当前位置:文档之家› 中考数学24题 几何证明

中考数学24题 几何证明

中考数学24题  几何证明
中考数学24题  几何证明

重庆中考数学第24题专题训练

【典题1】如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G为CH的中点,且∠BEH=∠HEG.(1)若HE=HG,求证:△EBH≌△GFC;

(2)若CD=4,BH=1,求AD的长.

(1)证明:∵HE=HG,

∴∠HEG=∠HGE,

∵∠HGE=∠FGC,∠BEH=∠HEG,

∴∠BEH=∠FGC,

∵G是HC的中点,

∴HG=GC,

∴HE=GC,

∵∠HBE=∠CFG=90°.

∴△EBH≌△GFC;

(2)解:过点H作HI⊥EG于I,

∵G为CH的中点,

∴HG=GC,

∵EF⊥DC,

HI⊥EF,

∴∠HIG=∠GFC=90°,

∠FGC=∠HGI,

∴△GIH≌△GFC,

∵△EBH≌△EIH(AAS),

∴FC=HI=BH=1,

∴AD=4-1=3.

【典题2】已知,Rt△ABC中,∠ACB=90°,∠CAB=30°.分别以AB、AC为边,向形外作等边△ABD和等边△ACE.

(1)如图1,连接线段BE、CD.求证:BE=CD;

(2)如图2,连接DE交AB于点F.求证:F为DE中点.

证明:(1)∵△ABD和△ACE是等边三角形,

∴AB=AD,AC=AE,∠DAB=∠EAC=60°,

∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE,

在△DAC和△BAE中,

AC=AE ∠DAC=∠BAE AD=AB ,

∴△DAC≌△BAE(SAS),

∴DC=BE;

(2)如图,作DG∥AE,交AB于点G,

由∠EAC=60°,∠CAB=30°得:∠FAE=∠EAC+∠CAB=90°,

∴∠DGF=∠FAE=90°,

又∵∠ACB=90°,∠CAB=30°,

∴∠ABC=60°,

又∵△ABD为等边三角形,∠DBG=60°,DB=AB,

∴∠DBG=∠ABC=60°,

在△DGB和△ACB中,

∠DGB=∠ACB ∠DBG=∠ABC DB=AB ,

∴△DGB≌△ACB(AAS),

∴DG=AC,

又∵△AEC为等边三角形,∴AE=AC,

∴DG=AE,

在△DGF和△EAF中,

∠DGF=∠EAF ∠DFG=∠EFA DG=EA ,

∴△DGF≌△EAF(AAS),

∴DF=EF,即F为DE中点.

【典题3】如图,在梯形ABCD中,AD∥BC,∠C=90°,E为CD的中点,EF∥AB交BC于点F (1)求证:BF=AD+CF;

(2)当AD=1,BC=7,且BE平分∠ABC时,求EF的长.

(1)证明:如图(1),延长AD交FE的延长线于N

∵∠NDE=∠FCE=90°

∠DEN=∠FEC

DE=EC

∴△NDE≌△FCE

∴DN=CF

∵AB∥FN,AN∥BF∴四边形ABFN是平行四边形

∴BF=AD+DN=AD+FC

(2)解:∵AB∥EF,

∴∠ABN=∠EFC,即∠1+∠2=∠3,

又∵∠2+∠BEF=∠3,

∴∠1=∠BEF,∴BF=EF,

∵∠1=∠2,∴∠BEF=∠2,

∴EF=BF,

又∵ BC+AD=7+1

∴ BF+CF+AD=8

而由(1)知CF+AD=BF

∴ BF+BF=8

∴2BF=8,

∴BF=4,∴BF=EF=4

【典题4】在等腰梯形ABCD中,AD∥BC,AB=AD=CD,∠ABC=60°,延长AD到E,使DE=AD,延长DC到F,使DC=CF,连接BE、BF和EF.

⑴求证:△ABE≌△CFB;

⑵如果AD=6,tan∠EBC的值.

解:(1)证明:连结CE,

在△BAE与△FCB中,

∵ BA=FC,∠A=∠BCF,, AE=BC,

∴△BAE≌△FCB;

(2)延长BC交EF于点G,作AH⊥BG于H,作AM⊥BG,∵△BAE≌△FCB,

∴∠AEB=∠FBG,BE=BF,

∴△BEF为等腰三角形,

又∵AE∥BC,

∴∠AEB=∠EBG,

∴∠EBG=∠FBG,

∴BG⊥EF,

∵∠AMG=∠EGM=∠AEG=90°,

∴四边形AMGE为矩形,

∴AM=EG,

在Rt△ABM中,A

B D

E

C

F

AM=AB ?sin60°=6× 23 =33 ,

∴EG=AM=33,

BG=BM+MG=6×2+6×cos60°=15,

∴tan ∠EBC=531533==BG

EG 【典题5】已知:AC 是矩形ABCD 的对角线,延长CB 至E ,使CE=CA ,F 是AE 的中点,连接DF 、CF 分别交AB 于G 、H 点(1)求证:FG=FH ;(2)若∠E=60°,且AE=8时,求梯形AECD 的面积.

(1)证明:连接BF

∵ABCD 为矩形

∴AB ⊥BC AB ⊥AD AD=BC

∴△ABE 为直角三角形

∵F 是AE 的中点

∴AF=BF=BE

∴∠FAB=∠FBA

∴∠DAF=∠CBF

∵ AD=BC, ∠DAF=∠CBF ,AF=BF ,

∴△DAF ≌△CBF

∴∠ADF=∠BCF

∴∠FDC=∠FCD

∴∠FGH=∠FHG

∴FG=FH ;

(2)解:∵AC=CE ∠E=60° ∴△ACE 为等边三角形

∴CE=AE=8

∵AB ⊥BC

∴BC=BE=CE

21=4

∴根据勾股定理AB=34

∴梯形AECD 的面积=21×(AD+CE)×CD=21

×(4+8)×34=324

【典题6】如图,直角梯形ABCD 中,AD ∥BC ,∠BCD=90°,且CD=2AD ,tan ∠ABC=2,过点D 作DE ∥AB ,

交∠BCD 的平分线于点E ,连接BE .

(1)求证:BC=CD ;

(2)将△BCE 绕点C ,顺时针旋转90°得到△DCG ,连接EG .求证:CD 垂直平分EG ;

(3)延长BE 交CD 于点P .求证:P 是CD 的中点.

证明:(1)延长DE 交BC 于F ,

∵AD ∥BC ,AB ∥DF ,

∴AD=BF ,∠ABC=∠DFC .

在Rt △DCF 中,

∵tan ∠DFC=tan ∠ABC=2, ∴CF CD

=2,

即CD=2CF ,

∵CD=2AD=2BF ,

∴BF=CF ,

∴BC=BF+CF=21CD+21

CD=CD .

即BC=CD .

