当前位置:文档之家› 高频层序地层学的理论基础

高频层序地层学的理论基础

高频层序地层学的理论基础
高频层序地层学的理论基础

第1章 高频层序地层学的理论基础 1.1 高频层序的基本概念和研究现状

1. 高频层序的基本概念

高频层序的概念起源于地质学家们对于准层序的研究。准层序最初被定义为“由海泛面所限定的层或层组组成的一个相对整合的序列”。作为准层序界面的海泛面被进一步定义为:一个将老地层与新地层分开的面,穿过该面水深突然增加[1]。这一定义主要是基于海岸沉积环境提出的,因此其定义不具有普遍性而造成概念的欠完整。Van Wagoner和Mitchum[2]随后将类似于准层序的地层单元重新命名为“高频层序”,对于准层序定义的欠完整性起到了一定程度的修正作用。郑荣才等[3]、Cross等[4]所提出的短期基准面旋回和超短期基准面旋回,Anderson和Goodwin[5]提出的“米级旋回”,包括王鸿祯等[6]所称的“小层序”都属于高频层序的范畴。综合众多学者的观点,高频层序应是包含基准面上升期和下降期沉积的完整的地层序列,在不同沉积环境,高频层序的结构特征有差异。

2. 高频层序级次划分研究现状

Exxon的经典层序地层学、Cross的成因层序地层学、Galloway

- 1 -

扇三角洲高频层序界面的形成机理及地层对比模式

的成因层序地层学以及Miall的储层构型要素分析理论关于高频层序单元的级次划分、高频层序的时限等方面有明显的差异。

经典层序地层理论源于二十世纪八十年代,Peter Vail[7]和来自Exxon公司的沉积学家继承了Sloss[8]的研究成果,提出了“层序—体系域—准层序”这样一个完整的概念体系。层序是以不整合面或与之相应的整合面为边界的、一个相对整合的、有内在联系的地层序列。层序内部可以根据初始海泛面和最大海泛面进一步划分为低位体系域、海侵体系域和高位体系域。体系域内部则包含若干个具有相互联系的准层序组或准层序。基于这一理论体系,众多学者根据海平面持续的时间周期提出了层序划分方案[9]。受限于勘探程度、资料分辨率和现有技术手段,在三级层序内部进行高频层序划分时所能够识别的高频层序级次也不相同,但大多数划分至准层序组、准层序的级别,相当于四级和五级层序。根据前人的研究成果,四级层序时限在0.08~0.5 Ma,五级层序的时限在0.01~0.08 Ma。

Cross[4]及其成因地层学小组提出了高分辨率层序地层学理论与研究方法,其理论基础包括四个方面:地层基准面原理、体积划分原理、相分异原理与旋回等时对比法则。高分辨率层序地层学并没有根据海平面变化持续的时间来进行旋回级次划分,而是以不同级次的基准面变化将地层划分为不同的旋回,依据钻井和测井资料可以识别出来的最高级次的旋回称为短期旋回。Cross 指出完整的短期旋回是具有进积和加积地层序列的成因地层单元。郑荣才等[3]根据其对多个盆地的高分辨率层序地层学研究成果,建立了各级次基准面旋回的划分标准,并且厘定了各级次旋回的时间跨度,将基准面旋回划分为六个层次:巨旋回、超长期旋回、长期旋回、中期旋回、短期旋回和超短期旋回。超短期旋回与短期旋回具有相似的沉积动力学形成条件和内部结构。

- 2 -

第1章 高频层序地层学的理论基础 Galloway[10]的成因层序地层学起源于美国沉积学家Frazier 所提出的沉积幕概念[11]。一个沉积幕相当于两次最大洪泛事件所限定的一个沉积复合体,而这一个沉积复合体依次由若干个相序列组成,这些相序列与准层序的规模相当,也属于高频层序的范畴。Galloway在沉积幕的基础上提出了成因地层层序的模式,一个完整的成因地层层序由三个重要部分组成:退覆部分、上超海侵部分和代表最大洪泛事件的顶底界面。运用Galloway的成因层序地层学进行高频层序划分有其自身的优势,尤其是在油田开发阶段的地层对比工作中,在钻井和测井资料上,洪泛面比不整合面、冲刷面等层序界面易于识别,且侧向稳定性良好,十分有助于建立高质量的等时地层格架。

Miall[12]1985年根据多年研究成果提出了储层建筑结构分析法,该方法的基本研究内容包括界面分级、岩相类型和构型要素三个方面。在随后的数年里,Miall的不断研究使得储层划分方案达到相对完善的八级,具体为:一级界面——交错层系的界面;二级界面——层系组界面;三级界面——大型底型的内部界面,以低角度切割下伏2~3个交错层系;四级界面——单一河道的顶、底面;五级界面——河道充填复合体的大型砂体界面;六级界面——限定河道群或古河谷群的界面,相当于段或亚段;七级界面——大的沉积体系(Major depositional System)、扇域(Fan tract)、层序(Sequence)的界面;八级界面-盆地充填复合体(Basin-fill Complex)的界面。在建立界面分级系统的基础上,地质工作者可以进一步从三维角度将储层砂体划分为一系列具有特定成因、几何形态及内部非均质性的构成要素。

1.2 高频层序形成机制

- 3 -

扇三角洲高频层序界面的形成机理及地层对比模式

对地层层序的形成机制有“自旋回”和“异旋回”两种解释。针对这两种机制,国内外学者都投入了大量的研究工作,并取得了一定的成果。

1. 自旋回作用机理

有关自旋回(auto cycle)的研究最早开始于1944年,国外学者Lewis[13]通过水槽实验展示了由单一基准面变化产生多个河流阶地的过程,Schumm和Parker[14]完善了这一实验,并且提出了关于河流阶地形成过程中的自旋回因素的概念模型。Muto 等[15-18]依据大量水槽实验指出自旋回是由自体因素(autogenic)产生的地层旋回,而对于地层中的自体因素,这两位作者做出如下解释:自体因素是地层对于稳定的外部驱动力的内在响应。

国内学者对于自旋回的概念也做出了类似的解释。高志勇等[19]在探讨洪泛面的形成机理时指出,地层内的自旋回沉积作用可视为基准面上升或下降过程中瞬间稳定地层过程的产物。在基准面上升或下降过程中的某一瞬间,曲流河“凹岸侵蚀、凸岸堆积”的沉积作用所形成的边滩-漫滩序列属于自旋回作用,而当基准面上升或者下降时,才会产生异旋回的河流序列。邓宏文等[20,21]在分析基准面旋回的识别方法时指出,构成河流相的任何一种单一微相与基准面的变化均没有任何直接的联系,只有微相的叠加样式才能反映A/S比值的变化,从而提供基准面升降变化的重要信息。

2. 异旋回作用机理

异旋回是由异源因素控制而产生的旋回。异源因素是与层序地层直接相关、控制相对大比例尺的盆地充填结构的因素,包括

- 4 -

第1章 高频层序地层学的理论基础

常见的构造运动、海平面升降、气候变化和物源供给等,其中以气候变化和构造运动为主导。在异旋回机制的驱动下多期单一微相呈现出有规律的叠加样式,因此准层序主要受控于异源因素。目前关于气候变化对高频层序形成与发育的影响的研究成果较为丰富,而有关构造运动的作用机理研究较少。

