当前位置:文档之家› 节理岩体关键块体稳定的概率分析_张瑞新

节理岩体关键块体稳定的概率分析_张瑞新

节理岩体关键块体稳定的概率分析_张瑞新
节理岩体关键块体稳定的概率分析_张瑞新

结构失稳和整体稳定性分析

结构失稳和整体稳定性分析 失稳破坏是一种突然破坏,人们没有办法发觉及采取补救措施,所以其导致的结果往往比较严重。正因为此,在实际工程中不允许结构发生失稳破坏。 导致结构失稳破坏的原因是薄膜应力,也就是轴向力或面内力。所以在壳体结构、细长柱等结构体系中具有发生失稳破坏的因素和可能性。这也就是为什么在网壳结构的设计过程中稳定性分析如此被重视的原因。 下面根据本人多年来的研究及工程计算经验,谈谈个人对整体稳定性分析的一点看法,也算做一个小结。 1稳定性分析的层次 在对某个结构进行稳定性分析,实际上应该包括两个层次。(一)是单根构件的稳定性分析。比如一根柱子、网壳结构的一根杆件、一个格构柱(桅杆)等。单根构件的稳定通常可以根据规范提供的公式进行设计。不过对于由多根构件组成的格构柱等子结构,还是需要做试验及有限元分析。(二)是整个结构的稳定分析。比如整个网壳结构、混凝土壳结构等结构整体的稳定性分析。整体稳定性分析目前只能根据有限元计算来实现。 2整体稳定性分析的内容 通常,稳定性分析包括两个部分:Buckling分析和非线性“荷载-位移”全过程跟踪分析。 (1)Buckling分析 Buckling分析是一种理论解,是从纯理论的角度衡量一个理想结构的稳定承载力及对应的失稳模态。目前几乎所有的有限元软件都可以实现这个功能。Buckling分析不需要复杂的计算过程,所以比较省时省力,可以在理论上对结构的稳定承载力进行初期的预测。但是由于Buckling分析得到的是非保守结果,偏于不安全,所以一般不能直接应用于实际工程。 但是Buckling又是整体稳定性分析中不可缺少的一步,因为一方面Buckling 可以初步预测结构的稳定承载力,为后期非线性稳定分析施加的荷载提供依据;另一方面Buckling分析可以得到结构的屈曲模态,为后期非线性稳定分析提供结构初始几何缺陷分布。 另外本人认为通过Buckling分析还可以进一步校核单根构件截面设计的合理性。通过Buckling分析得到的屈曲模态,我们可以看出结构可能发生的失稳破坏是整体屈曲还是局部屈曲。如果是局部屈曲,那么为什么会发生局部屈曲?局部屈曲的荷载因子是否可以接受?是否是由于局部杆件截面设计不合理所导致?这些问题希望能引起大家的注意。 (2)非线性稳定分析 前文已经讲过,Buckling分析是一种理论解。但是由于加工误差、安装误差、温度应力、焊接应力等因素的存在,现实中的结构多少都会存在一些初始缺陷,其稳定承载力与理论解肯定存在一定的差别。另外,由于Buckling分析是线性的,所以它不可以考虑构件的材料非线性,所以如果在发生屈曲之前部分构件进入塑性状态,那么Buckling也是无法模拟的。所以必须利用非线性有限元理论对结构进行考虑初始几何缺陷、材料弹塑性等实际因素的稳定性分析。 目前应用较多的是利用弧长法对结构进行“荷载-位移”全过程跟踪技术,来达到计算结构整体稳定承载力的目的。

稳固结构的探析----结构的稳定性分析

稳固结构的探析----结构的稳定性分析 一、教学目标: 本节课是稳固结构的探析专题的第一节课。《技术课程标准》与稳固结构的探析内容对应的内容标准为:(1)能通过技术试验分析影响结构稳定性和强度的因素(2)理解结构与功能的关系。由于将该专题拆分为三节课来组织教学,本节课的教学的重点放在了解影响结构稳定性的因素。对影响结构的强度因素和结构与功能的关系安排在后面两节课完成。 因此,本节课的具体教学目标为:(1)了解什么是结构的稳定状态。(2)理解影响结构的稳定性有三个主要因素。(3)能够对常见简单结构设计进行正确分析,对稳定不合理结构提出改进意见。具体分解为知识与技能、过程与方法、情感态度与价值观的三维目标为: 知识与技能:(1)了解什么是结构的稳定状态。 (2)理解影响结构的稳定性有三个主要因素。 (3)能够对常见简单结构设计进行正确分析,对稳定不合理结构提出 改进意见。 过程与方法:(1)通过对比技术试验,提高进行简单技术试验的实践能力。 情感态度价值观: (1)在合作技术试验,交流讨论过程中增强合作交流的意识。 (2)过结构稳定性讨论,增强技术安全的意识。 二、教学内容分析: 教材分析: “技术与设计2”模块包含“结构与设计”、“流程与设计”、“系统与设计”、“控制与设计”四个主题,“稳固结构的探析”是“结构与设计”主题的第二节内容,是“结构与设计”主题的核心部分。“结构的稳定性分析”又是“稳固结构的探析”专题中的第一课时内容,是“结构的稳定性分析”,“结构的强度分析”和“结构的功能分析”三个连续环节的第一环。 本节课教材内容分为三个部分:(1)什么是结构的稳定性。(2)影响结构稳定性的三个主要因素。(3)常见结构的稳定性分析。 对于结构的稳定,学生此前是有一定的生活感性认识的。看到被大风刮倒的物品,就认识到这些物品的稳定性是有问题的。但这样的认识仅仅停留在感性层面上,没有上升到理性认识高度。为了引出结构的稳定性这个重要的概念,老师可以根据教材内容,提供