(2)∵CE 平分∠BCD ,

∴∠BCE=∠DCE ,

由(1)知BC=CD ,

∵CE=CE ,

∴△BCE ≌△DCE ,

∴BE=DE ,

由图形旋转的性质知CE=CG ,BE=DG ,

∴DE=DG ,

∴C ,D 都在EG 的垂直平分线上,

∴CD 垂直平分EG .

(3)连接BD ,

由(2)知BE=DE ,

∴∠1=∠2.

∵AB ∥DE ,

∴∠3=∠2.∴∠1=∠3.

∵AD ∥BC ,∴∠4=∠DBC .

由(1)知BC=CD ,

∴∠DBC=∠BDC ,∴∠4=∠BDP .

又∵BD=BD ,∴△BAD ≌△BPD(ASA)

∴DP=AD .

∵AD=21CD ,∴DP=21

CD .

∴P 是CD 的中点.

【典题7】如图,直角梯形ABCD 中,∠DAB=90°,AB ∥CD ,AB=AD ,∠ABC=60度.以AD 为边在直角梯形

ABCD 外作等边三角形ADF ,点E 是直角梯形ABCD 内一点,且∠EAD=∠EDA=15°,连接EB 、EF .

(1)求证:EB=EF ;

(2)延长FE 交BC 于点G ,点G 恰好是BC 的中点,若AB=6,求BC 的长.

(1)证明:∵△ADF 为等边三角形,

∴AF=AD ,∠FAD=60°

∵∠DAB=90°,∠EAD=15°,AD=AB

∴∠FAE=∠BAE=75°,AB=AF ,

∵AE 为公共边

∴△FAE ≌△BAE

∴EF=EB

(2)过C 作CQ ⊥AB 于Q ,

∵CQ=AB=AD=6,

∵∠ABC=60°,

∴BC=6÷ 23 =34.

【典题8】已知,矩形ABCD 中,延长BC 至E ,使BE=BD ,F 为DE 的中点,连结AF 、CF.求证:

(1)∠ADF=∠BCF ;

(2) AF ⊥CF.

证明:(1)在矩形ABCD 中,

∵∠ADC=∠BCD=90°,

∴∠DCE=90°,

在Rt △DCE 中,

∵F 为DE 中点,

∴DF=CF ,

∴∠FDC=∠DCF ,

∴∠ADC+∠CDF=∠BCD+∠DCF ,

即∠ADF=∠BCF ;

(2)连接BF ,

∵BE=BD ,F 为DE 的中点,

∴BF ⊥DE ,

∴∠BFD=90°,即∠BFA+∠AFD=90°,

在△AFD 和△BFC 中 AD=BC ∠ADF=∠BCF CF=DF ,

∴△ADF ≌△BCF ,

∴∠AFD=∠BFC ,

∵∠AFD+∠BFA=90°,

∴∠BFC+∠BFA=90°,

即∠AFC=90°,

∴AF ⊥FC .

【典题9】如图,在直角梯形ABCD 中,AD ⊥DC ,AB ∥DC ,AB=BC ,AD

与BC 延长线交于点F ,G 是DC 延长线上一点,AG ⊥BC 于E .

(1)求证:CF=CG ;

(2)连接DE ,若BE=4CE ,CD=2,求DE 的长.

解答:(1)证明:连接AC ,

∵DC ∥AB ,AB=BC ,

∴∠1=∠CAB ,∠CAB=∠2,

∴∠1=∠2;

∵∠ADC=∠AEC=90°,AC=AC ,

∴△ADC ≌△AEC ,

∴CD=CE ;

∵∠FDC=∠GEC=90°,∠3=∠4,

∴△FDC ≌△GEC ,

∴CF=CG .

(2)解:由(1)知,CE=CD=2,

∴BE=4CE=8,

∴AB=BC=CE+BE=10,

∴在Rt △ABE 中,AE= AB 2-BE 2 =6,

∴在Rt △ACE 中,AC= AE 2+CE 2 =102

由(1)知,△ADC ≌△AEC ,

∴CD=CE ,AD=AE ,

∴C 、A 分别是DE 垂直平分线上的点,

∴DE ⊥AC ,DE=2EH ;(8分)

在Rt △AEC 中,S △AEC =21 AE ?CE=21

AC ?EH , ∴EH=AC CE

AE ? =10226? =5103

∴DE=2EH=2×5103=510

6

【典题10】如图,在正方形ABCD 中,E 、F 分别为BC 、AB 上两点,且BE=BF ,过点B 作AE 的垂线交AC 于点G ,过点G 作CF 的垂线交BC 于点H 延长线段AE 、GH 交于点M .

(1)求证:∠BFC=∠BEA ;

(2)求证:AM=BG+GM .

证明:(1)在正方形ABCD 中,AB=BC ,∠ABC=90°,

在△ABE 和△CBF 中,

AB=BC ∠ABC=∠ABC BE=BF ,

∴△ABE ≌△CBF (SAS ),

∴∠BFC=∠BEA ;

(2)连接DG ,在△ABG 和△ADG 中,

AB=AD ∠DAC=∠BAC=45° AG=AG ,

∴△ABG ≌△ADG (SAS ),

∴BG=DG ,∠2=∠3,

∵BG ⊥AE ,

∴∠BAE+∠2=90°,

∵∠BAD=∠BAE+∠4=90°,

∴∠2=∠3=∠4,

∵GM⊥CF,

∴∠BCF+∠1=90°,

又∠BCF+∠BFC=90°,

∴∠1=∠BFC=∠2,

∴∠1=∠3,

在△ADG中,∠DGC=∠3+45°,

∴∠DGC也是△CGH的外角,

∴D、G、M三点共线,

∵∠3=∠4(已证),

∴AM=DM,

∵DM=DG+GM=BG+GM,

∴AM=BG+GM.

【典题11】直角梯形ABCD中,AB∥CD,∠C=90°,AB=BC,M为BC边上一点.(1)若∠DMC=45°,求证:AD=AM.(2)若∠DAM=45°,AB=7,CD=4,求BM的值.(1)证明:作AF⊥CD交延长线于点F.

∵∠DMC=45°,∠C=90°

∴CM=CD,

又∵∠B=∠C=∠AFD=90°,AB=BC,

∴四边形ABCF为正方形,

∴BC=CF,

∴BM=DF,

在Rt△ABM和Rt△AFD中,AB=AF,∠B=∠AFD=90°,BM=DF,

∴△ABM≌△AFD,

∴AD=AM.

(2)解:把Rt△ABM绕点A顺时针旋转90°,使AB与AE重合,得Rt△AFN.

∵∠DAM=45°,

∴∠BAM+∠DAF=45°,

由旋转知∠BAM=∠NAF,∴∠DAF+∠NAF=45°,

即∠DAM=∠DAN,

由旋转知AM=AN,

∴△ADM≌△ADN,

∴DM=DN,

设BM=x,

∵AB=BC=CF=7,

∴CM=7-x

又∵CD=4,

∴DF=3,BM=FN=x,

∴MD=DN=3+x,

在Rt △CDM 中,(7-x )2+42=(3+x )2

, 解得:x=514

∴BM 的值为514

答:BM 的值为514

【典题12】如图,AC 是正方形ABCD 的对角线,点O 是AC 的中点,点Q 是AB 上一点,连接CQ ,DP ⊥CQ 于点E ,交BC 于点P ,连接OP ,OQ ;

求证:

(1)△BCQ ≌△CDP ;

(2)OP=OQ .

