当前位置:文档之家› 小学奥数--排列组合教案

小学奥数--排列组合教案

小学奥数--排列组合教案
小学奥数--排列组合教案

小学奥数-----排列组合教案

加法原理和乘法原理

排列与组合:熟悉排列与组合问题。运用加法原理和乘法原理解决问题。在日常生活中我们经常会遇到像下面这样的两类问题:问题一:从 A 地到 B 地,可以乘火车,也可以乘汽车或乘轮船。一天中,火车有 4 班,汽车有 3 班,轮船有 2 班。那么从 A 地到 B 地共有多少种不同的走法?问题二:从甲村到乙村有两条道路,从乙村去丙村有 3 条道路(如下图)。从甲村经乙村去丙村,共有多少种不同的走法?解决上述两类问题就是运用加法原理和乘法原理。加法原理:完成一件工作共有N类方法。在第一类方法中有m

1

种不同的方法,

在第二类方法中有m

2种不同的方法,……,在第N类方法中有m

n

种不同的方法,

那么完成这件工作共有N=m

1+m

2

+m

3

+…+m

n

种不同方法。

运用加法原理计数,关键在于合理分类,不重不漏。要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。合理分类也是运用加法原理解决问题的难点,不同的问题,分类的标准往往不同,需要积累一定的解题经验。

乘法原理:完成一件工作共需N个步骤:完成第一个步骤有m

1

种方法,完成第

二个步骤有m

2种方法,…,完成第N个步骤有m

n

种方法,那么,完成这件工作

共有m

1×m

2

×…×m

n

种方法。

运用乘法原理计数,关键在于合理分步。完成这件工作的N个步骤,各个步骤之间是相互联系的,任何一步的一种方法都不能完成此工作,必须连续完成这N

步才能完成此工作;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此工作的方法也不同。

这两个基本原理是排列和组合的基础,与教材联系紧密(如四下《搭配的规律》),教学时要先通过生活中浅显的实例,如购物问题、行程问题、搭配问题等,帮助孩子理解两个原理,再让孩子学习运用原理解决问题。

运用两个原理解决的都是比较复杂的计数问题,在解题时要细心、耐心、有条理地分析问题。计数时要注意区分是分类问题还是分步问题,正确运用两个原理。灵活机动地分层重复使用或综合运用两个原理,可以巧妙解决很多复杂的计数问题。小学阶段只学习两个原理的简单应用。

【例题一】每天从武汉到北京去,有 4 班火车,2 班飞机,1 班汽车。请问:每天从武汉到北京去,乘坐这些交通工具共有多少种不同的走法?

【解析】运用加法原理,把组成方法分成三类:一类乘坐火车,二类乘坐飞机,三类乘坐洗车.

解:4+2+1=7(种)

【例题二】用1角、2角和5角的三种人民币(每种的张数没有限制)组成1元钱,有多少种方法?

【解析】运用加法原理,把组成方法分成三大类:

①只取一种人民币组成1元,有3种方法:10张1角;5张2角;2张5角。

②取两种人民币组成1元,有5种方法:1张5角和5张1角;一张2角和8张1角;2张2角和6张1角;3张2角和4张1角;4张2角和2张1角。

③取三种人民币组成1元,有2种方法:1张5角、1张2角和3张1角的;1张5角、2张2角和1张1角的。

解:所以共有组成方法:3+5+2=10(种)。

【例题三】在所有的两位数中,十位数字比个位数字大的两位数共有多少个?

【解析】运用加法原理,把组成的三位数分为九类:十位是9的有9个,十位是8的有8个,……十位是1的有1个.

解: 共有:1+2+3+……+9=45(个)

【例题四】各数位的数字之和是24的三位数共有多少个?

【解析】一个数各个数位上的数字,最大只能是9,24可分拆为:24=9+9+6;24=9+8+7;24=8+8+8。运用加法原理,把组成的三位数分为三大类:

①由9、9、8三个数字可组成3个三位数:998、989、899;

②由9、8、7三个数字可组成6个三位数:987、978、897、879、798、789;

③由8、8、8三个数字可组成1个三位数:888。

解:所以组成三位数共有:3+6+1=10(个)。

【例题五】有一批长度分别为1,2,3,4,5,6,7和8厘米的细木条若干,从中选取适当的3根木条作为三条边可以围成多少个不同的三角形?

【解析】围三角形的依据:三根木条能围成三角形,必须满足任意两边之和大于第三边。要满足这个条件,需要且只需要两条较短边的和大于最长边就可以了。这道题的计数比较复杂,需要分层重复运用加法原理。

根据三角形三边长度情况,我们先把围成的三角形分为两大类:

第一大类:围成三角形的三根木条,至少有两根木条等长(包括三根等长的)。由题目条件,围成的等腰三角形腰长可以为1、2、3、4、5、6、7、8厘米,根据三角形腰长,第一大类又可以分为8小类,三边长依次是:

①腰长为1的三角形1个:1、1、1。

②腰长为2的三角形3个:2、2、1;2、2、2;2、2、3。

③腰长为3的三角形5个:3、3、1;3、3、2;3、3、3;3、3、4;3、3、5。

④腰长为4的三角形7个:4、4、1;4、4、2;……4、4、7。

⑤腰长为5的三角形8个:5、5、1;5、5、2;……5、5、8。同理,腰长为6、7、8厘米的三角形都是8个。

第一大类可围成的不同的三角形:1+3+5+7+8×4=48

(个)。

第二大类:围成三角形的三根木条,任意两根木条的长度都不同。

根据最长边的长度,我们再把第二大类围成的三角形分为五小类(最长边不可能为是3厘米、2厘米、1厘米):

①最长边为8厘米的三角形有9个,三边长分别为:8、7、6;8、7、5;8、7、4;8、7、3;8、7、2;8、6、5;8、6、4;8、6、3;8、5、4。

②最长边为7厘米的三角形有6个,三边长分别为:7、6、5;7、6、4;7、6、3;7、6、2;7、5、4;7、5、3。

③最长边为6厘米的三角形有4个,三边长分别为:6、5、4;6、5、3;6、5、2;6、4、3。

④最长边为5厘米的三角形有2个,三边长分别为:5、4、3;5、4、2。

⑤最长边为4厘米的三角形有1个,三边长为:4、3、2。

第二大类可围成的不同的三角形:9+6+4+2+1=22(个)。

所以,这一题共可以围成不同的三角形:48+22=70(个)。

【例题六】一把钥匙只能开一把锁,现在有10把钥匙和10把锁全部都搞乱了,最多要试验多少次才能全部配好锁和相应的钥匙?

【解析】要求“最多”多少次配好锁和钥匙,就要从最糟糕的情况开始考虑:第1把钥匙要配到锁,最多要试9次(如果9次配对失败,第10把锁就一定是这把钥匙,不用再试);同理,第2把钥匙最多要试8次;……第9把锁最多试1次,最好一把锁不用试。

解: 最多试验次数为:9+8+7……+2+1=45(次)。

【例题七】如图,从甲地到乙地有三条路,从乙地到丙地有三条路,从丙地到丁地有四条路,从甲地到丙地有二条路。问:甲地到丁地共有多少种走法?

【解析】从甲地到乙地的走法分两大类:一大类从甲地直接到达乙地,二大类是经过乙地和丙地到达丁地,用加法原理。第二大类中,从甲地到丁地走法分三步,第一步,从甲地到乙地,第二步,从乙地到丙地,第三步,从丙地到丁地,用乘

法原理。

①、第一大类从甲地到丁地有2条路,用加法原理有2种走法。

②、第二大类从甲地到丁地分三步完成,用乘法原理。第一步,从甲地到乙地,有3条路,用加法原理有3种走法。第二步,从乙地到丙地,有3条路,用加法原理有3种走法。第三步,从丙地到丁地,有4条路,用加法原理有4种走法。根据乘法原理,第二大类共有3×3×4=36种走法。

③、用加法原理,从甲地到乙地共有2+36=38种走法。

解:2+3×3×4=38(种)

【例题七】某人到食堂去买饭菜,食堂里有4种荤菜,3种蔬菜,2种汤。他要各买一样,共有多少种不同的买法?

【解析】运用乘法原理,把买饭菜分为三步走:

第一步:选汤有2种方法。

第二步:选荤菜有4种方法。

每种选汤方法对应的都有4种选荤菜的方法,汤和荤菜共有2个4种,即8种不同的搭配方法。

第三步:选蔬菜有3种方法。

荤菜和汤有8种不同的搭配方法,每种搭配方法,对应的都有3种选蔬菜的方法与其二次搭配,共有8个3种,即24种不同搭配方法。

如下图所示

解:共有不同的买法:2×4×3=24(种)。

【例题八】数学活动课上,张老师要求同学们用0、1、2、3 这四个数字组成三位数,请问:(1)可以组成多少个没有重复数字的三位数?(2)可以组成多少个不相等的三位数?