岩体稳定性评价

岩体稳定性分析与评价 1 工程岩体的定义 在工程地质中,把工程作用范围内具有一定的岩石成分、结构特征及赋存于某种地质环境中的地质体称为岩体。岩体是在内部的联结力较弱的层理、片理和节理、断层等切割下,具有明显的不连续性。这是岩体的重要特点,使岩体结构的力学效应减弱和消失。使岩体强度远远低于岩石强度,岩体变形远远大于岩石本身,岩体的渗透性远远大于岩石的渗透性[1]。 工程岩体是十分复杂的,它受到自然地质作用和人类活动的共同影响。工程岩体稳定性评价与利用一直是人们研究的热点话题,国内外相关方面的研究一直没有间断。工程岩体通常是指与人类活动有关的地下或地表岩体,如地面的斜坡边坡、岩石基础、水库岸坡、地下硐室围岩以及矿区岩体等。具体而言工程岩体具有以下四个方面的含义: (1)岩体中普遍存在的节理裂隙、断层、层里等软弱面不连续使大部分岩体失去了连续性而呈现出非线性大变形的力学形态。岩体的变形与强度特征在很多情况下都是由这些结构面控制的,加之岩体介质本身的非均质性,使得岩体的力学形态比土体复杂的多。 (2)由于各种条件的限制,工程岩体往往不可避免地处于高地应力、地下水、地震、地热等环境中,处于多因素控制的受力状态,使其变形与破坏规律更为复杂,经常涉及到固体力学—水力学—热力学场耦合作用。 (3)为满足工程建设要求,经常地对工程岩体进行各种扰动,如开挖、回填、加固处理等,从而使得工程岩体在时间和空间上呈现出复杂的性态特征。 (4)大多数工程岩体均为地表相对较浅的地壳岩体,经历各种地质营力作用,因人类工程活动表现为卸荷岩体力学行为和特征,不同于常规的加载岩体力学特征。

2工程岩体稳定性的影响因素及破坏形式 通常来讲,影响岩体稳定性的结构性因素主要是其自身的结构特征,其次是人类工程活动,最后是环境因素,包括地下水、地应力、地震、地热等。影响工程岩体稳定性的因素主要有以下几个方面: (1)岩块性质的影响包括岩石的坚硬程度、抗风化能力、抗软化能力、强度、组成、透水性等。 (2)岩层的构造与结构的影响,表现在节理裂隙的发育程度及其分布规律、结构面的胶结情况、软弱面和破碎带的分布与边坡的关系、下伏岩土界面的形态以及坡向坡脚等。 (3)水文地质条件的影响,包括地下水的埋藏条件、地下水的流动及动态变化等。 (4)地貌因素,如边坡的高度、坡度和形态等。 (5)风化作用的影响,主要体现为风化作用将减弱岩石的强度,改变地下水的动态。 (6)气候作用的影响,气候引起岩土风化速度、风化厚度以及岩石风化后的机械、化学变化,同时引起地下水、地表水作用的变化。 (7)地震作用除了使岩土体增加下滑力外,还常常引起孔隙水压力的增加和岩体的强度的降低;另外,开挖、填筑和堆载等人为因素同样可能造成工程岩体的失稳。 工程岩体的失稳往往是多种因素共同作用的结果,导致边坡失稳的因素可归结为两类:一是外界力的作用破坏了岩体原来的应力平衡状态,如边坡岩体的开挖及坡顶上作用外荷载、渗流、地震力等;另一类是边坡岩体的抗剪强度由于受外界各种因素的影响而降低。 岩体承受应力,就会在体积、形状或宏观连续性上发生某种变化。宏观连续性无显著变化者称为变形。如果宏观连续性发生了显著变化,称为破坏。岩体变形破坏的方式与过程既取决于岩体的岩性、结构,也与所承受的应力状态及其变化有关。

结构的稳定性

结构的稳定性 一、教学目标: (一)知识与技能: 1、理解稳定和结构稳定性的概念。 2、掌握影响结构稳定性的因素。 3、能运用影响结构稳定性的因素判断结构的稳定性,并能对如何增加结构稳定性提出自己的看法。 (二)过程与方法:通过技术试验及试验分析、小组讨论等方法引导学生综合运用相关的理论知识,提高学生的知识迁移能力。 (三)情感态度价值观:让学生体验实验过程、通过分析讨论得到结论,培养学生的观察分析能力,注重小组之间的交流,培养合作交流能力,鼓励学生表达自己的认识和判断形成实事求是的科学态度,增强学生的主动参与意识。 二、教学重点与难点: (一)教学重点:通过技术试验分析影响结构稳定主要因素。 (二)教学难点:1、影响结构稳定性的主要因素。 2、利用影响结构稳定性的主要因素对简单结构进行稳定性分析。 三、教学方法: 讲授法、PPT演示法、技术试验法、分析讨论、自主探究法、观察发现法、案例分析法等。 四、教学准备: 本节课的教学在技术多媒体教室完成。通过试验,幻灯片呈现诸多的图片、实物,借以加深学生对本节知识的掌握。 多媒体课件、矿泉水瓶3个、剪刀三把、扑克牌若干张。 六、教学过程: (一)引入:图片展示倾斜的货车、被风刮倒的房屋、被风刮倒的广告牌。让学生思考:以上各例,有一个共同的特点,就是在受到外力的作用下,原有的平衡被打破,出现了倒了、歪了、翻了等力学非平衡现象,我们说以上结构的稳定性不好。那什么是结构的稳定性呢?以上各例,有一个共同的特点,就是在受到外力的作用下,原有的平衡被打破,出现了倒了、歪了、翻了等力学非平衡现象,我们说以上结构的稳定性不好。

那什么是结构的稳定性呢? (二)新课讲授 1,结构的稳定性 根据学生的回答结合引入环节的图片中的事物稳定特点引导学生得出稳定的概念:稳定指的不是状态绝对不变,而是指受扰后,允许状态有所波动,但当扰动消失后,能回到原平衡状态。不能回到原平衡状态,为不稳定。 2、结构稳定性的含义:结构具有阻碍翻倒或移动维持其原有平衡状态的特性,就是结构稳定性。 3、影响结构稳定性的因素 【探究一】一同学双脚并拢,一次站立,一次蹲下,用力去拉,哪种姿势更稳? 结论一: 结构或构件重心位置的高低影响结构的稳定性。 重心越低,稳定性越好;重心越高,稳定性越差。 【探究二】如何使鸡蛋稳定地竖直站立,提供的实验材料和工具有:鸡蛋、矿泉水瓶、剪刀。 你完成挑战了吗?你是利用什么原理使鸡蛋稳定地竖直站立的? 结论二:结构与地面接触所形成的支撑面的大小影响结构的稳定性。 结构与地面接触所形成的支撑面越大,结构越稳定。 解释:因为接触面积越大,重心的投影就 越容易落在里面,从而可以达到稳定。 注意:(支撑面≠接触面) 【探究三】用扑克牌堆积金字塔。你做到了吗? 为什么你所搭建的结构是稳定的? 结论:结构(构件)的形状影响结构的稳定性。三角形的结构稳定性较好 三)学以致用:1、如何增加一本课本的稳定性使它能够立起来? 2、落地扇为什么不易倾倒? 3、骑自行车时需要携带一箱书和一床被子,如何放置他们更科学? 4、照相机和摄像机的支架一般都采用三角架,采用这种支架有什么优点? 5、很多人认为用啤酒瓶可以用作地震警报,请同学们思考如何放置啤酒瓶才能提供有效的地震预警?(