证明:∵四边形ABCD 是正方形,

∴∠B=∠PCD=90°,BC=CD ,

∴∠2+∠3=90°,

又∵DP ⊥CQ ,

∴∠2+∠1=90°,

∴∠1=∠3,

在△BCQ 和△CDP 中,

∠B=∠PCD BC=CD ∠1=∠3 .

∴△BCQ ≌△CDP .

(2)

连接OB .

由(1):△BCQ ≌△CDP 可知:BQ=PC ,

∵四边形ABCD 是正方形,

∴∠ABC=90°,AB=BC ,

而点O 是AC 中点, ∴BO=21AC=CO ,∠4=21

∠ABC=45°=∠PCO ,

在△BCQ 和△CDP 中, BQ=CP ∠4=∠PCO BO=CO

∴△BOQ ≌△COP ,

∴OQ=OP .

中考数学几何典型例题

几何综合题 一图形与证明中要求:会用归纳和类比进行简单的推理。 图形的认识中要求:会运用几何图形的相关知识和方法(两点之间的距离,等腰三角形、等边三角形、直角三角形的知识,全等三角形的知识和方法,平行四边形的知识,矩形、菱形和正方形的知识,直角三角形的性质,圆的性质)解决有关问题;能运用三角函数解决与直角三角形相关的简单实际问题;能综合运用几何知识解决与圆周角有关的问题;能解决与切线有关的问题。 图形与变换中要求:能运用轴对称、平移、旋转的知识解决简单问题。 二.基本图形及辅助线 解决几何综合题,是需要厚积而薄发,所谓的“几何感觉”,是建立在足够的知识积累的基础上的,熟悉基本图形及常用的辅助线,在遇到特定条件时能够及时联想到对应的模型,找到“新”问题与“旧”模型间的关联,明确努力方向,才能进一步综合应用数学知识来解决问题。在中档几何题目教学中注重对基本图形及辅助线的积累是非常必要的。 举例: 1、与相似及圆有关的基本图形

2、正方形中的基本图形 3、基本辅助线 (1)角平分线——过角平分线上的点向角的两边作垂线(角平分线的性质)、翻折;【参见(一)1;(二)1;西城中考总复习P57例6】* (2)与中点相关——倍长中线(八字全等),中位线,直角三角形斜边中线;【参见(一)2、3、4、5】* (3)共端点的等线段——旋转基本图形(60°,90°),构造圆;垂直平分线,角平分线——翻折;转移线段——平移基本图形(线段)线段间有特殊关系时,翻折;【参见(一)6,7,8,9】 (4)特殊图形的辅助线及其迁移 .... ——梯形的辅助线(什么时候需要这样添加?)等【参见(一)7】 作双高——上底、下底、高、腰(等腰梯形)三推一;面积;锐角三角函数

2017重庆中考数学第25题几何专题训练

G F E D C B A M 证明题 1.如图,△ABC 中,∠BAC=90°,AB=AC ,AD⊥BC,垂足是D ,AE 平分∠BAD,交BC 于点E .在△ABC 外有一点F ,使FA⊥AE,FC⊥BC. (1)求证:BE=CF ; (2)在AB 上取一点M ,使BM=2DE ,连接MC ,交AD 于点N ,连接ME . 求证:①ME⊥BC;②DE=DN. 2.如图,在△ABC 中,∠ACB =90°,AC =BC ,E 为AC 边的中点,过点A 作AD ⊥AB 交BE 的延长线于点D ,CG 平分∠ACB 交BD 于点G ,F 为AB 边上一点,连接CF ,且∠ACF =∠CBG 。 求证:(1)AF =CG ; (2)CF =2DE 3.如图,在矩形ABCD 中,E 、F 分别是边AB 、CD 上的点,AE=CF ,连接EF ,BF ,EF 与对角线AC 交于O 点,且BE=BF ,∠BEF=2∠BAC。 (1)求证:OE=OF ; (2)若BC=23,求AB 的长。 4.已知,如图,在?ABCD 中,AE ⊥BC ,垂足为E ,CE=CD ,点F 为CE 的中点,点G 为CD 上的一点,连接DF 、EG 、AG ,∠1=∠2. (1)若CF=2,AE=3,求BE 的长; (2)求证:∠CEG=∠AGE .

5.如图1,在△ABC中,∠ACB=90°,∠BAC=60°,点E角平分线上一点,过点E作AE的垂线,过点A作AB的线段,两垂线交于点D,连接DB,点F是BD的中点,DH⊥AC,垂足为H,连接EF,HF。 (1)如图1,若点H是AC的中点,AC= 23 ,求AB,BD的长。 (2)如图1,求证:HF=EF。 (3)如图2,连接CF,CE,猜想:△CEF是否是等边三角形若是,请证明;若不是,请说明理由。 6.如图1,△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D,点E在AC边上,连结BE. (1)若AF是△ABE的中线,且AF=5,AE=6,连结DF,求DF的长; (2)若AF是△ABE的高,延长AF交BC于点G. ①如图2,若点E是AC边的中点,连结EG,求证:AG+EG=BE; ②如图3,若点E是AC边上的动点,连结DF.当点E在AC边上(不含端点)运动时,∠DFG的大小是否改变, 如果不变,请求出∠DFG的度数;如果要变,请说明理由. 7.在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E,DF与线段AC (或AC的延长线)相交于点F. (1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长; (2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF扔与线段AC相交于点F.求证: 1 CF 2 BE AB +=; (3)如图3,将(2)中的∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线交与点F,作DN⊥AC于点N,若DN=FN,求证:3() BE CF BE CF +=-. 8.已知在四边形ABCD中,180 ABC ADC ∠+∠=?,AB=BC. A B F D C E 25 B A F D C E G 25 A F D C E G 25

中考数学几何证明经典题

1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二) 2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二) 3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . A P C D B A F G C E B O D D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

F 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) 2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线 EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题: 设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二) 4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形 CBFG ,点P 是EF 的中点. 求证:点P 到边AB 的距离等于AB 的一半.