孙阳等[22]对大庆长垣姚家组进行了高频层序分析,认为高频层序与米兰科维奇旋回之间存在着较好的一致性,地球轨道变化所引起的湖平面变化是高频层序形成的主控因素。纪友亮等[23]根据录井及岩心等资料,在东濮凹陷沙三段沉积时期,识别出了湖平面变化的6级周期,其变化频率约为1 000次/Ma。如此频繁的湖平面变化,使得低位砂体分布比较广泛,但厚度较薄,形成东濮凹陷沙三段高位期的暗色泥岩与低位期的砂岩薄互层的特点。王冠民[24]通过对济阳坳陷古近系大量岩性资料的测试分析,研究了气候变化对湖相高频泥岩和页岩的沉积控制,认为在一定的古盐度和物源距离等沉积背景下,古气候变化通过控制古湖泊有机质、碳酸盐、黏土之间的沉积比例和湖水的分层性来进一步控制泥岩和页岩的发育和类型。Gibling等[25]研究了印度恒河平原第四系河流露头剖面的高频层序结构特征,指出河流洪泛平原环境下高频层序的加积与退积对古季风气候有非常敏感的响应,进而建立了古季风控制下的洪泛平原高频层序模式。张成等[26]利用地质、地球物理等资料对乌尔逊凹陷下白垩统高频层序特征及其控制因素进行了分析,共识别出16个高频层序,并且提出在低构造沉降速率和温暖潮湿气候条件下,沉积物供给速率是控制高频层序形成和发育的主要因素。

近年来,在构造背景稳定的海相地层以及陆相坳陷盆地地层中,基于米兰科维奇旋回控制下的高频旋回分析,逐渐成为探讨气候对高频层序控制作用的重要手段[27-34]。但任拥军等[35]指出陆相断陷盆地为构造盆地,断裂构造理论以及大量地表、地下的

- 5 -

扇三角洲高频层序界面的形成机理及地层对比模式

构造、沉积现象都表明,短周期幕式构造沉降对陆相断陷盆地高频层序形成与发育存在不可忽视的控制作用。不同级别高频层序的形成可能响应不同级次的构造运动,构造活动并不是只控制三级层序的形成。在靠近断陷盆地盆缘主控断裂的一侧,构造运动有可能造成物源供给速率和盆地沉积速率的变化,进而出现完全由短周期幕式构造运动控制的高频进积-退积序列。向盆地沉积中心方向,盆缘断裂的控制作用可能会逐渐减弱,而气候因素占主导。解习农等[36]也认为,构造运动所带来的盆地沉降过程可能是非线性或间断函数,因此在高频旋回沉积过程中,会发生一系列规模较小的、不同频率的幕式构造沉降。池英柳等[37]探讨了幕式构造沉降作用对层序发育的控制作用,并建立了幕式构造旋回控制下的陆相层序地层单元分级方案。

1.3 扇三角洲高频层序结构与对比模式

国内学者分别依据经典层序地层学和高分辨率层序地层学理论对扇三角洲高频层序结构特征进行了深入的研究,建立了高频层序单元的分布模式,并在此基础上提出了扇三角洲地层对比模式。

赵俊青等[38]以东营凹陷胜北断层沙四上亚段扇三角洲沉积体为例,开展了高精度层序地层学研究,将扇三角洲沉积体系中的高精度层序地层单元划分为准层序组、准层序、层组和层四个级别(表1.1)。根据Van Wagoner关于层组和准层序的定义,将扇三角洲沉积体系中的层组归纳为向上变粗的层组(Cu型)、向上变细的层组(Fu型)和向上变细再变粗的层组(Fu-Cu型)三种类型,将准层序归纳为向上变粗的准层序(Cu型)、向上变细再变粗的准层序(Fu-Cu型)和由细变粗、再由粗变细的准层序

- 6 -

第1章 高频层序地层学的理论基础

(Cu-Cu型)三种类型,并以河道底部冲刷面和洪泛面为对比标志,总结出了扇三角洲沉积体系中准层序的划分对比模式,包括顺物源方向的相序递变对比模式和切物源方向的侵蚀对比模式。针对层组的对比,依据河道形态特异性提出了分流河道发育区的层组对比模式,包括孤立水道对比模式、叠加水道对比模式和不稳定互层水道对比模式等三种对比模式。

表1.1 扇三角洲沉积体系高精度层序地层单元与沉积地层单元对比(据文献[38])

靳松等[39]对胡状集油田沙三中亚段扇三角洲相储层进行了高分辨率层序地层研究,依据纵向岩相组合和界面接触关系将研究层段分为若干个短期旋回,包括向上变深的非对称型、向上变浅的非对称型和向上变深复变浅的非对称型三种类型。在顺物源

- 7 -

转换面的概念及其层序地层学意义

第15卷第2期2008年3月 地学前缘(中国地质大学(北京);北京大学) Earth Science Frontiers (Chin a University of Geosciences,Beijing;Peking University)Vol.15No.2M ar.2008 收稿日期:2007-09-15;修回日期:2007-11-06基金项目:国家自然科学基金资助项目(40672078) 作者简介:王红亮(1971)),男,副教授,主要从事沉积储层及层序地层研究工作。E -mail:w h l4321@sohu 1com /转换面0的概念及其层序地层学意义 王红亮 中国地质大学(北京)能源学院,北京100083 Wang H ong liang S ch ool of E nerg y Re sour ces ,Ch ina Univ e rsity of Ge osciences (Be ij ing ),Beij ing 100083,Ch ina Wang Hongliang.Concept of /Turnaround Surface 0and its signif icance to sequence stratigraphy.Earth Science Frontiers ,2008,15(2):035-042 Abstract:It is t he basic view of t raditio nal sequence stratigr aphy (V ail sequence)to t ake unconform ity as se -quence bo undary.Fo r hig h -frequency sequence ana lysis,it is obvio usly limited if only taking unco nfo rmit y as sequence boundar y due to the co nt inuit y of sedimentary pro cess,limitatio ns of unconfor mity distributio n and u -nifo rmity is not a rig or ous isochronous sur face.So /T ur nar ound Surface 0is int roduced to hig h -r eso lutio n se -quence stratigr aphy./T urnaro und Sur face 0has tw o implicatio ns:o ne is turnar ound surface o f base -lev el rise and base -level fa ll,the other is turnaround sur face o f sedimentat ion due t o base -level r ise and base -lev el fa ll.T urnaro und sur faces are classified into two t ypes:o ne is base -level fall to base -lev el rise turnaround sur face,which are usually present ed as unco nformity,top -lap sur face and pro gr adat ion to r et rog radatio n tur nar ound sur face ;ano ther is base -lev el rise to base -level fall turnaro und surface,w hich ar e usually pr esented as flo oding sur face.T he implicat ions of all these surfaces ar e discussed in detail.T he pr esentatio n of /T ur nar ound Sur -face 0is of sig nificance to high -fr equency sequence (4th and 5th or der sequence)divisio n,w hich pro mo te the applicatio n o f sequence str atig raphy in o il and gas ex plor at ion and develo pment.A case study is fr om delta to turbidite depositional system o f 3rd member o f Shahejie F ormat ion,Bo xing sub -depression o f Jiy ang sag.T hro ug h recog nitio n of turnaround sur face,fo ur larg e -sca le cy cles and eig ht intermediate -scale cycles ar e div id -ed in 3rd member of Shahejie F or matio n.Based o n above division and cor relation of wells and seismics,the higher resolution sequence framew ork is fo rmed. Key words:turnaround surface;base -level;unco nfo rmity;sequence st ratig ra phy 摘 要:不整合面作为层序界面,是经典层序地层学派的基本观点,对沉积盆地层序地层格架的建立具有不可替代的作用。但对高频层序分析而言,由于三维空间中沉积作用的连续性、不整合面分布的局限性,以及不整合面并不是一个严格意义上的等时面。因此以不整合面作为层序界面具有明显的局限性。由此在高分辨率层序地层分析中,引入了/转换面0的概念。转换面包含两层意思,一是基准面由上升变为下降或由下降变为上升的转换,一是由于基准面的升降转换所引起的沉积作用的转换。转换面可分为两大类,基准面由下降变为上升的转换面,包括不整合面、顶超面及进积与退积转换面;基准面由上升变为下降的转换面,主要为洪泛面。作者探讨了顶超面、进积与退积作用的转换面和洪泛面的特征及层序意义。/转换面0概念的提出对高频层序(如四级、五级层序)划分具有重要的意义,使层序地层理论与分析方法能更有效地应用于油气勘探与开