结构的稳定性(案例)

课题:结构的稳定性 一、教学目标: 1、知识目标:理解结构稳定性的概念,掌握影响结构稳定性的因素。 2、能力目标:能对物体的结构进行理论分析并通过技术试验分析影响结构稳定性的主要因素;能对结构提出合理化的设计,动手改造和革新物体的结构,培养学生的创新精神和实践能力。 3、情感目标:通过分析讨论、合作学习,培养学生的团结合作精神,主动参与意识,体验学习乐趣;培养学生观察――怀疑--试验--总结的研究思路;渗透安全教育、德育教育,培养学生实事求是、严谨负责的科学态度从而形成富有责任感的技术设计观。 二、教学重点、难点 1、重点:掌握影响结构稳定性的主要因素。 2、难点:利用所学知识分析实际案例,解决实际问题。 三、教学资源 一个不倒翁玩具、两个熟鸡蛋、三个矿泉水瓶、几本书、多媒体等 四、教法设计 开始采用激趣法,通过观察多媒体图片让同学思考为什么台风过后很多结构受到破坏比较严重,而有些结构基本没有损坏,从而引起学生对结构稳定性的兴趣。接下来结合生活事例,让学生主动观察或亲自动手试验,引导学生总结稳定性的概念,探究影响结构稳定性的两个主要因素。然后通过合作探究、能力拓展两个环节让学生把知识变为能力,让学生自己分析生活中的关于结构稳定性的实例,并动手改进结构的稳定性。 五、教学过程 (一)导入新课 【大屏幕展示台风过后城市的浪迹场面】 我国东南沿海地区经常有台风袭击,台风中心所到之处,一片狼藉,很多结构受到破坏,然而也有一部分结构基本完好,这说明,有的结构稳定性好,有的结构稳定性不好。 【学生观察归纳】 图片中哪些物品稳定性好,哪些物品稳定性不好? 【老师引出课题】 为什么有些结构容易翻倒而有些不容易反倒?结构的稳定性跟哪些因素有关?我们又如何提高结构的稳定性而避免给我们带来不必要的损失?这说明结构的稳定性设计在我们的生产生活中是非常重要的。这节课我们就来讨论这些问题。 (二)知识构建 知识一:稳定性的概念(通过老师的试验展示,学生归纳总结) 【老师出示不倒翁玩具并用手扳动】 学生通过观察、总结稳定性概念――结构的稳定性是指结构在外力的作用下,维持其平衡状态的能力。稳定指的不是状态的绝对不变,而是受到干扰后允许状态有所波动,但当扰动消失后能重新返回到原始的平衡状态,则为稳定。不能回到原有的平衡状态,则为不稳定。

3 水对岩石强度的影响

前已述汲水对岩石强度影响: 膨胀、崩解、溶解 水→岩软化 渗透→水压水 对岩石强度有影响的是孔隙和裂隙中的水压力,统称为孔隙水压力,用p w表示。如果饱和岩石在荷载作用下不易排水或不能排水,那么,孔隙或裂隙中的水就有孔隙压力,岩石固体颗粒承受的压力将相应的减少,强度则降低。 对岩石中有连接的孔隙(包括细微裂隙)系统,施加应力σ,当

有孔隙水压力p w时,岩石的有效应力为 σ—岩石总应力(MPa);σ'—有效应力(MPa); p w——孔隙水压力(MPa) 在有孔隙水压力作用时,可利用《岩石破坏准则》来分析岩石的稳定性。 1.莫尔摩伦准则

根据莫尔库伦强度理论,考虑有孔隙水压力p w 的作用,其岩石的抗剪强度为: ①?στtg c f ?'+= 或可见,由于p w 的存在,岩石的抗剪强度降低。 ②对于用主应力表示的莫尔库伦破坏准则,考虑p w 作用,则有 c R N +'='?σσ3 1,式中w p -='11σσ,w p -='33σσ 推出 由上式可解得p w ,即岩石从初始作用应力σ1和σ3达到岩石破坏

时所需施加的孔隙水压力: 亭定(Handin)砂岩实验结果,在p w为零时作一系列的实验,绘莫尔应力圆,得到p w=0时的包络线,即岩石强度曲线。 当施加主应力σ1、σ3时,(p w=0)岩石稳定(莫尔圆II),在此主应力下,增加p w直至破坏(莫尔圆I与包线相切)。 从上面分析可见,p w对岩体强度影响很大。在实际工程中,特别是坝址区,对某种岩石,当主应力σ1、σ3一定时,水库蓄水后,如

果有渗流,则p w 从0增加p w ′,当 w p '-1σ 和w p '-3σ的应力圆与包线相切或相交时,岩体将失稳。 2.格里菲思准则 如果把有效应力引入格里菲思破坏准则,用1σ'和3 σ'代替原式中的1σ 和3σ ,即 w p -='11σσ,w p -='33 σσ w p 4331>+σσ时,