【解析】组成没有重复数字的三位数要求千位、十位、个位上的数字不同,数位之间是互相联系的,用乘法原理。完成没有重复数字的三位数的组成,分三步。第一步,看千位有多少种放法,0不能放首位,1、2、3任一个都可以放,有3种放法。第二步,看十位有多少种放法,四个数字千位放了一个,还剩三个,有3种放法。第三步,看个位有多少种放法,四个数字千位、十位各放了一个,还剩二个,有2种放法。

解:(1)3×3×2=18(个)

不相等的三位数,可以看出各数位上的数字是能重复的。要完成数的组合应该分三步:第一步,看千位有多少种放法,0不能放首位,1、2、3任一个都可以放,有3种放法。第二步,看十位有多少种放法,四个数字都可以放,有4种放法。第三步,看个位有多少种放法,四个数字都可以放,有4种放法,有4种放法。解:(2)3×4×4=48(个)

【例题九】小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法?(1)七个人排成一排;

(2)七个人排成一排,小新必须站在中间.

(3)七个人排成一排,小新、阿呆必须有一人站在中间.

(4)七个人排成一排,小新、阿呆必须都站在两边.

(5)七个人排成一排,小新、阿呆都没有站在边上.

(6)七个人站成两排,前排三人,后排四人.

(7)七个人站成两排,前排三人,后排四人. 小新、阿呆不在同一排。

【解析】(1)七个人排成一排要有序的分步进行,第一步,七个人每人都可以站第一位,7选7叫全选,有7种选法,也就是完成七个人排成一排的第一步。第二步,七人已选出一人站到第一位,还剩六人,有6种选法。同理,第三步有5种选法。第四步有4种选法。第五步有3种选法。第六步有2种选法。第七步有1种选法。

解:根据乘法原理得:7×6×5×4×3×2×1=5040(种)

注:用排列公式写作:7

75040

P=(种)。

(2)确定小新站中间,只要考虑六人站一排的排列问题。只需排其余6个人站剩下的6个位置。分六步,第一步6种选法、第二步5种选法、第三步4种选法、第四步3种选法、第五步2种选法、第六步1种选法。

解:根据乘法原理得:6×5×4×3×2×1=720(种)

注:用排列公式写作:6

6720

P=(种).

(3)先确定中间的位置站谁,有2种选法。再排剩下的6个位置。

解:根据乘法原理得:(6×5×4×3×2×1)×2=1440(种)

注:用排列公式写作:2×6

6

P=1440(种).

(4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置.如图可知,小新和阿呆站两边位置是2选2,有2×1=2种选法。其余五个位置

站法:第一位5种选法、第二位4种选法、第三位3种选法、第四位2种选法、第五位1种选法。

解:根据乘法原理得:(5×4×3×2×1)×(2×1)=240(种)

注:用排列公式写作:552240P ?= (种).

(5)先排两边,从除小新、阿呆之外的5个人中选2人,也就是边上的两个位置5人去站,第一个位置有5种选法,第二个位置有4种选法,根据乘法原理得:5×4=20(种)。再排剩下的5个人,有5×4×3×2×1=120(种)。 解:根据乘法原理得:20×120=2400(种)

注:用排列公式写作:25552400

P P ?=(种). (6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列. 解:根据乘法原理得:7×6×5×4×3×2×1=5040(种)

注:用排列公式写作:775040P =(种).

(7)可以分为两类情况:“小新在前,阿呆在后”和“小新在后,阿呆在前”,两种情况是对等的,所以只要求出其中一种的排法数,再乘以2即可.排队问题,一般先考虑特殊情况再去全排列。

解:根据乘法原理得:4×3×(5×4×3×2×1)×2=2880(种)

注:用排列公式写作:4×3×55P ×2=2880(种).

【例题十】用1、2、3、4、5、6可以组成多少个没有重复数字的个位是5的三位数?

【解析】个位数字已知,问题变成从5个元素中取2个元素的排列问题,三位数的个位已确定为5,那么,1、2、3、4、6可以任意选择十位或百位,百位有5种选法,十位有4种选法。如图:

5种选法 4种选法 1种选法

千位 百位 个位

解:根据乘法原理得:5×4=20(种)

注:用排列公式解题:已知5n =,2m =,根据排列数公式,一共可以组成

2 55420

P=?=(个)符合题意的三位数。

【例题十一】用1、2、3、4、5这五个数字,不许重复,位数不限,能写出多少个3的倍数?

【解析】按位数来分类考虑:首先要知道3的倍数的数的各位数值之和的规律:各位数值之和为3的倍数,则这个数是3的倍数.

⑴一位数只有1个3;

⑵两位数:由1与2,1与5,2与4,4与5四组数字组成,每一组可以组成

2 2212

P=?=(个)不同的两位数,共可组成248

?=(个)不同的两位数;

⑶三位数:由1,2与3;1,3与5;2,3与4;3,4与5四组数字组成,每一

组可以组成3

33216

P=??=(个)不同的三位数,共可组成6424

?=(个)不同的三位数;

⑷四位数:可由1,2,4,5这四个数字组成,有4

4432124

P=???=(个)不同的四位数;

⑸五位数:可由1,2,3,4,5组成,共有5

554321120

P=????=(个)不同的五位数.

解:根据加法原理得:一共有182424120177

++++=(个)能被3整除的数,即3的倍数.

【例题十二】某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9,那么确保打开保险柜最多要试几次?

【解析】用排除法分析:四个非0数码之和等于9的组合数位上不能有9、8、7数字,否则,其和大于9。首先,从合题意的大数6寻找有1,1,1,6一种组合;从5寻找有1,1,2,5一各组合;从4寻找有1,1,3,4;1,2,2,4;二种组合;从3寻找有1,2,3,3;2,2,2,3二种组合;从1、2分析其和小于9;因此分析得共有六种。第一种中,可以组成多少个密码呢?只要考虑6的位置就可以了,6可以任意选择4个位置中的一个,其余位置放1,共有4种选择;第二种中,先考虑放2,有4种选择,再考虑5的位置,可以有3种选择,剩下的位置放1,共有4312

?=(种),选择同样的方法,可以得出第三、四、五种都各有12种选择.最后一种,与第一种的情形相似,3的位置有4种选择,其余位置放2,共有4种选择.

解:根据加法原理得:一共可以组成412121212456

+++++=(个)不同的四位数,即确保能打开保险柜最多要试56次.

【例题十三】两对三胞胎喜相逢,他们围坐在桌子旁,要求每个人都不与自己的同胞兄妹相邻,(同一位置上坐不同的人算不同的坐法),那么共有多少种不同的坐法?

【解析】第一个位置在6个人中任选一个,有1

66

C=(种)选法,第二个位置在另

一胞胎的3人中任选一个,有1

33

C=(种)选法.同理,第3,4,5,6个位置依次有2,2,1,1种选法.如图:

解:根据乘法原理得:6×3×2×2×1×1=72(种)

注:用排列公式写作:111111

63221163221172

P P P P P P

?????=?????=(种)。

【例题十四】一种电子表在6时24分30秒时的显示为6:24:30,那么从8时到9时这段时间里,此表的5个数字都不相同的时刻一共有多少个?

【解析】设A :BC :DE 是满足题意的时刻,有A 为8,B 、D 应从0,1,2,3,4,5这6个数字中选择两个不同的数字,所以有6×5=30种选法,而C 、E 应从剩

解:根据乘法原理得:所以共有6P ×7P =1260种选法。从8时到9时这段时间

里,此表的5个数字都不相同的时刻一共有1260个。

【例题十五】一个六位数能被11整除,它的各位数字非零且互不相同的.将这个六位数的6个数字重新排列,最少还能排出多少个能被11整除的六位数?

【解析】设这个六位数为abcdef ,则有()a c e ++、()b d f ++的差为0或11的倍数.且a 、b 、c 、d 、e 、f 均不为0,任何一个数作为首位都是一个六位数。

先考虑a 、c 、e 偶数位内,b 、d 、f 奇数位内的组内交换,有33P ×33P =36种顺序;

再考虑形如badcfe 这种奇数位与偶数位的组间调换,也有33P ×33P =36种顺序。

所以,用均不为0的a 、b 、c 、d 、e 、f 最少可排出36+36=72个能被11整除的数(包含原来的abcdef )。所以最少还能排出72-1=71个能被11整除的六位数。

【例题十六】已知在由甲、乙、丙、丁、戊共5名同学进行的手工制作比赛中,决出了第一至第五名的名次.甲、乙两名参赛者去询问成绩,回答者对甲说:“很遗憾,你和乙都未拿到冠军.”对乙说:“你当然不会是最差的.”从这个回答分析,5人的名次排列共有多少种不同的情况?

