当前位置:文档之家› 带阻滤波器介绍及ADS设计实例

带阻滤波器介绍及ADS设计实例

带阻滤波器介绍及ADS设计实例
带阻滤波器介绍及ADS设计实例

帯阻滤波器研究

1 绪论

1.1带阻滤波器的研究意义

微波滤波器具有选频、分频和隔离信号等重要作用,在现代微波毫米波通信、卫星通信、遥感和雷达技术等系统中应用广泛,其性能的优劣将直接影响到整个系统的运行质量。而带阻滤波器作为微波滤波器的一种,在通信系统中也起着十分重要的作用。通常在许多微波系统中,要求信号传输时,衰减应尽可能的小,而对不需要的噪声、干扰、杂散等则要抑制掉,即需具有很高的衰减度。带阻滤波器适于在宽频范围滤除某窄带频,无线通信系统中抑制高功率发射机、非线性功放的杂散频谱以及带通滤波器的寄生通带等,这时,如采用一个或几个带阻滤波器来抑制它们,就比采用带通滤波器的宽阻带来抑制更加灵活有效。

传统的带阻滤波器设计结构一般是由1 /4波长短截线谐振器,并沿主波导或主传输线排列,而谐振器间隔为1/ 4波长的奇数倍,这种结构的带阻滤波器的矩形系数不够理想且体积庞大。事实上,比较带通滤波器和带阻滤波器的频率响应,不难发现,带通滤波器的回波损耗对应带阻滤波器的带内衰减,带通滤波器的通带对应带阻滤波器的阻带,带通滤波器的传输零点对应带阻滤波器的反射零点,可见将带通滤波器的各种拓扑结构来实现带阻滤波器的设计是可行的。

随着信息产业和无线通信的蓬勃发展,微波频段呈现相对拥挤的状态,这就对滤波器的性能提出了更高的要求,尤其是在移动通讯基站双工器和多工器中使用的滤波器,除了通带内低插入损耗、小型化的要求外,对通带外的衰减更是提出了苛刻的要求。据此传统的滤波器,比如:最大平坦和切比雪夫滤波器很难胜任。增加滤波器的阶数,可以提高矩形系数,是一种在传统的滤波器设计中比较有效的方法,但这样体积、带内插损均增加了。虽然椭圆函数滤波器具有带外有限零点,零点位置却由阶数决定,且只适用于零点位置对称的情况。以广义切比雪夫函数实现的滤波器通过非相邻谐振腔的交叉耦合,可以产生有限零点,且这些零点可以是对称的,也可以是非对称的,这使得可以更加灵活地根据需要对滤波器的带外抑制度进行调节,提高其矩形系数。

另外,通过引入源与负载间直接耦合,N阶交叉耦合滤波器可以实现N个带外有限远处的零点。但这种结构源与负载之间需要很强的耦合,在一些实际应用中不易实现。非谐振节点的引入,N阶滤波器能产生N个有限频率的零点而不需源与负载直接耦合,也不必交叉耦合。这种方法还便于滤波器的模块化设计,即用于将简单的产生传输零点的结构进行级联,使得每个单元仍能独立的控制其零点,故这种结构的滤波器便于调谐并降低了制造公差的灵敏度。

同轴腔体滤波器在微波频段是应用最广泛的滤波器之一。同轴腔体滤波器的带内插损低,结构紧凑,有电容加载时,同轴腔体滤波器的体积可以做得很小,此外,其还有功率容量高等优点。据此,采用同轴腔体滤波器设计选频双工器,通过改变传统结构,可实现很高的收端异频隔离度和收端同频隔离度。

1.2国内外带阻滤波器的研究现状

在过去的几十年中,带通滤波器已经被广泛研究,但是带阻滤波器的报道较少。一般带阻滤波器设计是由1/4波长短截线谐振器构成的,谐振器间隔1/4长的奇数倍并沿主波导或主传输线排列,这种结构的带阻滤波器的矩形系数不理想

且体积庞大。事实上,考虑到带通滤波器和带阻滤波器的频率响应,不难发带通滤波器的通带对应带阻滤波器的阻带,带通滤波器的回波损耗对应带阻滤器的带内抑制,带通滤波器的传输零点对应与带阻滤波器的反射零点,所以使广泛应用于带通滤波器的耦合拓扑结构来设计带阻滤波器是可行的。

在传统的带阻滤波器设计中,提高矩形系数一种有效的方法就是增加滤波的阶数,但这样做是以牺牲体积和插损为代价的。虽然椭圆函数滤波器具有带传输零点,但是零点位置是由阶数决定的,且椭圆函数滤波器只适用于零点位对称的情况。而交叉耦合结构,它的传输零点位置可以任意设置在阻带有限远处而且个数最多可达到和滤波器的阶数一样多。这种结构既能实现对称的带外抑的情况,也能实现非对称的带外抑制情况。

在高功率通信系统中,为了抑制高功率放大器的杂散干扰,或者邻带的噪声和干扰,往往需要使用双频带阻滤波器。设计双频带阻滤波器的方法为:首先,零点设置在低通原型带内时,经过映射和频率变换后成双频带通滤波器,同样的将双频带通滤波器转换成双频带阻滤波器。应用此基本原理进行设计的双频带滤波器具有选择性高、抑制度好、易于加工调试等优点。

20世纪60年代,G.L.Matthaei系统的描述了滤波器的设计,其中对切比雪夫和椭圆函数型的带阻滤波器的设计描述也较为详细,结构都是由短截线谐振器构成,谐振器间的间隔为1 4波长的奇数倍,并沿主波导或主传输线排列。

70年代,Atia和Williams最早提出了交叉耦合滤波器等效电路的通用理论模型。80年代初期,滤波器设计方法的研究,主要是以实数传输零点来分析和综合交叉耦合滤波函数低通原型元件值。1983年,Jian-Ren.Qian和Wei-Chen.Zhuang为得到高性能的带阻滤波器,首先提出了将应用于带通滤波器的耦合谐振腔模型进行修改,用于带阻滤波器的设计,但是该滤波器的结构复杂,其是将一个含有孔缝耦合的谐振腔再耦合到主波导上。

此后,在A.E.Atia提出的窄带等效电路模型和耦合矩阵概念基础上,R.J. Cameron,S.Tamiazzo,G.Macchiarella和H.C.Bell等对广义切比雪夫滤波器的综合方法作了进一步改进,由矩阵相似变换特点,提出了针对不同拓扑结构,其对应耦合矩阵的不同消元方法,这使得广义切比雪夫滤波器更贴近实用,运用范围更广。其中S.Tamiazzo给出的移项消元是在H.C.Bell提出的轮型结构基础上进行的消元;S.Tamiazzo和G.Macchiarella从不同的角度给出了CT,CQ拓扑结构的消元方法;R.J.Cameron给出了折叠型(folded),异型(Cul-de-Sac)拓扑结构滤波器的消元方法。这些消元方法为滤波器的实际设计提供了种类繁多的拓扑结构,使滤波器的设计更加灵活。