中考数学几何辅助线大全及常考题型解析

2017年中考数学几何辅助线作法及常考题型解析第一部分常见辅助线做法 等腰三角形 1. 作底边上的高,构成两个全等的直角三角形,这是用得最多的一种方法; 2. 作一腰上的高; 3 .过底边的一个端点作底边的垂线,与另一腰的延长线相交,构成直角三角形。 梯形 1. 垂直于平行边 2. 垂直于下底,延长上底作一腰的平行线 3. 平行于两条斜边 4. 作两条垂直于下底的垂线 5. 延长两条斜边做成一个三角形 菱形 1. 连接两对角 2. 做高 平行四边形 1. 垂直于平行边 2. 作对角线——把一个平行四边形分成两个三角形 3. 做高——形内形外都要注意 矩形 1. 对角线 2. 作垂线 很简单。无论什么题目,第一位应该考虑到题目要求,比如AB=AC+BD....这类的就是想办法作出另一条AB等长的线段,再证全等说明AC+BD=另一条AB,就好了。还有一些关于平方的考虑勾股,A 字形等。 三角形 图中有角平分线,可向两边作垂线(垂线段相等)。 也可将图对折看,对称以后关系现。 角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。 线段垂直平分线,常向两端把线连。 要证线段倍与半,延长缩短可试验。 三角形中两中点,连接则成中位线。 三角形中有中线,延长中线等中线。 解几何题时如何画辅助线? ①见中点引中位线,见中线延长一倍 在几何题中,如果给出中点或中线,可以考虑过中点作中位线或把中线延长一倍来解决相关问题。 ②在比例线段证明中,常作平行线。 作平行线时往往是保留结论中的一个比,然后通过一个中间比与结论中的另一个比联系起来。 ③对于梯形问题,常用的添加辅助线的方法有 1、过上底的两端点向下底作垂线 2、过上底的一个端点作一腰的平行线 3、过上底的一个端点作一对角线的平行线 4、过一腰的中点作另一腰的平行线 5、过上底一端点和一腰中点的直线与下底的延长线相交 6、作梯形的中位线 7、延长两腰使之相交 四边形 平行四边形出现,对称中心等分点。 梯形里面作高线,平移一腰试试看。 平行移动对角线,补成三角形常见。 证相似,比线段,添线平行成习惯。 等积式子比例换,寻找线段很关键。 直接证明有困难,等量代换少麻烦。 斜边上面作高线 初中数学辅助线的添加浅谈

中考数学超好几何证明压轴题大全

1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2. (1)求证:DC=BC; (2)E 是梯形内一点,F 是梯形外一点,且∠EDC=∠FBC ,DE=BF ,试判断△ECF 的形状, 并证明你的结论; (3)在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值. 2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延长线于 G . (1)求证:△ADE ≌△CBF ; (2)若四边形 BEDF 是菱形,则四边形AGBD 是什 么特殊四边形?并证明你的结论. 3、如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中 点O (点O 也是BD 中点)按顺时针方向旋转. (1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM , FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想; (2)若三角尺GEF 旋转到如图13-3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗?若成立,请证明;若不成立,请说明理由. 4、如图,已知⊙O 的直径AB 垂直于弦CD 于E ,连结AD 、BD 、OC 、OD ,且OD =5。 (1)若,求CD 的长; (2)若 ∠ADO :∠EDO =4:1,求扇形OAC (阴影部分)的面积(结果保留)。 5、如图,已知:C 是以AB 为直径的半圆O 上一点,CH ⊥AB 于点H ,直线AC 与过B 点的切线相交于点D ,E 为CH 中点,连接AE 并延长交BD 于点F ,直线CF 交直线AB 于点G. (1)求证:点F 是BD 中点; (2)求证:CG 是⊙O 的切线; (3)若FB=FE=2,求⊙O 的半径. 6、如图,已知O 为原点,点A 的坐标为(4,3), ⊙A 的半径为2.过A 作直线l 平行于x 轴,点P 在直线l 上运动. (1)当点P 在⊙O 上时,请你直接写出它的坐标; (2)设点P 的横坐标为12,试判断直线OP 与⊙A 的位置关系,并说明理由. 7、如图,延长⊙O 的半径OA 到B ,使OA=AB , DE 是圆的一条切线,E 是切点,过点B 作DE 的垂线, 垂足为点C . 求证:∠ACB=31∠OAC . 8、如图1,一架长4米的梯子AB 斜靠在与地 面OM 垂直的墙壁ON 上,梯子与地面的倾斜角α为 60. E B F C D A 图13-2 E A B D G F O M N C 图13-3 A B D G E F O M N C 图13-1 A ( E ) C O D F C A B D O E

中考数学几何证明压轴题

(i (2)若四边形BEDF 是菱形,则四边形AGBD 是什么特殊四边形?并证明你的结论. 3、如图13- 1, 一等腰直角三角尺 GEF 的两条直角边与正方形 ABCD 勺两条边分别 重合在一起?现正方形 ABCD 保持不动,将三角尺 GEF 绕斜边EF 的中点0(点O 也是 BD 中点)按顺时针方向旋转. (1) 如图13- 2,当EF 与AB 相交于点M GF 与 BD 相交于点N 时,通过观察 或 测量BM FN 的长度,猜想BM FN 满足的数量关系,并证明你的猜想; (2) 若三角尺GEF 旋转到如图13-3所示的位置时x 线段.FE 的延长线与AB 的延长线相交于点 M 线段BD 的延长线与F 时,(1)中的猜想还成立吗?若成立, F O (1)若 s i n / A G ) B( E ) 5 勺延长线相交于点N,此 弭■若不成 辺CD 于E ,连结ADg BD 3 OC OD 且0吐5 E (2)若图/3ADO / EDO= 4: 1,求13形OAC(阴影部分)的面积(结果保留 5、如图,已知:C 是以AB 为直径的半圆 O 上一点,CHLAB 于点H,直线 AC 与过B 点的切线相交于点 D, E 为CH 中点,连接 A ¥ 延长交BD 于点F ,直线 F CF 中考专题训练 1、如图,在梯形 ABCD 中,AB// CD , / BCD=90 ,且 AB=1, BC=2 tan / ADC=2. (1) 求证:DC=BC; ⑵E 是梯形内一点, F 是梯形外一点,且/ EDC 2 FBC DE=BF 试判断△ ECF 的形状,并证明你的结论; (3)在(2)的条件下,当BE: CE=1: 2,Z BEC=135 时,求 sin / BFE 的值. 2、已知:如图,在 □ ABCD 中,E 、F 分别为边 AB CD 的中点,BD 是对角线,AG// DB 交CB 的 (1) 求证:△ ADE^A CBF ; D ( F ) 4、如图, =r D -,求CD 的长 C D M B 勺直径AB 垂 请证 立,请说明理由. A G

中考数学几何综合题汇总.doc

如图 8,在Rt ABC中,CAB 90,AC 3 , AB 4 ,点 P 是边 AB 上任意一点,过点 P 作PQ AB 交BC于点E,截取 PQ AP ,联结 AQ ,线段 AQ 交BC于点D,设 AP x ,DQ y .【2013徐汇】 (1)求y关于x的函数解析式及定义域;( 4 分) (2)如图 9,联结CQ,当CDQ和ADB相似时,求x的值;( 5 分) (3)当以点C为圆心,CQ为半径的⊙C和以点B为圆心,BQ为半径的⊙B相交的另一个交点在边 AB 上时,求 AP 的长.( 5 分) C Q D E A P B (图 8) C Q D E A (图 9) P B C A B (备用图) 【2013 奉贤】如图,已知AB是⊙O的直径,AB=8,点C在半径OA上(点C与点O、A不重合),过点 C作 AB的垂线交⊙ O于点 D,联结 OD,过点 B 作 OD的平行线交⊙ O于点 E、交射 线CD于点 F. (1)若 ⌒ ED BE⌒ ,求∠ F 的度数; (2)设CO x, EF y,写出y 与x之间的函数解析式,并写出定义域;