【解析】这道题乍一看不太像是排列问题,这就需要灵活地对问题进行转化.仔细审题,已知“甲和乙都未拿到冠军”,而且“乙不是最差的”,也就等价于5人排成一排,甲、乙都不站在排头且乙不站在排尾的排法数,因为乙的限制最多,所以先排乙,有3种排法,再排甲,也有3种排法,剩下的人随意排,有333216P =??=(种)排法.

解:根据乘法原理得:一共有33654??=(种)不同的排法。

【例题十七】4名男生,5名女生,全体排成一行,问下列情形各有多少种不同的排法:

⑴ 甲不在中间也不在两端;

⑵ 甲、乙两人必须排在两端;

⑶ 男、女生分别排在一起;

⑷ 男女相间.

【解析】⑴ 先排甲,9个位置除了中间和两端之外的6个位置都可以,有6种选择,剩下的8个人随意排,也就是8个元素全排列的问题,

有888765432140320P =???????=(种)选择.

解:根据乘法原理得:共有640320241920?=(种)排法.

⑵ 甲、乙先排,有22212P =?=(种)排法;剩下的7个人随意排,有

7 776543215040

P=??????=(种)排法.

解:根据乘法原理得:共有2504010080

?=(种)排法.

⑶分别把男生、女生看成一个整体进行排列,有2

2212

P=?=(种)不同排列方法,再分别对男生、女生内部进行排列,分别是4个元素与5个元素的全排列问题,

分别有4

4432124

P=???=(种)和5

554321120

P=????=(种)排法.解:根据乘法原理得:共有2241205760

??=(种)排法.

⑷先排4名男生,有4

4432124

P=???=(种)排法,再把5名女生排到5个空档中,

有5

554321120

P=????=(种)排法.

解:根据乘法原理得:一共有241202880

?=(种)排法。

【例题十八】一台晚会上有6个演唱节目和4个舞蹈节目.求:

⑴当4个舞蹈节目要排在一起时,有多少不同的安排节目的顺序?

⑵当要求每2个舞蹈节目之间至少安排1个演唱节目时,一共有多少不同的安排节目的顺序?

【解析】⑴先将4个舞蹈节目看成1个节目,与6个演唱节目一起排,则是7个

元素全排列的问题,有7

77!76543215040

P==??????=(种)方法.第二步再排4个

舞蹈节目,也就是4个舞蹈节目全排列的问题,有4

44!432124

P==???=(种)方法.解:根据乘法原理得:一共有504024120960

?=(种)方法.

⑵首先将6个演唱节目排成一列(如下图中的“□”),是6个元素全排列的问题,

一共有6

66!654321720

P==?????=(种)方法.×□×□×□×□×□×□×第二步,再将4个舞蹈节目排在一头一尾或2个演唱节目之间(即上图中“×”的位置),

这相当于从7个“×”中选4个来排,一共有4

77654840

P=???=(种)方法.解:根据乘法原理得:一共有720840604800

?=(种)方法。

【例题十九】⑴从1,2,…,8中任取3个数组成无重复数字的三位数,共有多

少个?(只要求列式)

⑵从8位候选人中任选三位分别任团支书,组织委员,宣传委员,共有多少种不同的选法?

⑶3位同学坐8个座位,每个座位坐1人,共有几种坐法?

⑷8个人坐3个座位,每个座位坐1人,共有多少种坐法?

⑸一火车站有8股车道,停放3列火车,有多少种不同的停放方法?

⑹8种不同的菜籽,任选3种种在不同土质的三块土地上,有多少种不同的种法?【解析】⑴按顺序,有百位、十位、个位三个位置,8个数字(8个元素)取出3个往上排,有3

8

P种.

⑵3种职务3个位置,从8位候选人(8个元素)任取3位往上排,有3

8

P种.⑶3位同学看成是三个位置,任取8个座位号(8个元素)中的3个往上排(座

号找人),每确定一种号码即对应一种坐法,有3

8

P种.

⑷3个坐位排号1,2,3三个位置,从8人中任取3个往上排(人找座位),有3

8

P 种.

⑸3列火车编为1,2,3号,从8股车道中任取3股往上排,共有3

8

P种.

⑹土地编1,2,3号,从8种菜籽中任选3种往上排,有3

8

P种。

【例题二十】某校举行男生乒乓球比赛,比赛分成3个阶段进行,第一阶段:将参加比赛的48名选手分成8个小组,每组6人,分别进行单循环赛;第二阶段:将8个小组产生的前2名共16人再分成4个小组,每组4人,分别进行单循环赛;

第三阶段:由4个小组产生的4个第1名进行2场半决赛和2场决赛,确定1至4名的名次.问:整个赛程一共需要进行多少场比赛?

【解析】第一阶段中,每个小组内部的6个人每2人要赛一场,组内赛26651521C ?==?场,共8个小组,有158120?=场;第二阶段中,每个小组内部4人中每2人赛一场,组内赛2443621

C ?==?场,共4个小组,有6424?=场;第三阶段赛224+=场. 解:根据乘法原理得:整个赛程一共有120244148++=场比赛。

【例题二十一】由数字1,2,3组成五位数,要求这五位数中1,2,3至少各出现一次,那么这样的五位数共有________个。(2007年“迎春杯”高年级组决赛)

【解析】这是一道组合计数问题.由于题目中仅要求1,2,3至少各出现一次,没有确定1,2,3出现的具体次数,所以可以采取分类枚举的方法进行统计,也可以从反面想,从由1,2,3组成的五位数中,去掉仅有1个或2个数字组成的五位数即可.

(法1)分两类:⑴1,2,

3中恰有一个数字出现3次,这样的数有135460C ??=(个);⑵1,2,3中有两个数字各出现2次,这样的数有2234590C C ??=(个).符合题意的五位数共有6090150+=(个).

(法2)从反面想,由1,2,3组成的五位数共有53个,由1,2,3中的某2个数字组成的五位数共有53(22)?-个,由1,2,3中的某1个数字组成的五位数共有3个,所以符合题意的五位数共有5533(22)3150-?--=(个)。

【例题二十二】10个人围成一圈,从中选出两个不相邻的人,共有多少种不同选法?

【解析】(法1)乘法原理.按题意,分别站在每个人的立场上,当自己被选中后,另一个被选中的,可以是除了自己和左右相邻的两人之外的所有人,每个人都有7种选择,总共就有71070?=种选择,但是需要注意的是,选择的过程中,会出现“选了甲、乙,选了乙、甲”这样的情况本来是同一种选择,而却算作了两种,所以最后的结果应该是(10111---)10235?÷=(种).

(法2)排除法.可以从所有的两人组合中排除掉相邻的情况,总的组合数为210C ,

而被选的两个人相邻的情况有10种,所以共有21010451035C -=-=(种)。

【例题二十三】8个人站队,冬冬必须站在小悦和阿奇的中间(不一定相邻),小慧和大智不能相邻,小光和大亮必须相邻,满足要求的站法一共有多少种?

【解析】冬冬要站在小悦和阿奇的中间,就意味着只要为这三个人选定了三个位置,中间的位置就一定要留给冬冬,而两边的位置可以任意地分配给小悦和阿奇. 小慧和大智不能相邻的互补事件是小慧和大智必须相邻

小光和大亮必须相邻,则可以将两人捆绑考虑

只满足第一、三个条件的站法总数为:3212372423P P P 3360C C ????=(种)

同时满足第一、三个条件,满足小慧和大智必须相邻的站法总数为:

3222262322P P P P 960C ????=(种)

因此同时满足三个条件的站法总数为:33609602400-=(种)。

【例题二十四】小明有10块大白兔奶糖,从今天起,每天至少吃一块.那么他一共有多少种不同的吃法?

