当前位置:文档之家› 高考文科导数考点汇总

高考文科导数考点汇总

高考文科导数考点汇总
高考文科导数考点汇总

高考导数文科考点总结

一、考试内容

导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 导数概念与运算知识清单 1.导数的概念

函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),

比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)

()(00。如果当0→?x 时,x y

??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )

在点x 0处的导数,记作f’(x 0)或y’|0x x =。

即f (x 0)=0lim →?x x y

??=0lim →?x x x f x x f ?-?+)()(00。

说明:

(1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y

??不存在极限,就说函

数在点x 0处不可导,或说无导数。

(2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ?=f (x 0+x ?)-f (x 0);

(2)求平均变化率x y ??=x x f x x f ?-?+)

()(00; (3)取极限,得导数f’(x 0)=x y

x ??→?0lim

2.导数的几何意义

函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。

3.几种常见函数的导数:

0;

C'=②

()1;

n n

x nx-

'=

(sin)cos

x x

'=

; ④

(cos)sin

x x

'=-

;

⑤();

x x

e e

'=

()ln

x x

a a a

'=

; ⑦

()1

ln x

x

'=

; ⑧

()1

l g log

a a

o x e

x

'=

.

4.两个函数的和、差、积的求导法则

法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差),

即:(

.

)'

'

'v

u

v

=

±

法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个

函数乘以第二个函数的导数,即:

.

)

('

'

'uv

v

u

uv+

=

若C为常数,则

'

'

'

'

'0

)

(Cu

Cu

Cu

u

C

Cu=

+

=

+

=.即常数与函数的积的导数等于常数乘以函数

的导数:

.

)

('

'Cu Cu=

法则3:两个函数的商的导数,等于分子的导数与分母的积,减去分母的导数与分子的积,再除

以分母的平方:

?

?

?

?

?

v

u

‘=2

'

'

v

uv

v

u-

(v≠0)。

形如y=f [x(?])

的函数称为复合函数。复合函数求导步骤:分解——求导——回代。法则:y'

|X= y'|U·u'|X 导数应用知识清单

单调区间:一般地,设函数

)

(x

f

y=在某个区间可导,

如果

'

f)

(x0

>,则)

(x

f为增函数;

如果

'

f0

)

(<

x,则)

(x

f为减函数;

如果在某区间内恒有

'

f0

)

(=

x,则)

(x

f为常数;

2.极点与极值:

曲线在极值点处切线的斜率为0,极值点处的导数为0;曲线在极大值点左侧切线的斜率为正,右侧为负;曲线在极小值点左侧切线的斜率为负,右侧为正;

3.最值:

一般地,在区间[a,b]上连续的函数f

)

(x在[a,b]上必有最大值与最小值。

①求函数?

)

(x在(a,b)内的极值;

②求函数?

)

(x在区间端点的值?(a)、?(b);

③将函数? )(x 的各极值与?(a)、?(b)比较,其中最大的是最大值,其中最小的是最小值。 二、热点题型分析

题型一:利用导数研究函数的极值、最值。

1.

32

()32f x x x =-+在区间[]1,1-上的最大值是 2 2.已知函数2)()(2

=-==x c x x x f y 在处有极大值,则常数c = 6 ;

3.函数3

31x x y -+=有极小值 -1 ,极大值 3

题型二:利用导数几何意义求切线方程

1.曲线3

4y x x =-在点

()1,3--处的切线方程是 2y x =- 2.若曲线x x x f -=4

)(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为 (1,0)

3.若曲线4

y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 430x y --=

4.求下列直线的方程:

(1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2

x y =过点P(3,5)的切线;

解:(1)

123|y k 23 1)1,1(1x /2/2

3===∴+=∴++=-=-上,在曲线点-x x y x x y P

所以切线方程为02

11=+-+=-y x x y 即, (2)显然点P (3,5)不在曲线上,所以可设切点为)

,(00y x A ,则

2

00x y =①又函数的导数为x y 2/

=,

所以过

)

,(00y x A 点的切线的斜率为

/2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有

3

5

2000--=

x y x ②,由①②联立方程组得,??????====25

5 110

000y x y x 或,即切点为(1,1)时,切线斜率为

;

2201==x k ;当切点为(5,25)时,切线斜率为10202==x k ;所以所求的切线有两条,方程分

别为2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即,

或 题型三:利用导数研究函数的单调性,极值、最值

1.已知函数

))1(,1()(,)(23f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1 (Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式;

(Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值; (Ⅲ)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围

解:(1)由

.23)(,)(2

23b ax x x f c bx ax x x f ++='+++=求导数得 过))1(,1()(f P x f y 上点=的切线方程为:

).1)(23()1(),1)(1()1(-++=+++--'=-x b a c b a y x f f y 即

而过.13)]1(,1[)(+==x y f P x f y 的切线方程为上

故??

?-=-=+??

?-=-=++30233

23c a b a c a b a 即

∵124,0)2(,2)(-=+-∴=-'-==b a f x x f y 故时有极值在 ③

由①②③得 a=2,b=-4,c=5 ∴.542)(2

3+-+=x x x x f

(2)).2)(23(443)(2

+-=-+='x x x x x f

当;

0)(,32

2;0)(,23<'<≤->'-<≤-x f x x f x 时当时

13)2()(.0)(,132

=-=∴>'≤

(3)y=f(x)在[-2,1]上单调递增,又

,23)(2

b ax x x f ++='由①知2a+b=0。 依题意)(x f '在[-2,1]上恒有)(x f '≥0,即.032≥+-b bx x

①当

6,03)1()(,16min ≥∴>+-='='≥=

b b b f x f b

x 时; ②当

φ∈∴≥++=-'='-≤=

b b b f x f b

x ,0212)2()(,26min 时;

③当.