结构动力稳定性的分析方法与进展_何金龙

结构动力稳定性的分析方法与进展 何金龙1,法永生2 (1.卓特建筑设计有限公司,广东佛山528322;2.上海大学土木工程系,上海200074) 【摘 要】 就目前结构动力稳定性问题这一研究领域的若干基本问题,常用的处理方法,判别准则与实验研究方法以及目前取得的主要成果作了简要总结和综述,并且对结构动力稳定性分析与研究今后的发展方向进行了展望。 【关键词】 结构; 动力稳定性; 处理方法; 判别准则; 实验研究 【中图分类号】 T U311.2 【文献标识码】 A 根据结构承受荷载形式的不同,可以将结构稳定问题分为静力稳定和动力稳定两大类。动力载荷作用下结构的稳定性问题是一个动态问题,由于时间参数的引入,使问题变得极为复杂。对于结构动力稳定性的定义一直难以确切给出,这是因为结构自身动力特性具有复杂性使得其在数学意义上的定义很难予以准确表达[1]。长期以来,力学工作者致力于结构稳定性问题的研究,在发展了经典稳定性理论的同时也极大地推动了动力稳定理论研究的前进。如稳定性判定准则的建立、临界载荷的确定、初缺陷的影响或后分叉分析等。理论分析和实验研究逐渐增多,使得这门学科不仅在理论上形成了一个庞大而复杂的体系,而且具有重要的实用价值。可以说,现在的结构动力稳定性研究分析已经是结构动力学、有限元法、数值计算方法及程序设计等诸多学科相互交叉、有机结合的产物,属于现代工程结构研究领域中的一个重要分支。 1 结构动力稳定性的分类及主要的研究问题 结构动力稳定性就其承载的动力形式大致可以分为三类。 (1)结构在周期性荷载作用下的动力稳定性。在简谐荷载等周期性荷载作用下,当结构的自振频率与外载荷的强迫振动频率非常接近时,结构将产生强烈的共振现象;当结构的横向固有振动频率与外荷载的扰动频率之间的比值形成某种特定的关系时,结构将产生强烈的横向振动,即参数振动。对于这类问题,前苏联学者符华·鲍络金(Bolito n)在其著作《弹性体系的动力稳定》中给出了较全面的分析和论述。他们导出的区分稳定区和不稳定区的临界状态方程是一个周期性方程,即M athieu-Hill方程。在周期相同的解之间存在着不稳定区域,便把问题归结为确定微分方程具有周期解的条件,从而解决了稳定的判别问题。但是对于大变形的几何非线形结构,结构的刚度矩阵需要经过迭代,微分方程非常复杂,这些理论将难以成立。 (2)结构在冲击荷载作用下的动力稳定性。在这种情况下,结构的动力稳定性与冲击类型密切相关,而且首要问题在于合理、实用的判别准则,它不仅要在逻辑上站得住脚,又要在实际上可行,遗憾的是这个问题至今未能形成一致的看法。目前对结构承受瞬态冲击作用下的冲击稳定性的试验和理论研究主要集中在理想脉冲以及阶跃荷载下的动力稳定性。在脉冲荷载作用下发生的动力屈曲称为脉冲屈曲,已有的研究表明[2][3][4],脉冲屈曲是一类响应式屈曲或者动力发展型屈曲。阶跃荷载是一类具有恒定幅值和无限长持续时间的载荷形式。在试验或者实际当中,固体与固体之间的冲击引起的屈曲就可看作脉冲冲击。 (3)结构在随动荷载作用下的动力稳定性。所谓随动荷载是指随着时间的变化荷载的幅值保持不变而方向发生变化的作用力,它是非保守力。它的分析将极其复杂,目前还难以见到可借鉴的动力稳定性分析文献。因此,许多学者通常采用结构动力学响应分析常用的手段,将这类荷载作为确定性荷载进行分析。通过对结构的动力平衡路径全过程进行跟踪,根据结构的各参数在动力平衡路径中的变化特性,对结构的动力稳定性进行有效的判定[5]。 综上所述,目前国内外动力稳定性研究的现状大致为:对周期荷载下的参数动力稳定性问题、在冲击荷载作用下的冲击动力稳定性问题和阶跃荷载下的参数阶跃动力稳定性问题研究较多,并取得了满意的效果[6][7][8]。恒幅阶跃载荷及矩形脉冲载荷或其它冲击载荷作用下杆的动力稳定问题也有很多研究,并从不同的角度建立了一些稳定性判定准则。但冲击载荷作用下板的动力稳定问题还没有获得广泛和深入的研究。对于较为复杂的冲击荷载作用下结构的动力稳定性问题,目前的研究主要集中于理想脉冲载荷和阶跃载荷作用下结构的动力稳定问题。在这类问题的分析中,最常采用的屈曲准则有B-R准则、Simitses总势能原理和放大函数法。对非周期激振、参数激振和强迫激振耦合引起的动力稳定问题研究较少;对弹性基本构件和简单模型研究较多(如周期激励下的柱子、梁、拱及壳等已得到了成功的分析),对复杂工程结构研究较少。对于在地震、风荷载等任意动力荷载作用下的具有较强的几何非线性的结构的动力稳定性问题,国内外这方面的文献资料虽然最近几年也有一些,但距离真正地合理解决这类动力稳定性问题还有许多工作要做。 [收稿日期]2006-06-12 [作者简介]何金龙(1962~),男,工学学士,一级注册结构工程师,主要从事工业与民用建筑设计工作。 155  ·工程结构·  四川建筑 第27卷2期 2007.04

节理岩体

3.9. 隐式节理模型: 节理岩(Jointed Rock)模型 岩土材料在各方向上的特性值可能会不同,从而引起各方向在荷载作用下的反应不同,这样的特性叫做各向异性(anisotropic)。各向异性又分为弹性各向异性和塑性各向异性。弹性各向异性是指各方向使用不同的弹性刚度值,塑性各向异性是指像节理岩模型那样在各方向上使用不同的强度特性值。 节理岩模型是各向异性弹性-完全塑性(anisotropic elastic perfectly-plastic)模型,即同时具有弹性横观同性(transversely isotropic elastic)模型和塑性各向异性(anisotropic plastic)模型的特点。节理模型适合于模拟分层的岩石,该模型可模拟具有三个层方向和结合方向的完整岩。完整岩要输入五个参数和一个方向,是属于横观同性弹性材料,其各向异性特点表现在断层等现象上。假定主结合方向的剪切应力遵循库伦(Coulomb)准则,沿着该方向产生最大剪切应力时将产生塑性滑动(plastic sliding)。可以定义三个滑动方向(平面)的强度,第一个平面假定与弹性横观同性方向一致。各平面可具有不同的剪切刚度。 M ajor joint direction 图2.31 节理模型示意图 节理模型适合模拟具有连续的接缝或接缝的集合的岩石,接缝应平行且接缝中不能填充有断层粘土,接缝宽度与结构物的尺寸也要小很多。 节理模型的几个基本特性值如下: A. 完整岩的横观同性弹性特性: ,,,,x z xy zx xz E E G νν B. 三个方向上遵循库伦准则的剪切磨坏参数: ,i i c φ 3.9.1. 横观同性弹性材料刚度 节理模型中的横观同性特性与前面章节中介绍的正交异性材料相同。 3.9.2. 三个方向上的塑性反应 为了考察具有局部坐标系(n, s, t)的平面的塑性条件,需要先计算笛卡尔坐标下的应力。局部坐标应力包括正应力n σ和两个独立的剪切应力 s τ和t τ。 T i i σσ=T (2.96)