【解析】我们将10块大白兔奶糖从左至右排成一列,如果在其中9个间隙中的某个位置插入“木棍”,则将lO 块糖分成了两部分。我们记从左至右,第1部分是第1天吃的,第2部分是第2天吃的,…,如:○○○|○○○○○○○表示第一天吃了3粒,第二天吃了剩下的7粒: ○○○○ | ○○○| ○○○表示第一天吃了4粒,第二天吃了3粒,第三天吃了剩下的3粒.不难知晓,每一种插入方法对应一种吃法,而9个间隙,每个间隙可以插人也可以不插入,且相互独立,故共有29=512种不同的插入方法,即512种不同的吃法。

【例题二十五】某池塘中有A B C 、、三只游船,A 船可乘坐3人,B 船可乘坐2人,C 船可乘坐1人,今有3个成人和2个儿童要分乘这些游船,为安全起见,有儿童乘坐的游船上必须至少有个成人陪同,那么他们5人乘坐这三支游船的所有安全乘船方法共有多少种?

【解析】由于有儿童乘坐的游船上必须至少有1个成人陪同,所以儿童不能乘坐C 船.

⑴若这5人都不乘坐C 船,则恰好坐满A B 、两船,①若两个儿童在同一条船上,

只能在A 船上,此时A 船上还必须有1个成人,有133C =种方法;②若两个儿童不

在同一条船上,即分别在A B 、两船上,则B 船上有1个儿童和1个成人,1个儿童

有122C =种选择,1个成人有133C =种选择,所以有236?=种方法.故5人都不乘坐C 船有369+=种安全方法;

⑵若这5人中有1人乘坐C 船,这个人必定是个成人,有133C =种选择.

其余的2个成人与2个儿童,①若两个儿童在同一条船上,只能在A 船上,此时A 船上还必

须有1个成人,有122C =种方法,所以此时有326?=种方法;②若两个儿童不在

同一条船上,那么B 船上有1个儿童和1个成人,此时1个儿童和1个成人均有122C =种选择,所以此种情况下有32212??=种方法;故5人中有1人乘坐C 船有61218+=种安全方法.所以,共有91827+=种安全乘法.

【例题二十六】从10名男生,8名女生中选出8人参加游泳比赛.在下列条件下,分别有多少种选法?

⑴恰有3名女生入选;⑵至少有两名女生入选;⑶某两名女生,某两名男生必须入选;

⑷某两名女生,某两名男生不能同时入选;⑸某两名女生,某两名男生最多入选两人。

【解析】⑴恰有3名女生入选,说明男生有5人入选,应为3581014112C C ?=种;

⑵要求至少两名女生人选,那么“只有一名女生入选”和“没有女生入选”都不符合要求.运用包含与排除的方法,从所有可能的选法中减去不符合要求的情况: 8871181010843758C C C C --?=;

⑶4人必须入选,则从剩下的14人中再选出另外4人,有414

1001C =种; ⑷从所有的选法818C 种中减去这4个人同时入选的414C 种:

84181443758100142757C C -=-=.

⑸分三类情况:4人无人入选;4人仅有1人入选;4人中有2人入选,共:817261441441434749C C C C C +?+?=。

【例题二十七】在10名学生中,有5人会装电脑,有3人会安装音响设备,其余2人既会安装电脑,又会安装音响设备,今选派由6人组成的安装小组,组内安装电脑要3人,安装音响设备要3人,共有多少种不同的选人方案?

【解析】按具有双项技术的学生分类:

⑴ 两人都不选派,有3554310321

C ??==??(种)选派方法; ⑵ 两人中选派1人,有2种选法.而针对此人的任务又分两类:

若此人要安装电脑,则还需2人安装电脑,有25541021

C ?=

=?(种)选法,而另外会安装音响设备的3人全选派上,只有1种选法.由乘法原理,有10110?=(种)选法;

若此人安装音响设备,则还需从3人中选2人安装音响设备,有2332321

C ?==?(种)选法,需从5人中选3人安装电脑,有3554310321C ??==??(种)选法.由乘法原理,有31030?=(种)选法.根据加法原理,有103040+=(种)选法;综上所述,一共有24080?=(种)选派方法.

⑶ 两人全派,针对两人的任务可分类讨论如下:

①两人全安装电脑,则还需要从5人中选1人安装电脑,另外会安装音响设备的3人全选上安装音响设备,有515?=(种)选派方案; ②两人一个安装电脑,一个安装音响设备,有22535432602121

C C ???=

?=??(种)选派方案; ③两人全安装音响设备,有355433330321C ???=?=??(种)选派方案.根据加法原理,共有5603095++=(种)选派方案.综合以上所述,符合条件的方案一共有108095185++=(种).

【例题二十八】有11名外语翻译人员,其中5名是英语翻译员,4名是日语翻译员,另外两名英语、日语都精通.从中找出8人,使他们组成两个翻译小组,其中4人翻译英文,另4人翻译日文,这两个小组能同时工作.问这样的分配名单共可以开出多少张?

【解析】针对两名英语、日语都精通人员(以下称多面手)的参考情况分成三类:

⑴ 多面手不参加,则需从5名英语翻译员中选出4人,有41555C C ==种选择,需

从4名日语翻译员中选出4人,有1种选择.由乘法原理,有515?=种选择. ⑵ 多面手中有一人入选,有2种选择,而选出的这个人又有参加英文或日文翻译两种可能:如果参加英文翻译,则需从5名英语翻译员中再选出3人,有

3554310321

C ??=

=??种选择,需从4名日语翻译员中选出4人,有1种选择.由乘法原理,有210120??=种选择;如果参加日文翻译,则需从5名英语翻译员中选出4人,有41555C C ==种选择,需从4名日语翻译员中再选出3名,有31444C C ==种选择.由

乘法原理,有25440??=种选择.根据加法原理,多面手中有一人入选,有204060+=种选择.

⑶ 多面手中两人均入选,对应一种选择,但此时又分三种情况:

①两人都译英文;②两人都译日文;③两人各译一个语种.情况①中,还需从5

名英语翻译员中选出2人,有2

554

10 21

C

?

==

?

种选择.需从4名日语翻译员中选4人,

1种选择.由乘法原理,有110110

??=种选择.情况②中,需从5名英语翻译员中

选出4人,有41

555

C C

==种选择.还需从4名日语翻译员中选出2人,有2

443

6 21

C

?

==

?

种选择.根据乘法原理,共有15630

??=种选择.情况③中,两人各译一个语种,有两种安排即两种选择.剩下的需从5名英语翻译员中选出3人,有

3 5543

10 321

C

??

==

??

种选择,需从4名日语翻译员中选出3人,有31

44

4

C C

==种选择.由

乘法原理,有1210480

???=种选择.根据加法原理,多面手中两人均入选,一共有103080120

++=种选择.综上所述,由加法原理,这样的分配名单共可以开出560120185

++=张.

小学奥数-排列组合教案

小学奥数-----排列组合教案 加法原理和乘法原理 排列与组合:熟悉排列与组合问题。运用加法原理和乘法原理解决问题。在日常生活中我们经常会遇到像下面这样的两类问题:问题一:从 A 地到 B 地,可以乘火车,也可以乘汽车或乘轮船。一天中,火车有 4 班,汽车有 3 班,轮船有 2 班。那么从 A 地到 B 地共有多少种不同的走法?问题二:从甲村到乙村有两条道路,从乙村去丙村有 3 条道路(如下图)。从甲村经乙村去丙村,共有多少种不同的走法?解决上述两类问题就是运用加法原理和乘法原理。加法原理:完成一件工作共有N类方法。在第一类方法中有m 1 种不同的方法, 在第二类方法中有m 2种不同的方法,……,在第N类方法中有m n 种不同的方法, 那么完成这件工作共有N=m 1+m 2 +m 3 +…+m n 种不同方法。 运用加法原理计数,关键在于合理分类,不重不漏。要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。合理分类也是运用加法原理解决问题的难点,不同的问题,分类的标准往往不同,需要积累一定的解题经验。 乘法原理:完成一件工作共需N个步骤:完成第一个步骤有m 1 种方法,完成第 二个步骤有m 2种方法,…,完成第N个步骤有m n 种方法,那么,完成这件工作 共有m 1×m 2 ×…×m n 种方法。 运用乘法原理计数,关键在于合理分步。完成这件工作的N个步骤,各个步骤之间是相互联系的,任何一步的一种方法都不能完成此工作,必须连续完成这N 步才能完成此工作;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此工作的方法也不同。 这两个基本原理是排列和组合的基础,与教材联系紧密(如四下《搭配的规律》),教学时要先通过生活中浅显的实例,如购物问题、行程问题、搭配问题等,帮助孩子理解两个原理,再让孩子学习运用原理解决问题。 运用两个原理解决的都是比较复杂的计数问题,在解题时要细心、耐心、有条理地分析问题。计数时要注意区分是分类问题还是分步问题,正确运用两个原理。灵活机动地分层重复使用或综合运用两个原理,可以巧妙解决很多复杂的计数问题。小学阶段只学习两个原理的简单应用。 【例题一】每天从武汉到北京去,有 4 班火车,2 班飞机,1 班汽车。请问:每天从武汉到北京去,乘坐这些交通工具共有多少种不同的走法? 【解析】运用加法原理,把组成方法分成三类:一类乘坐火车,二类乘坐飞机,三类乘坐洗车.