60,01212)(,1622min ≤≤≥-='≤≤-b b b x f b 则时

综上所述,参数b 的取值范围是),0[+∞

2.已知三次函数32

()f x x ax bx c =+++在1x =和1x =-时取极值,且(2)4f -=-.

(1) 求函数()y f x =的表达式; (2) 求函数()y f x =的单调区间和极值;

解:(1) 2

()32f x x ax b '

=++,

① ②

由题意得,1,1-是2

320x ax b ++=的两个根,解得,0,3a b ==-.

再由(2)4f -=-可得2c =-.∴3

()32f x x x =--.

(2) 2()333(1)(1)f x x x x '=-=+-,

当1x <-时,()0f x '>;当1x =-时,()0f x '

=; 当11x -<<时,()0f x '<;当1x =时,()0f x '

=;

当1x >时,()0f x '

>.∴函数()f x 在区间(,1]-∞-上是增函数; 在区间[1,

]-1上是减函数;在区间[1,)+∞上是增函数. 函数()f x 的极大值是(1)0f -=,极小值是(1)4f =-.

3.设函数()()()f x x x a x b =--.

(1)若()f x 的图象与直线580x y --=相切,切点横坐标为2,且()f x 在1x =处取极值,求实数,a b 的值;

(2)当b=1时,试证明:不论a 取何实数,函数()f x 总有两个不同的极值点.

解:(1)

2()32().f x x a b x ab '=-++ 由题意(2)5,(1)0f f ''==,代入上式,解之得:a=1,b=1.

(2)当b=1时,

()0f x '=令得方程2

32(1)0.x a x a -++= 因

,0)1(42

>+-=?a a 故方程有两个不同实根21,x x . 不妨设21x x <,由))((3)(21'x x x x x f --=可判断)('

x f 的符号如下: 当时,1x x <)('x f >0;当时,21x x x <<)('x f <0;当

时,2x x >)('

x f >0 因此1x 是极大值点,2x 是极小值点.,当b=1时,不论a 取何实数,函数()f x 总有两个不同的极值点。

题型四:利用导数研究函数的图象

1.如右图:是f (x )的导函数, )(/x f 的图象如右图所示,则f (x )的图象只可能是( D )

(A ) (B ) (C ) (D ) 2.函数的图像为14313

+-=

x x y ( A )

3.方程内根的个数为在)2,0(07622

3=+-x x ( B )

A 、0

B 、1

C 、2

D 、3 题型五:利用单调性、极值、最值情况,求参数取值范围

1.设函数.

10,3231

)(223<<+-+-=a b x a ax x x f

(1)求函数)(x f 的单调区间、极值.

(2)若当]2,1[++∈a a x 时,恒有a x f ≤'|)(|,试确定a 的取值范围.

解:(1)22

()43f x x ax a '=-+-=(3)()x a x a ---,令()0f x '=得12,3x a x a ==

列表如下:

x (-∞,a ) a

(a ,3a ) 3a (3a ,+∞) ()f x ' - 0 + 0 - ()f x

极小

极大

∴()f x 在(a ,3a )上单调递增,在(-∞,a )和(3a ,+∞)上单调递减

x a =时,3

4

()3f x b a =-极小,3x a =时,()f x b =极小

(2)22

()43f x x ax a '=-+-∵01a <<,∴对称轴21x a a =<+,

∴()f x '在[a+1,a+2]上单调递减

22(1)4(1)321Max

f a a a a a '=-+++-=-,

22min

(2)4(2)344f a a a a a '=-+++-=-

依题|()|f x a '≤?||Max f a '≤,min ||f a '≤ 即|21|,|44|a a a a -≤-≤

解得415a ≤≤,又01a << ∴a 的取值范围是4[,1)5

题型六:利用导数研究方程的根

1.已知平面向量a =(3,-1). b =(21

,23).

(1)若存在不同时为零的实数k 和t ,使x =a +(t2-3)b ,y =-k a +t b ,x ⊥y , 试求函数关系式k=f(t) ;

(2) 据(1)的结论,讨论关于t 的方程f(t)-k=0的解的情况. 解:(1)∵x ⊥y ,∴x y ?=0 即[a +(t2-3) b ]·(-k a +t b )=0. 整理后得-k 2

a +[t-k(t2-3)] a

b ?+ (t2-3)·2

b =0

∵a b ?=0,2

a =4,2

b =1,∴上式化为-4k+t(t2-3)=0,即k=41

t(t2-3)

(2)讨论方程41t(t2-3)-k=0的解的情况,可以看作曲线f(t)= 41

t(t2-3)与直线y=k 的交点个

数.

于是f ′(t)= 43(t2-1)= 43

(t+1)(t-1).

t (-∞,-1) -1 (-1,1) 1 (1,+ ∞) f ′(t) + 0 - 0 + F(t)

极大值

极小值

当t=-1时,f(t)有极大值,f(t)极大值=21

. 当t=1时,f(t)有极小值,f(t)极小值=-21

函数f(t)=41

t(t2-3)的图象如图13-2-1所示,

可观察出:

(1)当k >21或k <-21

时,方程f(t)-k=0有且只有一解;

(2)当k=21或k=-21

时,方程f(t)-k=0有两解; (3) 当-21<k <21

时,方程f(t)-k=0有三解.

