当前位置:文档之家› 传感器调整

传感器调整

传感器调整
传感器调整

1.空氣壓力傳感器 MPS-P3RC-G 的設置方法,內容及步驟過程.

該傳感器的設置內容分通用設置和系統設置,通用設置共有8段,第一,二段針對輸出1(OUT1)(這也是我們機器中使用的訊號),第三,四段針對輸出2(OUT2),第五段針對真空設置,第六,七,八段為其他通用設置.

第一段為輸出1(OUT1)的數據設置,第二段為輸出1(OUT1)的模式設置.數據是和模式有關的,所以應首先設置模式.

按 “MODE” ,出現 “- 1 –“,這時再按 “▲或▼” 至出現 “- 2 –“,等候3秒鐘,然後有 “OUT1”及其模式數據 “HYS 或 CnP 或 OFF” 交替顯示,按 “▲或▼” 選擇“CnP”後再按 “MODE”,出現 “END”即完成該段設置; 按 “MODE” ,出現 “- 1 –“,等候3秒鐘,出現輸出1(OUT1)的數據,按 “▲或▼”先設置低限值A後再按 “MODE”,又按 “▲或▼”設置高限值b後再按 “MODE”, 出現 “END”即完成該段設置;

第三,四段完全按第一,二段的設置方法及步驟進行即可;

第五段為真空度自動偵測教導, 按 “MODE” ,出現 “- 1 –“,這時再按 “▲或▼” 至出現 “- 5 –“,等候3秒鐘,即進入其自動偵測教導;

第六段為數據更新時間及傳感器反應時間設置. 按 “MODE” ,出現 “-

1 –“,這時再按 “▲或▼” 至出現 “- 6 –“,等候3秒鐘,出現 “Dsp”及其數據交替顯示,這是數據更新時間設置,範圍是 0.1~3 秒鐘,按 “▲或▼”設置該值後再按 “MODE”,出現 “AuE” 及其數據交替顯示,這是傳感器反應時間設置,該數據乘以

2 便是反應時間,例如數據為 1 時反應時間是 2毫秒,按 “▲或▼”設置該值後再按“MODE”,

出現 “END”即完成該段設置;

第七段為瞬間最高值,最低值的采集及顯示設置. 按 “MODE” ,出現 “-

1 –“,這時再按 “▲或▼” 至出現 “- 7 –“,等候3秒鐘,出現 “Pb” 和 “OFF 或 ON” 交替顯示,ON為采集,OFF則反之, 按 “▲或▼”設置該值後再按 “MODE”,出現 “PbL” 及其數據交替顯示,這是采集時間,範圍是 2~99 秒鐘,按 “▲或▼”設置該值後再按 “MODE”,出現 “Pbd” 及其數據交替顯示,這是采集數據顯示設置,”PE”為顯示最高值,”bo”為顯示最低值,”du”為兩者均顯示. 按 “▲或▼”設置該值後再按“MODE”,

出現 “END”即完成該段設置;

第八段為瞬間最高值,最低值的顯示方式設置.

系統設置如下:

同時按 “MODE” 和 “▲”後, 出現 “OUT1”和 “n.c. 或 n.o.” 交替

顯示, 按 “▲或▼” 選擇“n.o.”後再按 “MODE”,出現 “OUT2”和 “n.c. 或 n.o.” 交替顯示, 按 “▲或▼” 選擇“n.o.”後再按 “MODE”,出現的是顯示數據的單位設置.”PA”為kPa,

“bR”為BAR,”Fg”為kgf/cm 2,”PS”為PSI,”Hg”為mmHg,”iH”為incHg.再按 “MODE”,

出現”ESY”,選擇”OFF”後再按 “MODE”, 出現 “END”即完成該設置.同時按 “MODE” 和 “▼”可鎖住按鈕使數據不被更改,再按則解除.

按住 “MODE” 超過3秒鐘,顯示的數據會被清零.

2.PS-T1/T2一鍵式校正分離放大器型光電傳感器操作指南

A.放大器指示說明:( 從放大器上部開始介紹)

a.操作指示燈:(紅色LED)此燈會亮當控制輸出信號的時候

b.穩定操作指示燈:(綠色LED).此燈會亮在以下情況:接收到足夠的光強度

或光束被穩定阻隔(中斷,阻擋)

c.校正指示燈(黃色LED):此燈會亮當作靈敏度校正的時候

d.SET。靈敏度校正用的按鈕.

e.LOCK.操作保護開關.當此開關被拔到上方(即LOCK位置時),禁止進行

靈敏度調校,即是按SET按鈕亦無用處。

f.輸出時間選擇開關.OFF D表示延時40毫秒后再輸出OFF

ON D 表示延時40毫秒后再輸出ON

OFF 表示不延時

說明:當檢測物體有無的時候,假定物體有的時候輸出信號,那么如果物體很快通過檢測頭,那么有可能輸出的信號PLC會無法收到,(如物

體3毫秒內通過了傳感器,無PLC的循環時間通常會大于3毫秒的

時候可能會無法偵知),這時你可以將此開關拔到OFF D,那么輸出

信號將會最少保持40毫秒,而PLC可以偵知。從以上的說明可以

知道,OFF D實際意思是輸出ON信號的時候,最少保持40毫秒,

而ON D的意思是輸出OFF的時候,最少保持40毫秒。而OFF

就是實時輸出OFF、ON信號

g.輸出選擇開關. 此開關拔到DARK ON代表擋光的時候輸出ON信號,而

LIGHT ON代表透光(入光)的時候輸出ON信號..一般而

言,對望型傳感器擋光時輸出ON,而反射型則是入光時

輸出ON信號(此時代表有物體)

h.FINE/TURBO選擇開關:此開關拔到FINE代表超高精度,拔到TURBO

代表超長距離檢測.請依實際情況設定。注意:TURBO開

關僅適用于以下光電傳感器頭:PS-55,PS-05,PS-52,

PS-201,PS-202,PS-45,PS-205.除此以外,其它不支持

TURBO開關.(TURBO開關時檢測的距離是FINE的2倍)

B.靈敏度調校方法

使用移動物體來作靈敏度調校

a.全自動校正方式

1.先按住SET按鈕不放,然后將要檢測的物體移到傳感器頭去擋光

2.約3秒左右,放大器上面的黃色LED會閃爍。

3.當黃色LED閃爍了,松開SET按鈕。黃色LED會熄滅。調校完成。

檢測微小差別

b.兩點法調校

1.當有物件擋光時,按下SET按鈕并松開.校正指示燈(黃色LED)會亮.

2.移走物件,并按下SET按鈕并松開,校正指示燈熄滅,調校完成.

用于目標定位的調校方法

c.定位調校

1.當無物件時,按下SET按鈕并松開,調校指示燈(黃色LED)亮

2.放物件到它將會需要檢測的位置。

3.按下SET按鈕直到調校指示燈閃爍。(大約3秒以上)

4.松開SET按鈕

不受垃圾影響的穩定檢測調校方法

d.最大靈敏度設定

1.在以下條件下(反射型無物件,而對望型傳感器有物件擋光時)按住

SET 按鈕直到調校指示燈閃爍(黃色LED),大約需要按住SET 3秒左右.