小学五年级奥数专题之排列组合题一及答案

1、7个人站成一排,若小明不在中间,共有_______________种站法;若小明在两端,共有_________________种站法。 2、4个男生2个女生共6人站成一排合影留念,有________________种不同的排法;要求2个女生紧挨着有________________种不同的排法;如果要求2个女生紧挨着排在正中间有____________________种不同的排法。 3、A、B、C、D、E、F、G七位同学在操场排成一列,其中学生B与C必须相邻,请问共有________________________种不同的排法。 4、6名小朋友A、B、C、D、E、F站成一排,若A、B两人必须相邻,一共有________________________种不同的站法;若A、B两人不能相邻,一共有________________________种不同的站法;若A、B、C三人不能相邻,一共有________________________种不同的站法。 5、10个相同的球完全分给3个小朋友,若每个小朋友至少得1个,那么共有__________________种分法;若每个小朋友至少得2个,那么共有__________________种分法。 6、小红有10块糖,每天至少吃1块,7天吃完,她共有______________________种不同的吃法。 7、5个人站成一排,小明不在两端的排法共有__________________种。 8、停车站划出一排12个停车位置,今有8辆不同的车需要停放,若要求剩余的4个空车位连在一起,一共有________________________种不同的停车文案。 9、将3盆同样的红花和4盆同样的黄花摆放在一排,要求3盆红花互不相邻,共有____________________种不同的放法。 10、12个苹果分给4个人,每人至少1个,则共有____________________种分法。 11、四年级三班举行六一儿童节联欢活动,整个活动由2个舞蹈、2个演唱和3个小品组成,请问如果要求同类型的节目连续演出,那么共有____________________种不同的出场顺序。

小学奥数~排列组合

5 数的一半,即 A = 60 种,选 B . 奥数解排列组合应用题 排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握, 实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效 途径;下面就谈一谈排列组合应用题的解题策略 . 1.相邻问题捆绑法 :题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排 列. 例 1. A, B, C , D, E 五人并排站成一排,如果 A, B 必须相邻且 B 在 A 的右边,那么不同的 排法种数有 A 、60 种 B 、48 种 C 、36 种 D 、24 种 解析:把 A, B 视为一人,且 B 固定在 A 的右边,则本题相当于 4 人的全排列,A 4 = 24 种, 4 答案: D . 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列, 再把规定的相离的几个元素插入上述几个元素的空位和两端. 例 2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440 种 B 、3600 种 C 、4820 种 D 、4800 种 解析:除甲乙外,其余 5 个排列数为 A 5 种,再用甲乙去插 6 个空位有 A 2 种,不同的排 5 6 法种数是 A 5 A 2 = 3600 种,选 B . 5 6 3.定序问题缩倍法 :在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数 的方法. 例 3. A, B, C , D, E 五人并排站成一排,如果 B 必须站在 A 的右边( A, B 可以不相邻)那 么不同的排法种数是 A 、24 种 B 、60 种 C 、90 种 D 、120 种 解析: B 在 A 的右边与 B 在 A 的左边排法数相同,所以题设的排法只是 5 个元素全排列 1 2 5 4.标号排位问题分步法 :把元素排到指定位置上,可先把某个元素按规定排入,第二步 再排另一个元素,如此继续下去,依次即可完成. 例 4.将数字 1,2,3,4 填入标号为 1,2,3,4 的四个方格里,每格填一个数,则每个 方格的标号与所填数字均不相同的填法有 A 、6 种 B 、9 种 C 、11 种 D 、23 种 解析:先把 1 填入方格中,符合条件的有 3 种方法,第二步把被填入方格的对应数字填 入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3 ×1=9 种填法,选 B . 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例 5.(1)有甲乙丙三项任务,甲需 2 人承担,乙丙各需一人承担,从 10 人中选出 4 人承担这三项任务,不同的选法种数是 A 、1260 种 B 、2025 种 C 、2520 种 D 、5040 种 解析:先从 10 人中选出 2 人承担甲项任务,再从剩下的 8 人中选 1 人承担乙项任务, 第三步从另外的 7 人中选 1 人承担丙项任务,不同的选法共有C 2 C 1C 1 = 2520 种,选C . 10 8 7

小学奥数~排列组合

奥数解排列组合应用题 排列组合问题是必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略. 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例 1.,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有 A 、60种 B 、48种 C 、36种 D 、24种 解析:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种,答案:D . 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 A 、1440种 B 、3600种 C 、4820种 D 、4800种 解析:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排 法种数是52 5 63600A A =种,选B . 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数 的方法. 例 3.,,,,A B C D E 五人并排站成一排,如果B 必须站在A 的右边(,A B 可以不相邻)那么不同的排法种数是 A 、24种 B 、60种 C 、90种 D 、120种 解析:B 在A 的右边与B 在A 的左边排法数相同,所以题设的排法只是5个元素全排列 数的一半,即5 51602 A =种,选 B . 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有 A 、6种 B 、9种 C 、11种 D 、23种 解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有3×3×1=9种填法,选B . 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是 A 、1260种 B 、2025种 C 、2520种 D 、5040种 解析:先从10人中选出2人承担甲项任务,再从剩下的8人中选1人承担乙项任务, 第三步从另外的7人中选1人承担丙项任务,不同的选法共有21110 872520C C C =种,选C .

小学奥数专题排列组合

?排列问题题型分类: 1.信号问题 2.数字问题 3.坐法问题 4.照相问题 5.排队问题 ?组合问题题型分类: 1.几何计数问题 2.加乘算式问题 3.比赛问题 4.选法问题 ?常用解题方法和技巧 1.优先排列法 2.总体淘汰法 3.合理分类和准确分步 4.相邻问题用捆绑法 5.不相邻问题用插空法 6.顺序问题用“除法” 7.分排问题用直接法 8.试验法 9.探索法 10.消序法 11.住店法 12.对应法 13.去头去尾法 14.树形图法 15.类推法 16.几何计数法 17.标数法 18.对称法

分类相加,分步组合,有序排列,无序组合 ?基础知识(数学概率方面的基本原理) 一.加法原理:做一件事情,完成它有N类办法, 在第一类办法中有M1中不同的方法, 在第二类办法中有M2中不同的方法,……, 在第N类办法中有M n种不同的方法, 那么完成这件事情共有M1+M2+……+M n种不同的方法。 二.乘法原理:如果完成某项任务,可分为k个步骤, 完成第一步有n1种不同的方法, 完成第二步有n2种不同的方法,…… 完成第k步有nk种不同的方法, 那么完成此项任务共有n 1×n 2 ×……×n k 种不同的方法。 三.两个原理的区别 ?做一件事,完成它若有n类办法,是分类问题,每一类中的方法都是独立的,故用加法原理。 每一类中的每一种方法都可以独立完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) ?做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步 骤,依次相继完成,这件事才算完成,因此用乘法原理. 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同

小学奥数排列组合教案

小学奥数排列组合教案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

小学奥数-----排列组合教案 加法原理和乘法原理 排列与组合:熟悉排列与组合问题。运用加法原理和乘法原理解决问题。在日常生活中我们经常会遇到像下面这样的两类问题:问题一:从 A 地到 B 地,可以乘火车,也可以乘汽车或乘轮船。一天中,火车有 4 班,汽车有 3 班,轮船有 2 班。那么从A 地到 B 地共有多少种不同的走法问题二:从甲村到乙村有两条道路,从乙村去丙村有 3 条道路(如下图)。从甲村经乙村去丙村,共有多少种不同的走法解决上述两类问题就是运用加法原理和乘法原理。 加法原理:完成一件工作共有N类方法。在第一类方法中有m1种不同的方法,在第二类方法中有m2种不同的方法,……,在第N类方法中有m n种不同的方法,那么完成这件工作共有N=m1+m2+m3+…+m n种不同方法。 运用加法原理计数,关键在于合理分类,不重不漏。要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)。合理分类也是运用加法原理解决问题的难点,不同的问题,分类的标准往往不同,需要积累一定的解题经验。 乘法原理:完成一件工作共需N个步骤:完成第一个步骤有m1种方法,完成第二个步骤有m2种方法,…,完成第N个步骤有m n种方法,那么,完成这件工作共有m1×m2×…×m n种方法。 运用乘法原理计数,关键在于合理分步。完成这件工作的N个步骤,各个步骤之间是相互联系的,任何一步的一种方法都不能完成此工作,必须连续完成这N步才能完成此工作;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此工作的方法也不同。