题型七:导数与不等式的综合

1.设

ax x x f a -=>3

)(,0函数在),1[+∞上是单调函数.求实数a 的取值范围; 解:(1) ,3)(2

a x x f y -='='若)(x f 在[)+∞,1上是单调递减函数,则须,3,02

x a y ><'即这

样的实数a 不存在.故)(x f 在[)+∞,1上不可能是单调递减函数.

若)(x f 在[)+∞,1上是单调递增函数,则a ≤2

3x , 由于

[)33,,12

≥+∞∈x x 故.从而0

()()()

2f x x x a =++

(1)若函数()f x 的图象上有与x 轴平行的切线,求a 的取值范围 (2)若'(1)0f -=,(Ⅰ)求函数()f x 的单调区间

(Ⅱ)证明对任意的

12(1,0)

x x ∈-、,不等式

125

|()()|16f x f x -<

恒成立

解:

3233()22f x x ax x a =++

+,23'()322f x x ax ∴=++

函数()f x 的图象有与x 轴平行的切线,'()0f x ∴=有实数解

2344302a ∴?=-??≥,292a ≥,所以a

的取值范围是3

[22-∞+∞(,,)

'(1)0f -=,

33202a ∴-+

=,94a =,2931

'()33()(1)

222f x x x x x ∴=++=++ 由'()0,1f x x ><-或

12x >-

;由1'()0,12f x x <-<<-

()f x ∴的单调递增区间是1(,1),(,)

2-∞--+∞;单调减区间为

1

(1,)2--

易知()f x 的最大值为

25(1)8f -=

,()f x 的极小值为149()216f -=,又27

(0)8f =

()f x ∴在[10]-,上的最大值

278M =

,最小值49

16m =

∴对任意12,(1,0)x x ∈-,恒有

1227495

|()()|81616f x f x M m -<-=

-=

题型八:导数在实际中的应用

1.统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/

小时)的函数解析式可以表示为:

313

8(0120).

12800080y x x x =

-+<≤

已知甲、乙两地相距100千米。

(I )当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升? (II )当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?

解:(I )当40x =时,汽车从甲地到乙地行驶了100

2.5

40=小时,

要耗没313(40408) 2.517.5

12800080?-?+?=(升)。

(II )当速度为x 千米/小时时,汽车从甲地到乙地行驶了100

x 小时,设耗油量为()h x 升,

依题意得3213100180015

()(8).(0120),

1280008012804h x x x x x x x =-+=+-<≤ 33

2280080'()(0120).

640640x x h x x x x -=-=<≤

令'()0,h x =得80.x =

当(0,80)x ∈时,'()0,()h x h x <是减函数; 当(80,120)x ∈时,'()0,()h x h x >是增函数。

∴当80x =时,()h x 取到极小值(80)11.25.h =

因为()h x 在(0,120]上只有一个极值,所以它是最小值。

答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升。当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升。

题型九:导数与向量的结合

1.设平面向量

3113(

),().2222a b =-=,,若存在不同时为零的两个实数s 、t 及实数k ,使

b t s k t ⊥+-=-+=,)(2

(1)求函数关系式()S f t =;

(2)若函数()S f t =在[)∞+,

1上是单调函数,求k 的取值范围。 解:(1)

).23,21(),21,23(

=-=b a 10a b a b ==?=,

2

22

2223,0000x y x y a t k b sa tb sa t t k b t st sk a b s t k t s f t t kt ⊥?=??+--+=??-+--+?=∴-+-===-又,得

()()

,即()-()。(),故()。

(2)

[)上是单调函数,,)在(且)(∞+-='132t f k t t f

则在[)+∞,1上有00)(≤'≥')

(或t f t f 由

3)3(3030)(min 2

22≤?≤?≤?≥-?≥'k t k t k k t t f ; 由2

23030)(t k k t t f ≥?≤-?≤'。

因为在t ∈[)+∞,1上2

3t 是增函数,所以不存在k ,使2

3t k ≥在[)+∞,1上恒成立。故k 的取值范

围是3≤k 。

一、选择题

1. 一个物体的运动方程为S=1+t+t^2其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度是( )

A 7米/秒

B 6米/秒

C 5米/秒

D 8米/秒 2. 已知函数f (x )=ax 2

+c ,且(1)f '=2,则a 的值为( )

A.1

B.2

C.-1

D. 0

3 ()f x 与()g x 是定义在R 上的两个可导函数,若()f x ,()g x 满足'

'

()()f x g x =,则

()f x 与()g x 满足( )

A ()f x =2()g x

B ()f x -()g x 为常数函数

C ()f x =()0g x =

D ()f x +()g x 为常数函数 4. 函数3

y

x x 的递增区间是( )

A )1,(-∞

B )1,1(-

C ),(+∞-∞

D ),1(+∞

5.若函数f(x)在区间(a ,b )内函数的导数为正,且f(b)≤0,则函数f(x)在(a , b )内有( )

A. f(x) 〉0

B.f(x)〈 0

C.f(x) = 0

D.无法确定 6.0'()f x =0是可导函数y =f(x)在点x =x 0处有极值的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .非充分非必要条件 7.曲线3

()

2f x x x

在0p 处的切线平行于直线41y

x ,则0p 点的坐标为( )

A (1,0)

B (2,8)

C (1,0)和(1,4)--

D (2,8)和(1,4)--

8.函数3

13y x x =+- 有 ( )

A.极小值-1,极大值1

B. 极小值-2,极大值3

C.极小值-1,极大值3

D. 极小值-2,极大值2

9 对于R 上可导的任意函数()f x ,若满足'

(1)()0x f x -≥,则必有( )

A (0)(2)2(1)f f f +<

B (0)(2)2(1)f f f +≤ C

(0)(2)2(1)f f f +≥ D (0)(2)2(1)f f f +>

10.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示,则函数)(x f 在开区间),(b a 内有极小值点( )

A. 1个

B.2个

C.3个

D.4个 二、填空题

11.函数32

y x x x =--的单调区间为___________________________________. 12.已知函数3

()f x x ax =+在R 上有两个极值点,则实数a 的取值范围是 . 13.曲线x x y 43

-=在点(1,3)- 处的切线倾斜角为__________.