电子工程师必须懂的高频pcb设计emiemc等设计技巧

电子工程师必须懂的高频PCB设计、EMI、EMC等设计技 巧 数字器件正朝着高速、低耗、小体积、高抗干扰性的方向发展,这一发展趋势对印刷电路板的设计提出了很多新要求。作者根据多年在硬件设计工作中的经验,总结一些高频布线的技巧,供大家参考。 (1)高频电路往往集成度较高,布线密度大,采用多层板既是布线所必须的,也是降低干扰的有效手段。 (2)高速电路器件管脚间的引线弯折越少越好。高频电路布线的引线最好采用全直线,需要转折,可用45°折线或圆弧转折,满足这一要求可以减少高频信号对外的发射和相互间的耦合。 (3)高频电路器件管脚间的引线越短越好。 (4)高频电路器件管脚间的引线层间交替越少越好。所谓“引线的层间交替越少越好”是指元件连接过程中所用的过孔(Via)越少越好,据测,一个过孔可带来约0.5 pF的分布电容,减少过孔数能显著提高速度。 (5)高频电路布线要注意信号线近距离平行走线所引入的“交叉干扰”,若无法避免平行分布,可在平行信号线的反面布置大面积“地”来大幅度减少干扰。同一层内的平行走线几乎无法避免,但是在相邻的两个层,走线的方向务必取为

相互垂直。 (6)对特别重要的信号线或局部单元实施地线包围的措施,即绘制所选对象的外轮廓线。利用此功能,可以自动地对所选定的重要信号线进行所谓的“包地”处理,当然,把此 功能用于时钟等单元局部进行包地处理对高速系统也将非 常有益。 (7)各类信号走线不能形成环路,地线也不能形成电流 环路。 (8)每个集成电路块的附近应设置一个高频去耦电容。(9)模拟地线、数字地线等接往公共地线时要用高频扼 流环节。在实际装配高频扼流环节时用的往往是中心孔穿有导线的高频铁氧体磁珠,在电路原理图上对它一般不予表达,由此形成的网络表(netlist)就不包含这类元件,布线时就 会因此而忽略它的存在。针对此现实,可在原理图中把它当做电感,在PCB元件库中单独为它定义一个元件封装,布 线前把它手工移动到靠近公共地线汇合点的合适位置上。(10)模拟电路与数字电路应分开布置,独立布线后应单点连接电源和地,避免相互干扰。 (11)DSP、片外程序存储器和数据存储器接入电源前,应加滤波电容并使其尽量靠近芯片电源引脚,以滤除电源噪声。另外,在DSP与片外程序存储器和数据存储器等关键部分 周围建议屏蔽,可减少外界干扰。

层序地层学基本概念

层序地层学读书报告层序地层学基本概念 学号:2006120061 姓名:李晓辉 院系:能源学院

层序地层学基本概念 学号:2006120061 姓名:李晓辉 层序地层学是一门新兴的石油地质学科,层序地层学的出现代表了地质学领域里的一场革命,是一种划分、对比和分析沉积岩层系的新方法,是油气、煤、铀等矿产勘查与盆地地质研究的重要工具和手段。层序地层学来源于地震地层学,以下简介地震地层学和层序地层学的基本概念。 地震地层学:地层的描述科学,通过地震资料,结合地震分析技术,在正常顺序下,岩层(和其它共生者体)的形状、排列、分布、年代顺序、划分以及有关岩石可以具有的任一成全部特征,成分和性质的关系。包括成因、组成、环境、年代、历史、与生物进化的关系以及不可胜数的其它岩层特征。 地震反射面:只有沉积表面(包括不整合面)是空间中连续的具有波阻抗差的界面。是追随地层沉积表面的年代地层界面,而不是岩性地层界面。 削蚀(削截、侵蚀):层序的顶部反射终止,既可以是下伏倾斜地层的顶部与上覆水平地层间的反射终止,也可以是水平地层的顶部与上覆地层沉积初期侵蚀河床底面间的终止。 顶超:下伏原始倾斜层序的顶部与由无沉积作用的上界面形成的终止观象。它通常以很小的角度,逐步收敛于上覆层底面反射上。 上超:层序的底部逆原始倾斜面逐层终止。 下超:层序的底部颗原始倾斜面,向下倾方向终止。 地震层序分级: 超层序:从水域最大到最小时期沉积的地层层序。它往往是区域性的,并包括几个层序。据Vail等分析,大部分超层序是在海面相对变化的二级周期(超周期)期间沉积的。 层序:是超层序中的次一级地层单元,水域相对扩大和缩小,它可以是区域性的,也可以是局部的。 亚层序:层序中最小一级地层单元,它可以是局部的或三角洲的一个朵叶。 海面变化的定义 水深:指在任一给定时刻和地点,水面和水底间的距离。 全球海面变化:海面和一个固定基准点(通常指地心)间测量到的海面变化。其变化成因只有两种:洋盆体积变化(如洋中脊扩张)和海水体积变化(如冰川消融)。 相对海面变化:海面和一个局部的运动基准点——沉积基底或早期地层表面——间测量到的海面变化。 上超点法:一种利用地震剖面中反射界面上超点的转移幅度研究海平面升降的半定量方法。地震相:相是一定岩层生成时的古地理环境及其物质表现的总和,地震相可以理解为沉积相在地震剖面上表现的总和,是由沉积环境(如海相或陆相)所形成的地震特征。 振幅:振幅是质点离开它平衡位置的最大位移,振幅直接与波阻抗差有关,波阻抗差高,则振幅强;波阻抗差低,则振幅弱。 连续性:指同相轴连续的范围。连续性直接与地层本身的连续性有关,连续性愈大,沉积的能量变化愈低,沉积条件就愈是与相对低的能量级变化有关。 波形排列:指的是同相轴排列的形状,它反映互相接近的地层间的沉积环境,如果波形排列在横向上变化不大或变化缓慢,说明地层变化不大,常常出现在低能沉积环境中。如果波形排列变化迅速,说明地层变化迅速,常出现在高能环境中。 视频率:频率表示质点在单位时间内振动的次数,而视频率指的是地震时间剖面中反射同相轴呈现的频率。 地震相单元的外部几何形态:

沉积体系及层序地层学研究进展

沉积体系及层序地层学研究进展 沉积学的发展整体上经历了从萌芽到蓬勃发展,再到现今的储层沉积学、层序地层学、地震沉积学等派生学科发展阶段。这期间,沉积学的形成和发展一直服务于油气和其他沉积矿产的勘探和开发。到目前为止,针对层序研究,相关的理论和方法已比较系统、成熟。但在层序内部体系域划分、裂谷盆地层序地层模式研究及层序地层控制因素分析等方面仍然需要开展大量的研究工作才能使沉积体系及层序地层学研究更精细。 1 层序地层学研究现状及发展趋势 层序地层学是近20年来发展起来的一门新兴学科,其基础是地震地层学与沉积相模式的结合。层序的概念最初由Sloss(1948)提出,当时将层序作为一种以不整合面为边界的地层单位。但层序地层学的真正发展阶段是在P. R. Vail, R. M. Mitchum, J.B.Sangree1977年发表了地震地层学专著之后,层序的概念定义为“一套相对整合的、成因上有联系的地层序列,其顶底以不整合或与这些不整合可对比的整合为界”,并将海平面升降变化作为层序形成与演化的主导因素。1987年Vail和Wagoner等在AAPG上发表的文章首次明确了层序地层学的概念,开始了层序地层学理论系统化阶段,提出了体系域等一系列新概念,建立了层序内部的地层分布规律和成因联系。进入二十世纪九十年代,层序地层学理论出现了多个分支学派,丰富发展了理论,也扩展了应用领域。 层序地层学经历了三个发展阶段,现已发展为与岩石地层、年代地层、生物地层及地震资料相结合的综合阶段,并且已从在理论上有争议的模型演化成一种在实践上可采纳的方法(蒋录全,1995)。 1.1 国内外层序地层学研究现状 层序地层学理论建立之初是以海相层序地层为基础的,国外应用较多的有三种海相层序概念模式,发展至今,理论上形成了Vail层序地层学、Cross高分辨率层序地层学、Galloway成因层序地层学三大主流派系。沉积层序与成因层序的最根本区别在于层序界面的不同,沉积层序以不整合和与该不整合可对比的整合面为界,强调海平面变化是层序形成的主导控制作用;成因层序是以最大海侵

高频布线工艺PB板选材

高频布线工艺和PCB板选材 国家数字交换系统工程技术研究中心 张建慧饶龙记[郑州1001信箱787号] 摘要:本文通过对微带传输特性、常用板材性能参数进行比较分析,给出用于无线通信模拟前端、高速数字信号等应用中PCB板材选取方案,进一步从线宽、过孔、线间串扰、屏蔽等方面总结高频板PCB设计要点。 关键字:PCB板材、PCB设计、无线通信、高频信号 近年来在无线通信、光纤通信、高速数据网络产品不断推出,信息处理高速化、无线模拟前端模块化,这些对数字信号处理技术、IC工艺、微波PCB设计提出新的要求,另外对PCB板材和PCB工艺提出了更高要求。 如商用无线通信要求使用低成本的板材、稳定的介电常数(εr变化误差在±1-2%间)、低的介电损耗(0.005以下)。具体到手机的PCB板材,还需要有多层层压、PCB加工工艺简易、成品板可靠性高、体积小、集成度高、成本低等特点。为了挑战日益激烈的市场竞争,电子工程师必须在材料性能、成本、加工工艺难易及成品板的可靠性间采取折衷。 目前可供选用的板材很多,有代表性的常用板材有:环氧树脂玻璃布层压板FR4、多脂氟乙烯PTFE、聚四氟乙烯玻璃布F4、改性环氧树脂FR4等。特殊板材如:卫星微波收发电路用到蓝宝石基材和陶瓷基材;微波电路基材GX系列、RO3000系列、RO4000系列、TL系列、TP-1/2系列、F4B-1/2系列。它们使用的场合不同,如FR4用于1GHz以下混合信号电路、多脂氟乙烯PTFE多用于多层高频电路板、聚四氟乙烯玻璃布纤维F4用于微波电路双面板、改性环氧树脂FR4用于家用电器高频头(500MHz以下)。由于FR4板材易加工、成本低、便于层压,所以得到广泛应用。 下面我们从微带传输线特性、多层板层压工艺、板材参数性能比较等多个方面分析,给出了对于特殊应用的PCB板材选取方案,总结了高频信号PCB设计要点,供广大电子工程师参考。 1微带传输线传输特性 板材的性能指标包括有介电常数εr、损耗因子(介质损耗角正切)tgδ、表面光洁度、表面导体导电率、抗剥强度、热涨系数、抗弯强度等。其中介电常数εr、损耗因子是主要参数。 高速数据信号或高频信号传输常用到微带线(Microstrip Line),由附着在介质基片两边的导带和导体 接地板构成,且导带一部分 暴露在空气中,信号在介质 基片和空气这两种介质中 传播引起传输相速不等会Array产生辐射分量、如果合理选 用微带尺寸这种分量很小。 图

层序地层学综合复习题

《层序地层学》综合复习资料一、名词解释 (1)低水位体系域P50-2 (2)下切谷 (3)T-R层序 (4)新增可容空间 (5)进积式准层序组:(6)密集段 (7)高水位体系域 (8)整合 (9)I型层序 (10)层序地层学 (11)准层序 (12)敞流湖盆(13)可容空间(14)不整合 (15)层序 (16)Ⅱ型层序(17)陆架边缘体系域(18)绝对海平面(19)湖侵体系域(20)体系域 (21)海浸-海退旋回(22)海泛面 (23)基准面 (24)凝聚(缩)层 二、填空题 1.层序地层学中主要有四个控制变量,它们控制了地层单元的几何形态、沉积作用和岩性, 它们是:,,,。 2.当海平面相对上升并且低速物源供应时,形成海侵体系域。海侵体系域底界 为,顶界为,其准层序组多 为。 3.层序是所组成,其顶、底界 为。 4.I型层序边界是在海平面期间形成,在地震剖面上可见明显的反 射结构;具有等地表暴露标志。 5.海平面的相对上升或下降控制了新增可容空间的变化,海平面相对上升, 可容空 间,相反可容空间。 6.全球性海平面变化的控制因素有;;; 等。

7.低水位体系域的下界为,上界为下一个。低水位体系域 则由一个或多个准层序组构成。 8.在典型的向上变粗准层序中,由下而上,岩层组变厚,砂岩颗粒变,砂 岩、泥岩比例;在向上变细的准层序中,由下而上,岩层组变薄,砂岩颗 粒变,砂岩、泥岩比例。 9.根据沉积速率与新增空间速率之比,可将准层序组中的准层序叠加模式分为、 和三种类型。准层序组的形成条件为沉积速率小于可容空 间。 10.依据粒度变化,准层序的类型有及;在典型的中, 岩层组变厚,砂岩颗粒变粗,砂岩、泥岩比例向上增加。 11.陆架坡折边缘型盆地发育一个理想的型层序,具有、和 体系域。 12.低水位体系域发育, 和。 13.层序地层学发展简史可以划分为,, 等3个阶段。 14.地震地层学应用反射波的终止或消失现象划分层序。反映层序底界的反射终止现象有 和;反映层序顶界的反射终止现象有、。 15.高水位体系域的下界为,上界为下一个层序的边界。早期的高水位体系 域通常由一个准层序组所组成,晚期的高水位体系域则由一个或多个 准层序组构成。 16.基准面是一个抽象的动态平衡面,在此面以上沉积物,在此面以 下;在该面附近沉积物。海洋环境的基准面就 是,陆相湖盆中的沉积基准面大致相当于。 17.湖侵体系域的底界为,顶界为。湖侵体系域通常由一个或多个 准层序组构成。 18.I型层序由体系域、体系域和体系域所组成;其下伏边界 为及其对应的整合,即层序边界。 19.根据盆地的几何形态可以将盆地划分出两种类 型: , 。