奥数:排列组合的基本理论及公式.docx

一、排列合的基本理和公式,排列与元素的序有关,合与序无关。如 231 与 213 是两个排列, 2+ 3+ 1 的和与 2+ 1+3 的和是一个合。 (一 )两个基本原理是排列和合的基: (1)加法原理:做一件事,完成它可以有 n 法,在第一法中有 m1种不同的方法,在第二法中有 m2种不同的方法,??,在第n 法中有 m n种不同的方法,那么完成件事共有 N= m1+ m2+m3+?+ m n种不同方法。 (2)乘法原理:做一件事,完成它需要分成n 个步,做第一步有m1种不同的方法,做第二步有m2种不同的方法,??,做第 n 步有 m n种不同的方法,那么完成件事共 有N=m1×m2×m3×?×m n种不同的方法。 里要注意区分两个原理,要做一件事,完成它若是有 n法,是分,第一中的方法都是独立的,因此 用加法原理;做一件事,需要分n 个步,步与步之是 的,只有将分成的若干个互相系的步,依次相完成, 件事才算完成,因此用乘法原理。 完成一件事的分“ ”和“步”是有本区的,因此 也将两个原理区分开来。 C53表示从5 个元素中取出 3 个,共有多少种不同的取

法。这是组合的运算。例如:从 5 个人中任选三个人去参加 比赛,共有几种选法这就是从 5 个元素中取出 3 个的组合运算。可表示为C53。其计算过程是C53=5!/[3!× (5-3)!]叹号代表阶乘, 5!=5 ×4×3×2×1=120,3!=3 ×2×1=6,( 5-3)! =2! =2 ×,所以 C53=5!/[3! × (5-3)!]=120/(6 ×针2)=10对上 面 1=2 例子,就是从 5 个人中任选三个人去参加比赛,共有10 几种选法。 排列组合公式: 公式 P 是指排列,从N 个元素取 R 个进行排列。 公式 C 是指组合,从N 个元素取 R 个,不进行排列。 n—元素的总个数;r—参与选择的元素个数。 !—阶乘,如9!= 9×8×7×6×5×4×3。×2×1 举例: Q1:有从1到9共计9个号码球,请问,可以组成多

小学奥数专题排列组合

排列问题题型分类: 1.信号问题 2.数字问题 3.坐法问题 4.照相问题 5.排队问题 组合问题题型分类: 1.几何计数问题 2.加乘算式问题 3.比赛问题 4.选法问题 常用解题方法和技巧 1.优先排列法 2.总体淘汰法 3.合理分类和准确分步 4.相邻问题用捆绑法 5.不相邻问题用插空法 6.顺序问题用“除法” 7.分排问题用直接法 8.试验法 9.探索法 10.消序法 11.住店法 12.对应法 13.去头去尾法 14.树形图法 15.类推法 16.几何计数法 17.标数法 18.对称法 分类相加,分步组合,有序排列,无序组合基础知识(数学概率方面的基本原理)

一.加法原理:做一件事情,完成它有N类办法, 在第一类办法中有M1中不同的方法, 在第二类办法中有M2中不同的方法,……, 在第N类办法中有M n种不同的方法, 那么完成这件事情共有M1+M2+……+M n种不同的方法。 二.乘法原理:如果完成某项任务,可分为k个步骤, 完成第一步有n1种不同的方法, 完成第二步有n2种不同的方法,…… 完成第k步有nk种不同的方法, 那么完成此项任务共有n 1×n 2 ×……×n k 种不同的方法。 三.两个原理的区别 做一件事,完成它若有n类办法,是分类问题,每一类中的方法都是独立的,故用加法原理。 每一类中的每一种方法都可以独立完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理. 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来. 四.排列及组合基本公式 1.排列及计算公式 从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元 素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数, 叫做从n个不同元素中取出m个元素的排列数,用符号 P m n 表示.

小学奥数排列组合

小学奥数排列组合 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

一.计数专题:④排列组合 一.进门考 1.有四张数字卡片,用这四张数字卡片组成三位数,可以组成多少个? 2.一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同.问: ①从两个口袋内任取一个小球,有多少种不同的取法? ②从两个口袋内各取一个小球,有多少种不同的取法? 3.甲组有6人,乙组有8人,丙组有9人。从三个组中各选一人参加会议,共有多少种不同选法? 4.从1到500的所有自然数中,不含有数字4的自然数有多少个? 5.学校的一块活动场地呈梯形,如图所示.(1)这块活动场地的面积是多少平方米? (2)学校计划给这块地铺上草皮,如果每平方米的草皮20元,学校一共要为这块活动场地花费多少元钱? 58 7 6

6*.按1,2,3,4的顺序连线,有多少种不同的连法? 二.授新课 ①奥数专题:乘法原理 专题简析 在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关. 日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题. 解决排列组合问题,离不开加法原理和乘法原理,合理分类、合理分组,求出组合数和排列数。 排列公式: 由乘法原理,从n 个不同元素中取出m 个元素的排列数是 121n n n n m ?-?-??-+()()(),即121m n P n n n n m =---+()()(),这里,m n ≤,且等号右边 从n 开始,后面每个因数比前一个因数小1,共有m 个因数相乘. 组合公式: 从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元素的组合数.记作m n C .12)112321m m n n m m P n n n n m C m m m P ?-?-??-+==?-?-????()(()()().

奥数(排列与组合)

排列组合应用题的教学设计 致远高中朱英2007.3 解决排列组合应用题的基础是:正确应用两个计数原理,分清排列和组合的区别。 引例1 现有四个小组,第一组7人,第二组8人,第三组9人,第四组10人,他们参加旅游活动: (1)选其中一人为负责人,共有多少种不同的选法。 (2)每组选一名组长,共有多少种不同的选法4 评述:本例指出正确应用两个计数原理。 引例2 (1)平面内有10个点,以其中每2个点为端点的线段共有多少条? (2)平面内有10个点,以其中每2个点为端点的有向线段共有多少条?评述:本例指出排列和组合的区别。 求解排列组合应用题的困难主要有三个因素的影响: 1、限制条件。 2、背景变化。 3、数学认知结构 排列组合应用题可以归结为四种类型: 第一个专题排队问题 重点解决: 1、如何确定元素和位置的关系 元素及其所占的位置,这是排列组合问题中的两个基本要素。以元素为主,分析各种可能性,称为“元素分析法”;以位置为主,分析各种可能性,称为“位置分析法”。 例:3封不同的信,有4个信箱可供投递,共有多少种投信的方法? 分析:这可以说是一道较简单的排列组合的题目了,但为什么有的同学能做出正确的答案34(种),而有的同学则做出容易错误的答案43(种),而他们又错在哪里呢?应该是错在“元素”与“位置”上了! 法一:元素分析法(以信为主) 第一步:投第一封信,有4种不同的投法; 第二步:接着投第二封信,亦有4种不同的投法; 第三步:最后投第三封信,仍然有4种不同的投法。 因此,投信的方法共有:34(种)。 法二:位置分析法(以信箱为主) C(种); 第一类:四个信箱中的某一个信箱有3封信,有投信方法1 4第二类:四个信箱中的某一个信箱有2封信,另外的某一个信箱有1封信,

二年级奥数简单的排列组合教

第三讲排列组合问题 例题精讲 在日常生活中,我们经常会碰到许多排列组合问题。 例1从晓明家到博迪教育共有三条路可走,从博迪教育到西湖有两条路可走,那么从晓明家到西湖有多少路可走? 分析:对这种问题的题目分析,可以先画一个简单的示意图: 可以这样想,从晓明家到博迪如果走①,那到鼓楼后,可有甲、乙两条路可走,如果走②、③的话,到博迪后,分别有两条路可以走,所以从晓明家到西湖共有3×2=6(条)路可走。 例2 幼儿园有3种不同颜色(红、黄、蓝)的上衣,4种不同颜色(黑、白、灰、青)的裙子,请问可以搭配出多少套衣服? 分析:按照次序思考,如果穿红色上衣,就会有四种颜色的裙子可以搭配,同样,如果是黄色、蓝色上衣,同样也有四种颜色的裙子可以搭配,因此 可供搭配的种类有3×4=12(种)。所以,总共有12种搭配方法。