第七章 岩体结构及其稳定性分析

7岩体结构及其稳定性 rock mass structure&stability 一、概念 1、岩体(rock mass):包含岩石(rock)和结构弱面(weak structural plane)。 (1)特点: ①不连续——受构造切割、孔隙等影响; ②非均质——各类矿物、岩石组合; ③各向异性——构造、非均质造成。(2)与岩石的区别: ①范围大; ②强度、稳定性低。 2、岩体稳定:指在一定时间内、一定条件(自然、人为)下岩体不产生破坏性剪切滑移、塑性变形和张裂破坏。

3、岩体稳定性分析:包括—— ⑴结构分析 ⑵力学分析 ⑶类比分析 一般需将三种分析方法进行相互补充、验证,作出综合评价。 二、岩体结构 ㈠概念 岩体结构是指岩体中①结构面(structural plane)和②结构体(structural block)的组合特征,即结构面的发育程度、组合形式;结构体的大小、几何形式和排列。 ①结构面——岩体中各种地质界面,如:层面、裂隙面、断层面、不整合面等。岩体多沿结构面发生破坏。 ②结构体——由结构面切割而成的单个块体。

㈡结构面: 1、成因类型: ⑴沉积结构面——沉积、成岩过程中形成,包括层理、层面、软弱夹层(weak intercalated layer)和不整合面等。 其中软弱夹层对岩体稳定性影响比较大,容易造成滑坡等工程事故。软弱夹层的产状与岩层产状一致。其成因分为: ①在陆相沉积间断的不整合面处形成软弱夹层; ②在火山喷发间歇期形成的风化软弱夹层; ③原生夹层。 其中①、②两种软弱夹层通常含泥质物质,松散。形成良好的地下水通道,夹层的水稳定性差,易软化、泥化,强度和稳定性差。 ⑵火成(或岩浆)结构面——在岩浆活动中形成,包括:

岩石边坡稳定性分析方法_贾东远

文章编号:1001-831X(2004)02-0250-06 岩石边坡稳定性分析方法 贾东远1,2,阴 可1,李艳华3 (1.重庆大学土木工程学院,重庆 400045;2.秦皇岛市建筑设计院,河北秦皇岛 066001; 3.河北农经学院工业工程系,河北廊坊 065000) 摘 要:通过综述岩石边坡稳定性分析方法及其研究的一些新近展,并具体从极限平衡法、数值计算方法、流变分析、动力分析等方面进行详细论述,对岩石边坡稳定性分析中涉及到的岩体参数取值、计算模型、各种方法的优缺点等方面进行了探讨,最后提出对岩石边坡稳定性分析的建议。 关键词:岩石边坡;稳定性;极限平衡;数值计算 中图分类号:TU457 文献标识码:A 前言 岩石边坡稳定性分析一直是岩土工程中重要的研究内容。在我国基本建设中,特别是三峡工程及西部大开发,出现了许多岩石边坡工程,如三峡船闸高边坡、链子崖危岩体以及由于移民迁建用地、城市建设用地形成的边坡等等。在解决这些复杂的岩石边坡问题的过程中,大大促进了岩石边坡稳定性分析方法的发展。随着人们对岩石边坡认识的不断深入以及计算机技术的发展,岩石边坡稳定性分析方法近年来发展很快,取得了一系列研究成果,现分别对其中主要的研究方向和成果作简要介绍并分析各自特点和适用条件,为岩石边坡稳定性分析的工程应用和理论研究提供参考意见。 1 岩体参数及计算模型 极限平衡、数值计算等计算方法在岩石边坡稳定性分析中得到广泛应用,其中如何选择计算所需的工程岩体力学参数成为关键的问题。对于重大工程,可通过现场大型岩体原位试验取得岩体力学参数,但由于时间和资金限制,原位试验不可能大量进行,因而该方法仍有一定的局限性。另外,选取岩性特别均匀的试样几乎是不可能的,多数情况下,是用经验公式来确定岩体抗剪强度参数。但是,经验公式是以一定数量的室内和现场实验资料为依据,通过回归分析求出的,而未能把较多的地质描述引入其中。各个经验公式计算同一岩体的参数时,普遍存在因经验程度不同而确定出的抗剪强度相差较大。由于这些原因,许多文献提出了用其它方法来确定岩体的抗剪强度参数[1-4]。其中张全恒(1992)[1]讨论了确定岩体结构面抗剪强度参数常规方法存在的问题,提出了经验公式和实验相结合的试件法;何满潮(2001)[2]根据工程岩体的连续性理论,提出了根据室内完整岩块试验参数,结合野外工程岩体结构特点进行计算机数值模拟试验,从而确定工程岩体力学参数的方法;周维垣(1992)[3]提出确定节理岩体力学参数的计算机模拟试验法,该方法基于节理裂隙岩体的野外勘察资料,建立岩体损伤断裂模型,在计算机上模拟试验过程,获得所需数据;杨强等(2002)[4]在样本有限的情况下,采用可靠度理论,求出某保证率下的岩体抗剪强度值。 岩体作为复杂的地质体,其力学特性是多种因素共同作用的结果,如形成过程、地质环境和工程环境等。为了能将所有控制因素作为一个整体来考虑,而不仅局限于定量因素,许多文献利用人工 第24卷 第2期2004年6月 地 下 空 间 UNDERGROUND SPACE Vol.24 No.2 Jun.2004 收稿日期:2003-12-11(修改稿) 作者简介:贾东远(1975-),男,河北唐山人,硕士,主要从事岩土工程设计、检测方面的工作。