层序

中国地质大学研究生课程读书报告 课程名称层序地层学及应用教师姓名 学生姓名 学生学号 专业 所在院系 日期

前言:层序地层学理论体系概述 层序地层学的定义——经典的定义来自J. C. Van Wagoner(1988) “研究以侵蚀面或无沉积作用面、或者与之可以对比的整合面为界的、重复的、成因上有联系的地层的年代地层框架内岩石间的关系。” It is the study of rock relationships within a chronostratigraphicframework of repetitive, genetically related strata bounded by surfaces of erosion or nondeposition, or their correlative conformities. 图0-1 层序地层学研究区限 “层序地层学改变了分析世界地层记录的基本原则。因此,它可能是地质学中的一次革命,它开创了了解地球历史的一个新阶段(P.R. Vail,199)。” 注意:层序地层学与以岩性相似性为依据的岩性地层学没有什么本质上关............................. 联.。 图0-2 层序地层与年代地层、岩性地层界面的关系

图0-3 层序地层学各组成要素关系表 MAIN Accommodation——Base Level——Depositional Shelf Break(Equilibrium Profile——Equilibrium Point ) SEDIMENTS Sequence> Systems Tract> Depositional System> ParasequenceSet> Parasequence> CondencedSection SURFACE Unconformity> TransgressiveS.=Maximum Flooding S.> Marine Flooding S.

2017年春季学期石油华东《层序地层学》综合复习资料

《层序地层学》综合复习资料 一、名词解释 1.准层序2.准层序组3.不整合4.体系域5.深切谷6.缓慢沉积段7.沉积体系8.T-R旋回9.相对海平面10.海泛面11.成因层序12.缓慢沉积段13.闭流湖盆14.敞流湖盆 二、论述题 1.层序地层学的发展经历了哪几个阶段?每个阶段取得了哪些重要认识? 2.在层学地层学研究中,层序边界的识别标志主要有哪些? 3.比较I型层序和II型层序在层序边界、体系域组成以及形成机理等方面的异同。 4.陆相盆地与被动大陆边缘型盆地相比有哪些差异?这决定了陆相湖盆层序地层学研究应有什么特点? 5.全球海平面变化主要受哪些因素控制? 6.Galloway建立的成因层序地层学模式与Vail等人建立的层序地层学模式相对比有什么特点? 7. 层序地层学的研究内容主要有哪几方面?它们使用的资料和分析项目各包括那些?8.陆相断陷湖盆中层序边界的形成机理主要有哪几种? 9.湖相密集段有哪些特点?如何识别?研究其有何意义?

参考答案 一、名词解释 1.准层序:(parasequence)它是由湖(海)泛面或与之相对应的界面为边界、由成因上有联系的层或层组构成的相对整合序列。 2.准层序组:是指由成因相关的一套准层序构成的,具有特征堆砌样式的一种地层序列。3.不整合:是指岩石地层之间接触上的构造关系,沉积上缺少连续性,并与间断、风化特别是侵蚀阶段相对应。 4.体系域:是指一系列同期沉积体系的集合体。 5.深切谷:是指因海平面下降、河流向盆地扩展并侵蚀下伏地层的深切河流体系及其充填物。 6.缓慢沉积段:代表可容纳空间达到极大值时的沉积。由薄的半远海或远海沉积相组成,是沉积物聚集速度很慢,经历时间很长,代表在陆架上的陆源沉积物饥饿的沉积。 7.沉积体系:一串现在仍积极作用的(现在的)或推测的(古代的)沉积作用和沉积环境(三角洲、河流等)从成因上联系到一起的岩相组合。 8.T-R旋回:从一个海水加深事件到另一个具同等规模的加深事件开始之间的一段时间内沉积下来的岩层。 9.相对海平面:指海平面相对一个处于或者靠近海底的面(例如基岩)的位置,由全球海平面和局部沉降这两个因素决定。 10. 海泛面:是一个新老地层的分界面,穿过这个界面会有证据表明水深的突然增加。11.成因层序:Galloway所划分的层序称为成因层序,它是建立在Frazier的沉积幕式概念基础上。 12.缓慢沉积段:代表可容纳空间达到极大值时的沉积。由薄的半远海或远海沉积相组成,是沉积物聚集速度很慢,经历时间很长,代表在陆架上的陆源沉积物饥饿的沉积。 13.闭流湖盆:是注入湖盆的水量小于蒸发量和地下渗流量之和,湖平面的位置低于盆地最低溢出口的高程。 14. 敞流湖盆:是注入湖盆的水量大于蒸发量和地下渗流量之和,湖平面的位置维持在与湖盆的最低溢出口相同的高程上,多余的水则通过泄水通道流出湖盆。 二、论述题 1.层序地层学的发展经历了哪几个阶段?每个阶段取得了哪些重要认识? 答:概念萌芽阶段(1949-1977)——层序概念建立阶段 Sloss、Krumbein和Dapples(1948)同时提出的地层层序概念标志为当今层序地层学的发展提供了概念基础。 孕育阶段(1977-1988)——地震地层学形成和发展阶段 P.R.V ail(1977)等人编著的《地震地层学》为标志产生了一次重大的飞跃。 理论系统化阶段(1988年-现至)——层序地层学综合发展阶段 以P.R.Vail(1988)等人编著的《海平面变化综合分析》以及Sangree,Wagoner和Mitchum 等人的层序地层学文献的发表为标志。给沉积学和地层学研究带来了革命性的飞跃。

高频层序地层学的理论基础

第1章 高频层序地层学的理论基础 1.1 高频层序的基本概念和研究现状 1. 高频层序的基本概念 高频层序的概念起源于地质学家们对于准层序的研究。准层序最初被定义为“由海泛面所限定的层或层组组成的一个相对整合的序列”。作为准层序界面的海泛面被进一步定义为:一个将老地层与新地层分开的面,穿过该面水深突然增加[1]。这一定义主要是基于海岸沉积环境提出的,因此其定义不具有普遍性而造成概念的欠完整。Van Wagoner和Mitchum[2]随后将类似于准层序的地层单元重新命名为“高频层序”,对于准层序定义的欠完整性起到了一定程度的修正作用。郑荣才等[3]、Cross等[4]所提出的短期基准面旋回和超短期基准面旋回,Anderson和Goodwin[5]提出的“米级旋回”,包括王鸿祯等[6]所称的“小层序”都属于高频层序的范畴。综合众多学者的观点,高频层序应是包含基准面上升期和下降期沉积的完整的地层序列,在不同沉积环境,高频层序的结构特征有差异。 2. 高频层序级次划分研究现状 Exxon的经典层序地层学、Cross的成因层序地层学、Galloway - 1 -