2.松開SET按鈕。調校指示燈(黃色LED)熄滅.

3 KEYENCE 混合型光纖傳感器FS-V11/12操作指南

A.放大器指示說明:( 從放大器上部開始介紹)

a.操作指示燈:(紅色LED)此燈會亮當控制輸出信號的時候

b.條狀圖LED.作監示器用途,顯示當前設定有7個小燈。

其中(SUPER,TURBO,FINE是一組,代表能量模式,三種模式中任何時候只 有一種模式在使用。SET在設定數據的時候會閃爍或亮,40ms,10ms,OFF, 代表的是輸出ON信號時的時間選擇,3種模式選擇一種.

c.校正指示燈(橙色LED):此燈會亮當作靈敏度校正的時候

d.4個7段LED數字顯示器。

e.SET。自動設定按鈕.

f.手動按鈕. ▲或▼.用來調整數值或選擇數據用途。

g.模式選擇按鈕.

h.輸出選擇開關. 此開關拔到DARK ON代表擋光的時候輸出ON信號,而

LIGHT ON代表透光(入光)的時候輸出ON信號..一般而

言,對望型傳感器擋光時輸出ON,而反射型則是入光時

輸出ON信號(此時代表有物體)

i.輸出時間選擇開關.40ms表示延時40毫秒后再輸出OFF

10ms 表示延時10毫秒后再輸出OFF

OFF 表示不延時

說明:當檢測物體有無的時候,假定物體有的時候輸出信號,那么如果物體很快通過檢測頭,那么有可能輸出的信號PLC會無法收到,(如物

體3毫秒內通過了傳感器,無PLC的循環時間通常會大于3毫秒的

時候可能會無法偵知),這時你可以將此開關拔到OFF D,那么輸出

信號將會最少保持40毫秒,而PLC可以偵知。從以上的說明可以

知道,40ms實際意思是輸出ON信號的時候,最少保持40毫秒,

而10ms的意思是輸出ON的時候,最少保持10毫秒。而OFF就

是實時輸出OFF、ON信號

(在良好的狀態下,接收光強度最大值是4095,即光分辨率是12位的) B.靈敏度調校方法

使用移動物體來作靈敏度調校

a.全自動校正方式(與PS-T1相同)

1.先按住SET按鈕不放,然后將要檢測的物體移到傳感器頭去擋光

2.約3秒左右,放大器上面的橙色LED會閃爍。

3.當黃色LED閃爍了,松開SET按鈕。黃色LED會熄滅。調校完成。

(此取值就是擋光與未擋光時的和除以2,即2個值的中值)

如果全自動校正方式,工作效果不理想,可以使用下面的兩點法調校.

檢測微小差別

b.兩點法調校

1.當無物件擋光時,按下SET按鈕并松開.校正指示燈(橙色LED)會亮.

2.放入物件擋光,并按下SET按鈕并松開,校正指示燈熄滅,調校完成.

(此是通過物件的有無來設定光強度的中值)

(這里與PS-T1設定不同之處在于,PS-T1是先放物件擋光,后移走)

用于目標定位的調校方法(與PS-T1相同)

c.定位調校

1.當無物件時,按下SET按鈕并松開,調校指示燈(橙色LED)亮

2.放物件到它將會需要檢測的位置。

3.按下SET按鈕直到調校指示燈閃爍。(大約3秒以上)

4.松開SET按鈕

不受垃圾影響的穩定檢測調校方法

d.最大靈敏度設定

1.在以下條件下(反射型無物件,而對望型傳感器有物件擋光時)按住

SET 按鈕直到調校指示燈閃爍(橙色LED),大約需要按住SET 3秒左右.

2.松開SET按鈕。調校指示燈(橙色LED)熄滅.

C.手動調校方法(使用Up/Down▲或▼)

在顯示當前接收光強度數值的時候,按一下▲或▼,設定值會閃爍顯示,

這時按▲將會增加設定值,按▼減少設定值,按住▲或▼不放,數值會不

斷累加,并越來越快。如果不按▲或▼超過2秒鐘,則當前設定的數值會

被保存,并返回顯示當前光強度,停止閃爍。

D.按鍵鎖定

同時按下▲或▼與MODE鍵超過3秒鐘或更多可以鎖定或解鎖按鍵。當顯示 “Loc”并閃爍的時候,按鍵被鎖,不能夠進行設定了。當顯示“unl”的時候 按鍵被釋放,可以使用按鍵來進行設定。建議為避免不當操作,設定好數據后 ,將按鍵進入鎖定狀態,以免有人誤改數據。

E.能量選擇

在顯示光強度的狀態下,按下MODE3秒,將進入能量選擇模式,按下▲或▼將會在FINE ,TURBO,SUPER之間切換,此時再按一下MODE,將進入延時輸出選擇,此時顯示為”dly”(意即DELAY),按下▲或▼,可以在OFF,10MS,40MS中切換。

再按一下MODE,將退出模式選擇。

注意:如果更改了能量模式,必須要重新調整靈敏度。

PLC与传感器的连接方法

PLC与传感器的连接方法 一:引言 PLC的数字量输入接口并不复杂,我们都知道PLC为了提高抗干扰能力,输入接口都采用光电耦合器来隔离输入信号与内部处理电路的传输。因此,输入端的信号只是驱动光电耦合器的内部LED导通,被光电耦合器的光电管接收,即可使外部输入信号可靠传输。 目前PLC数字量输入端口一般分单端共点与双端输入,各厂商的单端共点(Com)的接口有光电耦合器正极共点与负极共点之分,日系PLC通常采用正极共点,欧系PLC习惯采用负极共点;日系PLC供应欧洲市场也按欧洲习惯采用负极共点;为了能灵活使用又发展了单端共点(S/S)可选型,根据需要单端共点可以接负极也可以接正极。 由于这些区别,用户在选配外部传感器时接法上需要一定的区分与了解才能正确使用传感器与PLC为后期的编程工作和系统稳定奠定基础。 二:输入电路的形式 1、输入类型的分类 PLC的数字量输入端子,按电源分直流与交流,按输入接口分类由单端共点输入与双端输入,单端共点接电源正极为SINK(sink Current 拉电流),单端共点接电源负极为SRCE(source Current 灌电流)。 2、术语的解释 SINK漏型 SOURCE源型 SINK漏型为电流从输入端流出,那么输入端与电源负极相连即可,说明接口内部的光电耦合器为单端共点为电源正极,可接NPN型传感器。 SOURCE源型为电流从输入端流进,那么输入端与电源正极相连即可,说明接口内部的光电耦合器为单端共点为电源负极,可接PNP型传感器。 国内对这两种方式的说法有各种表达: 1)、根据TI的定义,sink Current 为拉电流,source Current为灌电流, 2)、由按接口的单端共点的极性,共正极与共负极。这样的表述比较容易分清楚。 3)、SINK为NPN接法,SOURCE为PNP接法(按传感器的输出形式的表述)。 4)、SINK为负逻辑接法,SOURCE为正逻辑接法(按传感器的输出形式的表述)。 5)、SINK为传感器的低电平有效,SOURCE为传感器的高电平有效(按传感器的输出状态的表述)。 这种表述的笔者接触的最多,也是最容易引起混淆的说法。 接近开关与光电开关三、四线输出分NPN与PNP输出,对于无检测信号时NPN的接近开关与光电开关输出为高电平(对内部有上拉电阻而言),当有检测信号,内部NPN管导通,开关输出为低电平。 对于无检测信号时PNP的接近开关与光电开关输出为低电平(对内部有下拉电阻而言),当有检测信号,内部PNP管导通,开关输出为高电平。 以上的情况只是针对,传感器是属于常开的状态下。目前可厂商生产的传感器有常开与常闭之分;常闭型NPN输出为低电平,常闭型PNP输出为高电平。因此用户在选型上与供应商配合上经常产生偏差。 另一种情况,用户也遇到SINK接PNP型传感器,SOURCE接NPN型传感器,也能驱动PLC接口,对于PLC输入信号状态则由PLC程序修改。原因是传感器输出有个上拉电阻与下拉电阻的缘故,对于集电极开路的