14.对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则数列

1n a n ??

??+??

的前n 项和的公式是 . 三、解答题:

15.求垂直于直线2610x y -+=并且与曲线32

35y x x =+-相切的直线方程

16.如图,一矩形铁皮的长为8cm ,宽为5cm ,在四个角上截去

四个相同的小正方形,制成一个无盖的小盒子,问小正方形的边长 为多少时,盒子容积最大?

17.已知c bx ax x f ++=2

4)(的图象经过点(0,1),且在1x =处的切线方程是2y x =-,请解答下列问题:

(1)求)(x f y =的解析式; (2)求)(x f y =的单调递增区间。

18.已知函数3

2

()f x x ax bx c =+++在2

3

x =-与1x =时都取得极值 (1)求,a b 的值与函数()f x 的单调区间

(2)若对[1,2]x ∈-,不等式2

()f x c <恒成立,求c 的取值范围

19.已知1x =是函数3

2

()3(1)1f x mx m x nx =-+++的一个极值点,其中,,0m n R m ∈<, (1)求m 与n 的关系式; (2)求()f x 的单调区间;

(3)当[]1,1x ∈-时,函数()y f x =的图象上任意一点的切线斜率恒大于3m ,求m 的取值范围.

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

高考文科导数考点汇总完整版

高考文科导数考点汇总 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

高考导数文科考点总结 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 导数概念与运算知识清单 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?) -f (x 0),比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即 x y ??=x x f x x f ?-?+)()(00。如果当0→?x 时,x y ??有极限,我们就说函数y=f(x)在点x 0处 可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0 lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明: (1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就 说函数在点x 0处不可导,或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。

由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 2.导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。 3.几种常见函数的导数: ①0;C '= ② ()1 ; n n x nx -'= ③(sin )cos x x '=; ④(cos )sin x x '=-; ⑤();x x e e '=⑥()ln x x a a a '=; ⑦()1ln x x '=; ⑧()1l g log a a o x e x '=. 4.两个函数的和、差、积的求导法则 法则1:两个函数的和(或差)的导数,等于这两个函数的导数的和(或差), 即: ( .)'''v u v u ±=± 法则2:两个函数的积的导数,等于第一个函数的导数乘以第二个函数,加上第一个

高考文科数学导数全国卷

导数高考题专练 1、(2012课标全国Ⅰ,文21)(本小题满分12分) 设函数f (x )= e x -ax -2 (Ⅰ)求f (x )的单调区间 (Ⅱ)若a =1,k 为整数,且当x >0时,(x -k ) f ′(x )+x +1>0,求k 的最大值 2、(2013课标全国Ⅰ,文20)(本小题满分12分) 已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4. (1)求a ,b 的值; (2)讨论f (x )的单调性,并求f (x )的极大值. 3、(2015课标全国Ⅰ,文21).(本小题满分12分) 设函数2()ln x f x e a x =-. (Ⅰ)讨论()f x 的导函数'()f x 零点的个数; (Ⅱ)证明:当0a >时,2 ()2ln f x a a a ≥+。 4、(2016课标全国Ⅰ,文21)(本小题满分12分) 已知函数.2)1(2)(-+-= x a e x x f x )( (I)讨论)(x f 的单调性; (II)若)(x f 有两个零点,求的取值范围. 5、((2016全国新课标二,20)(本小题满分12分) 已知函数()(1)ln (1)f x x x a x =+--. (I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程;

(II)若当()1,x ∈+∞时,()0f x >,求a 的取值范围. 6(2016山东文科。20)(本小题满分13分) 设f (x )=x ln x –ax 2+(2a –1)x ,a ∈R . (Ⅰ)令g (x )=f'(x ),求g (x )的单调区间; (Ⅱ)已知f (x )在x =1处取得极大值.求实数a 的取值范围. 2017.(12分) 已知函数)f x =(a e 2x +(a ﹣2) e x ﹣x . (1)讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围. 2018全国卷)(12分) 已知函数()1 ln f x x a x x = -+. ⑴讨论()f x 的单调性; ⑵若()f x 存在两个极值点1x ,2x ,证明: ()()1212 2f x f x a x x -<--. 导数高考题专练(答案) 1 2解:(1)f ′(x )=e x (ax +a +b )-2x -4. 由已知得f (0)=4,f ′(0)=4. 故b =4,a +b =8. 从而a =4,b =4. (2)由(1)知,f (x )=4e x (x +1)-x 2-4x ,

高考复习文科导数知识点总结

导数知识点 一.考纲要求 考试内容8 要求层次 A B C 导数及其应用 导数概念及其几何意义 导数的概念 √ △ 导数的几何意义 √ 导数的运算 根据导数定义求函数y c =,y x =, 2 y x =, 1y x = 的导数 √ 导数的四则运算 √ 导数公式表◇ √ 导数在研究函数中的应 用 利用导数研究函数的单调性(其中多项式函数不超过三次) ☆ √ 函数的极值、最值(其中多项式函数不超过三次) ☆ √ 利用导数解决某些实际问题 √ 二.知识点 1.导数的几何意义: 函数)(x f y =在点0x 处的导数的几何意义就是曲线)(x f y =在点))(,(0x f x 处的切线的斜率,也就是说,曲线)(x f y =在点P ))(,(0x f x 处的切线的斜率是)(0'x f ,切线方程为 ).)((0' 0x x x f y y -=- 2.、几种常见函数的导数 ①'C 0=;②1')(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos ' -=; ⑤a a a x x ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log ' = ;⑧x x 1)(ln ' = 3.导数的运算法则 (1)'''()u v u v ±=±. (2)''' ()uv u v uv =+. (3)'' ' 2 ()(0)u u v uv v v v -=≠. 4. 极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的 极大值,极小值同理) 当函数)(x f 在点0x 处连续时, ①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值;

