沿学者在做什么,他们怎么做事。我想,让他们对数学感兴趣,这是最有效的学习方法。 吴正宪:学好数学首先要激发学生学习的兴趣和求知欲望,保护好奇心。孔子说过:“知之者不如好之者,好之者不如乐之者。”“好”与“乐”就是愿意学、喜欢学,就是学习兴趣,这是学好数学的重要前提。 其次,教师要注重引导学生积累数学学习经验,感悟数学思想,培养学生良好的学习方法。学生在观察、猜测、尝试、验证、推理与交流的数学活动中,经历“数学化”的学习过程,积累数学活动经验,获得数学思想和方法。在运用数学知识的过程中掌握解决问题的方法和策略,这是学好数学的重要途径。 以学医来说,奥数就像疑难杂症,如果不扎实打好基础,只攻疑难杂症,到最后可能连普通的感冒都不会治 记者:奥数到底是什么,它是否等同于数学?学好奥数又意味着什么? 丘成桐:据我看来,奥数不少题目很刁钻,作为爱好偶一为之是可以的。如果作为主业精心揣摩,甚至为了应付升学,,则是很荒谬的事。 打个比方,以学医来说,奥数就像疑难杂症,如果不扎实打好基础,只攻疑难杂症,到最后可能连普通的感冒都不会治。这能说是合格的医生吗?这样子学,学懂了无异于没学懂。 吴正宪:“奥数”是什么?一两句话很难说清,大概在学生家长的心中“奥数”就是要学习比日常数学课堂中要难得多的数学题。它似乎源于数学教材,又远远高于教材,它是作为数学学习中比较有难度的一部分。 “奥数”所涉及的内容广泛、难度大,小学生做的“奥数题”甚至大人们都很费解。解决这类问题,一般都需要对实际问题的数学意义进行分析、归纳,把实际问题抽象成为数学问题,然后用相应的数学知识和方法去解决。教学过程中如果能处理好此类问题,就可以培养学生用数学观点看待和处理实际问题的能力,提高学生用数学语言和模型解决实际问题的意识和能力。它可以开拓学生思路,启迪学生思维,提高知识的运用能力。

第2届丘成桐大学生数学竞赛试题

S.-T.Yau College Student Mathematics Contests 2011 Analysis and Di?erential Equations Individual 2:30–5:00pm,July 9,2011 (Please select 5problems to solve) 1.a)Compute the integral: ∞?∞x cos xdx (x 2+1)(x 2+2) ,b)Show that there is a continuous function f :[0,+∞)→(?∞,+∞)such that f ≡0and f (4x )=f (2x )+f (x ). 2.Solve the following problem: d 2u dx 2 ?u (x )=4e ?x ,x ∈(0,1),u (0)=0,du dx (0)=0.3.Find an explicit conformal transformation of an open set U ={|z |>1}\(?∞,?1]to the unit disc. 4.Assume f ∈C 2[a,b ]satisfying |f (x )|≤A,|f (x )|≤B for each x ∈[a,b ]and there exists x 0∈[a,b ]such that |f (x 0)|≤D ,then |f (x )|≤2√AB +D,?x ∈[a,b ]. 5.Let C ([0,1])denote the Banach space of real valued continuous functions on [0,1]with the sup norm,and suppose that X ?C ([0,1])is a dense linear subspace.Suppose l :X →R is a linear map (not assumed to be continuous in any sense)such that l (f )≥0if f ∈X and f ≥0.Show that there is a unique Borel measure μon [0,1]such that l (f )= fdμfor all f ∈X . 6.For s ≥0,let H s (T )be the space of L 2functions f on the circle T =R /(2πZ )whose Fourier coe?cients ?f n = 2π0e ?inx f (x )dx satisfy Σ(1+n 2)s ||?f n |2<∞,with norm ||f ||2s =(2π)?1Σ(1+n 2)s |?f n |2. a.Show that for r >s ≥0,the inclusion map i :H r (T )→H s (T )is compact. b.Show that if s >1/2,then H s (T )includes continuously into C (T ),the space of continuous functions on T ,and the inclusion map is compact.1