传感器布置

传感器布置 (1)KG9001C甲烷传感器 瓦斯传感器应垂直悬挂在巷道上方风流稳定的位置,距顶板(顶梁)不得大于300mm,距巷道侧壁不得小于 200mm,并应安装维护方便,不影响行人和行车。 瓦斯传感器应设置在井下工作面、掘进头、回风巷道等地方,用于连续监测井下气体中瓦斯含量,当瓦斯含量超限时,应具有声光报警功能,同时由有关设备切断相应范围的电源。 地面瓦斯抽放泵站内距房顶300mm处必须设置甲烷传感器,抽放泵输入管路中应设置甲烷传感器。 传感器的测量范围:低浓型:0.00~10%CH 4,高浓型:0.00~100%CH 4 ,高 低浓型:0.00~10~100%CH 4,管道型0.00~100%CH 4 传感器的测量误差:相对误差≤±10%×测值(相对值) 响应时间:<30s 报警方式:声光报警 工作方式:连续 使用条件:环境温度0~40℃ 相对温度<95% (2)GT-L(A)开停传感器 设备开停传感器锁固吊挂于被测电缆上,主要通风机、局部通风机、瓦斯泵、绞车、压风机、带式输送机等设备开停传感器。 测量原理:电磁感应 电源电压:9~24VDC 工作电流:1/5mADC、5/-5mADC、无电位(继电器)触点、信号制时<30mADC、其它信号制时<15mADC 工作方式:锁固吊挂于被测电缆上,连续工作 输出信号:1/5mADC、0~5VDC、±5mADC、无电位触点 显示方式:绿色灯为电源指示、红色灯指示开停 (3)GML(A)风门传感器 安装在井下各风门设置处,用以监测各风门的开、关状态,保证井下风路畅通。

检测灵敏度:>5cm 响应时间:<1s (4)KG4003A负压传感器 负压传感器安装在矿井风硐内,用以连续监测矿井风压。 测量范围:0~100KPa 测量精度:0. 2KPa 使用环境:0~50℃ 相对温度:<95% (5)KJA3一氧化碳传感器 一氧化碳传感器应垂直悬挂在巷道的上方风流稳定的位置,距顶板(顶梁)不得大于300mm,距巷壁不得小于 200mm,并应安装维护方便,不影响行人和行车。 一氧化碳传感器设置在带式输入送机滚筒下风侧10—15m处、自然发火观测点、封闭火区防墙栅栏外、矿井风硐、采面回风、掘进总回风内,用以连续监测矿井自燃发火,报警浓度为0.0024%CO。 测量范围:0~100 测量精度:1 使用环境:0~50℃ 相对温度:<95% (6)GWD50环境温度传感器 温度传感器应垂直悬挂在巷道的上方风流稳定的位置,距顶板(顶梁)不得大于300mm,距巷壁不得小于 200mm,并应不影响行人和行车,安装维护方便。 机电硐室内应设置温度传感器,报警值为30℃。对温度进行连续实时监测。 测量范围:0~50℃ 测量精度:0.5℃ 使用环境:0~50℃ 相对温度:<95% (7)GC1000J粉尘传感器 粉尘传感器应垂直悬挂在巷道的上方风流稳定的位置,距顶板(顶梁)不得大于300mm,距巷壁不得小于 200mm,并应不影响行人和行车,安装维护方便。

传感器的国家标准_无眼界

传感器的国家标准 与传感器相关的现行国家标准 GB/T 14479-1993 传感器图用图形符号 GB/T 15478-1995 压力传感器性能试验方法 GB/T 15768-1995 电容式湿敏元件与湿度传感器总规范 GB/T 15865-1995 摄像机(PAL/SECAM/NTSC)测量方法第1部分:非广播单传感器摄像机GB/T 13823.17-1996 振动与冲击传感器的校准方法声灵敏度测试 GB/T 18459-2001 传感器主要静态性能指标计算方法 GB/T 18806-2002 电阻应变式压力传感器总规范 GB/T 18858.2-2002 低压开关设备和控制设备控制器-设备接口(CDI) 第2部分:执行器传感器接口(AS-i) GB/T 18901.1-2002 光纤传感器第1部分:总规范 GB/T 19801-2005 无损检测声发射检测声发射传感器的二级校准 GB/T 7665-2005 传感器通用术语 GB/T 7666-2005 传感器命名法及代号

GB/T 11349.1-2006 振动与冲击机械导纳的试验确定第1部分:基本定义与传感器 GB/T 20521-2006 半导体器件第14-1部分: 半导体传感器-总则和分类 GB/T 14048.15-2006 低压开关设备和控制设备第5-6部分:控制电路电器和开关元件-接近传感器和开关放大器的DC接口(NAMUR) GB/T 20522-2006 半导体器件第14-3部分: 半导体传感器-压力传感器 GB/T 20485.11-2006 振动与冲击传感器校准方法第11部分:激光干涉法振动绝对校准GB/T 20339-2006 农业拖拉机和机械固定在拖拉机上的传感器联接装置技术规范 GB/T 20485.21-2007 振动与冲击传感器校准方法第21部分:振动比较法校准 GB/T 20485.13-2007 振动与冲击传感器校准方法第13部分: 激光干涉法冲击绝对校准GB/T 13606-2007 土工试验仪器岩土工程仪器振弦式传感器通用技术条件 GB/T 21529-2008 塑料薄膜和薄片水蒸气透过率的测定电解传感器法 GB/T 20485.1-2008 振动与冲击传感器校准方法第1部分: 基本概念 GB/T 20485.12-2008 振动与冲击传感器校准方法第12部分:互易法振动绝对校准 GB/T 20485.22-2008 振动与冲击传感器校准方法第22部分:冲击比较法校准 GB/T 7551-2008 称重传感器