2019年高考文科数学导数及其应用分类汇编

导数及其应用 1.【2019年高考全国Ⅱ卷文数】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为 A .10x y --π-= B .2210x y --π-= C .2210x y +-π+= D .10x y +-π+= 【答案】C 【解析】2cos sin ,y x x '=-π2cos πsin π2,x y =∴=-=-' 则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=. 故选C . 2.【2019年高考全国Ⅲ卷文数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==, D .1e a -=,1b =- 【答案】D 【解析】∵e ln 1,x y a x '=++ ∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D . 3.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),03 2x x f x x a x ax x 0 C .a >–1,b <0 D .a >–1,b >0 【答案】C 【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x , 则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣b x 3 (a +1)x 2+ax ﹣ax ﹣b x 3 (a +1)x 2﹣b ,

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

2019年高考数学理科数学 导数及其应用分类汇编

2019年高考数学理科数学 导数及其应用 1.【2019年高考全国Ⅲ卷理数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==, D .1e a -=,1b =- 【答案】D 【解析】∵e ln 1,x y a x '=++ ∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D . 2.【2019年高考天津理数】已知a ∈R ,设函数222,1, ()ln , 1.x ax a x f x x a x x ?-+≤=?->?若关于x 的不等式()0 f x ≥在R 上恒成立,则a 的取值范围为 A .[] 0,1 B .[] 0,2 C .[]0,e D .[] 1,e 【答案】C 【解析】当1x =时,(1)12210f a a =-+=>恒成立; 当1x <时,2 2 ()22021 x f x x ax a a x =-+≥?≥-恒成立, 令2 ()1 x g x x =-, 则222(11)(1)2(1)1 ()111x x x x g x x x x -----+=-=-=- --- 11122(1)2011x x x x ???? =--+-≤--?= ? ? ?--???? , 当1 11x x -= -,即0x =时取等号, ∴max 2()0a g x ≥=,则0a >.

当1x >时,()ln 0f x x a x =-≥,即ln x a x ≤恒成立, 令()ln x h x x = ,则2ln 1()(ln )x h x x -'=, 当e x >时,()0h x '>,函数()h x 单调递增, 当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =, ∴min ()e a h x ≤=, 综上可知,a 的取值范围是[0,e]. 故选C. 3.(2019浙江)已知,a b ∈R ,函数32 ,0 ()11(1),03 2x x f x x a x ax x 0 C .a >–1,b <0 D .a >–1,b >0 【答案】C 【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x , 则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣b x 3 (a +1)x 2+ax ﹣ax ﹣b x 3 (a +1)x 2﹣b , 2(1)y x a x =+-', 当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意; 当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点. 根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点?函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:

高考文科导数考点汇总(2020年整理).doc

高考导数文科考点总结 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 导数概念与运算知识清单 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0), 比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+) ()(00。如果当0→?x 时,x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x ) 在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明: (1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函 数在点x 0处不可导,或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 2.导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。

高考文科导数考点汇总

高考导数文科考点 一、考试内容 导数的概念,导数的几何意义,几种常见函数的导数; 两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。 导数概念与运算知识清单 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0), 比值x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+) ()(00。如果当0→?x 时,x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x ) 在点x 0处的导数,记作f’(x 0)或y’|0x x =。 即f (x 0)=0lim →?x x y ??=0lim →?x x x f x x f ?-?+)()(00。 说明: (1)函数f (x )在点x 0处可导,是指0→?x 时,x y ??有极限。如果x y ??不存在极限,就说函 数在点x 0处不可导,或说无导数。 (2)x ?是自变量x 在x 0处的改变量,0≠?x 时,而y ?是函数值的改变量,可以是零。 由导数的定义可知,求函数y=f (x )在点x 0处的导数的步骤(可由学生来归纳): (1)求函数的增量y ?=f (x 0+x ?)-f (x 0); (2)求平均变化率x y ??=x x f x x f ?-?+) ()(00; (3)取极限,得导数f’(x 0)=x y x ??→?0lim 。 2.导数的几何意义 函数y=f (x )在点x 0处的导数的几何意义是曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率。也就是说,曲线y=f (x )在点p (x 0,f (x 0))处的切线的斜率是f’(x 0)。相应地,切线方程为y -y 0=f/(x 0)(x -x 0)。

(完整版)高三文科数学导数专题复习

高三文科数学导数专题复习 1.已知函数)(,3 ,sin )(x f x x b ax x f 时当π =+=取得极小值 33 -π . (Ⅰ)求a ,b 的值; (Ⅱ)设直线)(:),(:x F y S x g y l ==曲线. 若直线l 与曲线S 同时满足下列两个条件: (1)直线l 与曲线S 相切且至少有两个切点; (2)对任意x ∈R 都有)()(x F x g ≥. 则称直线l 为曲线S 的“上夹线”. 试证明:直线2:+=x y l 是曲线x b ax y S sin :+=的“上夹线”. 2. 设函数3 221()231,0 1.3 f x x ax a x a =- +-+<< (1)求函数)(x f 的极大值; (2)若[]1,1x a a ∈-+时,恒有()a f x a '-≤≤成立(其中()f x '是函数()f x 的导函数),试确定实数a 的取值范围. 3.如图所示,A 、B 为函数)11(32 ≤≤-=x x y 图象上两点,且AB//x 轴,点M (1,m )(m>3)是△ABC 边AC 的中点. (1)设点B 的横坐标为t ,△ABC 的面积为S ,求S 关于t 的函数关系式)(t f S =; (2)求函数)(t f S =的最大值,并求出相应的点C 的坐标.