破碎岩体强度理论综述

HOEK -BROWN强度准则及其在破碎岩体强 度中的应用 摘要:岩石是有大量岩块和结构面组成的不均匀的各向异性材料。但是因为岩体内部结构的不可预见性和建模、计算能力的限制,很多情况下,只能将岩体作为均匀的宏观复合材料进行研究。如何准确定义破碎岩体的强度成了一个关系计算准确性和工程安全的重要问题。本文阐述了岩石力学中破碎岩体的主要强度理论。并对HOEK -BROWN强度理论的提出、发展、参数的选取与确定及实际应用进行了详细的探讨。 关键词:HOEK -BROWN强度准则,破碎岩体,岩体强度理论 1.研究岩体强度理论的重要性 人类生活和经济活动越来越离不开以岩体为对象的工程建设,例如水利水电工程、铁道交通工程、工业与民用建筑、隧道工程、矿山建筑与开发工程、国防工程、冶金化工、地震与防护工程等。总的来说,它们都需要以研究岩体的力学特征为基础。随着岩体工程的规模、数量及复杂性的增加,所涉及的岩体力学的问题也越来越复杂,以至于经常有重大岩体工程事故发生。美国的圣弗朗斯西重力坝、法国马尔帕塞大坝、意大利瓦扬水电站、加拿大亚当贝克水电站压力管道及日本关门铁路隧道等工程的失败或失事的惨痛教训,使人们意识必须加强岩体力学理论研究和分析,正确把握岩体在外荷载作用下的强度、变形及破坏规律。 2.研究破碎岩体强度的难点 在实际工程中遇到的均质岩体情况很少见,所碰到的岩体绝大多数均被各种结构面切割与破碎。节理是岩体中发育最广泛的一种结构面,在很多情况下节理面的力学性质很软弱。节理的存在严重的破坏了岩体的连续性和完整性,大大改

变了岩体的力学性质。节理岩体工程性质的特殊性主要表现在一下三个方面不连续。节理岩体是由不同规模、不同形态、不同成因、不同方向和不同次序的节理面以及被节理面围限而成的结构体共同组成的综合体,节理岩体在几何上和工程性质上都具有不连续性。由于发育在岩体中的节理面具有明显方向性,受节理面影响,节理岩体的工程性质呈现显著的各向异性。另外,实际工程岩体被节理切割程度的大小也与岩体工程规模有关,工程岩体结构也会随着含节理数的多少而发生变化,如图所示,所考虑的岩体范围越小,岩体中所含有的节理数就愈少,因而岩体的结构类型也就会有所不同。由于节理岩体工程性质的不连续、各向异性以及岩体组成物质的非均质,加之节理面在岩体不同部位发育程度和分布规律的差异,不同工程部位的岩体表现出不同的工程性质。节理在地壳上部岩石中具有广泛的分布,并且在岩体介质中呈现出强度低、易变形的特征。节理的发育常常为大坝、边坡和地下硐室等工程带来隐患,并导致工程岩体的失稳与破坏。地质工程中的岩体强度预测、岩坡稳定性分析、岩基承载力确定、地下硐室围岩稳定性评价及相关的动力学现象围岩垮塌或岩爆均直接或间接与岩体变形及强度特征有关。鉴于此,普遍认为节理岩体变形及强度特征的研究是一个富有挑战性的基础性课题,开展此方面的研究不仅非常必要,而且有着重要的实用价值和工程意义。节理的存在不仅大大改变岩体的力学性质,降低岩体的变形模量及强度参数,并使岩体呈现明显的各向异性。节理岩体变形具有各向异性的特征己为人们所熟知,竖向分布节理岩体的变形模量明显大于水平分布节理岩体的变形模量,这种区别主要在于变形机制不同。垂直节理面的压缩变形量主要是由岩块和节理面压密综合而成,平行节理面方向的压缩变形量主要是岩块和水平节理面的错动构成,节理岩体各方向的变形性质的差异由此而产生。与变形特征相类似,节理岩体也具有明显的强度各向异性特征。通常为了实际的需要将岩石近似地简化为各向同性体,基本上未考虑各向异性的性质,对一种岩石只给出一个确定的强度指标。在实际的岩石试验过程中发现,即使是同一地点取出的岩石,不同方向上的强度试验结果,往往也具有很大的离散性。因为本身就已经是各向异性的岩体,在后期构造改造的作用下,其各向异性表现得更加突出。参照图所示,对不含节理的完整岩体,可认为其在宏观上为均质、各向同性的材料对含有一组、二组或三组节理的岩体,其力学性质通常表现为各向异性若岩体被四组或四组以上的等规模、等间距及强度基

结构稳定理论

结构稳定理论

—拉普森方法上加以改进的一种更利于求解收敛的迭代法,引入了一个附加的未知项一荷载因子λ,其迭代过程如图2-1所示。 图2-1 弧长法 非线性屈曲分析比线性屈曲分析更精确。主要步骤设置:(1)考虑几何非线性,激活大变形效应;(2)材料模型定义。材料非线性由材料屈服准则、流动准则、强化准则定义;(3)施加荷载;(4)求解设置。定义荷载步、子步数、平衡迭代数,定义收敛准则,指定程序终止选项。划分的子步数对屈服荷载的预测准确性有很大的影响,荷载增量不宜过大;(5)采用弧长法。不指定荷载步TIME 值,也不能使用线性搜索、时间步长预测、自适应下降和自动时间步长。可以减小初始半径和降低弧长半径的下限来克服收敛困难;(6)结果。观察结构屈曲变形和相对应力分布;得到结构上任意节点的荷载—变形曲线。 3 多层钢框架整体稳定性分析 6层钢框架,横向(Y)为3跨,柱间距为6m ,纵向(X)为6跨,柱间距为4m ,层高4m ,楼面活荷载标准值为2kN/m ,沿轴线方向的所有梁上施加均布的水平线荷载q 。 钢框架梁为H 形截面,截面尺寸为w f H B t t ???=350×200×20×10,柱

图3-1 Beam188单元 图3-2 Shell181单元 3.1.2网格划分、边界条件和加载 定义单元截面、材料性质,创建几何实体模型,有限元模型网格划分的优劣直接影响结构计算的准确性,本文对钢框架的梁柱网格进行了细划分。为了反映多层钢框架在实际应用中的受力状态,在框架柱脚节点约束了所有方向的自由度,即假定框架柱脚与地面为理想刚接。按照实际情况考虑混凝土楼板以及框架梁柱的重力荷载,楼面的活荷载作用,沿轴线方向所有梁上作用均布水平线荷载q,方向与Y轴的正方向一致。 有限元模型如图3-3所示。