传感器布置

传感器布置

传感器布置 (1)KG9001C甲烷传感器 瓦斯传感器应垂直悬挂在巷道上方风流稳定的位置,距顶板(顶梁)不得大于300mm,距巷道侧壁不得小于 200mm,并应安装维护方便,不影响行人和行车。 瓦斯传感器应设置在井下工作面、掘进头、回风巷道等地方,用于连续监测井下气体中瓦斯含量,当瓦斯含量超限时,应具有声光报警功能,同时由有关设备切断相应范围的电源。 地面瓦斯抽放泵站内距房顶300mm处必须设置甲烷传感器,抽放泵输入管路中应设置甲烷传感器。 传感器的测量范围:低浓型:0.00~10%CH 4,高浓型:0.00~100%CH 4 , 高低浓型:0.00~10~100%CH 4,管道型0.00~100%CH 4 传感器的测量误差:相对误差≤±10%×测值(相对值) 响应时间:<30s 报警方式:声光报警 工作方式:连续 使用条件:环境温度0~40℃ 相对温度<95% (2)GT-L(A)开停传感器 设备开停传感器锁固吊挂于被测电缆上,主要通风机、局部通风机、瓦斯泵、绞车、压风机、带式输送机等设备开停传感器。 测量原理:电磁感应 电源电压:9~24VDC 工作电流:1/5mADC、5/-5mADC、无电位(继电器)触点、信号制时<30mADC、其它信号制时<15mADC 工作方式:锁固吊挂于被测电缆上,连续工作 输出信号:1/5mADC、0~5VDC、±5mADC、无电位触点 显示方式:绿色灯为电源指示、红色灯指示开停 (3)GML(A)风门传感器

安装在井下各风门设置处,用以监测各风门的开、关状态,保证井下风路畅通。 检测灵敏度:>5cm 响应时间:<1s (4)KG4003A负压传感器 负压传感器安装在矿井风硐内,用以连续监测矿井风压。 测量范围:0~100KPa 测量精度:0. 2KPa 使用环境:0~50℃ 相对温度:<95% (5)KJA3一氧化碳传感器 一氧化碳传感器应垂直悬挂在巷道的上方风流稳定的位置,距顶板(顶梁)不得大于300mm,距巷壁不得小于 200mm,并应安装维护方便,不影响行人和行车。 一氧化碳传感器设置在带式输入送机滚筒下风侧10—15m处、自然发火观测点、封闭火区防墙栅栏外、矿井风硐、采面回风、掘进总回风内,用以连续监测矿井自燃发火,报警浓度为0.0024%CO。 测量范围:0~100 测量精度:1 使用环境:0~50℃ 相对温度:<95% (6)GWD50环境温度传感器 温度传感器应垂直悬挂在巷道的上方风流稳定的位置,距顶板(顶梁)不得大于300mm,距巷壁不得小于 200mm,并应不影响行人和行车,安装维护方便。 机电硐室内应设置温度传感器,报警值为30℃。对温度进行连续实时监测。 测量范围:0~50℃ 测量精度:0.5℃ 使用环境:0~50℃ 相对温度:<95% (7)GC1000J粉尘传感器

液位传感器常用的检测方法

为了选择最佳的液位传感器,我们不但需要了解被测液体的属性和状态,同时,也要知道不同的检测方式的优点与局限性,从而才能选出最合适的传感器。以下为目前市场上最常见的检测技术。 激光测量:激光类传感器基于光学检测原理,通过物体表面反射光线至接收器进行检测,其光斑较小且集中,易于安装、校准,灵活性好,可应用于散料或液位的连续或者限位报警等;但其不适合应用于透明液体(透明液体容易折射光线,导致光线无法反射至接收器),含泡沫或者蒸汽环境(无法穿透泡沫或者容易受到蒸汽干扰),波动性液体(容易造成误动作),振动环境等。 tdr(时域反射)/ 导波雷达/微波原理测量:其名称在行业内有多种不同的叫法,其具备了激光测量的好处,如:易于安装、校准,灵活性好等,另外其更优于激光检测,如无需重复校准和多功能输出等,其适用于各种含泡沫的液位检测,不受液体颜色影响,甚至可应用于高粘性液体,受外部环境干扰相对小,但其测量高度一般小于6米。 超声波测量:由于其原理为通过检测超声波发送与反射的时间差来计算液位高度,故容易受到超声波传播的能量损耗影响。其亦具备安装容易、灵活性高等特点,通常可安装于高处进行非接触式测量。但当使用于含蒸汽、粉层等环境时,检测距离将会明显缩短,不建议使用在吸波环境,如泡沫等。 音叉振动测量:音叉式测量仅为开关量输出,不能用于连续性监控液体高度。其原理为:当液体或者散料填充两个振动叉时,共振频率改变时,依靠检测频率改变而发出开关信号。其可用于高粘度液体或者固体散料的高度监控,主要为防溢报警、低液位报警等,不提供模拟量输出,另外,多数情况下需要开孔安装于容器侧面。 光电折射式测量:该检测方式通过传感器内部发出光源,光源通过透明树脂全反射至传感器接受器,但遇到液面时,部分光线将折射至液体,从而传感器检测全反射回来光量值的减少来监控液面。该检测方式便宜,安装、调试简单,但仅能应用于透明液体,同时只输出开关量信号。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.doczj.com/doc/2b12717080.html,/

位移传感器的安装方法

位移传感器的功能是将机械的位移量转换成电信号,在我们选择位移传感器的时候需要考虑的有安装方式线性精度和供电情况,同样需要知道你的大概测量范围去选择更加合适的位移传感器。 首先我们在选择位移传感器规格范围时需留有余量,一般情况下最好是在实际行程的基础上选大一规格的即可。同样还需要注意的是你选择的是电涡流位移传感器,拉线位移传感器还是滑块位移传感器。如果你的位移传感器不便于进行对中调整的场合使用的话,最好是使用滑块位移传感器。而就位移的量程而言,大量程的建议使用的拉线位移传感器,电涡流位移传感器只是相对精度比较高的去测量。滑块位移传感器可以减少调整对中性的工作量,但辅助加长杆不能取消,否则,会出现由于对中性不好而导致稳定性和使用寿命,所以类似的位移传感器安装要是相当严格的。 位移传感器的安装要求根据你测量的是振动和位移,如果是轴的径向振动测量就得要求轴的直径大于探头直径的三倍以上。每个测点应同时安装两个传感器探头,两个探头应分别安装在轴承两边的同一平面上相隔90度。轴的径向振动测量时探头的安装位置应该尽量靠近轴承。探头中心线应与轴心线正交,探头监测的表面必须是无裂痕或其它任何不连续的表面现象。 如果是轴的轴向位移测量测量面应该与轴是一个整体,这个测量面是以探头的中心线为中心,宽度为1.5倍的探头圆环。探头安装距离距止推法兰盘不应超过305mm,否则测量结果不仅包含轴向位移的变化,而且包含胀差在内的变化,这样测量的不是轴的真实位移值。对于位移传感器的测量方式不一样,对应的安装就需要有不一样的要求。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解相关传感器产品的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.doczj.com/doc/2b12717080.html,。