大学数学怎么学-学好大学数学的8个方法.doc

大学数学怎么学?学好大学数学的8个方法 大学数学怎么学?学好大学数学的8个方法 学好大学数学的8个方法 1)大一生大都自我感觉良好,认为自己的学习方法是成功的。自己能考上不错的本科,就说明自己在学习上有一套。自己高中怎样学,大学还怎样学,就一定能成功。不知道改进学习方法的必要性。 2)缺少迎难而上的思想准备。基础知识大滑坡,基本技能大退步,头脑时常出现空白。学习时跟不上教学的进度与要求。 3)对大学课程的学习特点,缺少全面准确的了解。对大学生应该掌握的学习方法,缺少系统的学习和掌握。 提高大学数学学习成绩的关键: 大学生学数学,靠的是一个字:悟! 借助这8个方法,教你更好领悟高数 1 先看笔记后做作业 有的学生感到,老师讲过的,自己已经听得明明白白了。但是,为什么自己一做题就困难重重了呢?其原因在于,学生对教师所讲的内容的理解,还没能达到教师所要求的层次。 因此,每天在做作业之前,一定要把课本的有关内容和当天的课堂笔记先看一看。 2 做题之后加强反思 现在正做着的题,一定不是考试的题目。而是要运用现在正做着的题目的解题思路与方法。因此,要把自己做过的每道题加以反思,总结一下自己的收获。要总结出:这是一道什么内容的题,用的是什么方法。做到知识成片,问题成串,构建起一个内容与方法的科学的网络系统。 要看看自己做对了没有;还有什么别的解法;题目处于知识体系中的什么位置;解法的本质什么;题目中的已知与所求能否互换,能否进行适当增删改进。

主动复习和总结 进行章节总结是非常重要的。 怎样做章节总结呢? ①要把课本,笔记,校期末测验试卷,都从头到尾阅读一遍。 ②把本章节的内容一分为二,一部分是基础知识,一部分是典型问题。 ③在基础知识的疏理中,要罗列出所学的所有定义,定理,法则,公式。 ④把重要的,典型的各种问题进行编队。 ⑤总结那些尚未归类的问题,作为备注进行补充说明。 4 重视改错,错不重犯 一定要重视改错工作,做到错不再犯。 5 积累资料随时整理 把课堂笔记,练习,试卷,都分门别类按时间顺序整理好。每读一次,就在上面标记出自己下次阅读时的重点内容。这样,复习资料才能越读越精,一目了然。 6 精挑慎选课外读物 大学数学考的是学生解决常规题的能力。作为一名大学生,如果还想围着自己的老师转,是不可能的,老师一般一下课就走,所以这种方法会存在着很大的局限性。因此,要想学好数学,必须打开一扇门,看看外面的世界。当然,也不要自立门户,另起炉灶。一旦脱离校内教学和自己的老师的教学体系,也必将事倍功半。 7 配合老师主动学习 大学生必须提高自己学习的主动性,随时预防挂科。

大学生数学知识竞赛试题及答案

趣味数学知识竞赛复习题 一、填空题 1、(苏步青)是国际公认的几何学权威,我国微分几何派的创始人。 2、(华罗庚)是一个传奇式的人物,是一个自学成才的数学家。 3、编有《三角学》,被称为“李蕃三角”且自称为“三书子”的是(李锐夫)。 4、世界上攻克“哥德巴赫猜想”的第一个人是(陈景润)。 5、(姜立夫)是现代数学在中国最早而又最富成效的播种人”,这是《中国大百科全书》和《中国现代数学家传》对他的共同评价。 6. 设有n个实数,满足|xi|<1(I=1,2,3,…,n), |x1|+|x2|+…+|xn|=19+|x1+x2+…+xn| ,则n的最小值20 7. 三角形的一个顶点引出的角平分线,高线及中线恰将这个顶点的角四等分,则这个顶角的度数为___90° ___ 8. 某旅馆有2003个空房间,房间钥匙互不相同,来了2010们旅客,要分发钥匙,使得其中任何2003个人都能住进这2003个房间,而且每人一间(假定每间分出的钥匙数及每人分到的钥匙数都不限),最少得发出_16024______把钥匙. 9. 在凸1900边形内取103个点,以这2003个点为顶点,可将原凸1900边形分割成小三角形的个数为______2104 _____. 10. 若实数x满足x4+36<13x2,则f(x)=x3-3x的最大值为______18_____ 11 ."我买鸡蛋时,付给杂货店老板12美分,"一位厨师说道,"但是由于嫌它们太小,我又叫他无偿添加了2只鸡蛋给我。这样一来,每打(12只)鸡蛋的价钱就比当初的要价降低了1美分。" 厨师买了_18只鸡蛋? 12.已知f(x)∈[0,1],则y=f(x)+1的取值范围为 ___[7/9,7/8]____ 13. 已知函数f(x)与g(x)的定义域均为非负实数集,对任意的x≥0,规定f(x)*g(x)=min{f(x),g(x)}.若f(x)=3-x,g(x)=,则f(x)*g(x)的最大值为____(2√3-1) _____ 14.已知a,b,cd∈N,且满足342(abcd+ab+ad+cd+1)=379(bcd+b+d),设M=a×103+b×102+c×10+d,则M的值为______ 1949 ___.