(3)设点 C 关于直线 OD 的对称点为 P ,若△ PBE 为等腰三角形,求 OC 的长. 第 25 题 【 2013 长宁】△ ABC 和△ DEF 的顶点 A 与 D 重合,已知∠ B = 90 . ,∠ BAC = 30 . , BC=6,∠ FDE = 90 , DF=DE=4. (1)如图①, EF 与边 、 分别交于点 ,且 . 设 DF a ,在射线 上取 AC AB G 、H FG=EH DF 一点 P ,记: DP xa ,联结 CP. 设△ DPC 的面积为 y ,求 y 关于 x 的函数解析式,并写 出定义域; (2)在( 1)的条件下,求当 x 为何值时 PC // AB ; ( 3)如图②,先将△ DEF 绕点 D 逆时针旋转,使点 E 恰好落在 AC 边上,在保持 DE 边与 AC 边完 全重合的条件下, 使△ DEF 沿着 AC 方向移动 . 当△ DEF 移动到什么位置时, 以线段 AD 、FC 、BC 的长度为边长的三角形是直角三角形. 图① 图② 【 2013 嘉定】已知 AP 是半圆 O 的直径,点 C 是半圆 O 上的一个动点 (不与点 A 、P 重合),联结 AC ,以直线 AC 为对称轴翻折 AO ,将点 O 的对称点记为 O 1 ,射线 AO 1 交半圆 O 于 点 B ,联结 OC . (1)如图 8,求证: AB ∥ OC ; (2)如图 9,当点 B 与点 O 1 重合时,求证: AB CB ;

中考数学几何证明题大全

几何证明题分类汇编 一、证明两线段相等 1.如图3,在梯形ABCD 中,AD BC ∥,EA AD ⊥,M 是AE 上一点, BAE MCE =∠∠,45MBE =o ∠. (1)求证:BE ME =. (2)若7AB =,求MC 的长. 2、(8分)如图11,一张矩形纸片ABCD ,其中AD=8cm ,AB=6cm ,先沿对角线BD 折叠,点C 落在点C ′的位置,BC ′交AD 于点G. (1)求证:AG=C ′G ; (2)如图12,再折叠一次,使点D 与点A 重合,的折痕EN ,EN 角AD 于M ,求EM 的长. 2、类题演练 3如图,分别以Rt△ABC 的直角 边AC 及斜边AB 向外 作等边 △ACD 、等边△ABE .已知∠BAC =30o,EF ⊥AB ,垂足为F ,连结DF . (1)试说明AC =EF ; (2)求证:四边形ADFE 是平行四边形. 4如图,在△ABC 中,点P 是边AC 上的一个动点,过点P 作直线MN∥BC,设MN 交∠BCA 的平分线于点E ,交∠BCA 的外角平分线于点F . (1)求证:PE =PF ; (2)*当点P 在边AC 上运动时,四边形BCFE 可能是菱形吗?说明理由; 图3 A B C D E F 第20题图

A B C D M N E F P (3)*若在AC 边上存在点P ,使四边形AECF 是正方形,且 AP BC =3 2 .求此时∠A 的大小. 二、证明两角相等、三角形相似及全等 1、(9分)AB 是⊙O 的直径,点E 是半圆上一动点(点E 与点A 、B 都不重合), 点C 是BE 延长线上的一点,且CD ⊥AB ,垂足为D ,CD 与AE 交于点H ,点H 与点A 不重合。 (1)(5分)求证:△AHD ∽△CBD (2)(4分)连HB ,若CD=AB=2,求HD+HO 的值。 2、(本题8分)如图9,四边形ABCD 是正方形,BE ⊥BF ,BE=BF ,EF 与BC 交于点G 。 (1)求证:△ABE≌△CBF ;(4分) (2)若∠ABE=50o,求∠EGC 的大小。(4分) 3、(本题7分)如图8,△AOB 和△COD 均为等腰直角三角形,∠AOB =∠COD =90o,D 在AB 上. (1)求证:△AOC ≌△BOD ;(4分) (2)若AD =1,BD =2,求CD 的长.(3分) 2、类题演练 1、 (8分)如图,已知∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D ,CE 与 AB 相交于F . (1)求证:△CEB ≌△ADC ; (2)若AD =9cm ,DE =6cm ,求BE 及EF 的长. A B C D 图8 O A B D F E 图9 A O D B H E C

中考数学几何证明题汇编

N 几何证明题分类汇编 一、证明两线段相等 1.如图3,在梯形ABCD 中,AD BC ∥,EA AD ⊥,M 是AE 上一点,BAE MCE =∠∠, 45MBE =o ∠. (1)求证:BE ME =. (2)若7AB =,求MC 的长. 2、(8分)如图11,一张矩形纸片ABCD ,其中AD=8cm ,AB=6cm ,先沿对角线BD 折叠,点C 落在点C ′的位置,BC ′交AD 于点G. (1)求证:AG=C ′G ; (2)如图12,再折叠一次,使点D 与点A 重合,的折痕EN ,EN 角AD 于M ,求EM 的长. 2、类题演练 3如图,分别以Rt△ABC 的直角边AC 及斜边AB 向外作等边△ACD 、等边△ABE .已知∠BAC =30o,EF ⊥AB ,垂足为F ,连结DF . (1)试说明AC =EF ; (2)求证:四边形ADFE 是平行四边形. 4如图,在△ABC 中,点P 是边AC 上的一个动点,过点P 作直线MN∥BC,设MN 交∠BCA 的平分线于点 E ,交∠BCA 的外角平分线于点 F . (1)求证:PE =PF ; (2)*当点P 在边AC 上运动时,四边形BCFE 可能是菱形吗?说明理由; (3)*若在AC 边上存在点P ,使四边形AECF 是正方形,且 AP BC =3 2 .求此时∠A 的大小. 图3 A B C D M E A C D E F 第20题图