例 3 小红昨天去文三路上一家火锅店吃火锅,她准备在牛肉、羊肉和鱼丸中挑选一个肉类,青菜、生菜、香菜、白菜和菠菜中挑选一个蔬菜,在蘑菇、香菇和金针菇中挑选一个菌类,那总共有多少种不同的搭配方法? 分析:肉类三选一,是3;蔬菜五选一,是5;菌类三选一,是3,相乘是45. 例3 从杭州到北京共有5个车站(包括杭州和北京)。每个汽车站售票处要为这条线路准备多少不同的车票? (杭州-上海-苏州-南京-北京) 分析:我们将车站编号为A,B,C,D,E.那么A号站到其他车站的车票共有4种,即A→B,A→C,A→D,A→E。同样,B号站到其他车站的票号也有4种,即B→A,B→C,B→D,B→E。(这里A→B和B→A的车票是不一样的,出发站和终点站不一样)所以每个站都必须准备4种不同的车票。所以总有车票的数量是:4×5=20(种)

小学奥数之排列组合问题.讲课教案

计 数 问 题 教学目标 1.使学生正确理解排列、组合的意义;正确区分排列、组合问题; 2.了解排列、排列数和组合数的意义,能根据具体的问题,写出符合要求的排列或组合; 3.掌握排列组合的计算公式以及组合数与排列数之间的关系; 4.会、分析与数字有关的计数问题,以及与其他专题的综合运用,培养学生的抽象能力和逻辑思维能力; 通过本讲的学习,对排列组合的一些计数问题进行归纳总结,重点掌握排列与组合的联系和区别,并掌握一些排列组合技巧,如捆绑法、挡板法等。 5.根据不同题目灵活运用计数方法进行计数。 知识点拨: 例题精讲: 一、 排 列 组 合 的 应 用 【例 1】 小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法? (1)七个人排成一排; (2)七个人排成一排,小新必须站在中间. (3)七个人排成一排,小新、阿呆必须有一人站在中间. (4)七个人排成一排,小新、阿呆必须都站在两边. (5)七个人排成一排,小新、阿呆都没有站在边上. (6)七个人战成两排,前排三人,后排四人. (7)七个人战成两排,前排三人,后排四人. 小新、阿呆不在同一排。 【解析】 (1)775040P =(种)。 (2)只需排其余6个人站剩下的6个位置.66720P =(种). (3)先确定中间的位置站谁,冉排剩下的6个位置.2×6 6P =1440(种). (4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置.552240P ?= (种). (5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,25552400P P ?=(种). (6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.775040P =(种). (7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所 以只要求出其中一种的排法数,再乘以2即可.4×3×55P ×2=2880(种).排队问题,一般先考虑特殊情况再去全排列。 【例 2】 用1、2、3、4、5、6可以组成多少个没有重复数字的个位是5的三位数? 【解析】 个位数字已知,问题变成从从5个元素中取2个元素的排列问题,已知5n =,2m =,根据排列数公式, 一共可以组成255420P =?=(个)符合题意的三位数。 【巩固】 用1、2、3、4、5这五个数字可组成多少个比20000大且百位数字不是3的无重复数字的五位数? 【解析】 可以分两类来看: ⑴ 把3排在最高位上,其余4个数可以任意放到其余4个数位上,是4个元素全排列的问题,有44432124P =???=(种)放法,对应24个不同的五位数; ⑵ 把2,4,5放在最高位上,有3种选择,百位上有除已确定的最高位数字和3之外的3个数字可以选择,有3种选择,其余的3个数字可以任意放到其余3个数位上,有336P =种选择.由乘法原理,可

奥数:排列组合的基本理论和公式

一、排列组合的基本理论和公式,排列与元素的顺序有关,组合与顺序无关。如231与213是两个排列,2+3+1的和与2+1+3的和是一个组合。 (一)两个基本原理是排列和组合的基础: (1)加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1+m2+m3+…+m n种不同方法。 (2)乘法原理:做一件事,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×m3×…×m n种不同的方法。 这里要注意区分两个原理,要做一件事,完成它若是有n类办法,是分类问题,第一类中的方法都是独立的,因此用加法原理;做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的步骤,依次相继完成,这件事才算完成,因此用乘法原理。 这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来。 3 C表示从5个元素中取出3个,总共有多少种不同的取5

法。这是组合的运算。例如:从5个人中任选三个人去参加 比赛,共有几种选法?这就是从5个元素中取出3个的组合 运算。可表示为3 C。其计算过程是35C=5!/[3!×(5-3)!] 5 叹号代表阶乘,5!=5×4×3×2×1=120,3!=3×2×1=6, (5-3)!=2!=2×1=2,所以3 C=5!/[3!×(5-3)!]=120/(6×2)=10 5 针对上面例子,就是从5个人中任选三个人去参加比赛,共有10几种选法。 排列组合公式: 公式P是指排列,从N个元素取R个进行排列。 公式C是指组合,从N个元素取R个,不进行排列。n—元素的总个数;r—参与选择的元素个数。 !—阶乘,如 9!=9×8×7×6×5×4×3×2×1。 举例: Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数? A1: 123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。 上问题中,任何一个号码只能用一次,显然不会出现

小学奥数排列组合常见题型及解题策略备选题1

小学奥数排列组合常见题型及解题策略 排列组合问题是高考的必考题,它联系实际生动有趣,但题型多样,思路灵活,不易掌握,实践证明,掌握题型和解题方法,识别模式,熟练运用,是解决排列组合应用题的有效途径;下面就谈一谈排列组合应用题的解题策略. 一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重 复,把不能重复的元素看作“客”,能重复的元素看作“店”, 则通过“住店法”可顺利解题,在这类问题使用住店处理的策 略中,关键是在正确判断哪个底数,哪个是指数 【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)43(2)34(3)34 【例2】把6名实习生分配到7个车间实习共有多少种不同方法? 【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案, 第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案. 【例3】8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、38A D、 3 C 8 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种不同的结果。所以选A 二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与 排列. A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,那么不同的【例1】,,,, 排法种数有 A 种【解析】:把,A B视为一人,且B固定在A的右边,则本题相当于4人的全排列,4424【例2】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3

小学奥数排列组合例题

小学奥数排列组合例题

小学奥数排列组合例题 知识点拨: 一.加法原理:做一件事情,完成它有N类办法, 在第一类办法中有M1中不同的方法, 在第二类办法中有M2中不同的方法,……, 在第N类办法中有M n种不同的方法, 那么完成这件事情共有M1+M2+……+M n种不同的方法。 二.乘法原理:如果完成某项任务,可分为k个步骤, 完成第一步有n1种不同的方法, 完成第二步有n2种不同的方法,…… 完成第k步有nk种不同的方法, 那么完成此项任务共有n 1×n 2 ×……×n k 种不同的方法。 三.两个原理的区别 ?做一件事,完成它若有n类办法,是分类问题,每一类中的方法都是独立的,故用加法 原理。 每一类中的每一种方法都可以独立完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏) ?做一件事,需要分n个步骤,步与步之间是连续的,只有将分成的若干个互相联系的 步骤,依次相继完成,这件事才算完成,因此用乘法原理. 任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同 ?这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来. 四.排列及组合基本公式 1.排列及计算公式

从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 P m n 表示. P m n =n(n-1)(n-2)……(n-m+1) = n! (n-m)! (规定0!=1). 2.组合及计算公式 从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m个元素的组合数.用符号C m n 表示. C m n = P m n /m!= n! (n-m)!×m! 一般当遇到m比较大时(常常是m>0.5n时),可用C m n = C n-m n 来简化计算。 规定:C n n =1, C0 n =1. 3.n的阶乘(n!)——n个不同元素的全排列 P n n =n!=n×(n-1)×(n-2)…3×2×1 例题精讲: 一、排列组合的应用 【例 1】小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法? (1)七个人排成一排; (2)七个人排成一排,小新必须站在中间. (3)七个人排成一排,小新、阿呆必须有一人站在中间. (4)七个人排成一排,小新、阿呆必须都站在两边. (5)七个人排成一排,小新、阿呆都没有站在边上. (6)七个人战成两排,前排三人,后排四人.