扇三角洲高频层序界面的形成机理及地层对比模式 的成因层序地层学以及Miall的储层构型要素分析理论关于高频层序单元的级次划分、高频层序的时限等方面有明显的差异。 经典层序地层理论源于二十世纪八十年代,Peter Vail[7]和来自Exxon公司的沉积学家继承了Sloss[8]的研究成果,提出了“层序—体系域—准层序”这样一个完整的概念体系。层序是以不整合面或与之相应的整合面为边界的、一个相对整合的、有内在联系的地层序列。层序内部可以根据初始海泛面和最大海泛面进一步划分为低位体系域、海侵体系域和高位体系域。体系域内部则包含若干个具有相互联系的准层序组或准层序。基于这一理论体系,众多学者根据海平面持续的时间周期提出了层序划分方案[9]。受限于勘探程度、资料分辨率和现有技术手段,在三级层序内部进行高频层序划分时所能够识别的高频层序级次也不相同,但大多数划分至准层序组、准层序的级别,相当于四级和五级层序。根据前人的研究成果,四级层序时限在0.08~0.5 Ma,五级层序的时限在0.01~0.08 Ma。 Cross[4]及其成因地层学小组提出了高分辨率层序地层学理论与研究方法,其理论基础包括四个方面:地层基准面原理、体积划分原理、相分异原理与旋回等时对比法则。高分辨率层序地层学并没有根据海平面变化持续的时间来进行旋回级次划分,而是以不同级次的基准面变化将地层划分为不同的旋回,依据钻井和测井资料可以识别出来的最高级次的旋回称为短期旋回。Cross 指出完整的短期旋回是具有进积和加积地层序列的成因地层单元。郑荣才等[3]根据其对多个盆地的高分辨率层序地层学研究成果,建立了各级次基准面旋回的划分标准,并且厘定了各级次旋回的时间跨度,将基准面旋回划分为六个层次:巨旋回、超长期旋回、长期旋回、中期旋回、短期旋回和超短期旋回。超短期旋回与短期旋回具有相似的沉积动力学形成条件和内部结构。 - 2 -

PCB高频布线基本知识

高频布线基本知识 内容目录 1. 引言 2. 信号完整性问题 3. 电磁兼容性问题 4. 电源完整性问题 5. 高频电路设计一般规范 6. 数模混合电路设计一般规范 一:高频电路的定义 *在数字电路中,是否是高频电路取决于信号的上升沿和下降沿,而不是信号的频率。 公式:F2 =1/(Tr×π),Tr为信号的上升/下降延时间。 *F2 > 100MHz,就应该按照高频电路进行考虑,下列情况必须按高频规则进行设计 –系统时钟频率超过50MHz –采用了上升/下降时间少于5ns的器件 –数字/模拟混合电路 *逻辑器件的上升/下降时间和布线长度限制上升/下主要谐波频谱分布最大传输线最大传输 降时间Tr分量F2=1/Fmax=10*距离(微带)线距离(微带线)πTr F2 74HC 13-15ns24MHz 240 MHz 117cm 91cm 74LS 9.5ns 34 MHz 340MHz 85.5cm 66.5cm 74H 4-6ns 80 MHz 800MHz 35 28 74S 3-4ns 106 MHz 1.1GHz 27 21 74HCT 5-15ns 64 MHz 640MHz 45 34 74ALS 2-10ns 160 MHz 1.6GHz 18 13 74FCT 2-5ns 160 MHz 1.6GHz 18 13 74F 1.5ns 212 MHz 2.1GHz 12.5 10.5 ECL12K 1.5ns 212 MHz 2.1GHz 12.5 10.5 ECL100K 0.75ns 424 MHz 4.2GHz 6 5 传统的PCB设计方法效率低: 原理图,传统的设计方法设计和输入布局、布线没有任何质量控制点,制作PCB每一步设计都是凭经验,发现问题就必须从头开始,功能、性能测试问题的查找非常困难 信号完整性问题: 1.反射问题 2.串扰问题 3.过冲和振荡 4.时延 反射问题:传输线上的回波。信号功率(电压和电流)的一部分传输到线上并达到负载处,但是有一部分被反射了。 多点反射

经典层序地层学的原理与方法

第二章 经典层序地层学的原理与方法 经典层序地层学为分析沉积地层和岩石关系提供了有力的方法手段,其原理和实践已被大多数地质学家所接受。理论上,层序地层学特别重视海平面升降周期对地层层序形成的重要影响;实践上,它通过年代地层格架的建立,对地层分布模式作出解释和同时代成因地层体系域的划分,为含油气盆地地层分析和盆地规模的储层预测提供坚实的理论和油气勘探的有效手段,有力的推动了地质学,特别是石油地质学的发展,它的推广与应用标志着隐蔽油气藏勘探研究进入了一个全新的精细描述、精细预测阶段。 第一节经典层序地层学中的两种层序边界 Vail等在硅质碎屑岩层系中已经识别出两类不同的层序,即Ⅰ类层序和Ⅱ类层序,这两类层序在碳酸盐岩研究中得到了广泛应用。以下详细论述这两类层序边界的含义、特征和识别标志。 一、Ⅰ型层序边界及其特征和识别标志 当海平面迅速下降且速率大于碳酸盐台地或滩边缘盆地沉降速率、海平面位置低于台地或滩边缘时,就形成了碳酸盐岩的Ⅰ型层序界面。Ⅰ型层序界面以台地或滩的暴露和侵蚀、斜坡前缘侵蚀、区域性淡水透镜体向海方向的运动以及上覆地层上超、海岸上超向下迁移为特征(图1-2-1)。 图1-2-1碳酸盐岩Ⅰ型层序边界特征(据Sarg,1988) 1.碳酸盐台地或滩边缘暴露侵蚀的岩溶特征 碳酸盐台地广泛的陆上暴露和合适的气候条件为形成Ⅰ型层序界面提供了地质条件,层