4. 已知函数x a x x f ln )(2-=在]2,1(是增函数,x a x x g -=)(在(0,1)为减函数. (I )求)(x f 、)(x g 的表达式; (II )求证:当0>x 时,方程2)()(+=x g x f 有唯一解; (III )当1->b 时,若21 2)(x bx x f -≥在x ∈]1,0(内恒成立,求b 的取值范围 5. 已知函数3 2 ()f x x ax bx c =+++在2x =处有极值,曲线()y f x =在1x =处的切线平行于直线32y x =--,试求函数()f x 的极大值与极小值的差。 6.函数x a x x f - =2)(的定义域为]1,0((a 为实数). (1)当1-=a 时,求函数)(x f y =的值域; (2)若函数)(x f y =在定义域上是减函数,求a 的取值范围; (3)求函数)(x f y =在∈x ]1,0(上的最大值及最小值,并求出函数取最值时x 的值. 7.设x=0是函数2()()()x f x x ax b e x R =++∈的一个极值点. (Ⅰ)求a 与b 的关系式(用a 表示b ),并求)(x f 的单调区间; (Ⅱ)设]2,2[,,)1()(,0212 2-∈++-=>+ξξ问是否存在x e a a x g a ,使得|1|)()(21≤-ξξg f 成立?若存在,求a 的取值范围;若不存在,说明理由. 8. 设函数()2ln q f x px x x =- -,且()2p f e qe e =--,其中e 是自然对数的底数. (1)求p 与q 的关系;

高考复习文科函数与导数知识点总结

函数与导数知识点复习测试卷(文) 一、映射与函数 1、映射 f :A →B 概念 (1)A 中元素必须都有________且唯一; (2)B 中元素不一定都有原象,且原象不一定唯一。 2、函数 f :A →B 是特殊的映射 (1)、特殊在定义域 A 和值域 B 都是非空数集。函数 y=f(x)是“y 是x 的函数”这句话的数学 表示,其中 x 是自变量,y 是自变量 x 的函数,f 是表示对应法则,它可以是一个解析式,也可以是表格或图象, 也有只能用文字语言叙述.由此可知函数图像与垂直x 轴的直线________公共点,但与垂直 y 轴的直线公共点可能没有,也可能是任意个。(即一个x 只能对应一个y ,但一个y 可以对应多个x 。) (2)、函数三要素是________,________和________,而定义域和对应法则是起决定作用的要素, 因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数. 二、函数的单调性 在函数f (x )的定义域内的一个________上,如果对于任意两数x 1,x 2∈A 。当x 1

高考文科数学导数知识点总结

2014高考文科数学:导数知识点总结 (4) x x sin )(cos -='. (5) x x )(ln = ';e a x x a log )(log ='. (6) x x e e =')(; a a a x x ln )(='.(7)' ' ' ()u v u v ±=±. (8)' ' ' ()uv u v uv =+. (9)'' '2 ()(0)u u v uv v v v -= ≠. (10)2' 11x x -=?? ? ?? (11) ()x x 21' = 5.导数的应用 ①单调性:如果0)(' >x f ,则)(x f 为增函数;如果0)(' 'x f ,右侧0)(<'x f ,则)(0x f 是极大值;(“左增右减↗↘”) 如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,则)(0x f 是极小值.(“左减右增↘↗”) 附:求极值步骤 )(x f 定义域→)(' x f →)(' x f 零点→列表: x 范围、)(' x f 符号、)(x f 增减、)(x f 极值 ③求[]b a ,上的最值:)(x f 在()b a ,内极值与)(a f 、)(b f 比较

6. 三次函数 d cx bx ax x f +++=23)( c bx ax x f ++=23)(2 / 图象特征:(针对导函数)0,0>?>a 0,0>??有极值;)(0x f ?≤?无极值 (其中“?”针对导函数) 练习题: 一. 选择题 1. 3 2 ()32f x ax x =++,若' (1)4f -=,则a 的值等于( ) A . 319 B .316 C .313 D .3 10 2. 一个物体的运动方程为2 1t t s +-=其中s 的单位是米,t 的单位是秒,那么物体在3秒末的瞬时速度 是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3. 函数3 y x x =+的递增区间是( ) A .),0(+∞ B .)1,(-∞ C .),(+∞-∞ D .),1(+∞ 4. 若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000 ()() lim h f x h f x h h →+-- 的值为( ) A .'0()f x B .'02()f x C .' 02()f x - D .0 5. 函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( ) A .充分条件 B .必要条件 C .充要条件 D .必要非充分条件 6. 函数344 +-=x x y 在区间[]2,3-上的最小值为( ) A .72 B .36 C .12 D .0 7. 函数()3 2 3922y x x x x =---<<有( ) A .极大值5,极小值27- B .极大值5,极小值11- C .极大值5,无极小值 D .极小值27-,无极大值 8. 曲线3 ()2f x x x =+-在0p 处的切线平行于直线41y x =-,则0p 点的坐标为( ) A .(1,0) B .(2,8) C .(1,0)和(1,4)-- D .(2,8)和(1,4)-- 9. 若' 0()3f x =-,则000()(3) lim h f x h f x h h →+--=( ) A .3- B .6- C .9- D .12- 10. ()f x 与()g x 是定义R 上的可导函数,若()f x ,()g x 满足' ' ()()f x g x =,则()f x 与()g x 满足( )