二、证明两角相等、三角形相似及全等 1、(9分)AB 是⊙O 的直径,点E 是半圆上一动点(点E 与点A 、B 都不重合),点C 是BE 延长线上 的一点,且CD ⊥AB ,垂足为D ,CD 与AE 交于点H ,点H 与点A 不重合。 (1)(5分)求证:△AHD ∽△CBD (2)(4分)连HB ,若CD=AB=2,求HD+HO 的值。 2、(本题8分)如图9,四边形ABCD 是正方形,BE ⊥BF ,BE=BF ,EF 与BC 交于点G 。 (1)求证:△ABE≌△CBF ;(4分) (2)若∠ABE =50o,求∠EGC 的大小。(4分) 3、(本题7分)如图8,△AOB 和△COD 均为等腰直角三角形,∠AOB =∠COD =90o,D 在AB 上. (1)求证:△AOC ≌△BOD ;(4分) (2)若AD =1,BD =2,求CD 的长.(3分) 2、类题演练 1、 (8分)如图,已知∠ACB =90°,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D ,CE 与AB 相交于F . (1)求证:△CEB ≌△ADC ; (2)若AD =9cm ,DE =6cm ,求BE 及EF 的长. 2、已知,在平行四边形ABCD 中,EFGH 分别是AB 、BC 、CD 、DA 上的点,且AE=CG ,BF=DH ,求证:AEH ?≌CGF ? 三、证明两直线平行 A B C D F E 图9 A O D B H E C B F C

中考数学证明题

中考数学证明题 The Standardization Office was revised on the afternoon of December 13, 2020

一、证明题 1. 在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于E.将点C 翻折到对角线BD上的点N处,折痕DF交BC于点F. (1)求证:四边形BFDE为平行四边形; AB=,求BC的长. (2)若四边形BFDE为菱形,且2 2. 如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作 PM⊥AD,PN⊥CD,垂足分别为M、N. (1) 求证:∠ADB=∠CDB; (2) 若∠ADC=90?,求证:四边形MPND是正方形.

3. 如图,四边形ABCD 是平行四边形,DE 平分ADC ∠交AB 于点E ,BF 平分ABC ∠交CD 于点F . (1)求证:DE BF =; (2)连接EF ,写出图中所有的全等三角形.(不要求证明) 4. 如图,在平行四边形ABCD 中,E 为BC 边上的一点.连结AE 、BD ,且AE=AB . (1)求证:ABE EAD ∠=∠; (2)若2AEB ADB ∠=∠,求证:四边形ABCD 是菱形.

5. 如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高. (1)求证:四边形ADEF是平行四边形; (2)求证:∠DHF=∠DEF. 6.四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F. (1)求证:△ADE≌△CBF; (2)若AC与BD相交于点O,求证:AO=CO. 7.已知:如图,在平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.

2019年中考数学真题分类汇编—几何题汇总

2019年中考数学真题分类汇编—几何题汇总 一、选择题 1.【2019连云港市】如图,利用一个直角墙角修建一个梯形储料场ABCD,其中∠C=120°.若新建墙BC与CD总长为12m,则该梯形储料场ABCD的最大面积是 A.18m2B.m2C.2D2 (第1 题)(第2题)(第3题) 2.【2019宿迁】一副三角板如图摆放(直角顶点C重合),边AB与CE交于点F,DE∥BC,则∠BFC等于( ) A.105°B.100°C.75°D.60° 3.【2019宿迁】一个圆锥的主视图如图所示,根据图中数据,计算这个圆锥的侧面积是( ) A.20πB.15πC.12πD.9π 4、【2019常州】下图是某几何体的三视图,该几何体是()

A. 圆柱 B. 正方体 C. 圆锥 D.球 5、【2019常州】如图,在线段PA、PB、PC、PD中,长度最小的是( ) A、线段PA B、线段PB C、线段PC D、线段PD 6.【2019镇江】一个物体如图所示,它的俯视图是( ) A.B. C.D. 7、【2019淮安】下图是由4个相同的小正方体搭成的几何体,则该几何体的主视图是

( ) 8.【2019泰州】如图所示的网格由边长相同的小正方形组成,点A 、B 、C 、D 、E 、F 、 G 在小正方形的顶点上,则△ABC 的重心是( ) A .点D B .点E C .点F D .点G 9、【2019扬州】 已知n 是正整数,若一个三角形的三边长分别是n+2,n+8,3n ,则满足 条件的n 的值有( )A.4个 B.5个 C.6个 D.7个 10.【2019连云港市】如图,在矩形ABCD 中,AD =AB .将矩形ABCD 对折,得 到折痕MN ;沿着CM 折叠,点D 的对应点为E ,ME 与BC 的交点为F ;再沿着MP 折叠,使得AM 与EM 重合,折痕为MP ,此时点B 的对应点为G .下列结论:① △CMP 是直角三角形;②点C 、E 、G 不在同一条直线上;③PC = ;④BP =AB ;⑤点 F 是△CMP 外接圆的圆心.其中正确的个数为A B C E D F G ····

中考数学证明题

中考数学证明题 第一篇:中考数学证明题中考数学证明题o是已知线段ab上的一点,以ob为半径的圆o交ab于点c,以线段ao为直径的半圆圆o于点d,过点b作ab的垂线与ad的延长线交于点e (1)说明ae切圆o于点d (2)当点o位于线段ab何处时,△odc恰好是等边三角形〉?说明理由 答案:一题:显然三角形doe是等边三角形: 理由: 首先能确定o为圆心 然后在三角形obd中:bo=od,再因角b为60度,所以三角形obd为等边三角形; 同理证明三角形oce为等边三角形 从而得到:角bod=角eoc=60度,推出角doe=60度 再因为od=oe,三角形doe为等腰三角形,结合上面角doe=60度,得出结论: 三角形doe为等边三角形 第三题没作思考,有事了,改天再解 二题: 要证明三角形ode为等边三角形,其实还是要证明角doe=60度,因为我们知道三角形ode是等腰三角形。 此时,不妨设角abc=x度,角acb=y度,不难发现,x+y=120度。

此时我们要明确三个等腰三角形:ode;bod;oce 此时在我们在三角形bod中,由于角obd=角odb=x度 从而得出角bod=180-2x 同理在三角形oce中得出角eoc=180-2y 则角bod+角eoc=180-2x+180-2y,整理得:360-2(x+y) 把x+y=120代入,得120度。 由于角eoc+角bod=120度,所以角doe就为60度。 外加三角形doe本身为等腰三角形,所以三角形doe为等边三角形! 图片发不上来,看参考资料里的 1如图,ab⊥bc于b,ef⊥ac于g,df⊥ac于d,bc=df。求证:ac=ef。 2已知ac平分角bad,ce垂直ab于e,cf垂直ad于f,且bc=cd (1)求证:△bce全等△dcf 3. 如图所示,过三角形abc的顶点a分别作两底角角b和角c的平分线的垂线,ad垂直于bd于d,ae垂直于ce于e,求证:ed||bc. 4. 已知,如图,pb、pc分别是△abc的外角平分线,且相交于点p。 求证:点p在∠a的平分线上。 回答人的补充20xx-07-1900:101.在三角形abc中,角abc为60度,ad、ce分别平分角bac角acb,试猜想,ac、ae、cd有怎么样的数