动载作用下岩石强度的极限分析

动载作用下岩石强度的极限分析 为进一步探索岩石力学中强度理论与变形破坏规律的内在联系,将岩石在动、静载荷作用下的理论模型与实验现象统一起来,使理论计算和室内实验更好的应用于工程实际。本文依次从准静载,冲击动载和爆炸动载三个方面,通过理论分析和实验室试验两个角度,以统一的极限分析方法开展了岩石强度和损伤特性的研究工作,主要得到以下结论:基于极限分析原理,推导了常规单轴压缩加载时,岩 石粘聚力C和内摩擦角φ与单轴压缩破坏形式之间的理论关系式。归纳总结出岩石在单轴压缩实验中出现的以剪切应力主导的三种典型变形破坏形式,分别为贯穿试件两端的主剪切面破坏形式、圆锥面加拉伸裂纹破坏形式和轴向拉伸劈裂破坏形式。通过计算岩石剪切破坏面面积,运用极限分析方法,得到了准静载下岩石单轴抗压强度的极限分析上限解:该式说明了岩石宏观破坏形式与抗压强度间的对应关系,其中岩石粘聚力C和内摩擦角φ是影响岩石单轴抗压强度的关键因素。 在实验室完成了取自安徽省张集煤矿的多种岩石单、三轴岩石力学性能实验,研究发现:对于每一种岩石试样,采用三种可能出现的单轴剪切破坏形式进行理 论计算,得到的结果与实验直接得到的岩石单轴抗压强度相比,二者平均误差约 为10%;对于某一组岩石试样的单轴压缩结果,总能找到相应的破裂形式与之对应,将实际产生的宏观破坏面积并入计算中,二者的误差稳定缩小至6%左右。基 于理论分析和实验室试验,建立了一种针对Mohr-Coulomb强度理论中粘聚力C 和内摩擦角φ取值的反演分析方法。既然准静载下岩石强度和变形破坏形式间有稳定的相关性,通过对单轴压缩结果的分类计算,可以列出两组以上包含岩石粘 聚力C和内摩擦角φ的二元一次方程,求解该二元一次方程组即可获得相应的未知量。再次,采用取自山西省贾郭煤矿和四川省某采石场的多组岩样进行实验验证,对于同一个取芯钻孔中的岩石试样,其物理力学性质十分接近,实验后形成的宏观破坏形式比较一致,岩石的单轴抗压强度也与宏观破坏形式有良好的对应关系。 以硅质砂岩为例,根据三轴实验结果得到的硅质砂岩粘聚力为38.34MPa,内 摩擦角为40°,采用极限分析法计算得到的硅质砂岩粘聚力为36.58MPa,内摩擦角为30.83。所得结果中二者粘聚力值近乎一致,而采用反演公式计算得到的内 摩擦角比三轴试验直接得到的值偏小约10°。分析原因认为:粘聚力代表了岩石

结构的稳定性

结构的稳定性=试验+探究+引导+应用 肥城市第六高级中学朱淑芳 2011年7月19日13:18推荐设为资源 技术试验是技术的一种重要思想方法。学生在试验中经历的不仅仅是动手操作,还有技术设计、技术试验的评价等动脑的活动。通过试验法的教学,学生学会进行技术试验的方法,体验技术试验的思想,学会用试验去解决实际问题。 《结构与稳定性》这节,在介绍了稳定性的概念,然后就给出了影响结构稳定性的几个要素。这节课的关键所在是如何让学生分析出影响结构稳定性的几个要素,最好的方法就是通过试验进行处理。根据本校实际和条件,我在教学中针对本节设计了几个试验,具体如下。 分组情况:每班分6组,每组8人左右 试验场地:教室 试验内容: 一、“坐地→扎马步→站立→单腿站立”试验 源自成语:坐如钟站如松。。 试验目的:让学生了解什么是结构的稳定性,将模糊的概念系统化,上升到科学的程度 这个试验不分组,找四个学生到讲台上给大家演示各种姿势,要求保持不动:坐地、扎马步、站立、单腿站立。在这个过程中,单腿站立的学生可能一会的功夫就支撑不住了,左摇右晃,就被淘汰。下一步,请第五个学生上来给他们施加同样的外力,请同学们总结分析不同的结构姿势对试验效果的影响有什么不同?为什么会出现这样的情况?针对不稳定的结构姿势,请提出有效的提高其稳定性的方法? 试验效果:学生很愿意做游戏,并在其中体会了快乐,也总结学会了知识。 二、“扑克牌”试验 小组试验。

试验目的:探究分析结构稳定性与支撑面大小之间的关系,分析支撑面是不是底面积? 每组发几张扑克牌。①要求使牌稳定的站立在桌面上。一张扑克牌想让它立在桌面上几乎是不可能的,但如果把它对折后就能够立在桌面上了。②分析能够使牌站立的折叠的角度范围大约是怎样的?③牌的稳定程度与底面积、支撑面有什么关系?④联系比较生活中常见的折叠式屏风,简单分析其原理。 试验效果:这个试验现象是生活中常见的,只是未与结构的稳定性联系起来,此时加以引导,学生很容易得出结论。而且很容易分清支撑面和底面积的不同之处。 三、“砖头”试验、“摄像机三脚架”试验 小组试验。 试验目的:探究分析结构稳定性与重心高低的关系。 ⑴试验很简单,竖立的一块砖头和半块砖头,探究分析①拉倒哪个结构用的力大?②晃动桌子,哪个结构容易歪倒?③投掷石块,哪个容易被砸倒?……从不同的角度验证一块砖头的稳定性不如半块砖头的强。④把一块砖头横放或平铺在桌面上,分析稳定性发生了什么变化?为什么?⑤联系高跷和不倒翁,分析踩高跷时怎样站稳?分析不倒翁为什么不倒? ⑵三脚架,学生也是很熟悉的,每个腿都能灵活的调节高低。让学生观察,在其他两个腿长度不变的情况下,不断地缩短第三条腿,开始三脚架还能站稳,慢慢倾斜终于倒掉。设问:①观察底面积或支撑面有没有发生变化?②三脚架为什么会歪倒?③联系比萨斜塔,分析其会不会倒掉?什么时候倒? 试验效果:经过这个试验的分析,学生不仅总结出重心高低影响了结构稳定性,同时,也知道重心位置和支撑面之间的关系,也想到了增强结构稳定的方法,达到学以致用。 四、“相框”试验 小组试验 试验目的:探究结构稳定性与形状有关。

(整理)地貌和第四纪地质及岩体结构和稳定性分析.