2000年后,S.Amari,R.N.Gajaweera等根据滤波器传输系数和反射系数多项式表达式的特点,得到了能很好的实现滤波器性能的目标函数,即结合二端口网络的定义与窄带电路模型等效参数,得到由耦合矩阵系数表示的目标函数,利用梯度优化法,也得到了实现交叉耦合滤波器性能的等效电路参数。优化法具有理论简单,方法丰富,优化结果灵活多样等优点。在国内,强锐等利用遗传算法与Solvopt算法相结合的优化方法,得到了窄带等效电路参数,即耦合矩阵。优化法利用现成的数学优化算法,根据技术指标和指定的拓扑结构对耦合矩阵进行优化,为使优化出来的耦合系数便于物理实现,应将对其进行一定范围的限制,即提取出具有物理意义的耦合系数。

2004年,Smain Amari将源与负载直接耦合结构应用于带阻滤波器,用综合带通滤波器耦合矩阵的方法综合带阻滤波器的耦合矩阵,但是所综合的耦合矩阵

未经过消零,其中的某些对角交叉耦合是不便实现。2005年,Richard J.Cameron 结合上述方法,提出了一种新型的带阻结构:即源与负载直接耦合的cul-de-sac 结构,这种结构由于在物理结构上容易实现,因而在滤波器的设计中应用比较广泛。

带阻滤波器的可调性也是研究的重要方向,对滤波器的成品率有重要影响。https://www.doczj.com/doc/2b17439595.html,combe 对带阻滤波器在MIC 中的可调性进行了科学的试验,并设计了一款可以随使用时进行调谐调节的带阻滤波器。G .L.Matthaei 中采用带阻滤波器的调谐方法进行了试验,在滤波器的H 面调谐方式有了很好的结果,并对E 面的调谐方式也进行了部分探讨。Auffray 中则是对带阻滤波器的E 面调谐进行了试验,得到了相似的结果。Liu,A.Q 对带阻滤波器和带通滤波器的调谐也做过类似的研究。

对带阻滤波器的其他方面进行的研究也很多,如在2005年的文献中,Torgow,E.N 和Collins,G .E 对带阻滤波起在高功率方面的应用进行了介绍,表明带阻滤波器在高功率方向将可以得到很大的应用前景。

2 设计原理

由集总元件低通滤波器原型可以变换为分布参数帯阻滤波器,分布参数帯阻滤波器采用微带短截线实现,其中理查德变换用于将集总元件变换为传输线段,科洛达规则可以将各滤波器元件分隔开。

通过理查德变换,可以将集总元件的电感和电容用一段终端短路线和终端开路线等效。即电感等效为终端短路线,电容等效为终端开路线。终端短路和终端开路的传输线的输入阻抗具有纯电抗的性,利用传输线的这一特性,可以实现集总元件到分布元件的变换。

在设计低通滤波器时,将集总元件转换为分布元件采用了0λ/8长传输线,

但这种转换方式不能用于帯阻滤波器的设计。帯阻滤波器对应于电路的串联和并联连接方式,在中心频率点必须有最大和最小阻抗,考虑到0λ/4长传输线在中

心频率点f=f 0处正切函数为无穷大,正好符合帯阻滤波器的要求,帯阻滤波器讲集总元件转换为分布参数元件时采用了0λ/4长传输线。

低通原型变换为帯阻滤波器,需要引入带宽系数bf ,bf 为:

)]21(2cot[)2cot(01201

ωωωπωωπ--==bf

在下边频1ω,采用0λ/4长传输线的理查德变换,有如下的关系(bf )1

ωω=S =1,这相当于低通原型的截止频率Ω=1。在上边频2ω,采用0λ/4长传输线的理查德

变换,有如下的关系(bf )2ωω=S =-1,这相当于低通原型的截止频率Ω=-1。

3 设计实例及ADS 仿真

设计一帯阻滤波器,要求中心频率为4GHz ,带宽为1GHz ,阶数为3阶,

阻带衰减小于20dB,阻抗为50 。

3.1设计步骤和参数计算

(1)阶数N=3、最平坦响应低通滤波器原型元件值为:g1=1.0=L1;g2=2.0=C2;g3=1.0=L3(数值为归一化值)。集总参数低通原型电路如图1所示。

图1 低通原型

(2)利用理查德变换,将集总元件变换成短截线,相应的参数为:Z1=0.4142;Z2=1.2071;Z3=0.4142(数值为归一化值)。对应的电路图如图2所示。

图2 短截线等效图

(3)利用科洛达规则,将串联短截线变换为并联短截线。相应的参数为:Z1=3.4142;Z2=1.2071;Z3=3.4142;Z UE1=1.4142;Z UE2=1.4142(数值为归一化值)。由并联短截线构成的帯阻滤波器如图3所示。

图3 帯阻滤波器

3.2ADS仿真

仿真原理图如图4所示。

图4 ADS仿真原理图生成的板图如图5所示。

图5 板图

仿真结果:S11如图6所示。

图6 S

11结果图

仿真结果:S21如图7所示。

结果图

图7 S

21

ads设计的滤波器.

1 课题背景 随着信息化浪潮的推进,现代社会产生了巨大的信息要求,通信技术正在向高速、多频段、大容量方向发展。目前移动通信中所使用的主要频率为0.8-1.0GHz,全球GSM频段分为4段,即850/900/1800/1900MHz。在宽带移动化方面,IEEE802工作组先后制定了WLAN和WiMAX等技术规范,希望能沿着固定、游牧/便携、移动这样的演进路线逐步实现宽带移动化,常用的WLAN通信频段标准为IEEE802.1b/g(2.4-2.5GHz)和IEEE802.11a(5.2-5.8GHz)。为了在移动环境下实现宽带数据传输,IEEE802.16WiMAX成了宽带移动的主要里程碑,促进了移动宽带的演进和发展,2.3-2.4GHz和3.4-3.6GHz频段均被划分为WiMAX的全球性统一无线电频段。这正是S波段的应用,因此如何研究出高性能,小型化的滤波器是目前电路设计的的关键之一。 当频率达到或接近GHz时,滤波器通常由分布参数元件构成,分布参数不仅可以构成低通滤波器,而且可以构成带通和带阻滤波器。平行耦合微带传输线由两个无屏蔽的平行微带传输线紧靠在一起构成,由于两个传输线之间电磁场的相互作用,在两个传输线之间会有功率耦合,这种传输线也因此称为耦合传输线。平行耦合微带线可以构成带通滤波器,这种滤波器是由四分之一波长耦合线段构成,它是一种常用的分布参数带通滤波器。 当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。根据传输线理论,每条单独的微带线都等价为小段串联电感和小段并联电容。每条微带线的特性阻抗为Z0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。单个微带线单元虽然具有滤波特性,但其不能提供陡峭的通带到阻带的过渡。 如果将多个单元级联,级联后的网络可以具有良好的滤波特性。如图1.1所示。

根据ADS的带阻滤波器设计

电磁波与微波技术 课程设计 ----带阻滤波器的设计与仿真 课题:带阻滤波器的设计与仿真 指导老师: 姓名: 学号:

目录 1.设计要求 (3) 2.微带短截线带阻滤波器的理论基础 (3) 2.1理查德变换 (4) 2.2科洛达规则 (6) 3.设计步骤 (7) 3.1ADS 简介 (7) 3.2初步设计过程 (8) 3.3优化设计过程 (14) 3.4对比结果 (17) 4.心得体会 (17) 5.参考文献 (18)

1.课程设计要求: 1.1 设计题目:带阻滤波器的设计与仿真。 1.2设计方式:分组课外利用ads软件进行设计。 1.3设计时间:第一周至第十七周。 1.4 带阻滤波器中心频率:6GHz;相对带宽:9%;带内波纹: <0.2dB。 1.5 滤波器阻带衰减>25dB;在频率5.5GHz和6.5GHz处,衰 减<3dB;输入输出阻抗:50Ω。 2.微带短截线带阻滤波器的理论基础 当频率不高时,滤波器主要是由集总元件电感和电容构成,但当频率高于500Mz时,滤波器通常由分布参数元件构成,这是由于两个原因造成的,其一是频率高时电感和电容应选的元件值小,由于寄生参数的影响,如此小的电感和电容已经不能再使用集总参数元件;其二是此时工作波长与滤波器元件的物理尺寸相近,滤波器元件之间的距离不可忽视,需要考虑分布参数效应。我们这次设计采用短截线方法,将集总元件滤波器变换为分布参数滤波器,其中理查德变换用于将集总元件变换为传输段,科洛达规则可以将各滤波器元件分隔。 2.1 理查德变换

通过理查德变换,可以将集总元件的电感和电容用一段终端短路和终端开路的传输线等效。终端短路和终端开路传输线的输入阻抗具有纯电抗性,利用传输线的这一特性,可以实现集总元件到分布参数元件的变换。 在传输线理论中,终端短路传输线的输入阻抗为: 错误!未找到引用源。= 错误!未找到引用源。(1.0) 式中 错误!未找到引用源。 当传输线的长度错误!未找到引用源。= 错误!未找到引用源。时 错误!未找到引用源。 (1.1) 将式(1.1)代入式(1.1),可以得到 错误!未找到引用源。(1.2)式中 错误!未找到引用源。 (1.3) 称为归一化频率。

ADS设计的带通滤波器

设计报告 学生: 课题:带通滤波器的设计与仿真 目录

摘要 (3) 一平行耦合微带线滤波器的理论基础 (3) 二、平行耦合微带线滤波器的设计的流程图 (4) 三、设计的具体步骤 (5) 1、确定下边频和归一化带宽 (5) 2、在设计向导中生成原理图 (6) 3、平行耦合微带线带通滤波器设计 (7) 4、设计平行耦合微带线带通滤波器原理图 (8) 四、心得体会 (14) 五、参考文献 (14) 带通滤波器的设计与仿真

摘要: 介绍一种借助ADS( Advanced Des ign SySTem )软件进行设计和优化平行耦合微带线带通滤波器的方法,给出了清晰的设计步骤,最后结合设计方法利用ADS给出一个中心频率为2.4 GHz,相对带宽为9%的微带带通滤波器的设计及优化实例和仿真结果,仿真结果表明: 这种方法是可行的,满足设计的要求。 滤波器是用来分离不同频率信号的一种器件。它的主要作用是抑制不需要的信号,使其不能通过滤波器,只让需要的信号通过。在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。平行耦合微带线带通滤波器在微波集成电路中是被广为应用的带通滤波器。 一、滤波器的介绍 (1)波器可以分为四种:低通滤波器和高通滤波器、带通滤波器和带阻滤波器 按照滤波器的制作方法和材料,射频滤波器又可以分为以下四种: (2)波器、同轴线滤波器、带状线滤波器、微带滤波器 (3)滤波的性能指标: 频率范围:滤波器通过或截断信号的频率界限 通带衰减:滤波器残存的反射以及滤波器元件的损耗引起 阻带衰减:取通带外与截止频率为一定比值的某频率的衰减值 寄生通带:有分布参数的频率周期性引起,在通带的一定外有产生新的通带 二、平行耦合微带线滤波器的理论基础 当频率达到或接近GHz时,滤波器通常由分布参数元件构成,分布参数不仅可以构成低通滤波器,而且可以构成带通和带阻滤波器。 平行耦合微带传输线由两个无屏蔽的平行微带传输线紧靠在一起构成,由于两个传输线之间电磁场的相互作用,在两个传输线之间会有功率耦合,这种传输线也因此称为耦合传输线。 平行耦合微带线可以构成带通滤波器,这种滤波器是由四分之一波长耦合线段构成,她是一种常用的分布参数带通滤波器。 当两个无屏蔽的传输线紧靠一起时,由于传输线之间电磁场的相互作用,在传输线之间会有功率耦合,这种传输线称之为耦合传输线。根据传输线理论,每条单独的微带线都等价为小段串联电感和小段并联电容。每条微带线的特性阻抗为Z 0,相互耦合的部分长度为L,微带线的宽度为W,微带线之间的距离为S,偶模特性阻抗为Z e,奇模特性阻抗为Z0。单个微带线单元虽然具有滤波特性,但其不能提供陡峭的通带到阻带的过渡。 如果将多个单元级联,级联后的网络可以具有良好的滤波特性。

微波带通滤波器设计

文章编号:1009-8119(2005)12-0036-02 基于SERENADE软件的微波带通滤波器的设计和仿真 张磊夏永祥 (北京理工大学信息科学技术学院,北京 100081) 摘要论述了应用Ansoft 公司的Serenade 8.7 微波仿真软件设计微波带通滤波器的方法,并给出了优化仿真结果。试验结果表明,利用此软件的优化结果设计出的滤波器具有良好的滤波性能,而且无需调试,一致性好,适用于工程设计。 关键词带通滤波器,Ansoft, 耦合微带线 Design and Simulation of Microwave Band-pass Filter Based on SERENADE Zhang Lei Xia Yongxiang (School of Information and Science,Beijing Institute of Technology,Beijing 100081) Abstract In this paper,the method of design and simulation of microwave band-pass filter based on Serenade8.7 was introduced,and one specific design and simulation is given too. Through the result of the test, we can see that the filter designed based on Serenade8.7 has very good performance and consistency. Keywords Microwave filter,Ansoft, Microstrip line 1 引言 在设计模拟电路时,对高频信号在特定频率或频段内的频率分量做加重或衰减处理是个十分重要的任务,因此,微波带通滤波器便成为现代电子系统中的一种关键部件,它的好坏直接决定系统的整体性能。微带平行耦合带通滤波器是工程上较为常见的一种微波带通滤波器,它是根据反对称原型滤波器设计的,这样构成的平行耦合滤波器是关于其中心对称的。它由N节平行耦合微带线组成,两个微带线之间通过平行耦合线进行耦合,这些耦合线的两端开路,长度在中心频率上为半个波长,这种滤波器可看作由N+1个平行耦合节组合而成,这些耦合节在中心频率上是1/4波长。它的输入、输出由微带T型接头与之相连接,输入、输出阻抗为50欧姆。具有结构简单,易于实现微波部件和系统的集成化等优点。 传统的滤波器设计计算方法比较复杂,而且工作量十分大,而由于现在软件技术的飞速发展,设计手段也变得越来越多,工作效率也越来越高。本设计就是利用ANSOFT公司的SERENADE软件来进行设计和优化。 2 设计步骤 本文所述的微波带通滤波器的设计方法主要包括两个部分: 1.将标准切比雪夫低通滤波器变换为符合要求的特定带通滤波器。 ①首先建立归一化低通切比雪夫滤波器的结构; ②利用频率变换将其低通频率特性变换为带通滤波器频率特性。 2.根据将集总参数元件变为分布参数元件的Richards变换和Kuroda规则用分布参数元件实现这些滤波器。 3 设计实例 滤波器设计要求如下。 信号带宽:1638~1658MHz。 插入损耗:小于1.5dB。 带内波动:小于±0.2dB。