五年级奥数.计数综合.排列组合(ABC级).学生版

一、 排列问题 在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关. 一般地,从n 个不同的元素中取出m (m n ≤)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. 根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列. 排列的基本问题是计算排列的总个数. 从n 个不同的元素中取出m (m n ≤)个元素的所有排列的个数,叫做从n 个不同的元素的排列中取出m 个元素的排列数,我们把它记做m n P . 根据排列的定义,做一个m 元素的排列由m 个步骤完成: 步骤1:从n 个不同的元素中任取一个元素排在第一位,有n 种方法; 步骤2:从剩下的(1n -)个元素中任取一个元素排在第二位,有(1n -)种方法; …… 步骤m :从剩下的[(1)]n m --个元素中任取一个元素排在第m 个位置,有11n m n m --=-+()(种) 方法; 由乘法原理,从n 个不同元素中取出m 个元素的排列数是121n n n n m ?-?-??-+()()() ,即121m n P n n n n m =---+()()(),这里,m n ≤,且等号右边从n 开始,后面每个因数比前一个因数小1,共有m 个因数相乘. 二、 排列数 一般地,对于m n =的情况,排列数公式变为12321n n P n n n =?-?-????( )(). 表示从n 个不同元素中取n 个元素排成一列所构成排列的排列数.这种n 个排列全部取出的排列,叫做n 个不同元素的全排列.式子右边是从n 开始,后面每一个因数比前一个因数小1,一直乘到1的乘积,知识结构 排列组合

四年级奥数讲义:排列组合的综合应用

四年级奥数讲义:排列组合的综合应用 排列组合是数学中风格独特的一部分内容.它具有广泛的实际应用.例如:某城市电话号码是由六位数字组成,每位可从0~9中任取一个,问该城市最多可有多少种不同的电话号码?又如从20名运动员中挑选6人组成一个代表队参加国际比赛.但运动员甲和乙两人中至少有一人必须参加代表队,问共有多少种选法?回答上述问题若不采用排列组合的方法,结论是难以想像的.(前一个问题,该城市最多可有1000000个不同电话号码.后一个问题,代表队有20196种不同选法.) 当然排列组合的综合应用具有一定难度.突破难点的关键:首先必须准确、透彻的理解加法原理、乘法原理;即排列组合的基石.其次注意两点:①对问题的分析、考虑是否能归纳为排列、组合问题?若能,再判断是属于排列问题还是组合问题?②对题目所给的条件限制要作仔细推敲认真分析.有时利用图示法,可使问题简化便于正确理解与把握. 例1 从5幅国画,3幅油画,2幅水彩画中选取两幅不同类型的画布置教室,问有几种选法?分析首先考虑从国画、油画、水彩画这三种画中选取两幅不同类型的画有三种情况,即可分三类,自然考虑到加法原理.当从国画、油画各选一幅有多少种选法时,利用的乘法原理.由此可知这是一道利用两个原理的综合题.关键是正确把握原理. 解:符合要求的选法可分三类: 不妨设第一类为:国画、油画各一幅,可以想像成,第一步先在5张国画中选1张,第二步再在3张油画中选1张.由乘法原理有5×3=15种选法.第二类为国画、水彩画各一幅,由乘法原理有5×2=10种选法.第三类油画、水彩各一幅,由乘法原理有3×2=6种选法.这三类是各自独立发生互不相干进行的. 因此,依加法原理,选取两幅不同类型的画布置教室的选法有15+10+6=31种. 注运用两个基本原理时要注意: ①抓住两个基本原理的区别,千万不能混. 不同类的方法(其中每一个方法都能各自独立地把事情从头到尾做完)数之间做加法,可求得完成事情的不同方法总数. 不同步的方法(全程分成几个阶段(步),其中每一个方法都只能完成这件事的一个阶段)数之间做乘法,可求得完成整个事情的不同方法总数. ②在研究完成一件工作的不同方法数时,要遵循“不重不漏”的原则.请看一些例:从若干件产品中抽出几件产品来检验,如果把抽出的产品中至多有2件次品的抽法仅仅分为两类:

小学数学奥数测试题排列组合_人教版

2019年小学奥数计数专题——排列组合1.四个不同的小球放入编号为1、2、3、4的四个盒子中,则恰有一个空盒的放法有________种. 2.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有( ) A.6个B.9个C.18个D.36个 3.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有( ) A.24种B.36种C.38种D.108种 4.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( ) A.72 B.96 C.108 D.144 5.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有( ) A.50种B.60种C.120种D.210种 6.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答). 7.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有 A.12种 B.18种 C.36种 D.54种 8.现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。甲、乙不会开车但能从事其他三项工作,丙丁戌都能胜任四项工作,则不同安排方案的种数是( ). A.152 B.126 C.90 D.54 9.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为( ) A.40 B.50 C.60 D.70 10.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为 A.32 B.24 C.30 D.36 11.2位男生和3位女生共5位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是 A. 60 B. 48 C. 42 D. 36 12.12个篮球队中有3个强队,将这12个队任意分成3个组(每组4个队),则3个强队恰好被分在同一组的概率为() A.1 55 B. 3 55 C. 1 4 D. 1 3 13.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是(用数字作答). 14.将5名实习教师分配到高一年级的3个班实习,每班至少1名,最多2名,则不同的分配方案有 A.30种 B.90种 C.180种 D.270种 15.某校从8名教师中选派4名教师同时去4个边远地区支教(每地1人),其中甲和乙不同去,甲和丙只能同去或同不去,则不同的选派方案共有种. 16.按下列要求把12个人分成3个小组,各有多少种不同的分法? (1)各组人数分别为2,4,6个;(2)平均分成3个小组;(3)平均分成3个小组,进入3个不同车间. 第1页/共7页

小学奥数排列组合教学教案.docx

小学奥数 -----排列组合教案 加法原理和乘法原理 排列与合 :熟悉排列与合。运用加法原理和乘法原理解决。在 日常生活中我常会遇到像下面的两:一:从 A 地到 B 地, 可以乘火,也可以乘汽或乘船。一天中,火有 4 班,汽有3班, 船有 2 班。那么从 A 地到 B 地共有多少种不同的走法二:从甲村到 乙村有两条道路,从乙村去丙村有 3 条道路(如下)。从甲村乙村去丙村,共有多少 种不同的走法解决上述两就是运用加法原理和乘法原理。 加法原理:完成一件工作共有N 方法。在第一方法中有m 1种不同的方法,在第二方法中有m 2种不同的方法,??,在第N 方法中有 m n种不同的方 法,那么完成件工作共有N = m 1+ m 2+m 3+?+m n种不同方法。 运用加法原理数,关在于合理分,不重不漏。要求每一中的每一种方法 都可以独立地完成此任;两不同法中的具体方法,互不相同 (即分不重 ); 完成此任的任何一种方法,都属于某一(即分不漏 )。合理分也是运用加 法原理解决的点,不同的,分的准往往不同,需要累一定的解 。 乘法原理:完成一件工作共需 N 个步:完成第一个步有 m 1种方法,完成第二个步 有 m 2种方法,?,完成第 N 个步有 m n种方法,那么,完成件工作共有 m 1×m 2 ×?×m n种方法。 运用乘法原理数,关在于合理分步。完成件工作的N 个步,各个步 之是相互系的,任何一步的一种方法都不能完成此工作,必完成N 步才能完成此工作;各步数相互独立;只要有一步中所采取的方法不同,的完成此工作的方法也不同。

这两个基本原理是排列和组合的基础,与教材联系紧密(如四下《搭配的规律》),教学时要先通过生活中浅显的实例,如购物问题、行程问题、搭配问题等,帮助 孩子理解两个原理,再让孩子学习运用原理解决问题。 运用两个原理解决的都是比较复杂的计数问题,在解题时要细心、耐心、有条理地分析问题。计数时要注意区分是分类问题还是分步问题,正确运用两个原理。 灵活机动地分层重复使用或综合运用两个原理,可以巧妙解决很多复杂的计数问题。小学阶段只学习两个原理的简单应用。 【例题一】每天从武汉到北京去,有 4 班火车, 2 班飞机, 1 班汽车。请问:每天从武汉到北京去,乘坐这些交通工具共有多少种不同的走法 【解析】运用加法原理,把组成方法分成三类:一类乘坐火车,二类乘坐飞机 ,三类乘坐洗车 . 解:4+2+1=7( 种 ) 【例题二】用 1 角、 2 角和 5 角的三种人民币(每种的张数没有限制)组成1元钱,有多少种方法 【解析】运用加法原理,把组成方法分成三大类: ①只取一种人民币组成 1 元,有 3 种方法: 10 张 1 角; 5 张 2 角;2 张 5 角。 ②取两种人民币组成 1 元,有 5 种方法: 1 张 5 角和 5 张 1 角;一张 2 角和 8 张 1 角; 2 张 2 角和 6 张 1 角; 3 张 2 角和 4 张 1 角; 4 张 2 角和 2 张 1 角。 ③取三种人民币组成 1 元,有 2 种方法: 1 张 5 角、1 张 2 角和 3 张 1 角的; 1张 5 角、 2 张 2 角和 1 张 1 角的。 解 :所以共有组成方法: 3+5+2=10(种)。

相关主题
文本预览
相关文档 最新文档