中考数学几何综合题汇总

如图8,在ABC Rt ?中,?=∠90CAB ,3=AC ,4=AB ,点P 是边AB 上任意一点,过点P 作AB PQ ⊥交BC 于点E ,截取AP PQ =,联结AQ ,线段AQ 交BC 于点D ,设x AP =,y DQ =.【2013徐汇】 (1)求y 关于x 的函数解析式及定义域; (4分) (2)如图9,联结CQ ,当CDQ ?和ADB ?相似时,求x 的值; (5分) (3)当以点C 为圆心,CQ 为半径的⊙C 和以点B 为圆心,BQ 为半径的⊙B 相交的另一 个交点在边AB 上时,求AP 的长. (5分) 【2013奉贤】如图,已知AB 是⊙O 的直径,AB =8, 点C 在半径OA 上(点C 与点O 、A 不重合),过点C 作AB 的垂线交⊙O 于点D ,联结OD ,过点B 作OD 的平行线交⊙O 于点E 、交射线CD 于点F . (1)若 ,求∠F 的度数; (2)设,,y EF x CO ==写出y 与x 之间的函数解析式,并写出定义域; (图8) C A B D E P Q C A B D E P Q (图9) (备用图) C A B BE ED =⌒ ⌒

第25题 (3)设点C 关于直线OD 的对称点为P ,若△PBE 为等腰三角形,求OC 的长. 【2013长宁】△ABC 和△DEF 的顶点A 与D 重合,已知∠B =?90. ,∠BAC =?30. ,BC=6,∠ FDE =?90,DF=DE=4. (1)如图①,EF 与边AC 、AB 分别交于点G 、H ,且FG=EH . 设a DF =,在射线DF 上取一点P ,记:a x DP =,联结CP. 设△DPC 的面积为y ,求y 关于x 的函数解析式,并写出定义域; (2)在(1)的条件下,求当x 为何值时 AB PC //; (3)如图②,先将△DEF 绕点D 逆时针旋转,使点E 恰好落在AC 边上,在保持DE 边与AC 边完全重合的条件下,使△DEF 沿着AC 方向移动. 当△DEF 移动到什么位置时,以线段 AD 、FC 、BC 的长度为边长的三角形是直角三角形. 【2013嘉定】已知AP 是半圆O 的直径,点C 是半圆O 上的一个动点(不与点A 、P 重合),联结AC ,以直线AC 为对称轴翻折AO ,将点O 的对称点记为1O ,射线1AO 交半圆O 于点B ,联结OC . (1)如图8,求证:AB ∥OC ; (2)如图9,当点B 与点1O 重合时,求证:CB AB =; 图① 图②

中考数学24题 几何证明

重庆中考数学第24题专题训练 【典题1】如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,E为AB延长线上一点,连接ED,与BC交于点H.过E作CD的垂线,垂足为CD上的一点F,并与BC交于点G.已知G为CH的中点,且∠BEH=∠HEG.(1)若HE=HG,求证:△EBH≌△GFC; (2)若CD=4,BH=1,求AD的长. (1)证明:∵HE=HG, ∴∠HEG=∠HGE, ∵∠HGE=∠FGC,∠BEH=∠HEG, ∴∠BEH=∠FGC, ∵G是HC的中点, ∴HG=GC, ∴HE=GC, ∵∠HBE=∠CFG=90°. ∴△EBH≌△GFC; (2)解:过点H作HI⊥EG于I, ∵G为CH的中点, ∴HG=GC, ∵EF⊥DC, HI⊥EF, ∴∠HIG=∠GFC=90°, ∠FGC=∠HGI, ∴△GIH≌△GFC, ∵△EBH≌△EIH(AAS), ∴FC=HI=BH=1, ∴AD=4-1=3. 【典题2】已知,Rt△ABC中,∠ACB=90°,∠CAB=30°.分别以AB、AC为边,向形外作等边△ABD和等边△ACE. (1)如图1,连接线段BE、CD.求证:BE=CD; (2)如图2,连接DE交AB于点F.求证:F为DE中点. 证明:(1)∵△ABD和△ACE是等边三角形, ∴AB=AD,AC=AE,∠DAB=∠EAC=60°, ∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE, 在△DAC和△BAE中, AC=AE ∠DAC=∠BAE AD=AB ,

∴△DAC≌△BAE(SAS), ∴DC=BE; (2)如图,作DG∥AE,交AB于点G, 由∠EAC=60°,∠CAB=30°得:∠FAE=∠EAC+∠CAB=90°, ∴∠DGF=∠FAE=90°, 又∵∠ACB=90°,∠CAB=30°, ∴∠ABC=60°, 又∵△ABD为等边三角形,∠DBG=60°,DB=AB, ∴∠DBG=∠ABC=60°, 在△DGB和△ACB中, ∠DGB=∠ACB ∠DBG=∠ABC DB=AB , ∴△DGB≌△ACB(AAS), ∴DG=AC, 又∵△AEC为等边三角形,∴AE=AC, ∴DG=AE, 在△DGF和△EAF中, ∠DGF=∠EAF ∠DFG=∠EFA DG=EA , ∴△DGF≌△EAF(AAS), ∴DF=EF,即F为DE中点. 【典题3】如图,在梯形ABCD中,AD∥BC,∠C=90°,E为CD的中点,EF∥AB交BC于点F (1)求证:BF=AD+CF; (2)当AD=1,BC=7,且BE平分∠ABC时,求EF的长. (1)证明:如图(1),延长AD交FE的延长线于N ∵∠NDE=∠FCE=90° ∠DEN=∠FEC DE=EC ∴△NDE≌△FCE ∴DN=CF ∵AB∥FN,AN∥BF∴四边形ABFN是平行四边形 ∴BF=AD+DN=AD+FC (2)解:∵AB∥EF, ∴∠ABN=∠EFC,即∠1+∠2=∠3, 又∵∠2+∠BEF=∠3, ∴∠1=∠BEF,∴BF=EF,

初中数学几何证明经典题(含答案)

初中几何证明题 经典题(一) 1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. 求证:△PBC是正三角形.(初二) .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 .如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG, 即△GHF∽△OGE,可得EO GF = GO GH = CO CD ,又CO=EO,所以CD=GF得证。 A P C D B A F G C E B O D

3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、 CC 1、DD 1的中点. 求证:四边形A 2B 2C 2D 2是正方形.(初二) 4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F . 求证:∠DEN =∠F . 经典题(二) 1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二) D 2 C 2 B 2 A 2 D 1 C 1 B 1 C B D A A 1 B

中考数学几何题集锦

地区:浙江省金华市年份:2011 分值:12.0 难度:难 如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上的一动点,连结OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连结CF.(1)当∠AOB=30°时,求弧AB的长; (2)当DE=8时,求线段EF的长; (3)在点B运动过程中,是否存在以点E、C、F为顶点的三角形与△AOB相似,若存在,请求出此时点E 的坐标;若不存在,请说明理由. 地区:浙江省湖州市年份:2011 分值:14.0 难度:难 如图1.已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M 是BC的中点.P(0,m)是线段OC上一动点(C点除外),直线PM交AB的延长线于点D. (1)求点D的坐标(用含m的代数式表示); (2)当△APD是等腰三角形时,求m的值; (3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2).当点P从点O向点C运动时,点H也随之运动.请直接写出点H所经过的路径长.(不必写解答过程)