微波滤波器设计的新观点

传统的微波滤波器设计方法从滤波器特性曲线入手,通过网络综合得到集总参数元件的组成模型,进而再用分布参数元件逼近集总参数元件,从而将电路结构由集总参数变为分布参数[1-2]。对于初次接触滤波器设计的人员来说,这种方法具有直观易懂的优点,但是其缺点在于由集总参数模型向分布参数模型转变的过程中,因为分布参数元件频率特性复杂,建模难度较大。现有的文献中只有少数几种分布参数的电路形式有完整的建模分析过程,对于不同的情况下的工程设计有一定的缺憾。近年来复合左右手传输线等新型结构因其能大幅缩短电路尺寸,而在微波电路中展现了良好的应用前景,将复合传输线应用到微波滤波器设计中,成了滤波器设计的一个发展的新趋势[3-4]。 随着计算机性能的提高和电路设计软件功能的完善[5-6],本文提出了一种滤波器设计的新观点。从滤波器的频率特性曲线出发,尝试直接进行分步参数滤波器的设计,去掉了集总参数模型的建模环节,改用软件分析代替。 理想的滤波器频率特性曲线,可用一个门函数表示。对其做傅里叶级数展开,可将原函数用在区间内的无穷多项三角函数进行逼近。在实际应用中,取该级数的前若干项,逼近后的新函数和原函数相比,通带不再是理想的平坦特性,通带和阻带之间也有一定的过渡带,过渡带的长度由所取的项数决定;另一个不同之处是新函数比原函数多了寄生通带, 原因在于选用的逼近函数是周期性的,三角函数的周期性和微带线的周期性十分相近,因此可以考虑利用不同微带线的组合来逼近滤波器频率特性曲线。 1微带线单元模型的频率特性分析 一个微波滤波器可以看作是如下单元的某种组合。 1) 单段微带线 ,如图1所示。 阻抗匹配的微带线在很宽的频段内近似为一条直线,随着频率增加,损耗略有增大。这是由于微带线本身是有耗的,波数中的阻抗系数随频率增加而增大。非阻抗匹配的微带线为近似正弦曲线,且微带线特性阻抗偏离匹配阻抗值越大时,正弦曲线的幅值越大。 将若干段微带线直接级联,可以组成近似的滤波器特性曲线,这种方式需要多节微带线,电路尺寸较大。 2)窄边耦合的微带线,如图2所示。 图2窄边耦合的微带线 Fig.2Narrow -coupled microstrip line 微波滤波器设计的新观点 白志强,丁君,郭陈江 (西北工业大学电子信息学院,陕西西安710129) 摘要:根据三角级数展开理论,将理想滤波器特性曲线做级数展开,然后用单节微带线逼近展开式中的一项或多项,级联后逼近理想的滤波器特性曲线。该方法避免了传统滤波器设计方法中的微带线建模分析的困难,在设计出的电路形式中,各单元的作用更易理解,给滤波器的调节也带来了方便。最后给出了该方法的设计实例,具有较好的频率特性曲线。 关键词:级数展开;微带线;单元分解;波形叠加中图分类号:O453 文献标识码:A 文章编号:1674-6236(2012)21-0153-03 A new viewpoint on microwave filter design BAI Zhi -qiang ,DING Jun ,GUO Chen -jiang (Electronic and Information School ,Northwestern Polytechnical University ,Xi ’an 710129,China ) Abstract:According to the theory of expansion of series ,decompose microwave filter frequency response in series ,use single microstrip line to approximate the items and combine them ,consequently get the approximate ideal frequency response.This method avoid the difficulties of microstip line modeling ,and get a easy approach to the benefits of filter elements ,which makes the adjustment work easier.In the end ,produce an example which shows good frequency response.Key words:expansion of series ;microstrip line ;cell decomposition ;fusion of waves 收稿日期:2012-06-07稿件编号:201206045 作者简介:白志强(1988—),男,湖北黄石人,硕士研究生。研究方向:微波电路设计。 电子设计工程 Electronic Design Engineering 第20卷 Vol.20 第21期No.212012年11月Nov.2012 图1单段微带线 Fig.1Single microstrip line -153-