高考文科数学导数真题汇编(带答案)

高考数学文科导数真题汇编答案 一、客观题组 4 5. 7.设函数()f x 在R 上可导,其导函数()f x ',且函数()f x 在2x =-处取得极小值,则函数()y xf x '=的图象可能是

8设函数f (x )= 2 x +lnx 则 ( ) A .x=12为f(x)的极大值点 B .x=1 2为f(x)的极小值点 C .x=2为 f(x)的极大值点 D .x=2为 f(x)的极小值点 9、函数y= 12 x 2 -㏑x 的单调递减区间为 (A )(-1,1] (B )(0,1] (C.)[1,+∞) (D )(0,+∞) 11(2018年高考1卷) 12(2019年高考1卷) 一、 客观题答案1B ; 2.D; 3.y=x+1; 4.A . 5.y=2x-2 6D ,7C; 8D; 9B; 10.C 11.D; 12.y=3x 二、大题组 【2011新课标】21. 已知函数ln ()1a x b f x x x = ++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。 (1)求a 、b 的值; (2)证明:当0x >,且1x ≠时, f (x )>ln x x -1 【解析】

(1)22 1 ( ln ) '()(1)x x b x f x x x α+-= - + 由于直线230x y +-=的斜率为1 2 - ,且过点(1,1), 故(1)1,1'(1),2f f =???=-?? 即1,1,22 b a b =???-=-?? 解得1a =,1b =。 (2)由(1)知f (x )=x x x 11ln ++,所以f (x )-ln x x -1=11-x 2 (2ln x -x 2-1 x ), 考虑函数,则2 2 222)1()1(22)(x x x x x x x h --=---=', 所以x ≠1时h ′(x )<0,而h (1)=0 故)1,0(∈x 时,h (x )>0可得,),1(+∞∈x 时,h (x )<0可得, 从而当,且时,. 【2012新课标】21. 设函数f (x ) = e x -ax -2 (1)求f (x )的单调区间 (2)若a =1,k 为整数,且当x >0时,(x -k ) f ′(x )+x +1>0,求k 的最大值 【解析】 (1) f (x )的定义域为(,)-∞+∞,()x f x e a '=-, 若0a ≤,则()0f x '>,所以()f x 在(,)-∞+∞单调递增. 若0a >,则当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,()0f x '>,所以()f x 在(,ln )a -∞单调递减,在(ln ,)a +∞单调递增. (2)由于1a =,所以()()1()(1)1x x k f x x x k e x '-++=--++. 故当0x >时,()()10x k f x x '-++>等价于1(0) (1) x x k x x e +<+>-①. 令1()(1) x x g x x e +=+-,则221(2)()1(1)(1)x x x x x xe e e x g x e e ----'=+= --. 由(1)知,函数()2x h x e x =--在(0,)+∞单调递增,而(1)0h <,(2)0h >, 所以()h x ,在(0,)+∞存在唯一的零,故()g x '在(0,)+∞存在唯一的零点. 设此零点为a ,则(1,2)a ∈. 当(0,)x a ∈时,()0g x '<;当(,)x a ∈+∞时,()0g x '>. 所以()g x 在(0,)+∞的最小值为()g a . 又由()0g a '=,可得2a e a =+,所以()1(2,3)g a a =+∈. 由于①式等价于()k g a <,故整数k 的最大值为2 【2013新课标1】20. 已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4. (1)求a ,b 的值; ln ()1x f x x > -ln ()1x f x x >-0x >1x ≠ln ()1 x f x x >-

20122017年全国高考文科导数大题官方解答

2012--2017全国卷高考真题导数大题 1.(2012新课标全国卷1文21,本小题满分12分) 设函数()2x f x e ax =--. (Ⅰ)求()f x 的单调区间; (Ⅱ)若1a =,k 为整数,且当0x >时,()()10x k f x x '-++>,求k 的最大值. 解:(Ⅰ)()f x 定义域为(,)-∞+∞,()x f x e a '=-, 若0a ≤,则()0f x '>,所以()f x 在(,)-∞+∞单调递增; 若0a >,则当(,ln )x a ∈-∞时,()0f x '<;当(ln ,)x a ∈+∞时,)0f x '>( , 所以()f x 在(,ln )a -∞,单调递减,在(ln ,)a +∞单调递增; (Ⅱ)由于1a =,所以()()1()(1)1x x k f x x x k e x '-++=--++, 故当0x >时,()()10x k f x x '-++>等价于1 (0)1 x x k x x e +< +>-,① 令1 ()1 x x g x x e +=+-,则22 1(2)()1(1)(1)x x x x x xe e e x g x e e ----'=+=--, 由(Ⅰ)知,函数()2x h x e x =--在(0,)+∞单调递增,而(1)0h <,(2)0h >, 所以()h x 在(0,)+∞存在唯一零点,故()g x '在(0,)+∞存在唯一零点, 设此零点为α,则(1,2)α∈, 当(0,)x α∈时,()0g x '<;当(,)x α∈+∞时,)0g x '>( , 所以()g x 在(0,)+∞的最小值是()g α, 又()0g α'=,可得2e α α=+,所以()1(2,3)g αα=+∈, 由于①等价于()k g α<,故整数k 的最大值为2. 2.(2013新课标全国卷1文21,本小题满分12分) 已知函数2 ()()4x f x e ax b x x =+--,曲线()y f x =在点(0,(0))f 处切线方程为