地区:山东省济宁市年份:2011 分值:10.0 难度:难 如图,第一象限内半径为2的⊙C与y轴相切于点A,作直径AD,过点D作⊙C 的切线l交x轴于点B,P为直线l上一动点,已知直线PA的解析式为:y=kx +3. (1)设点P的纵坐标为p,写出p随K变化的函数关系式. (2)设⊙C与PA交于点M,与AB交于点N,则不论动点P处于直线l上(除点B以外)的什么位置时,都有△AMN∽△ABP.请你对于点P处于图中位置时的两三角形相似给予证明; (3)是否存在使△AMN的面积等于的k值?若存在,请求出符合的k值;若不存在,请说明理由. 地区:湖南省邵阳市年份:2011 分值:10.0 难度:难 如图(十一)所示,在平面直角坐标系Oxy中,已知点A(,0),点C(0,3) 点B是x轴上一点(位于点A右侧),以AB为直径的圆恰好经过点C. (1)求角ACB的度数; (2)已知抛物线y=ax2+bx+3经过A,B两点,求抛物线的解析式; (3)线段BC上是否存在点D,使△BOD为等腰三角形?若存在,则求出所有符合条件的点D的坐标;若不存在,请说明理由.

中考数学超好几何证明压轴题大全

中考数学超好几何证明压 轴题大全 This manuscript was revised by the office on December 10, 2020.

1、如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2. (1)求证:DC=BC; (2)E 是梯形内一点,F 是梯形外一点,且∠EDC=∠FBC ,DE=BF ,试判断△ECF 的形状,并证明你的结论; (3)在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值. 2、已知:如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG ∥DB 交CB 的延 长线于G . (1)求证:△ADE ≌△CBF ; (2)若四边形 BEDF 是菱形,则四边形AGBD 是什 么特殊四边形并证明你的结论. 3、如图13-1,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋 转. (1)如图13-2,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或 测量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想; (2)若三角尺GEF 旋转到如图13-3所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与GF 的延长线相交于点N ,此时,(1)中的猜想还成立吗若成立,请证明;若不成立,请说明理由. 4、如图,已知⊙O 的直径AB 垂直于弦CD 于E ,连结AD 、BD 、OC 、OD ,且OD =5。 (1)若,求CD 的长; (2)若 ∠ADO :∠EDO =4:1,求扇形OAC (阴影部分)的面积(结果保留 )。 5、如图,已知:C 是以AB 为直径的半圆O 上一点,CH ⊥AB 于点H ,直线AC 与过B 点的切线相交于点D ,E 为CH 中点,连接AE 并延长交BD 于点F ,直线CF 交直线AB 于点G. (1)求证:点F 是BD 中点; (2)求证:CG 是⊙O 的切线; (3)若FB=FE=2,求⊙O 的半径. 6、如图,已知O 为原点,点A 的坐标为(4,3), ⊙A 的半径为2.过A 作直线l 平行于x 轴,点P 在直线l 上运动. (1)当点P 在⊙O 上时,请你直接写出它的坐标; (2)设点P 的横坐标为12,试判断直线OP 与⊙A 的位置关系,并说明理由. 7、如图,延长⊙O 的半径OA 到B ,使OA=AB , DE 是圆的一条切线,E 是切点,过点B 作DE 的垂线, 垂足为点C . 求证:∠ACB=31∠OAC . E B F C D A 图13-2 E A B D G F O M N C 图13-3 A B D G E F O M N C 图13-1 A ( E ) C O D F C A B D O E

中考数学证明题

中考数学证明题 中考数学证明题 ~N累~!!回答人的补充 201X-07-19 00:34 1已知ΔABC,AD是BC边上的中线。E在AB边上,ED平分∠ADB。F在AC边上,FD平分∠ADC。求证:BE+CFEF。 2已知ΔABC,BD是AC边上的高,CE是AB边上的高。F在BD 上,BF=AC。G在CE延长线上,CG=AB。求证:AG=AF,AG⊥AF。 3已知ΔABC,AD是BC边上的高,AD=BD,CE是AB边上的高。AD 交CE于H,连接BH。求证:BH=AC,BH⊥AC。 4已知ΔABC,AD是BC边上的中线,AB= 2,AC= 4,求AD的取值范围。 5已知ΔABC,ABAC,AD是角平分线,P是AD上任意一点。求证:AB-ACPB-PC。 6已知ΔABC,ABAC,AE是外角平分线,P是AE上任意一点。求证:PB+PCAB+AC。 7已知ΔABC,ABAC,AD是角平分线。求证:BDDC。 8已知ΔABD是直角三角形,AB=AD。ΔACE是直角三角形, AC=AE。连接CD,BE。求证:CD=BE,CD⊥BE。 9已知ΔABC,D是AB中点,E是AC中点,连接DE。求证:DE‖BC,2DE=BC。 10已知ΔABC是直角三角形,AB=AC。过A作直线AN,BD⊥AN于D,CE⊥AN于E。求证:DE=BD-CE。

等形 2 1已知四边形ABCD,AB=BC,AB⊥BC,DC⊥BC。E在BC边上, BE=CD。AE交BD于F。求证:AE⊥BD。 2已知ΔABC,ABAC,BD是AC边上的中线,CE⊥BD于E,AF⊥BD 延长线于F。求证:BE+BF=2BD。 3已知四边形ABCD,AB‖CD,E在BC上,AE平分∠BAD,DE平分∠ADC,若AB= 2,CD=3,求AD。 4已知ΔABC是直角三角形,AC=BC,BE是角平分线,AF⊥BE延长线于F。求证:BE=2AF。 5已知ΔABC,∠ACB=90°,AD是角平分线,CE是AB边上的高,CE交AD于F,FG‖AB交BC于G。求证:CD=BG。 6已知ΔABC,∠ACB=90°,AD是角平分线,CE是AB边上的高,CE交AD于F,FG‖BC交AB于G。求证:AC=AG。 7已知四边形ABCD,AB‖CD,∠D=2∠B,若AD=m,DC=n,求AB。 8已知ΔABC,AC=BC,CD是角平分线,M为CD上一点,AM交BC 于E,BM交AC于F。求证:ΔCME≌ΔCMF,AE=BF。 9已知ΔABC,AC=2AB,∠A=2∠C,求证:AB⊥BC。 10已知ΔABC,∠B=60°。AD,CE是角平分线,求证:AE+CD=AC 全等形 4 1已知ΔABC是直角三角形,AB=AC,ΔADE是直角三角形, AD=AE,连接CD,BE,M是BE中点,求证:AM⊥CD。 2已知ΔABC,AD,BE是高,AD交BE于H,且BH=AC,求∠ABC。

相关主题
文本预览
相关文档 最新文档