基于ADS的微带滤波器设计

基于ADS的微带滤波器设计 微波滤波器是用来分离不同频率微波信号的一种器件。它的主要作用是抑制不需要的信号, 使其不能通过滤波器, 只让需要的信号通过。在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一,因此本节将重点研究如何设计并优化微带滤波器。1 微带滤波器的原理微带滤波器当中最基本的滤波器是微带低通滤波器,而其它类型的滤波器可以通过低通滤波器的原型转化过来。最大平坦滤波器和切比雪夫滤波器是两种常用的低通滤波器的原型。微带滤波器中最简单的滤波器就是用开路并联短截线或是短路串联短截线来代替集总元器件的电容或是电感来实现滤波的功能。这类滤波器的带宽较窄,虽然不能满足所有的应用场合,但是由于它设计简单,因此在某些地方还是值得应用的。2 滤波器的分类最普通的滤波器的分类方法通常可分为低通、高通、带通及带阻四种类型。图12.1给出了这四种滤波器的特性曲线。按滤波器的频率响应来划分,常见的有巴特沃斯型、切比雪夫Ⅰ型、切比雪夫Ⅱ型及椭圆型等;按滤波器的构成元件来划分,则可分为有源型及无源型两类;按滤波器的制作方法和材料可分为波导滤波器、同轴线滤波器、带状线滤波器、微带滤波器。3 微带滤波器的设计指标微带滤波器的设计指标主要包括:1绝对衰减(Absolute attenuation):阻带中最大衰减(dB)。 2带宽(Bandwidth):通带的3dB带宽(flow—fhigh)。3中心频率:fc或f0。4截止频率。下降沿3dB点频率。5每倍频程衰减(dB/Octave):离开截止频率一个倍频程衰减(dB)。 6微分时延(differential delay):两特定频率点群时延之差以ns计。 7群时延(Group delay):任何离散信号经过滤波器的时延(ns)。8插入损耗(insertion loss):当滤波器与设计要求的负载连接,通带中心衰减,dB 9带内波纹(passband ripple):在通带内幅度波动,以dB计。10相移(phase shift):当信号经过滤波器引起的相移。 11品质因数Q(quality factor):中心频率与3dB带宽之比。 12反射损耗(Return loss) 13形状系数(shape factor):定义为。 14止带(stop band或reject band):对于低通、高通、带通滤波器,指衰减到指定点(如60dB点)的带宽。工程应用中,一般要求我们重点考虑通带边界频率与通带衰减、阻带边界频率与阻带衰减、通带的输入电压驻波比、通带内相移与群时延、寄生通带。前两项是描述衰减特性的,是滤波器的主要技术指标,决定了滤波器的性能和种类(高通、低通、带通、带阻等);输入电压驻波比描述了滤波器的反射损耗的大小;群时延是指网络的相移随频率的变化率,定义为 dU/df ,群时延为常数时,信号通过网络才不会产生相位失真;寄生通带是由于分布参数传输线的周期性频率特性引起的,它是离设计通带一定距离处又出现的通带,设计时要避免阻带内出现寄生通带。4 微带滤波器的设计本小节设计一个微带低通滤波器,滤波器的指标如下:通带截止频率:3GHz。通带增益:大于-5dB,主要由滤波器的S21参数确定。阻带增益:在4.5GHz以上小于-48dB,也主要由滤波器的S21参数确定。通带反射系数:小于-22dB,由滤波器的S11参数确定。在进行设计时,我们主要是以滤波器的S参数作为优化目标。S21(S12)是传输参数,滤波器通带、阻带的位置以及增益、衰减全都表现在S21(S12)随频率变化的曲线上。S11(S22)参数是输入、输出端口的反射系数,如果反射系数过大,就会导致反射损耗增大,影响系统的前后级匹配,使系统性能下降。了解了滤波器的设计原理以及设计指标后,下面开始设计微带低通滤波器。4.1建立工程新建工程,选择【File】→【New Project】,系统出现新建工程对话框。在name栏中输入工程名:microstrip_filter,并在Project Technology Files栏中选择ADS Standard:Length unit——millimet,默认单位为mm,。单击OK,完成新建工程,此时原理图设计窗口会自动打开。4.2原理图和电路参数设计工程文件创立完毕后,下面介绍微带低通滤波

微波滤波器的设计及实例

滤波器(Filter ) (一)滤波器之种类 以信号被滤掉的频率范围来区分,可分为「低通」(Lowpass)、「高通」(Highpass)、「带通」(Bandpass)及「带阻」(Bandstop)四种。 若以滤波器原型之频率响应来分,则常见有「巴特沃斯型」(Butter-worth)、「切比雪夫I型」(Tchebeshev Type-I)、「切比雪夫II 型」(等几类。 Active)及「被动型」(Passive)型」(L-C Lumped)及「传输线型」( (Interdigital)、「梳型」()及「发针型」 )、「柴比雪夫I 型」(

(二)「低通滤波器」设计方法 (A)「巴特沃斯型」(Butterworth Lowpass Filter) 步骤一:决定规格。 电路特性阻抗(Impedance): Zo (ohm) 通带截止频率(Cutoff Frequency): fc (Hz) ): Ap (dB) ):Ax(dB) ≥ N )。 1 、 1g1 = = + n g N K N K g K ,...., 2,1 , 2 )1 2 ( sin 2= - ? = π 步骤四:先选择「串L并C型」或「并C串L型」,再依公式计算实际电感电容值。 (a)「串L并C型」 Zo f g C f Zo g L c even even C odd odd? = ? = π π2 , 2 (b)「并C串L型」 c even even C odd odd f Zo g L Zo f g c π π2 , 2 ? = ? =

(B)「切比雪夫I型」(Tchebyshev Type-I Lowpass Filter) 步骤一:决定规格。 电路阻抗(Impedance): Zo (ohm) 通带截止频率(Cutoff Frequency): fc (Hz) 阻带起始频率(Stopband Frequency): fx (Hz) 通带涟波量(Maximum Ripple at passband): rp (dB) :Ax(dB) N≥ 1 10 10 10 / 10 / 2 - =- rp Ax N 步骤三:计算原型组件值(Prototype Element Values,g K)。 N K B g A A g A g K K K K K ,..., 3,2 , 4 2 1 1 2 1 1 1 = ? = = - - - α γ α 其中 N K ( sin B N ,..., 2,1 K , N 2 )1 K 2( sin A N 2 sinh , 37 . 17 rp coth ln 1 cosh N 1 cosh 2 2 K K 1 π + γ = = π - = β = γ ? ? ? ? ? ? = β ? ? ? ? ? ? ? ? ? ? ? ? ε = α-

ADS低通滤波器的设计与仿真

电磁场与微波技术 课程设计报告 课程题目:低通滤波器的设计与仿真姓名: 指导老师: 系别:电子信息与电气工程系专业:通信工程 班级: 学号: 完成时间:

低通滤波器的设计与仿真 摘要:微波滤波器是用来分离不同频率微波信号的一种器件。它的主要作用是抑制不需要的信号, 使其不能通过滤波器, 只让需要的信号通过。在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。 关键词:ads;微带线;低通滤波器

一、设计思路 1、设计要求:截止频率:1.1GHz,通带内波纹小于0.2dB,在 1.21GHz 处具有不小于 25dB 的带外衰减。 2、方案选择 利用椭圆函数滤波器设计并仿真,经过优化后,结果调出来的波形能达到指标,但波形会形成带阻波形,只能实现在一定范围内低通。所以不选。 利用切比雪夫滤波器设计并仿真,经过优化调试后可用。 3、设计法案 首先用 LC 设计低通滤波器集总参数模型当频率工作在高频时,要用微带线代替 LC 元件。高阻抗微带线代替串联电感,低阻抗微带线代替并联电容。一般取 Zhigh=120Ω,Zlow=20Ω。在输入和输出加上 50Ω微带线。然后根据设计要求通过 ADS 自带的Linecalc 计算转换过来的微带线长和宽。在进行设计时,主要以滤波器的 S 参数作为优化目标进行优化仿真。 S21(S12) S(表示传输参数,滤波器的通带,阻带的位置以及衰减,起伏全部表现在 S21(S12)随频率变化的曲线上。S11(S22)参数是输入、输出端口的反射系数,由它可以换算输入输出的电压驻波比。如果反射系数过大,就会导致反射损耗过大,影响系统的后级匹配,使系统性能下降。 板材设置:H(基板厚度)=0.8mm,Er(基板相对介电常数)=2.2,Mur (磁导率)=1,Cond(金属电导率)=1E+50,Hu(封装高度)=1E+033mm,T (金属层厚度)=0.01mm,TanD (损耗角正切)=0。 二、仿真过程及电路原理图、版图、S 参数等 经过ADS软件的仿真和折中,以下就以相对比较好的方案为例介绍详细过程以及电路和版图仿真的情况。