数学之美研求之乐_丘成桐

收稿日期:2010-07-28 *本文是本刊编辑部根据丘成桐院士在杭州由浙江省科协等单位举办的"科学会客厅"的主题演讲的讲话录音整理而成,题目和小标题为编者所加。 1风詹展书读古道照颜色 《纽约时报》给我“数学皇帝”的评价,我是并不在意的,我一辈子对权力的兴趣不大,我对做科学、对学问的追求倒是很夸耀,一辈子随着我自己的意思去寻求数学的美,数学的真。今天讲的事情,也就是讲我40年来追求学问的过程,我自己感到是很夸耀的,不是出了名,而是在学问上得到很多信息,想跟诸位尤其是年轻的学生, 能够有一些交流。我这个演讲刚开始的时候是应香港中文大学李校长的要求,他说现在的同学不大喜欢研究,我就选了这个题目来讲讲我自己几十年来的经历,我自己觉得自得其乐。从我最小的时候讲起,我的家在香港的一个郊区叫元朗,那时候比较偏僻,离市区比较远,五六十年前,都是农田,我在农田边长大,在沙田的山丘和海滨游戏,我和很多同伴一起,觉得很有意思。在田野和山水之间,对我影响很大,因为我很喜欢大自 数学之美 研求之乐* 丘成桐 (哈佛大学 数学系,美国) 第26卷第6期 2010年11月 科技通报 BULLETIN OF SCIENCE AND TECHNOLOGY Vol.26No.6Nov.2010 “中国要成为经济强国,首先必须成为科技强国,而数学是科学之母,中国只有成为数学强国,才能成为科学强国。” “我一生最大的愿望就是帮助中国强大起来。” —————丘成桐 作者简介:丘成桐,1949年4月生于广东汕头,后全家移居中国香港。1966年入香港中文大学崇基学院数学系,1969年提前修完四年课程,为美国加州大学伯克利分校陈省身教授所器重,破格录取为研究生,两年后即提前获得博士学位。 丘成桐主要研究微分几何,微分方程和相对论,现为哈佛大学Willam Casper Graustein 讲座教授,是当代数学大师。他发展了强有力的偏微分方程技巧,使得微分几何学发生了深刻的革命。他解决了 Calabi 猜测、正质量猜想等众多难题,影响遍及理论物理和几乎所有核心数学分支。年仅33岁时,他就获得代表数学界最高荣誉的菲尔兹奖(1982年),是MacArthur 天才奖(1985年),瑞典皇家科学院 Crafoord 奖(1994年),美国国家科学奖(1997年)等众多大奖获得者。他是美国科学院院士,俄罗斯科学院与中国科学院外籍院士。他筹资上亿成立中国香港中文大学数学研究所(1994年),北京晨兴数学研究所(1996年)和浙江大学数学科学研究中心(2002年)三大学术机构,并不取分文报酬担任主任。他发起办国际华人数学家大会,极大提升了华人数学家在国际上的声望。他培养的50余位博士多数是中国人,有许多已经是国际上非常杰出的数学家。由于对中国数学发展的突出贡献,他获得了2003年度中华人民共和国国际科技合作奖。 2003年他担任中国香港中文大学杰出学者讲座教授。1987年至现在,清华大学名誉教授;1998年至现在,北京大学名誉教授;2002年至现在,浙江大学名誉教授。曾在1994年获得瑞典皇家科学院 Crafoord 奖;1997年获得美国国家科学奖;2003年获得国际科技合作奖等。中图分类号:G252.13 文献标识码:A 文章编号:1001-7119(2010)06-0795-06