20122017年高考文科数学真题汇编导数及应用老师版

学科教师辅导教案 学员姓名年级高三辅导科目数学 授课老师课时数2h 第次课授课日期及时段 2018年月日:—: 1.(2014大纲理)曲线1x y xe- =在点(1,1)处切线的斜率等于( C ) A.2e B.e C.2 D.1 2.(2014新标2理) 设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x,则a= ( D ) A. 0 B. 1 C. 2 D. 3 3.(2013浙江文) 已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如右图所示, 则该函数的图象是(B) 4.(2012陕西文)设函数f(x)= 2 x +lnx 则( D ) A.x= 1 2 为f(x)的极大值点B.x= 1 2 为f(x)的极小值点 C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点 5.(2014新标2文) 函数() f x在 x x =处导数存在,若 :()0 p f x=: :q x x =是() f x的极值点,则A.p是q的充分必要条件 B. p是q的充分条件,但不是q的必要条件 C. p是q的必要条件,但不是q的充分条件 D. p既不是q的充分条件,也不是q的必要条件 【答案】C 6.(2012广东理)曲线33 y x x =-+在点() 1,3处的切线方程为___________________. 【答案】2x-y+1=0 7.(2013广东理)若曲线ln y kx x =+在点(1,)k处的切线平行于x轴,则k= 【答案】-1 8.(2013广东文)若曲线2ln y ax x =-在点(1,)a处的切线平行于x轴,则a=.历年高考试题汇编(文)——导数及应用

导数文科高考数学真题

2012-2017导数专题 1.(2014大纲理)曲线1x y xe- =在点(1,1)处切线的斜率等于( C ) A.2e B.e C.2 D.1 2.(2014新标2理) 设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x,则a= ( D ) A. 0 B. 1 C. 2 D. 3 3.(2013浙江文) 已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图象如右图所示, 则该函数的图象是(B) 4.(2012陕西文)设函数f(x)= 2 x +lnx 则( D ) A.x= 1 2 为f(x)的极大值点B.x= 1 2 为f(x)的极小值点 C.x=2为f(x)的极大值点D.x=2为f(x)的极小值点 5.(2014新标2文) 函数() f x在 x x =处导数存在,若 :()0 p f x=: :q x x =是() f x的极值点,则A.p是q的充分必要条件 B. p是q的充分条件,但不是q的必要条件 C. p是q的必要条件,但不是q的充分条件 D. p既不是q的充分条件,也不是q的必要条件 【答案】C 6.(2012广东理)曲线在点处的切线方程为___________________. 【答案】2x-y+1=0 7.(2013广东理)若曲线在点处的切线平行于轴,则 【答案】-1 8.(2013广东文)若曲线在点处的切线平行于轴,则. 【答案】 1 2 9.(2014广东文)曲线53 x y e =-+在点(0,2) -处的切线方程为. 【答案】5x+y+2=0 10.(2013江西文)若曲线y=xα+1(α∈R)在点(1,2)处的切线经过坐标原点,则α=。 33 y x x =-+() 1,3 ln y kx x =+(1,)k x k= 2ln y ax x =-(1,)a x a=

人教版高考文科数学专题复习导数训练题及参考答案

高考文科数学专题复习导数训练题(文) (附参考答案) 一、考点回顾 1.导数的概念及其运算是导数应用的基础,是高考重点考查的内容.考查方式以客观题为主,主要考查导数的基本公式和运算法则,以及导数的几何意义. 2.导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题.选择填空题侧重于利用导数确定函数的单调性、单调区间和最值问题,解答题侧重于导数的综合应用,即与函数、不等式、数列的综合应用. 3.应用导数解决实际问题,关键是建立适当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极值,而此时不用和端点值进行比较,也可以得知这就是最值. 二、经典例题剖析 考点一:求导公式 例1)(/ x f 是123 1)(3 ++= x x x f 的导函数,则=-)1(/f . 考点二:导数的几何意义 例2. 已知函数)(x f y =的图象在点))1(,1(f M 处的切线方程是22 1 +=x y ,则=+)1()1(/f f . 考点三:导数的几何意义的应用 例3.已知曲线,23:2 3 x x x y C +-=直线,:kx y l =且直线l 与曲线C 相切于点()(),0,000≠x y x 求 直线l 的方程及切点坐标. 考点四:函数的单调性 例4.设函数c bx ax x x f 8332)(2 3 +++=在1=x 及2=x 时取得极值. (1)求b a ,的值及函数)(x f 的单调区间; (2)若对于任意的[],3,0∈x 都有)(x f <2 c 成立,求c 的取值范围. 考点五:函数的最值 例5.已知a 为实数,).)(4()(2 a x x x f --=(1)求导数)(/ x f ;(2)若,0)1(/ =-f 求)(x f 在区间[]2,2-上的最 值. 考点六:导数的综合性问题 例6. 设函数)0()(3 ≠++=a c bx ax x f 为奇函数,其图象在点())1(,1f 处的切线与直线 076=--y x 垂直,导函数.12|)(min /-=x f (1)求c b a ,,的值; (2)求函数)(x f 的单调递增区间,并求函数)(x f 在[]3,1-上的最大值和最小值. 例7.已知cx bx ax x f ++=2 3 )(在区间[]1,0上是增函数,在区间()()+∞∞-,1,0,上是减函数,又

相关主题
文本预览
相关文档 最新文档