(完整word版)微带线带通滤波器的ADS设计

应用ADS 设计微带线带通滤波器 1、微带带通微带线的基本知识 微波带通滤波器是应用广泛、结构类型繁多的微波滤波器,但适合微带结构的带通滤波器结构就不是那么多了,这是由于微带线本身的局限性,因为微带结构是个平面电路,中心导带必须制作在一个平面基片上,这样所有的具有串联短截线的滤波器都不能用微带结构来实现;其次在微带结构中短路端不易实现和精确控制,因而所有具有短路短截线和谐振器的滤波器也不太适合于微带结构。 微带线带通滤波器的电路结构的主要形式有5种: 1、电容间隙耦合滤波器带宽较窄,在微波低端上显得太长,不够紧凑,在2GHz以 上有辐射损耗。 2、平行耦合微带线带通滤波器 窄带滤波器,有5%到25%的相对带宽,能够精确设计,常为人们所乐用。但其在微波低端显得过长,结构不够紧凑;在频带较宽时耦合间隙较小,实现比较困难。 3、发夹线带通滤波器把耦合微带线谐振器折迭成发夹形式而成。这种滤波器由于容易激起表面波,性能不够理想,故常把它与耦合谐振器混合来用,以防止表面波的直接耦合。这种滤波器的精确设计较难。

4、1/4 波长短路短截线滤波器 5、半波长开路短截线滤波器 下面主要介绍平行耦合微带线带通滤波器的设计,这里只对其整个设计过程和方法进行简单的介绍。 2、平行耦合线微带带通滤波器平行耦合线微带带通滤波器是由几节半波长谐振器组合而成的,它不要求对地连接,结构简单,易于实现,是一种应用广泛的滤波器。整个电路可以印制在很薄的介质基片上(可以簿到1mm以下),故其横截面尺寸比波导、同轴线结构的小得多;其纵向尺寸虽和工作波长可以比拟,但采用高介电常数的介质基片,使线上的波长比自由空间小了几倍,同样可以减小;此外,整个微带电路元件共用接地板,只需由导体带条构成电路图形,结构大为紧凑,从而大大减小了体积和重量。 关于平行耦合线微带带通滤波器的设计方法,已有不少资料予以介绍。但是,在设计过程中发现,到目前为止所查阅到的各种文献,还没有一种能够做到准确设计。在经典的工程设计中,为避免繁杂的运算,一般只采用简化公式并查阅图表,这就造成较大的误差。而使用电子计算机进行辅助设计时,则可以力求数学模型精确,而不追求过分的简化。基于实际设计的需要,我对于平行耦合线微带

ADS滤波器设计

微带滤波器的设计(ADS ) https://www.doczj.com/doc/2b17439595.html, 原理 这次设计的滤波器主要是针对前面设计的天线而来的,即要实现最后的级联。所以有必 要阐述一下上次设计的天线的具体规格: 上次设计的天线是在 2.5GHz 附近工作,而我在这里设计的滤波器目的是针对移动通信设计,所要求带宽较窄,令带宽在50MHz 左右,符合天线能提供的范围。滤波器使用的基板参数还是εr= 9.8, h=1.27mm ,此时基板上的50ohm 阻抗传输线的宽大概为1.22mm 。 滤波器主要设计要求如下: 中心频率G0=2.5GHz 带宽=50MHz~70MHz (计算按50MHz ) 在2.55GHz 上衰减达到25dB 这里设计的滤波器为边缘耦合平行耦合线带通滤波器设计图如下: 计算主要参数 1、由低通到带通频率的变换 这里W 为相对带宽, 0 12 12122f f f f f f f W ?=+?==0.02 得到'1 ωω′=2,如果采用切比雪夫原型,查表得到此滤波器为n=4级。 纹波系数为0.01dB 的切比雪夫原型的元件数值分别为: g0=1;g1=0.7168;g2=1.2003;g3=1.3212;g4=0.6476;g5=1.1007;'1ω=1 并且为了简单起见,采用对称耦合的末段。 2、 ???????= 2121W πθ=1.5551=ο1.89; 1tan 2 1θτ==31.828; 计算各个G 参数如下: 7168 .011 1×=G =1.1811;1007.16476.015×=G =1.1844; 2003.17168.012×=G =1.0781;3212.12003.113×=G =0.7941;

ADS低通滤波器的设计与仿真

- - 电磁场与微波技术 课程设计报告 课程题目:低通滤波器的设计与仿真 姓名: 指导老师: 系别:电子信息与电气工程系 专业:通信工程 班级: 学号: 完成时间:

低通滤波器的设计与仿真 摘要:微波滤波器是用来分离不同频率微波信号的一种器件。它的主要作用是抑制不需要的信号, 使其不能通过滤波器, 只让需要的信号通过。在微波电路系统中,滤波器的性能对电路的性能指标有很大的影响,因此如何设计出一个具有高性能的滤波器,对设计微波电路系统具有很重要的意义。微带电路具有体积小,重量轻、频带宽等诸多优点,近年来在微波电路系统应用广泛,其中用微带做滤波器是其主要应用之一。 关键词:ads;微带线;低通滤波器

一、设计思路 1、设计要求:截止频率:1.1GHz,通带波纹小于0.2dB,在1.21GHz 处具有不小于25dB 的带外衰减。 2、方案选择 利用椭圆函数滤波器设计并仿真,经过优化后,结果调出来的波形能达到指标,但波形会形成带阻波形,只能实现在一定围低通。所以不选。 利用切比雪夫滤波器设计并仿真,经过优化调试后可用。 3、设计法案 首先用LC 设计低通滤波器集总参数模型当频率工作在高频时,要用微带线代替LC 元件。高阻抗微带线代替串联电感,低阻抗微带线代替并联电容。一般取Zhigh=120Ω,Zlow=20Ω。在输入和输出加上50Ω微带线。然后根据设计要求通过ADS 自带的Linecalc 计算转换过来的微带线长和宽。在进行设计时,主要以滤波器的S 参数作为优化目标进行优化仿真。S21(S12)S(表示传输参数,滤波器的通带,阻带的位置以及衰减,起伏全部表现在S21(S12)随频率变化的曲线上。S11(S22)参数是输入、输出端口的反射系数,由它可以换算输入输出的电压驻波比。如果反射系数过大,就会导致反射损耗过大,影响系统的后级匹配,使系统性能下降。 板材设置:H(基板厚度)=0.8mm,Er(基板相对介电常数)=2.2,Mur (磁导率)=1,Cond(金属电导率)=1E+50,Hu(封装高度)=1E+033mm,T (金属层厚度)=0.01mm,TanD(损耗角正切)=0。 二、仿真过程及电路原理图、版图、S 参数等 经过ADS软件的仿真和折中,以下就以相对比较好的方案为例介绍详细过程以及电路和版图仿真的情况。