序界面以下的沉积物具有明显的暴露、溶蚀等特征,碳酸盐台地或陆棚沉积背景上的陆上暴露,可通过古岩溶特征来识别,因此,风化壳岩溶是识别碳酸盐台地碳酸盐岩Ⅰ型层序的重要特征。 ①古岩溶面常是不规则的,纵向起伏几十至几百米。岩溶地貌常表现为岩溶斜坡和岩溶凹地。如我国鄂尔多斯盆地奥陶系顶部、新疆奥陶系顶部、川东石炭系黄龙组顶部等发育的古岩溶。 ②地表岩溶主要特征为出现紫红色泥岩、灰绿色铝土质泥岩以及覆盖的角砾灰岩、角砾白云岩的古土壤。风化壳顶部的岩溶角砾岩往往成分单一,分选和磨圆差。碎屑灰岩和碎屑如鲕粒、生物碎屑常被溶解形成铸模孔等。 ③古岩溶存在明显的分带性,自上而下可分为垂直渗流岩溶带、水平潜流岩溶带和深部缓流岩溶带。 ④岩溶表面和岩溶带中出现各种岩溶刻痕和溶洞,如细溶沟、阶状溶坑、起伏几十米至几百米的夷平面、落水洞、溶洞以及均一的中小型蜂窝状溶孔洞等。 ⑤溶孔内存在特征充填物,可充填不规则层状且分选差的角砾岩、泥岩或白云质泥的示底沉积,隙间或溶洞内充填氧化铁粘土和石英粉砂以及淡水淋虑形成的淡水方解石和白云岩。 ⑥具有钙质壳、溶解后扩大的并可被粘土充填的解理、分布广泛的选择性溶解空隙。 ⑦岩溶地层具有明显的电测响应,如明显的低电阻率、相对较高的声波时差、较高的中子孔隙度、较明显的扩径、杂乱的地层倾角模式和典型的成像测井响应。 ⑧古岩溶面响应于起伏较明显的不规则地震反射,古岩溶带常对应于明显的低速异常带。此外,古岩溶面上下地层的产状、古生物组合、微量元素及地化特征也有明显的差别。 2.斜坡前缘的侵蚀作用 在Ⅰ型层序界面形成时,常发生明显的斜坡前缘的侵蚀,导致台地和滩缘斜坡上部大量沉积物被侵蚀掉,结果造成大量碳酸盐砾屑的向下滑塌堆积作用和碳酸盐砂的碎屑流、浊流沉积作用和碳酸盐砂砾的密度流沉积作用(图1-2-1)。斜坡前缘侵蚀作用可以是局部性或区域性的,向上可延伸到陆棚区形成发育良好的海底峡谷,滩前沉积物可被侵蚀掉几十至几百米。 在碳酸盐缓坡和碳酸盐台地边缘出现的水道充填砾屑灰岩,以及向陆方向由河流回春作用引起的由海相到陆相、碳酸盐岩到碎屑岩的相变沉积物以及向上变浅的沉积序列也是Ⅰ型层序边界的标志。 3.淡水透镜体向海的方向运动 Ⅰ型层序界面形成时发生的另一种作用,就是淡水透镜体向海或向盆地方向的区域性迁移(图1-2-1)。淡水透镜体渗入碳酸盐岩剖面的程度与海平面下降速率、下降幅度和海平面保持在低于台地或滩边缘的时间长短有关。在大规模Ⅰ型层序边界形成时期,当海平面下降75~100米或更多并保持相当长的时间时,在陆棚上就会长期地产生淡水透镜体,它的影响会充分地深入到地下,并可能深入到下伏层序。若降雨量大,剖面浅部就会发生明显的淋滤、溶解作用,潜流带出现大量的淡水胶结物,如不稳定的文石、高镁方解石可能被溶解,形成低镁方解石沉淀(Sarg,1998)。Vail的海平面升降曲线表明,在全球海平面下降中,少见大规模的Ⅰ型海平面下降。一般的海平面下降幅度不超过70~100m。也就是说,在小规模Ⅰ型层序边界形成时期,淡水透镜体未被充分建立起来,只滞留在陆架地层的浅部,没有造成广泛的溶解和地下潜水胶结物的沉淀。在Ⅰ型层序边界形成时期,在适宜的构造、气候和时间条件下可能发育风化壳。同时,伴随Ⅰ型界面形成期间,可发生不同规模的混合水白云化和强烈蒸发作用而引起的白云化。 二、Ⅱ型层序界面及其特征、识别标志

层序地层学作业

(1)由此图中可以发现,此沉积体系的体系域有4种:低位体系域、海侵体系域和高位体系域以及陆架边缘体系域。具有明显的陆架坡折。 (11-18)低位体系域下由层序界面限定,上由海泛面限定。由图中可得由盆底扇、斜坡扇和低位楔组成。 (18-21)海侵体系域下由海泛面,上由下超面所限定的体系域。它由退积准层序组成,向上水体逐渐变深。(7-8)为凝缩段也叫密集段,在极缓慢沉积过程中形成的薄层的半深海到深海相沉积物组成。 (21-28)高位体系域,下部由下超面限制,上部由下一个层序界面限制的体系域,由进积准层序组成。(8-11)、(1-5)为早期的高位体系域通常由加积准层序、微弱前积准层序组成。 (29-30)、(6-7)为陆架边缘体系域,以微弱前积和加积为特征。是在一个海平面相对上升时形成的海退地层单元,覆盖在II型层序界面。 I型层序:由低位体系域、海侵体系域及高位体系域组成的;II型层序:由陆架边缘体系域、海侵体系域和高位体系域组成的。区别如下表: 表1. I型层序与II型层序区别

图1.I型层序的地层发育模式 图2.II型层序的发育模式 陆架坡折盆地的I型层序 (a)易于确定的陆架、陆坡和盆地地形; (b)陆架倾角小于0.5o,陆坡倾角为3o到6o,海底峡谷侧壁倾角为10o; (c)比较明显的陆架坡折将低角度的陆架沉积物与更陡的陆架沉积物区分开; (d)由浅水到深水的过渡比较突变; (e)当海平面下降到沉积岸线坡折以下,如果形成海底峡谷,则可能发生切割作用; (f)可能沉积海底扇和斜坡扇; 除沉积于具有陆架坡折的盆地外,还须具备以下条件: (a)足够大的河流体系切割峡谷,并搬运沉积物进入盆地; (b)有足够的可容纳空间使准层序组保存下来; (c)海平面的相对下降要有一定的速度和规模,使得低位体系域能沉积于陆架坡折或陆架坡折以外。 无陆架坡折的缓坡盆地的I型层序 (a)均一的、小于1度低角度倾斜,大多数角度小于0.5o;

高频混合讯号积体电路的应用及设计趋势

高頻混合訊號積體電路的應用及設計趨勢 https://www.doczj.com/doc/2b3598412.html, Application and Design Trend on High Frequency Mixed mode IC Design 瑞昱半導體研發中心 類比IC設計部經理林盈熙前言 隨著通訊、消費性電子產品及電腦應用的多元化,混合訊號積體電路的應用及設計趨勢也隨之複雜化。除了要考慮以往的電路技術層面的問題,也隨著先進製程的演變,設計流程所要解決的困難也增加了許多。此篇文章將目前業界研發高頻混合訊號積體電路所面臨的問題,及未來可能的解決方法與讀者進行討論。期待能藉由拋磚引玉的方式,讓更多的產業先進了解相關的問題。 產品及應用的趨勢 科技的進步除了帶來生活的便利之外,以往的通訊、娛樂及資訊取得的方式也產生很大的變革。通訊及網路的便捷讓人們樂於分享多媒體資訊。此外,資訊的取得與分享也隨著移動的需求轉而無線化及寬頻化。使用者對於多媒體資訊的品質需求也激發高速及高容量的產品走向。綜觀以上的變化,積體電路產品的應用趨勢可分為下列的三大方向 ?通訊(Communication) ?WLAN

?Digital Cellular Phone/ Wi-Fi Phone ?Modem/Remote Access ?消費性電子(Consumer) ?Digital Camera/ Video ?DVD ?Digital TV/HDTV ?電腦(Computer) ?Portable PC ?Live Plug-in Peripheral 此外因應消費者的需求及系統技術的變化,IEEE也制定了許多不同的無線通訊的規格。從低傳輸速率到高傳輸速率分別有不同的規格規範,並且在不同的傳輸距離之下系統的要求也有相異。細部的區分如下圖所示。 傳輸距離與轉輸速率的不同的無線通訊規格