传感器的选择方法

1、传感器的选择方法 在提供解决方案的时候 , 选择合适的产品是很重要的一个环节 , 就传感器 而言 , 种类就有很多 , 一旦选的不好 , 就会给后期工作带来很多的麻烦。因此,选择好一个合适的产品,是十分重要的。 (1)根据测量对象与测量环境确定传感器的类型 要进行—个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量 . 在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。 (2)灵敏度的选择 通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。 (3)频率响应特性 传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有—定延迟,希望延迟时间越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点(稳态、瞬态、随机等)响应特性,以免产生过火的误差。 (4)线性范围 传感器的线性范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的传感器近似看作线性的,这会给测量带来极大的方便。 (5)精度 精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求就可以,不必选得过高。这样就可以在满足同一测量目的的诸多传感器中选择比较便宜和简单的传感器。如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用绝对量值精度高的;如果是为了定

传感器的标定与校准

标定与校准的概念 新研制或生产的传感器需要对其技术性能进行全面的检定,以确定其基本的静、动态特性,包括灵敏度、重复性、非线性、迟滞、精度及固有频率等。 例如,对于一个压电式压力传感器,在受力后将输出电荷信号,即压力信号经传感器转换为电荷信号。但是,究竟多大压力能使传感器产生多少电荷呢?换句话说,我们测出了一定大小的电荷信号,但它所表示的加在传感器上的压力是多大呢? 这个问题只靠传感器本身是无法确定的,必须依靠专用的标准设备来确定传感器的输入――输出转换关系,这个过程就称为标定。简单地说,利用标准器具对传感器进行标度的过程称为标定。具体到压电式压力传感器来说,我们用专用的标定设备,如活塞式压力计,产生一个大小已知的标准力,作用在传感器上,传感器将输出一个相应的电荷信号,这时,再用精度已知的标准检测设备测量这个电荷信号,得到电荷信号的大小,由此得到一组输入――输出关系,这样的一系列过程就是对压电式压力传感器的标定过程,如图1-19所示。 图1-19 压电式压力传感器输入――输出关系 校准在某种程度上说也是一种标定,它是指传感器在经过一段时间储存或使用后,需要对其进行复测,以检测传感器的基本性能是否发生变化,判断它是否可以继续使用。因此,校准是指传感器在使用中或存储后进行的性能复测。在校准过程中,传感器的某些指标发生了变化,应对其进行修正。 标定与校准在本质上是相同的,校准实际上就是再次的标定,因此,下面都以标定为例作介绍。 1.7.2 标定的基本方法 标定的基本方法是,利用标准设备产生已知的非电量(如标准力、位移、压力等),作为输入量输入到待标定的传感器,然后将得到的传感器的输出量与输入的标准量作比较,从而得到一系列的标定数据或曲线。例如,上述的压电式压力传感器,利用标准设备产生已知大小的标准压力,输入传感器后,得到相应的输出信号,这样就可以得到其标定曲线,根据标定曲线确定拟合直线,可作为测量的依据,如图1-20所示。

压力传感器的检测方法有什么.

压力传感器的应用范围非常广泛,伴随着压力传感器的广泛应用,确定如何检测压力传感器显得十分重要。检测压力传感器,根据目的不同,检测的项目也不一样,当然检测的方法也就会有区别。 1、桥路的检测,主要检测传感器的电路是否正确,一般是惠斯通全桥电路,利用万用表的欧姆档,量输入端之间的阻抗、以及输出端之间的阻抗,这两个阻抗就是压力传感器的输入、输出阻抗。如果阻抗是无穷大,桥路就是断开的,说明传感器有问题或者引脚的定义没有判断正确。 2、零点的检测,用万用表的电压档,检测在没有施加压力的条件下,传感器的零点输出。这个输出一般为mV级的电压,如果超出了传感器的技术指标,就说明传感器的零点偏差超范围。 3、加压检测,检单的方法是:给传感器供电,用嘴吹压力传感器的导气孔,用万用表的电压档检测传感器输出端的电压变化。如果压力传感器的相对灵敏度很大,这个变化量会明显。如果丝毫没有变化,就需要改用气压源施加压力。 通过以上方法,基本可以检测一个传感器的状况。如果需要准确的检测,就需要用标准的压力源,给传感器压力,按照压力的大小和输出信号的变化量,对传感器进行校准。并在条件许可的情况下,进行相关参数的温度检测。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.doczj.com/doc/2b12717080.html,/

各种传感器调校方法

KGA5矿用一氧化碳传感器 传感器的遥控调整 预热15分钟后方可进行调整,正常调整应具备两个条件:新鲜空气,固定浓度的标准气样。调校顺序应该是先调零点,再调整精度。传感器通电后LED 首先显示“-CO-”,然后依次显示报警点,传感器地址,初始化显示完后显示测得的浓度值。传感器的调整通过遥控器来操作,传感器进入调整状态时的第一位红色数码管显示功能号,后三位显示测量数据,调整内容及对应的数码管显示如下: 零点:“1×××” 精度:“2×××” 报警点:“3×××” 地址:“4×××” 传感器进行调整时,需要将遥控器对准显示窗口,按“CO”键后进入调整状态(功能1)。按“功能+”键时,功能号从功能1加到功能4,而按“功能—” 则从功能4减到功能1。当用户调整完毕后必须按“退出”键,退出遥控调试状态,进入正常显示状态。调试步骤如下: (1)调零点:当通入新鲜空气时,按遥控器上的“功能+”或“功能—”,进入状态1,数码管显示数为“1 XXX”,再按“参数+”或“参数—”, 使数码管显示“1 000”。 (2)调精度:给传感器通入确定浓度的标准CO气样,按遥控器上的“功能+”或“功能—”,进入状态2,数码管显示数为“2 XXX”,再按“参 数+”或“参数—”,使数码管显示对应比标准气体的浓度。 (3)报警点:按遥控器上的“功能+”或“功能—”,进入状态3,数码管显示数为“3 XXX”(出厂时设为24),用户需要调整时,按“参数+” 或“参数—”,使数码管显示为用户要求的值。 (4)地址号:地址参数的调整只有在使用485通讯时才需要设置。按遥控器上的“功能+”或“功能—”,进入状态4,数码管显示数为“4 XXX” (0≤XXX≤255),用户需要调整时,按“参数+”或“参数—”,使数 码管显示为用户要求的值。 注意: 1 几台传感器在一起,遥控器对有效区域内的一台传感器的调节会影响带其 他的传感器,可以通过短路块短接K2来屏蔽遥控器的接收。 2 每次参数调整后必须按“退出”键,以保证参数被有效的保存,如果没有 按“退出”键或其他键。30秒后参数不保存自动退出到测量状态。 故障处理与维修 使用过程中,要定期的对传感器进行维修。 常见鼓掌及排除方法: 电源故障 故障现象:数码管显示不亮。 故障原因: a.外部无电源接入,航空插头没有插好。 b.显示板与主板连接不良好。 处理方法:

自动驾驶传感器布置如何布置

前言:无人驾驶汽车的研究越来越多,各环境感知传感器的分布位置也不同,到底这些传感器要遵循一个什么样的布置原则? 智能驾驶汽车环境感知传感器主要有超声波雷达、毫米波雷达、激光雷 达、单/双/三目摄像头、环视摄像头以及夜视设备。目前,处于开发中的典型智能驾驶车传感器配置如表 1所示。 表 1 智能驾驶汽车传感器配置 ?环视摄像头:主要应用于短距离场景,可识别障碍物,但对光照、天气等外在条件很敏感,技术成熟,价格低廉; ?摄像头:常用有单、双、三目,主要应用于中远距离场景,能识别清晰的车道线、交通标识、障碍物、行人,但对光照、天气等条件很敏感,而且需要复杂的算法支持,对处理器的要求也比较高; ?超声波雷达:主要应用于短距离场景下,如辅助泊车,结构简单、体积小、成本低; ?毫米波雷达:主要有用于中短测距的 24 GHz 雷达和长测距的 77 GHz 雷达 2 种。毫米波雷达可有效提取景深及速度信息,识别障碍物,有一定的穿透 雾、烟和灰尘的能力,但在环境障碍物复杂的情况下,由于毫米波依靠声波定位,声波出现漫反射,导致漏检率和误差率比较高; ?激光雷达:分单线和多线激光雷达,多线激光雷达可以获得极高的速度、距离和角度分辨率,形成精确的 3D 地图,抗干扰能力强,是智能驾驶汽车发展的最佳技术路线,但是成本较高,也容易受到恶劣天气和烟雾环境的影响。 ?不同传感器的感知范围均有各自的优点和局限性(见图 1),现在发展的趋势是通过传感器信息融合技术,弥补单个传感器的缺陷,提高整个智能驾驶系统的安全性和可靠性。

图 1 环境感知传感器感知范围示意图 全新奥迪A8配备自动驾驶系统的传感器包括 -12个超声波传感器,位于前后及侧方 -4个广角360度摄像头,位于前后和两侧后视镜 -1个前向摄像头,位于内后视镜后方 -4个中距离雷达,位于车辆的四角 -1个长距离雷达,位于前方 -1个红外夜视摄像头,位于前方

汽车上所有传感器的检测方法

01 传感器的作用 汽车上的传感器它将汽车运行过程中的各种工况数据,如温度、流量、车速等信号,转化成电信号后传输给计算机,以使汽车各功能都处于最佳工作状态或将某些数据精准的告诉车主。 02 传感器的分类 汽车上的传感器从最初单纯的应用于发动机(水温、机油压力、燃油量)到现在应用于各大系统的上百种传感器,按其作用基本分为下面几种: 1、测量温度 如水温传感器、进气温度传感器、油温传感器、空调室内温度传感器等;2、测量压力 如机油压力、进气压力、燃油压力等; 3、测量流量 如空气流量计; 4、测量位置 如节气门位置传感器、燃油油量传感器、制动液位置传感器等; 5、测量(气体)浓度 如氧传感器; 6、测量速度 如曲轴传感器、车速传感器; 7、测量光强度 如光照传感器(自动大灯); 03

传感器的结构及检修 因传感器的种类繁多,很多传感器名称不一样,但是它们的监测原理及检修方式是一样的,于是这里仅根据其结构类型及作用进行介绍。 另外有一点大家需要注的意是,我们在检测的时候,并不应只考虑传感器本身的故障,还要考虑线束、插头以及控制模块的故障。 【1】电磁式曲轴位置传感器 广泛应用于曲轴位置传感器、凸轮轴位置传感器、轮速(ABS)传感器等。 电磁式的传感器主要由永久磁铁、电磁线圈、外壳以及脉冲轮等组成。 它所采取的是通过脉冲轮的旋转,电磁线圈切割磁感应线,产生出一个有频率的感应电压,电脑根据该频率电压进行计算后就可以得知,旋转的角度及圈数。

它的电路通常如下: 电磁式传感器一般为两线及三线式,三线的多一根信号屏蔽线。它的检测方法比较简单,常用的有如下几种方法: 1、量线圈的电阻,且都与屏蔽线不通;

传感器的设定方法

传感器的设定方法 单按键传感器:D11E, D12E, MINI-BEAM专家型, MINI-BEAM2,WORLD-BEAM专家型, TM18, Q50, Q45U,SLE10/30 设定方法如下: D11E:有远程示教功能(低电位脉冲),能锁定按键 设定灵敏度 1.按住按键2S以上, 绿色电源指示灯以1Hz频率闪烁,黄色输出指示灯灭,传感器进入设定状态 2.使传感器感知被测物,单击按键一次, 绿色电源指示灯以2Hz频率闪烁(此条件即为传感器输出ON之条件) 3.使传感器感知背景,单击按键一次,绿色,黄色和红色指示灯同时闪烁1- 4次,以指示对比度的大小,稍候,绿灯常亮,传感器进入运行状态(此条件即为传感 器输出OFF之条件);如只闪烁1次,表明对比度太低,自动进入步骤2,重新 设定。 设定输出脉宽延时(40ms) 1.同上 2.双击按键,显示当前的设定状态:绿色和黄色指示灯灭,红色指示灯常亮,表明当前有OFF延时;如果红色指示灯双闪,表明当前无OFF延时。 3.单击按键可改变延时设定 4.双击按键,稍候,绿灯变亮,传感器保存设定,进入运行状态。 将灵敏度设定至最大(恢复工厂默认值) 1.同上 2.连续单击按键四次,稍候,传感器自动进入运行状态。 注:工厂默认设定为:最大灵敏度,亮态操作,无OFF延时,按键功能有效 按键锁定/解锁 1.给远程示教线(白)连续4个低电位脉冲,按键被锁定 2.再连续给远程示教线(白)4个低电位脉冲,按键解锁 D12E:有远程示教功能(低电位脉冲),但不能锁定按键 设定灵敏度 1.按住按键2S以上, 7段红色指示灯中有两个变亮,以指示传感器当前的输出状态:是LO还是DO,有无OFF延时 2.双击按键,进入灵敏度设定状态:绿色电源指示灯以1Hz频率闪烁 3.使传感器感知被测物,单击按键一次,7段红色指示灯依次闪烁一遍,绿色指示灯双闪 4.使传感器感知背景,单击按键一次,7段红色指示灯依次闪烁一遍,然后有几段LED同时闪烁三次,稍候,绿灯常亮,传感器进入运行状态。如果对比度太低, 则第1段LED和ALARM LED均闪烁3次,然后回到上述第3步,重新设定。 设定输出模式 1.同上 2.点击按键三次,进入OFF延时设定模式:某一延时指示灯闪烁,以指示传感器当

监测设备各类传感器布置

第三节监测设备各类传感器布置 一、回采工作面传感器选型及配置 (一)采煤工作面 1、瓦斯传感器 本矿井为煤与瓦斯突出矿井,在回采工作面靠近上隅角回风顺槽内小于10m处布置1台高低浓度组合式瓦斯传感器T l,在工作面上隅角设置便携式甲烷检测报警仪T3。 报警浓度:Tl为≥1.0%; 断电浓度:Tl为≥1.5%; 复电浓度:Tl为<1.0%。 断电范围: T1—工作面及回风巷道中全部非本质安全型电气设备 2、粉尘传感器 在回采工作面的上、下出口各安装粉尘传感器各1台(共两台)。 3、温度传感器 在采煤工作面安设1台温度传感器。 4、CO传感器 在回采工作面上出口安设1台瓦斯传感器。 (二)采面运输顺槽 1、瓦斯传感器 在运输顺槽内设置一台瓦斯传感器T; 报警浓度:T为≥0.5%; 断电浓度:T为≥0.5%; 复电浓度:T为<0.5%。 断电范围: T—进风巷内全部非本质安全型电气设备 2、风速传感器 在工作面运输顺槽断面无变化,能准确计算测风断面的地点各安装1台风速传感器。 3、馈电传感器 在采煤工作面运输顺槽安装1台馈电传感器。 (三)采面回风顺槽 1、瓦斯传感器 在回采工作面回风侧布置1台高低浓度组合式瓦斯传感器T2,T2距回风石门约10~15m。 报警浓度:T2为≥1.0%; 断电浓度:T2为≥1.0%;