教程:ADS微波滤波器设计

微带滤波器的设计(ADS ) 原理 这次设计的滤波器主要是针对前面设计的天线而来的,即要实现最后的级联。所以有必 要阐述一下上次设计的天线的具体规格: 上次设计的天线是在 2.5GHz 附近工作,而我在这里设计的滤波器目的是针对移动通信设计,所要求带宽较窄,令带宽在50MHz 左右,符合天线能提供的范围。滤波器使用的基板参数还是εr= 9.8, h=1.27mm ,此时基板上的50ohm 阻抗传输线的宽大概为1.22mm 。 滤波器主要设计要求如下: 中心频率G0=2.5GHz 带宽=50MHz~70MHz (计算按50MHz ) 在2.55GHz 上衰减达到25dB 这里设计的滤波器为边缘耦合平行耦合线带通滤波器设计图如下: 计算主要参数 1、由低通到带通频率的变换 这里W 为相对带宽, 0 12 12122f f f f f f f W ?=+?==0.02 得到'1 ωω′=2,如果采用切比雪夫原型,查表得到此滤波器为n=4级。 纹波系数为0.01dB 的切比雪夫原型的元件数值分别为: g0=1;g1=0.7168;g2=1.2003;g3=1.3212;g4=0.6476;g5=1.1007;'1ω=1 并且为了简单起见,采用对称耦合的末段。 2、 ???????= 2121W πθ=1.5551=ο1.89; 1tan 2 1θτ==31.828; 计算各个G 参数如下: 7168 .011 1×=G =1.1811;1007.16476.015×=G =1.1844; 2003.17168.012×=G =1.0781;3212.12003.113×=G =0.7941;

基于ADS的带阻滤波器设计

基于ADS的带阻滤波器设计

————————————————————————————————作者:————————————————————————————————日期: ?

电磁波与微波技术 课程设计 ----带阻滤波器的设计与仿真 课题:带阻滤波器的设计与仿真 ?指导老师: ???姓名: 学号:

目录 1.设计要求 (3) 2.微带短截线带阻滤波器的理论基础 (3) 2.1理查德变换 (4) 2.2科洛达规则 (6) 3.设计步骤.......................73.1ADS简介 (7) 3.2初步设计过程 (8) 3.3优化设计过程···················14 3.4对比结果·····················17 4.心得体会 (17) 5.参考文献 (18)

1.课程设计要求: 1.1 设计题目:带阻滤波器的设计与仿真。 1.2设计方式:分组课外利用ads软件进行设计。 1.3设计时间:第一周至第十七周。 1.4 带阻滤波器中心频率:6GHz;相对带宽:9%;带内波纹: <0.2dB。 1.5滤波器阻带衰减>25dB;在频率5.5GHz和6.5GH z处,衰减<3dB;输入输出阻抗:50Ω。 2.微带短截线带阻滤波器的理论基础 当频率不高时,滤波器主要是由集总元件电感和电容构成,但 当频率高于500Mz时,滤波器通常由分布参数元件构成,这是由于两个原因造成的,其一是频率高时电感和电容应选的元件值小,由于寄生参数的影响,如此小的电感和电容已经不能再使用集总参数元件;其二是此时工作波长与滤波器元件的物理尺寸相近,滤波器元件之间的距离不可忽视,需要考虑分布参数效应。我们这次设计采用短截线方法,将集总元件滤波器变换为分布参数滤波器,其中理查德变换用于将集总元件变换为传输段,科洛达规则可以将各滤波器元件分隔。 2.1 理查德变换

实验二:微波滤波器的设计与仿真

实验二:微波滤波器的设计与仿真 ONE 、实验步骤、仿真结果分析及优化 一:利用传统方法设计集总参数滤波器 电感,电容形成的滤波器成为集总参数滤波器,结合ADS 设计切比雪夫低通滤波器。 1、低通滤波器设计与仿真 设计LC 切比雪夫型低通滤波器,截止频率为75MHz ,衰减为3dB,波纹为1dB ,频率大于100MHz ,衰减大于20dB ,Z0=50Ω。 1)确定指标 特性阻抗Z0=50Ω,截止频率fc=75MHz ,阻带边频fs=100MHz ,通带最大衰减As L =20dB 。 2)计算元件级数 将上述值代入式s A r L A s L n Ω--≥--11.01 .01 cosh 1 101 10cosh ,的原件级数n=5。 3)确定元件值 (1)查表10-2,求原型元件值i g 。 (2)计算变换后元件值,将这些值取整,见表10-3。 4)利用ADS 仿真 (1)创建新项目。 ① 启动ADS2008->选择Main windows 。如下图:

②执行菜单命令【File】/【New Project】,按照提示选择项目保存的路径和输入的文件名。 ③单击按钮,创建新项目。 ④单击,新建电路原理图窗口,开始设计滤波器。 (2)电路设计。 ①在“TLime-Microstrip” 类中选择控件->双击编辑其属性,如图3所示。 图3 ②在“Lumped-Components”类中分别选择控件、-----> 图4

“Simulation-S_Param”中粉分别选择控件、->单击接地图标->放置两个地 ->双击,修改属性,如图4所示,要求仿真频率从0MHz到100MHz,扫描步长为1.0MHz。低通滤波器仿真电路原理图如图5所示。 图5 (3)仿真结果输出。 ①单击按钮,进行仿真,仿真结束后会出现数据显示窗口。 ②单击数据显示窗口左侧工具栏的按钮,弹出设置窗口->在窗口左侧的列表选择S(1,1)即S11参数->单击按钮,弹出单位设置(这里选 择“dB”)窗口,如图6所示->单击两次按钮后,窗口显示出S11参数随频率变化的曲线如图7所示。

微带线带通滤波器的ADS设计

应用ADS设计微带线带通滤波器 1、微带带通微带线的基本知识 微波带通滤波器是应用广泛、结构类型繁多的微波滤波器,但适合微带结构的带通滤波器结构就不是那么多了,这是由于微带线本身的局限性,因为微带结构是个平面电路,中心导带必须制作在一个平面基片上,这样所有的具有串联短截线的滤波器都不能用微带结构来实现;其次在微带结构中短路端不易实现和精确控制,因而所有具有短路短截线和谐振器的滤波器也不太适合于微带结构。 微带线带通滤波器的电路结构的主要形式有5种: 1、电容间隙耦合滤波器 带宽较窄,在微波低端上显得太长,不够紧凑,在2GHz以上有辐射损耗。 2、平行耦合微带线带通滤波器 窄带滤波器,有5%到25%的相对带宽,能够精确设计,常为人们所乐用。但其在微波低端显得过长,结构不够紧凑;在频带较宽时耦合间隙较小,实现比较困难。 3、发夹线带通滤波器 把耦合微带线谐振器折迭成发夹形式而成。这种滤波器由于容易激起表面波,性能不够理想,故常把它与耦合谐振器混合来用,以防止表面波的直接耦合。这种滤波器的精确设计较难。