陆相层序地层学应用指南111

第二节断陷型湖盆层序地层模式与隐蔽圈闭 断陷型朔盆的生成发展受控于盆地边界的同生大断裂活动。 若盆地两侧均发育边界同生断层.则形成地堑型陆相盆地;苦亨地地一侧存在阶段性活动的边界同生断层,则形成箕状型陆相盆。断陷型濒盆由于向生断层酌发肯一股可识别出低位体系域、湖侵体系域及岗位体系域,同一体系域内陡坡带、深洼区及缓坡带的沉积层序特补gf足下同。 低位体系域沉积时,较大面积山露地友,陆源沉积物被搬运到盆地内形成储集性较好的浊积砂体(图5—3),盆地陡坡的冲积扇或扇二角洲砂体的粒度粗、结构混杂,储集韧性较差盆地缓坡河流沉积的是在湖侵体系域早期,内早期河流Dt积物被湖浪改造而充填形成的分选好、泥质含量少、侧向变化快的砂体*易形成地层圈闭。低位体系域往往不具有品质良好的烃源岩(表5 湖侵体系域发育品质良好的烃源岩,即生油凝缩段。盆地缓坡发育滨浅湖或水进式三角洲砂体储层,它与湖侵体系域的期泛泥岩间互构成良好储盖组合的储层。陡坡发有的洪水型浊积扇砂体直接被沉积在较深水暗色泥省之中,形成良好的岩性圈闭。 高位体系域发育早期的盆地深洼区发育色暗质纯、分布相对较r的烃源岩(表5—2)c 高位体系域发育的晚期,在盆地缓坡发育河控型二角洲,在湖盆陡坡发育扇三角训,在盆地的断垒带之上发育沿长轴方向分布的三角训,在盆地深洼区发言滑塌型浊积朗(图5—3)。岗位体系域是某——层序户储集砂体最为发育、储集物性最好、油气资源量最多的层段。

序地层学与隐蔽圈闭预测以河南泌阳凹陷为例 陈文学姜在兴鲜本忠善 邱隆伟操应长” 第二节应用层序地层学预测隐蔽油气藏的相关理论和方法 一、相关理论 1层序地层界面的级别及成因意义 层序地层学对地层单元的划分具有一个完整的体系,不同级别的层序地层单元之间以不同级别的层序地层界面为界。层序地层单元划分的规模可以从层序、体系域、准层序组、准层序到纹层、纹层组、岩层及岩层组等。小规模的层序地层单元,如纹层、纹层组及岩层、岩层组等,可以作为各类沉积体的基本组成单位;而准层序、准层序组以及体系域、层序等更大规模的层序地层单元的重要意义则在J:它们能够记录地质历史上海平面的周期 性升降变化或海水的周期性进退。与梅相沉积类似,陆相地层中各级别的层序地层界面主要

层序地层学最全复习资料-吐血整理

一.名词解释 1.层序地层学:(Sequence Stratigraphy)研究以不整和面或与之相对应的整和面为边界的年代地层格架中具有成因联系的、旋回岩性序列间 相互关联的地层学分支学科。 2.层序:(Sequence)一套相对整一的、成因上存在联系的、顶底以不整和面或与之相对应的整和面为界的地层单元。 3.I型层序边界面:一个区域型不整合界面,是全球海平面下降速度大于沉积滨线坡折带处盆地沉降速度时产生的。即I型层序界面是在沉 积滨线坡折带处,由海平面相对下降产生。 4.II型层序边界面:全球海平面下降速度小于沉积滨线坡折带处盆地沉降速度时产生的,在沉积滨线坡折带处未发生海平面的相对下降。 5.I型层序:底部以I型层序界面为界,顶部以I型层序或II型层序界面为界的层序。 6.II型层序:底部以II型层序界面为界,顶部以I型层序或II型层序界面为界的层序。 7.沉积滨线坡折带:(Depositional shoreline break)陆架剖面上的一个位置,是沉积作用活动的地形坡折,在此坡折向陆方向,沉积表面接 近基准面,而向海方向沉积表面低于基准面。 8.陆棚坡折带:(Shelf-break)大陆架与大陆斜坡之间的过渡地带。 9.体系域:(Systems tract)一系列同期沉积体系的集合体。 10.低位体系域:(Lowstand systems tract,简称LST) I型层序中位置最低、沉积最老的体系域,是在相对海平面下降到最低点并且开始缓 慢上升时期形成的。在具陆棚坡折的深水盆地的沉积背景中,低位体系域是由海平面相对下降时形成的盆底扇、斜坡扇和海平面相对上升时形成的低位前积楔状体以及河流深切谷充填物组成的。低位体系域以初次海泛面为顶界,其上为海进体系域。 11.海进体系域:(Transgressive systems tract,简称TST):是I型和II型层序中部的体系域,是在全球海平面迅速上升与构造沉降共同 产生的海平面相对上升时期形成的,由一系列向陆推进的退积准层序组成,沉积作用缓慢。海侵体系域顶部与具有下超特征的最大海泛面(MFS)相对应。顶部沉积物以沉积慢、分布广、富含有机质和非常薄的海相泥岩沉积的为凝缩段特征。 12.高位体系域:(Highstand systems tract,简称HST):是I型和II型层序上部的体系域,是海平面由相对上升转变为相对下降时期形成的, 沉积物供给速率大于可容空间增加的速率,因此形成了向盆内进积的一个或者多个准层序组。 13.陆架边缘体系域(Shelf-margin systems tract,简称SMST):是与II型层序边界伴生的下部体系域,以一个或者多个微弱前积到加积准层 序组为特征。陆架边缘体系域由陆架和斜坡碎屑岩或碳酸盐岩组成,它们以层序边界为底部边界、由海进面为顶部边界的加积型或前积型准层序组构成。 14.海泛面:(Marine flooding surface)是一个新老地层的分界面,穿过这个界面会有证据表明水深的突然增加。 15.首次海泛面:(First flooding surface)I型层序内部初次跨越陆架坡折的海泛面,即响应于首次越过陆棚坡折带的第一个滨岸上超对应的界 面,也是低位与海侵体系域的屋里界面。 16.最大海泛面:(Maximum flooding surface):是层序中最大海侵时形成的界面,它是海侵体系域的顶界面并被上覆的高位体系域下超,它 以从退积式准层序组变为进积式准层序组为特征,常与凝缩层伴生。 17.准层序:(Parasequence)一个以海泛面或与之相应的面为界的、由成因上有联系的层或层组构成的相对整和序列。 18.准层序组:(Parasequence sets)由成因相关的、一套准层序构成的、具特征堆砌样式的一种地层序列。 19.可容空间:(Accommodation)是指可供沉积物潜在的堆积空间(Jerrey,1989),是全球海平面变化和构造沉降的综合表现,并受控于沉积 背景的基准面变化,或者海平面升降和构造沉降的函数。 20.凝缩层:(Condensed setion)沉积速率很慢、厚度很薄、富含有机质、缺乏陆源物质的半深海和深海沉积物,是在海平面相对上升到最 大、海侵最大时期在陆棚、陆坡和盆地平原地区沉积形成的。 21.并进型沉积:在正常的富含海水的陆棚环境,海平面上升速率相当较慢,足以使得碳酸盐的产率与可容空间的增长保持同步,其沉积以 前积式或加积式颗粒碳酸盐岩沉积准层序为特征,并且只含少量海底胶结物,这种沉积方式为并进型沉积。 22.追补型沉积:在海平面上升速率较快、水体性质不适宜碳酸盐岩产生情况下,碳酸盐岩的沉积速率明显低于可容空间的增长速率,多由 分布较广的泥晶碳酸盐岩组成。 二.经典层序地层学的理论基础:1. 海平面变化具有全球周期性:海平面变化是形成以不整合面以及与之可对比的整合面为界的、成因相关的沉积层序的根本原因。层序地层学可以成为建立全球性地层对比的手段。2.四个变量控制了地层单元几何形态和岩性:一个层序中地层单元的几何形态和岩性由构造沉降、全球海平面升降、沉积物供给速率和气候等四个基本因素的控制。其中构造沉降提供了可供沉积物沉积的可容空间,全球海

相关主题
文本预览
相关文档 最新文档