丘成桐大学生数学竞赛,代数与数论,考纲

Algebra,Number Theory and Combinatorics(second draft) Linear Algebra Abstract vector spaces;subspaces;dimension;matrices and linear transformations;matrix algebras and groups;determinants and traces;eigenvectors and eigenvalues,characteristic and minimal polynomials;diagonalization and triangularization of operators;invariant subspaces and canonical forms;inner products and orthogonal bases;reduction of quadratic forms; hermitian and unitary operators,bilinear forms;dual spaces;adjoints.tensor products and tensor algebras; Integers and polynomials Integers,Euclidean algorithm,unique decomposition;congruence and the Chinese Remainder theorem;Quadratic reciprocity;Indeterminate Equations.Polynomials,Euclidean algorithm, uniqueness decomposition,zeros;The fundamental theorem of algebra;Polynomials of integer coefficients,the Gauss lemma and the Eisenstein criterion;Polynomials of several variables, homogenous and symmetric polynomials,the fundamental theorem of symmetric polynomials. Group Groups and homomorphisms,Sylow theorem,finitely generated abelian groups.Examples: permutation groups,cyclic groups,dihedral groups,matrix groups,simple groups,Jordan-Holder theorem,linear groups(GL(n,F)and its subgroups),p-groups,solvable and nilpotent groups, group extensions,semi-direct products,free groups,amalgamated products and group presentations. Ring Basic properties of rings,units,ideals,homomorphisms,quotient rings,prime and maximal ideals,fields of fractions,Euclidean domains,principal ideal domains and unique factorization domains,polynomial and power series rings,Chinese Remainder Theorem,local rings and localization,Nakayama's lemma,chain conditions and Noetherian rings,Hilbert basis theorem, Artin rings,integral ring extensions,Nullstellensatz,Dedekind domains,algebraic sets,Spec(A). Module Modules and algebra Free and projective;tensor products;irreducible modules and Schur’s lemma;semisimple,simple and primitive rings;density and Wederburn theorems;the structure of finitely generated modules over principal ideal domains,with application to abelian groups and canonical forms;categories and functors;complexes,injective modues,cohomology;Tor and Ext. Field

组合数学与数论1

第一部分:组合数学 第一章计数的基本原则 一.组合数学的历史和内容 1.历史:组合数学最早起源于中世纪的印度,在漫长的历史中,一 直发展缓慢。随着上一世纪计算机的出现,组合数学开始快速地发展。近几年,由于计算机安全领域受到重视以及组合数学在计算机安全领域的应用,组合数学受到越来越多的重视。 2.内容:组合数学主要包括以下几个内容: (1)组合分析(也称为组合计数理论) (2)组合优化(包括线性规划,整数规划等) (3)组合设计(包括区组设计等) (4)组合算法(例如:搜索算法,DFS算法与分支定界法,动态规 划等) *图论本是组合数学这个家族的一个主要成员,但它已成长壮大,独立成一门学科。 3. 本课程介绍的主要内容:组合计数理论 二.加法原则与乘法原则 1. 加法原则: 设事件A有m种产生方式,事件B有n种产生方式,则“事件A 或事件B”有m+n种产生方式。 例子:大于0而小于10的偶数有4个,即:{2,4,6,8},大于0而小于10的奇数有5个,即:{1,3,5,7,9}。则大于0而小于10