4、1/4波长短路短截线滤波器 5、半波长开路短截线滤波器 下面主要介绍平行耦合微带线带通滤波器的设计,这里只对其整个设计过程和方法进行简单的介绍。 2、平行耦合线微带带通滤波器 平行耦合线微带带通滤波器是由几节半波长谐振器组合而成的,它不要求对地连接,结构简单,易于实现,是一种应用广泛的滤波器。整个电路可以印制在很薄的介质基片上(可以簿到1mm以下),故其横截面尺寸比波导、同轴线结构的小得多;其纵向尺寸虽和工作波长可以比拟,但采用高介电常数的介质基片,使线上的波长比自由空间小了几倍,同样可以减小;此外,整个微带电路元件共用接地板,只需由导体带条构成电路图形,结构大为紧凑,从而大大减小了体积和重量。 关于平行耦合线微带带通滤波器的设计方法,已有不少资料予以介绍。但是,在设计过程中发现,到目前为止所查阅到的各种文献,还没有一种能够做到准确设计。在经典的工程设计中,为避免繁杂的运算,一般只采用简化公式并查阅图表,这就造成较大的误差。而使用电子计算机进行辅助设计时,则可以力求数学模型精确,而不追求过分的简化。基于实际设计的需要,我对于平行耦合线微带

(完整word版)微带线带通滤波器的ADS设计.doc

应用 ADS 设计微带线带通滤波器 1、微带带通微带线的基本知识 微波带通滤波器是应用广泛、结构类型繁多的微波滤波器,但适合微带结构的带通滤波器结构就不是那么多了,这是由于微带线本身的局限性,因为微带结构是个平面电路,中心导带必须制作在一个平面基片上,这样所有的具有串联短截线的滤波器都不能用微带结构来实现;其次在微带结构中短路端不易实现和精 确控制,因而所有具有短路短截线和谐振器的滤波器也不太适合于微带结构。 微带线带通滤波器的电路结构的主要形式有5种: 1、电容间隙耦合滤波器 带宽较窄,在微波低端上显得太长,不够紧凑,在2GHz以上有辐射损耗。 2、平行耦合微带线带通滤波器 窄带滤波器,有 5%到 25%的相对带宽,能够精确设计,常为人们所乐用。但其在微波低端显得过长,结构不够紧凑;在频带较宽时耦合间隙较小,实现比较困难。 3、发夹线带通滤波器 把耦合微带线谐振器折迭成发夹形式而成。这种滤波器由于容易激起表面 波,性能不够理想,故常把它与耦合谐振器混合来用,以防止表面波的直接耦合。这种滤波器的精确设计较难。

4、1/4 波长短路短截线滤波器 5、半波长开路短截线滤波器 下面主要介绍平行耦合微带线带通滤波器的设计,这里只对其整个设计过程 和方法进行简单的介绍。 2、平行耦合线微带带通滤波器 平行耦合线微带带通滤波器是由几节半波长谐振器组合而成的,它不要求对地连接,结构简单,易于实现,是一种应用广泛的滤波器。整个电路可以印制在很薄的介质基片上 ( 可以簿到 1mm以下 ) ,故其横截面尺寸比波导、同轴线结构的小得多;其纵向尺寸虽和工作波长可以比拟,但采用高介电常数的介质基片,使线上的波长比自由空间小了几倍,同样可以减小;此外,整个微带电路元件共用接地板,只需由导体带条构成电路图形,结构大为紧凑,从而大大减小了体积和重量。 关于平行耦合线微带带通滤波器的设计方法,已有不少资料予以介绍。但是,在设计过程中发现,到目前为止所查阅到的各种文献,还没有一种能够做到准确设计。在经典的工程设计中,为避免繁杂的运算,一般只采用简化公式并查阅图表,这就造成较大的误差。而使用电子计算机进行辅助设计时,则可以力求数学模型精确,而不追求过分的简化。基于实际设计的需要,我对于平行耦合线微带

微波滤波器小型化设计

第9卷 第16期 2009年8月167121819(2009)1624637204  科 学 技 术 与 工 程 Science Technol ogy and Engineering  Vol 19 No 116 Aug .2009 Ζ 2009 Sci 1Tech 1Engng 1 微波滤波器小型化设计 姬五胜 1,2  彭清斌 23 (兰州城市学院电子信息研究所1,兰州730070;兰州理工大学计算机与通信学院2,兰州730050) 摘 要 分析了广义切比雪夫函数和耦合矩阵综合,提出综合广义切比雪夫函数和阶跃阻抗谐振器设计小型化滤波器。采用同轴阶跃阻抗谐振器设计了中心频率为2.14GHz,带宽为60MHz 的交叉耦合滤波器,同时分析了同轴阶跃阻抗谐振器耦合实现方法和电路形式,证明了该方法的可行性,并获得很好的试验结果。同交叉耦合滤波器比较,设计的滤波器体积减小了30%。 关键词 广义切比雪夫函数 交叉耦合 阶跃阻抗谐振器 同轴滤波器中图法分类号 T N713.7; 文献标志码  A 2009年4月20日收到 甘肃省自然科学基金(3ZS061-A25-058)资助 第一作者简介:姬五胜,男,教授,研究方向:微波互连,微波多层滤波器等。 3 通信作者简介:彭清斌,男,硕士,研究方向:微波通信器件设计、电 磁场计算技术等。E 2mail:qingbin99@g mail .com 随着移动通信系统的快速发展,无线电频谱变得越来越拥挤,同时对微波滤波器提出了更高的要求,尤其是要求更高的带外抑制特性和具有更小的体积。采用广义切比雪夫函数设计的交叉耦合滤波器,能通过引入传输零点来提高通道的选择性,即提高了带外抑制特性。同直接耦合形式相比,在相同带外抑制条件下,交叉耦合滤波器具有更少的阶数,从而减小了滤波器体积。在分析交叉耦合的基础上,提出采用阶跃阻抗谐振器实现滤波器,并分析了耦合电路实现方法和电路形式。同时设计了同轴交叉耦合滤波器,获得了很好的试验结果。 1 广义切比雪夫函数原型 R ichard J.Ca mer on 给出了广义切比雪夫滤波 器的原型传输函数 [1] : |s 21|2 = 1 1+ε2 C 2 N (ω) (1)式中ε为带内纹波系数,它与通带内的回波损耗RL 有关,ε= 1 10RL 10-1 。C N (ω)为广义切比雪夫函数。 C N (ω)=ch [ ∑N i =1 ch -1 (x i )](2) 其中x i =ω-1 ωi 1-ωωi ,ωi 是传输零点,N 为滤波器阶数, 也是传输零点的总数。可以证明,当|ω|=1,C N =1;当|ω|<1,C N ≤1;而当|ω|>1,C N >1。如果传输 零点均为无限传输零点(ωi →∞),则广义切比雪夫函数与传统的切比雪夫函数相同。 2 交叉耦合及其实现 具有带外有限传输零点的滤波器,常常采用谐振器多耦合的形式实现 [1] 。这种形式的特点是在 谐振器级联的基础上,非相邻腔之间可以互相耦合即“交叉耦合”,甚至可以采用源于负载的耦合。交叉耦合带通滤波器的等效电路如图1所示。在等效电路模型中,R 1、R 2分别为电源内阻和负载内阻,i k (k =1,2,3,…,N )表示各谐振腔的回路电流,M ij 表 示第i 个谐振腔与第j 个谐振腔之间的互耦合系数 (i,j =1,2,…,N ,且i ≠j ),而源/负载与各腔之间的 耦合系数分别用M S i /M i L 表示。M kk 表示各谐振腔之

相关主题
文本预览
相关文档 最新文档