复电浓度:T2为<1.0%。 断电范围:T2—回风巷道中全部非本质安全型电气设备 2、CO传感器 在回风顺槽内距回风石门10~15m安设1台CO传感器。 3、风速传感器 风速传感器安设在回风顺槽内(1台) 4、风门开关传感器 在回风顺槽与1455联络巷连接附近的回风顺槽内安设2个风门开关传感器。 (四)胶带运输机机头 在运输顺槽内的胶带运输机机头1台烟雾传感器、1台粉尘传感器、1台开停传感器和1 台CO传感器。 二、掘进工作面传感器类型及配置 该矿井属于煤与瓦斯突出矿井,掘进工作面传感器的类型、数量和位置均按煤与瓦斯突出矿井的要求进行安设和配置。 矿井达产时配备二个掘进头,每个掘进头传感器类型及配置如下: (一)掘进工作面 1、瓦斯传感器 在掘进工作面布置1台高低浓度组合式瓦斯传感器T1,Tl靠近掘进头,其间距不大于5m。 报警浓度:T l为≥1.0%; 断电浓度:T l为≥1.5%; 复电浓度:T l<1%。 断电范围:T l一掘进工作面中全部非本质安全型电气设备。 2、风尘传感器 在掘进工作面布置1台风尘传感器; 3、风速传感器 在掘进工作面距迎头不大于6米的位置布置1台风速传感器。 4、CO传感器 在掘进工作面布置1台CO传感器。 (二)掘进工作面回风流中 1、瓦斯传感器 在掘进工作面回风流中布置1台高低浓度组合式瓦斯传感器T2,1T2为掘进头回风流靠近回风石门(斜巷、平巷)约10~15m。 报警浓度:T2为≥1.0%; 断电浓度:T2为≥1.0%; 复电浓度:T2<1%。 断电范围:T2一掘进工作面中全部非本质安全型电气设备。

传感器与检测技术试卷与答案

1.属于传感器动态特性指标的是(D) A重复性B线性度C灵敏度D固有频率 2误差分类,下列不属于的是(B) A系统误差B绝对误差C随机误差D粗大误差 3、非线性度是表示校准(B)的程度。 A、接近真值 B、偏离拟合直线 C、正反行程不重合 D、重复性 4、传感器的组成成分中,直接感受被侧物理量的是(B) A、转换元件 B、敏感元件 C、转换电路 D、放大电路 5、传感器的灵敏度高,表示该传感器(C) A工作频率宽B线性范围宽C单位输入量引起的输出量大D允许输入量大 6下列不属于按传感器的工作原理进行分类的传感器是(B) A应变式传感器B化学型传感器C压电式传感器D热电式传感器 7传感器主要完成两个方面的功能:检测和(D) A测量B感知C信号调节D转换 8回程误差表明的是在(C)期间输出输入特性曲线不重合的程度 A多次测量B同次测量C正反行程D不同测量 9、仪表的精度等级是用仪表的(C)来表示的。 A相对误差B绝对误差C引用误差D粗大误差 二、判断 1.在同一测量条件下,多次测量被测量时,绝对值和符号保持不变,或在改变条件时,按一定规律变化的误差称为系统误差。(√) 2系统误差可消除,那么随机误差也可消除。(×) 3对于具体的测量,精密度高的准确度不一定高,准确度高的精密度不一定高,所以精确度高的准确度不一定高(×) 4平均值就是真值。(×) 5在n次等精度测量中,算术平均值的标准差为单次测量的1/n。(×) 6.线性度就是非线性误差.(×) 7.传感器由被测量,敏感元件,转换元件,信号调理转换电路,输出电源组成.(√) 8.传感器的被测量一定就是非电量(×) 9.测量不确定度是随机误差与系统误差的综合。(√) 10传感器(或测试仪表)在第一次使用前和长时间使用后需要进行标定工作,是为了确定传感器静态特性指标和动态特性参数(√) 二、简答题:(50分) 1、什么是传感器动态特性和静态特性,简述在什么频域条件下只研究静态特性就能够满足通常的需要,而在什么频域条件下一般要研究传感器的动态特性? 答:传感器的动态特性是指当输入量随时间变化时传感器的输入—输出特性。静态特性是指当输入量为常量或变化极慢时传感器输入—输出特性。在时域条件下只研究静态特性就能够满足通常的需要,而在频域条件下一般要研究传感器的动态特性。 2、绘图并说明在使用传感器进行测量时,相对真值、测量值、测量误差、传感器输入、输出特性的概念以及它们之间的关系。 答:框图如下: 输入测量值相对真值输出 测量误差 测量值是通过直接或间接通过仪表测量出来的数值。 测量误差是指测量结果的测量值与被测量的真实值之间的差值。 当测量误差很小时,可以忽略,此时测量值可称为相对真值。

系统测点布置及传感器的选择

第4章系统测点布置及传感器的选择 第4.1节脱硫装置运行参数检测的特点 运行参数的检测室脱硫装置自动控制系统的一个基本组成环节。脱硫装置的工作过程实际上是一典型的化工工程,因此,其运行参数的检测与控制均与化工过程参数的检测与控制类似,而与火电厂热力设备明显不同。 脱硫装置运行中需要检测的过程参数包括温度、压力、流量、液位、烟气成分、石灰石浆液与石膏浆液PH值、浆液浓度(或密度)等。 温度、压力与流量参数的检测在火电厂热力设备中广泛采用,在脱硫装置中这类参数的测量原理与方法没有明显的区别,且不涉及高温、高压条件下的参数检测。不同之处主要是脱硫装置运行中需要测量、控制高浓度石灰石、石膏浆液,参数检测时,需要考虑被测介质的氧化性、腐蚀性、高粘度、易结晶、易堵塞等特殊性。譬如,在浆液温度检测时,需要选择适当的保护套管、连接导线等附件;测量腐蚀性、粘度大或易结晶的介质压力时,必须在取压装置上安装隔离罐,利用隔离罐中的隔离液将被测介质与压力检测元件隔离开来,以及采取加热保温等措施。测量石灰石、石膏浆液的流量时,需要采用适合于高浓度固液两相流的测量装置。 各个参数的具体检测系统由被测量、传感器、变送器和显示装置组成。传感器又称为检测元件或敏感元件,它直接响应被测量,经能量转换并转化成一个与被测量成对应线性关系的便于传输的信号,如电压、电流、电阻、力等。从自动控制的角度,由于传感器的输出信号往往很微弱,一般均需要变送环节的进一步处理,把传感器的输出转换成如0~10mA或者4~20mA等标准统一的模拟信号或者满足特定标准的数字量信号,这种仪表称为变送器,变送器的输出信号或送到显示仪表把被测量显示出来,或同时送到控制系统对其进行控制。 下图4.1示意标明了典型石灰石湿法烟气脱硫装置主要工艺过程运行监测参数检测表计的布置位置,包括温度、压力、压差、液位、PH值、浓度(密度)、流量、烟气成分、石膏层厚度等,这些参数均实时显示在控制系统的计算机画面上,并用于运行参数控制。