的整数有:4+5=9个,即:{1,2,3,4,5,6,7,8,9}。 *如果A1,A2,?,A n是互不相交的有穷集,那么 |A1∪A2∪?∪A n|=|A1|+|A2|+?+|A n| 2.乘法原则: 若事件A有m种产生方式,事件B有n种产生方式,则“事件A 与事件B”有mn种产生方式。 例1:设一个符号由两个字符组成,第一个字符有a,b,c,d,e五种方式,第二个字符有1,2,3三种方式。则根据乘法原则,该符号具有5×3= 15种方式,即 a1,b1,c1,d1,e1;a2,b2,c2,d2,e2;a3,b3,c3,d3,e3. 例2:从A到B有3条不同的道路,从B到C有2条不同的道路,从A经B到C共有n=3×2=6条不同的道路。 例3:求比10000小的正整数中含有数字1的数的个数。 解:先求所有4位数中不含有数字1的个数,即求由{0,2,3,4,5,6,7,8,9} 9个数字组成的4位数的个数。每一位都有9种出现方式,根据乘法原则,由9个数字组成的4位数个数为:9×9×9×9= 6561,其中包含0000不是正整数。故比10000小不含数字1的4位正整数的个数=6561?1=6560. 所以小于10000含有数字1的4位数个数=9999?6560=3439.

9、弦膜圈说发展的历史回顾

9、弦膜圈说发展的历史回顾 威滕说:“M 在这里可以代表魔术(magic)、神秘(mystery )或膜(membrane),依你所好而定。”施瓦茨则提醒大家注意,M 还代表矩阵(matrix)。 1、1904年,庞加莱提出庞加莱猜想,奠定了当代前沿科学弦膜圈说的数学基础的形式体系。即正猜想的收缩或扩散,涉及点、线、平面和球面;逆猜想的收缩或扩散,涉及圈线、管子和环面;外猜想的空心圆球内外表面及翻转,涉及正、反膜面、和点内、外时空。传统科学的结束,革命科学的开始,以“乌托子球”为最高理想的原子论(量子论)模型解读遍历科学的波尔兹曼,在同一“战壕”里长期争论的苦闷中的自杀,给革命和科学的分化与合作都留下了悬念。 2、1905年,爱因斯坦提出狭义相对论,揭示了弦膜圈说与四维时空的联系。 3、1910年,卢瑟福提出原子行星轨道模型,留下原子弦膜圈说的悬念。 4、1911年,昂尼斯发现超导电流环现象,留下电子弦膜圈说的悬念。 5、1913年,玻尔发展卢瑟福模型为电子能级模型,留下量子弦膜圈说的悬念。 6、1917年,爱因斯坦发表广义相对论方程,完善了从狭义到广义的弦膜圈说与四维时空的联系。德?西特找到爱因斯坦广义义相对论方程的一个特殊解,即宇宙高度对称,空空如也,并且不停地快速膨胀的德?西特时空。 7、1919年,卡鲁扎以柱面条件和增添第五维,统一广义义相对论和电磁场方程,开启当代西方弦膜圈说的先河。 8、1926年,薛定谔发现量子力学的中心方程。克莱因以驻波加玻尔能级圆圈,推算出第五维微小圈半径可到普朗克尺度,强化了卡鲁扎方程;卡鲁扎-克莱因奇迹成为当代西方弦膜圈说伟大的超越。 9、1936年,狄拉克将二维旋量推广到高自旋方程。图灵提出可计算性概念,图灵机演绎纸带及其方格揭示了弦膜圈说与计算机的联系;图灵/康托尔论证、哥德尔定理和拓扑斯逻辑的缠结,奠定了当代弦膜圈说不同于普通逻辑的基础。