第十讲地貌和第四纪地质及岩体结构和稳定性分析 一、内容提要: 本讲主要讲述 ①地貌和第四纪地质各种地貌形态的特征和成因;第四纪分期。 ②岩体结构和稳定分析岩体结构面和结构体的类型和特征:赤平极射投影等结构面的图示方法;根据结构面和临空面的关系进行稳定分析。 二、重点、难点: 各种地貌形态的特征和成因、岩体结构面和结构体的类型和特征以及根据结构面和临空面的关系进行稳定分析。 三、内容讲解: 第三节地貌和第四纪地质 地貌即地表形态(地形)。地貌形态大小不等,千姿万态,成因复杂,但总的说来,地貌形态是内外地质营力互相作用的结果。第四纪是地球发展的最新阶段,它包括更新世和全新世。 一、主要地貌形态的特征与成因 地貌形态是由地貌基本要素所构成。地貌基本要素包括:地形面、地形线和地形点,它们是地貌形态的最简单的几何组分,决定了地貌形态的几何特征。自然界的地貌形态虽被人归结为上述三种地貌基本要素所构成。 【例题1】构成地貌形态的地貌基本要素中不包括()。 A. 地形面 B. 地形线 C. 地形点 D. 走向线答案:D 地形面:可能是平面、曲面或波状面。例如山坡面、阶地面、山顶面和平原面等。 地形线:两个地形面相交组成地形线(或一个地带),或者是直线或者是弯曲起

伏线,例如分水线、谷底线、坡折线等等。 地形点:两条(或几条)地形线的交点,或孤立的微地形体构成地形点,这实际上是大小不同的一个区域,例如山脊线相交构成山峰点或山鞍点、山坡转折点和河谷裂点等。 任何一种地貌形态的特点,都可以通过描述其地貌形态特征和形态测量特征反映出来。 地貌基本形态具有一定的简单的几何形状,但是地貌形态组合特征,就不能用简单的几何形状来表示,而必须考虑这一形态组合的总体起伏特征,地形类别和空间分布形状。例如,山前由若干洪积扇群集所构成的洪积平原,这是一种地貌形态组合,其中每一个洪积扇作为一个基本地貌形态,具有扇形几何特征;但这一形态组合的特征则是纵向倾斜,横向和缓起伏,呈条状分布的洪积倾斜平原。 地貌的成因研究,涉及地貌形成的物质基础,地貌形成的动力和影响地貌形成发展的因素。地貌形成的物质基础是岩石和地质构造。地貌形成的动力主要有两类,即内力地质作用和外力地质作用。地貌的形成发展是内、外营力相互作用的结果。 (一)残积物及风化壳 地壳表层岩石遭受风化作用后,在原地形成的松散堆积物称残积物(层)。在地壳表层不同深度由于风化作用的因素、方式和强度不同,致使在垂直剖面上形成具有不同成分和结构的多层残积物,由这些残积物所构成的复杂剖面称为风化壳。在风化壳的顶部,通常是生物活动的场所,生物在生命过程中分泌和产生大量的有机质,有机质与残积物不断发生化学反应,改造残积物,这个过程称成土(壤)作用,经成土作用改造过的富含腐殖质的残积物称土壤。因此,残积物和土壤都是风化壳的组成物质。由于风化作用的复杂性和基岩的性质不同,风化壳可以由单一的残积层组成,也可以由多层残积层组成。

第三章 3 水对岩石强度的影响讲解学习

第三章3水对岩石强度的影响

五、水对岩石强度的影响 前已述汲水对岩石强度影响: 膨胀、崩解、溶解 水→岩软化 渗透→水压水 对岩石强度有影响的是孔隙和裂隙中的水压力,统称为孔隙水压力,用p w表示。如果饱和岩石在荷载作用下不易排水或不能排水,那么,孔隙或裂隙中的水就有孔隙压力,岩石固体颗粒承受的压力将相应的减少,强度则降低。 收集于网络,如有侵权请联系管理员删除

对岩石中有连接的孔隙(包括细微裂隙)系统,施加应力σ,当有孔隙水压力p w时,岩石的有效应力为 σ—岩石总应力(MPa);σ'—有效应力(MPa); p w——孔隙水压力(MPa) 在有孔隙水压力作用时,可利用《岩石破坏准则》来分析岩石的稳定性。 收集于网络,如有侵权请联系管理员删除

收集于网络,如有侵权请联系管理员删除 1.莫尔摩伦准则 根据莫尔库伦强度理论,考虑有孔隙水压力p w 的作用,其岩石的抗剪强度为: ①?στtg c f ?'+= 或 可见,由于p w 的存在,岩石的抗剪强度降低。 ②对于用主应力表示的莫尔库伦破坏准则,考虑p w 作用,则有 c R N +'='?σσ3 1,式中w p -='11σσ,w p -='33σσ 推出

由上式可解得p w,即岩石从初始作用应力σ1和σ3达到岩石破坏时所需施加的孔隙水压力: 亭定(Handin 验结果,在p w 得到p w=0 石强度曲线。 收集于网络,如有侵权请联系管理员删除

收集于网络,如有侵权请联系管理员删除 当施加主应力σ1、σ3时,(p w =0)岩石稳定(莫尔圆II ),在此主应力下,增加p w 直至破坏(莫尔圆I 与包线相切)。 从上面分析可见,p w 对岩体强度影响很大。在实际工程中,特别是坝址区,对某种岩石,当主应力σ1、σ3一定时,水库蓄水后, 如果有渗流,则p w 从0增加p w ′,当 w p '-1σ 和w p '-3σ的应力圆与 包线相切或相交时,岩体将失稳。

相关主题
文本预览
相关文档 最新文档