传感器单点标定方法

遥控器标定传感器的方法 如果传感器通电后,显示“4%”,无法标效请 先按以下步骤操作:连续按遥控器的“类+”当传 感器显示“PAD3”时停止,再连续按遥控器“页+” 当传感器显示“AD21”时停止,这里对传感器显 示的数值进行修改,例如传感器显示“31FF”,修 改为“51FF”,最后保存,重新通电起动,再按下 面传感器标效方法重新进行标效,(此时通气时传 感器显示值可能不会变,只需通气30S后,按标 气“10”步操作即可)如果传感顺没有此现象,无 须此操作。 1.严格按以下1-11条逐条进行,不管显示 页面显示什么,都逐条执行! 2.严禁在不通气的情况下按“较准A”键! 3.每次都按如下顺序执行 1、标气A 2、 浓度显示 2、清零 3、较准 标效步骤 1、给航空插头的1焊接电源的正,2焊接电源的 负极,电源电压范围9-24VDC,其它不用。 2、给传感器通电预热约20分钟(房间温度15度 以上)。 3、取传感器专用遥控器一只,把遥控器电池盖的 塑料绝缘片去掉,遥控器即可正常使用(注:遥控 器第一次使用时) 4、取传感器专用的标校头(一根约60mm长的细管) 和气体管路连接。 5、调整气体流量,使流量稳定在200ml每分钟(注:流量计必须经过校验)。 6、查看气瓶的气体浓度值,(一氧化碳250或甲烷2.00)气体。 7、按遥控器的“标气A键”后,传感器显示“AD90”,约1秒后显示标气A浓度。用数加数减和位加位减键修改数据等于标气的值(一氧化碳250或甲烷2.00),然后按“确认”在下次校准的任何时候,只要气瓶浓度一样时,不用重复本条。 8、再按“浓度显示”键,显P--1后再显示当前气体浓度。 9、零点校准:通清洁空气至少3分钟,按遥控器“功能校准B键”放开后紧接着按“清零”键后,传感器数码管亮闪一次,零点校准完成。 10、气体校准:通标准气体1分20秒左右,传感器的值稳定后,按遥控器“功能校准B键”放开后紧接着按“校准A”后,传感器数码管亮闪一次,显示校准的标气浓度,气体校准完成(如果传感器数值继续变化,可重复此步骤,直到稳定不变)。 11、如果只校准1次后检验的值不准确,可以重新标定后再次检验。按标准要求,一般需要重复第9-10条3次。每次的顺序位先清零再通气较准,再通空气再通检验气体。 12.传感器装置号,当传感器通电后,按“类+”,显示“P-2”,再继续按“页+”,当显示“P2-2”时停止,1秒后传感器显示“H001”即当前传感器为“1”号,可用遥控器数加数减和位加位减

氧传感器的检测方法

氧传感器的检测 氧传感器的基本电路如下图六所示。 图六氧传感器的电路图 1.主继电器 2.氧传感器 3.发动机ECU (1)氧传感器加热器电阻的检测 点火开关置于“OFF”档,拔下氧传感器的导线连接器,用万用表Ω档测量氧传感器接线端中加热器端子与自搭铁端子间的电阻(,其电阻值应符合标准值(一般为4-40Ω;具体数值参见具体车型说明书)。如不符合标准,应更换氧传感器。测量后,接好氧传感器线束连接器,以便作进一步的检测。 (2)氧传感器反馈电压的检测 测量氧传感器反馈电压时,应先拔下氧传感器线束连接器插头,对照被测车型的电路图,从氧传感器反馈电压输出端引出一条细导线,然后插好连接器,在发动机运转时从引出线上测量反馈电压。有些车型也可以从故障诊断插座内测得氧传感器的反馈电压,如丰田汽车公司生产的小轿车,可从故障诊断插座内的OX1或OX2插孔内直接测得氧传感器反馈电压(丰田V型六缸发动机两侧排气管上各有一个氧传感器,分别和故障检测插座内的OX1和OX2插孔连接)。 在对氧传感器的反馈电压进行检测时,最好使用指针型的电压表,以便直观地反映出反馈电压的变化情况。此外,电压表应是低量程(通常为2V)和高阻抗(阻抗太低会损坏氧传感器)的。 检测步骤

氧传感器的检测程序见图10。

检测案例 丰田V型六缸发动机氧传感器反馈电压的检测 ①将发动机热车至正常工作温度(或起动后以2500r/min的转速连续运转2min)。 ②把电压表的负极测笔接故障诊断插座内的E1插孔或蓄电池负极,正极测笔接故障检测插座内的OX1或OX2插孔或接氧传感器线束插头上的引出线)。 ③让发动机以2500r/min左右的转速保持运转,同时检查电压表指针能否在0-1V之间来回摆动,记下10s内电压表指针摆动次数。在正常情况下,随着反馈控制的进行,氧传感器的反馈电压将在0.4V上下不断变化,1Os内反馈电压的变化次数应不少于8次。 ④若电压表指针在1Os内的摆动次数等于或多于8次,则说明氧传感器及反馈控制系统工作正常;电压表指针若在10s内的摆动次数少于8次,则说明氧传感器或反馈控制系统工作不正常,可能是氧传感器表面有积炭而使灵敏度降低,此时应让发动机以2500r/min的转速运转约2min,以清除氧传感器表面的积炭;若电压表指针变化依旧缓慢,则为氧传感器损坏或ECU反馈控制电路有故障。 氧传感器是否损坏,可按下述方法检查:拔下氧传感器的线束插头,使氧传感器不再与ECU连接,将电压表的正极测笔直接与氧传感器反馈电压输出端连接(),然后,发动机正常运转时脱开接在进气管上的曲轴箱强制通风管或其他真空软管,人为地形成稀混合气,此时电压表读数应下降到0.1-0.3V;接上脱开的曲轴箱通风管或真空软管,再拔下水温传感器接头,且用一个4-8KΩ的电阻代替水温传感器(或堵住空气滤清器的进气口),人为地形成浓混合气,此时,电压表读数应上升到0.8-1.OV。也可以用突然踩下或松开油门踏板的方法来改变混合气浓度。在突然踩下油门踏板时,混合气变浓,反馈电压应上升;突然松开油门踏板时,混合气变稀,反馈电压应下降。 如果在混合气浓度变化时,氧传感器输出电压不能相应地改变,说明氧传感器有故障。此时可拆去一根大真空软管,使发动机高速运转,以清除氧传感器上的铅或积炭,然后再测试。如果氧传感器反馈电压能按上述规律变化,说明氧传感器良好。否则,须更换氧传感器。

相关主题
文本预览
相关文档 最新文档