丘成桐数学科学中心数学博士学位国际生(全英文)项目

丘成桐数学科学中心 “数学博士学位国际生(全英文)项目”培养方案 一、适用学科 学科门类:理学 一级学科:数学(Mathematics)学科代码070100 同样适用于以下二级学科: 基础数学;应用数学;计算数学;概率论与数理统计; 二、培养目标 具有所在学科领域扎实、宽阔的理论基础和系统深入的专业知识,具有独立从事学术研究工作和开展学术交流的能力,具有创新思想、国际视野和战略眼光,能够从事数学科学领域前沿问题研究,在数学科学及相关领域做出原创性工作。 三、培养类型及学习年限 分为普博生和直博生(硕博贯通生)。普博生学业年限一般为3-4年,直博生(硕博贯通生))学业年限一般为4-6年。 四、培养方式 博士生的培养方式以科学研究工作为主,重点培养独立从事学术研究工作的能力。通过学习并完成一定学分的课程学习,使博士生能够系统扎实掌握数学科学领域的理论和方法,拓宽知识面,提高分析问题和解决问题的能力。 博士生培养主要由导师负责,原则上不设副导师。如因论文工作有特殊需要,须经丘成桐数学科学中心(以下简称“中心”)审批同意后,导师可以聘任一名学位论文副指导教师(副教授含以上职称的专家)并经中心报研究生院学位办备案。 五、学科培养方案和个人培养计划 各学科的博士生方案是博士生培养工作的主要依据。中心制定的博士生培养方案,经数学学位评定分委员会讨论通过,分委员会主席和中心主管副主任签署意见后,报研究生院审核备案。 博士生个人培养计划,是导师指导博士生、博士生学习和开展研究工作以及对博士生进行毕业及授予学位审查的依据。个人培养计划包括课程(环节)学习计划和学位论文工作计划,课程(环节)学习计划应在导师指导下于入学后三周内制定,学位论文工作计划在博士生论文选题时完成。

丘成桐大学生数学竞赛参考书

丘成桐大学生数学竞赛参考书 Geometry and Topology (the second draft) Space curves and surfaces Curves and Parametrization, Regular Surfaces; Inverse Images of Regular Values. Gauss Map and Fundamental Properties; Isometries; Conformal Maps; Rigidity of the Sphere. Topological space Space, maps, compactness and connectedness, quotients; Paths and Homotopy. The Fundamental Group of the Circle. Induced Homomorphisms. Free Products of Groups. The van Kampen Theorem. Covering Spaces and Lifting Properties; Simplex and complexes. Triangulations. Surfaces and its classification. Differential Manifolds Differentiable Manifolds and Submanifolds, Differentiable Functions and Mappings; The Tangent Space, Vector Field and Covector Fields. Tensors and Tensor Fields and differential forms. The Riemannian Metrics as examples, Orientation and Volume Element; Exterior Differentiation and Frobenius's Theorem; Integration on manifolds, Manifolds with Boundary and Stokes' Theorem. Homology and cohomology

丘成桐大学生数学竞赛,应用数学与概率统计,考纲

Computational Mathematics,Applied Mathematics,Probability and Statistics(the second draft) Computational Mathematics Interpolation and approximation Polynomial interpolation and least square approximation;trigonometric interpolation and approximation,fast Fourier transform;approximations by rational functions;splines. Nonlinear equation solvers Convergence of iterative methods(bisection,secant method,Newton method, other iterative methods)for both scalar equations and systems;finding roots of polynomials. Linear systems and eigenvalue problems Direct solvers(Gauss elimination,LU decomposition,pivoting,operation count,banded matrices,round-off error accumulation);iterative solvers (Jacobi,Gauss-Seidel,successive over-relaxation,conjugate gradient method, multi-grid method,Krylov methods);numerical solutions for eigenvalues and eigenvectors Numerical solutions of ordinary differential equations One step methods(Taylor series method and Runge-Kutta method);stability, accuracy and convergence;absolute stability,long time behavior;multi-step methods Numerical solutions of partial differential equations Finite difference method;stability,accuracy and convergence,Lax equivalence theorem;finite element method,boundary value problems References: [1] C.de Boor and S.D.Conte,Elementary Numerical Analysis,an algorithmic approach,McGraw-Hill,2000. [2]G.H.Golub and C.F.van Loan,Matrix Computations,third edition,Johns Hopkins University Press,1996. [3] E.Hairer,P.Syvert and G.Wanner,Solving Ordinary Differential Equations,Springer,1993. [4] B.Gustafsson,H.-O.Kreiss and J.Oliger,Time Dependent Problems and Difference Methods,John Wiley Sons,1995. [5]G.Strang and G.Fix,An Analysis of the Finite Element Method,second edition,Wellesley-Cambridge Press,2008.

相关主题
文本预览
相关文档 最新文档