当前位置:文档之家› 1.1-1.2密堆积

1.1-1.2密堆积

六方最密堆积中正八面体空隙和正四面体空隙

六方最密堆积中正八面体空隙 和正四面体空隙中心的分数坐标 等径圆球紧密排列形成 密置层,如图所示。 在密置层内,每个圆球周 围有六个球与它相切。相切 的每三个球又围出一个三角 形空隙。仔细观察这些三角 形空隙,一排尖向上,接着下 面一排尖向下,交替排列。 而每个圆球与它周围的六个球围出的六个三角形空隙中,有三个尖向 上,另外三个尖向 下。如图所示,我 们在这里将尖向上 的三角形空隙记为 B,尖向下的三角 形空隙记为C。第 二密置层的球放在 B之上,第三密置 层的球投影在C中, 三层完成一个周 期。这样的最密堆

积方式叫做立方最密 堆积(ccp,记为 A1型),形成面心立 方晶胞。 若第三密置层的 球投影与第一密置层 的球重合,两层完成一 个周期。这样的最密 堆积方式叫做六方最 密堆积(hcp,记为A3型),形成六方晶胞,如图所示。 在这两种堆积方式中,任何四个相切的球围成一个正四面体空隙;另外,相切的三个球如果与另一密置层相切的三个球空隙对应,它们六个球将围成一个正八面体空隙。也就是说,围成正八面体空隙的这六个球可以分为相邻的两层,每层的正三角形中心的连线垂直于正三角形所在的密置层,参看下图,黑色代表的不是球而是正八面体的中心。 在这两种最密堆积方式中,每个 球与同一密置层的六个球相切,同时 与上一层的三个球和下一层的三个球 相切,即每个球与周围十二个球相切 (配位数为12)。中心这个球与周围的 球围出八个正四面体空隙,平均分摊 到每个正四面体空隙的是八分之一个 球。这样,每个正四面体空隙分摊到的球数是四个八分之一,即半个。中心这个球周围还围出六个八面体空隙,它平均分摊到每个正八面体

晶体的基本概念

第一章材料的结构 2006-09-16 11:50 第一章材料的结构 重点与难点: 在晶体结构中,最常见的面心立方结构(fcc)、体心立方结构(bcc)、密排六方结构(hcp)、金刚石型结构及氯化钠型结构。内容提要: 在所有固溶体中,原子是由键结合在一起。这些键提供了固体的强度和有关电和热的性质。例如,强键导致高熔点、高弹性系数、较短的原子间距及较低的热膨胀系数。由于原子间的结合键不同,我们经常将材料分为金属、聚合物和陶瓷3类。 在结晶固体中,材料的许多性能都与其内部原子排列有关。因此,必须了解晶体的特征及其描述方法。根据参考轴间夹角和阵点的周期性,可将晶体分为7种晶系,14种晶胞。本章重点介绍了在晶体结构中,最常见的面心立方结构(fcc)、体心立方结构(bcc)、密排六方结构(hcp)、金刚石型结构及氯化钠型结构。务必熟悉晶向、晶面的概念及其表示方法(指数),因为这些指数被用来建立晶体结构和材料性质及行为间的关系。在工程实际中得到广泛应用的是合金。合金是由金属和其它一种或多种元素通过化学键合而成的材料。它与纯金属不同,在一定的外界条件下,具有一定成分的合金其内部不同区域称为相。合金的组织就是由不同的相组成。在其它工程材料

中也有类似情形。尽管各种材料的组织有多种多样,但构成这些组织的相却仅有数种。本章的重点就是介绍这些相的结构类型、形成规律及性能特点,以便认识组织,进而控制和改进材料的性能。学习时应抓住典型例子,以便掌握重要相的结构中原子排列特点、异类原子间结合的基本规律。 按照结构特点,可以把固体中的相大致分为五类。 固溶体及金属化合物这两类相是金属材料中的主要组成相。它们是由金属元素与金属元素、金属元素与非金属元素间相互作用而形成。固溶体的特点是保持了溶剂组元的点阵类型不变。根据溶质原子的分布,固溶体可分为置换固溶体及间隙固溶体。一般来说,固溶体都有一定的成分范围。化合物则既不是溶剂的点阵,也不是溶质的点阵,而是构成了一个新的点阵。虽然化合物通常可以用一个化学式(如AxBy)表示,但有许多化合物,特别是金属与金属间形成的化合物往往或多或少由一定的成分范围。 材料的成分不同其性能也不同。对同一成分的材料也可通过改变内部结构和组织状态的方法,改变其性能,这促进了人们对材料内部结构的研究。组成材料的原子的结构决定了原子的结合方式,按结合方式可将固体材料分为金属、陶瓷和聚合物。根据其原子排列情况,又可将材料分为晶体与非品体两大类。本章首先介绍材料的晶体结构。基本要求: 1.认识材料的3大类别:金属、聚合物和陶瓷及其分类的基础。 2.建立原子结构的特征,了解影响原子大小的各种因素。

六方最密堆积中正八面体空隙和正四面体空隙中心的分数坐标

密堆积中正八面体空隙和正四面体空隙 晶体结构的密堆积原理密堆积结构是指在由无方向性的金属键,离子键和范德华力结合的晶体中,原子、分子或离子等微粒总是趋向于相互配位数高,能充分利用空间的堆积密度大的那些结构。密堆积方式由于充分利用了空间,从而可使体系的势能尽可能降低。结构稳定。最常见的密堆积型式有:面心立方最密堆积(A1),六方最密堆积(A3)和体心立方密堆积 (A2)。 我们主要介绍面心立方密堆积和六方密堆积。 等径圆球紧密排列形成密置层, 如图所示。 在密置层内,每个圆球周围有六 个球与它相切。相切的每三个球又围 出一个三角形空隙。仔细观察这些三 角形空隙,一排尖向上,接着下面一 排尖向下,交替排列。而每个圆球与 它周围的六个球围出的六个三角形空 隙中,有三个尖向上,另外三个尖向 下。如图所示,我们在这里将尖向上 的三角形空隙记为B,尖向下的三角形空隙记为C。第二密置层的球放在B之上,第三密置层 的球投影在C中,三层完成一个周 期。这样的最密堆积方式叫做立方 最密堆积(ccp,记为 A1型), 形成面心立方晶胞。

若第三密置层的球投影与第一密置层的球重合,两层完成一个周期。这样的最密堆积方式叫做六方最密堆积(hcp ,记为A3型),形成六方晶胞,如图所示。 在这两种堆积方式中,任何四个相切的球围成一个正四面体空隙;另外,相切的三个球如果与另一密置层相切的三个球空隙对应,它们六个球将围成一个正八面体空隙。也就是说,围成正 八面体空隙的这六个球可以分为相邻的两层,每层的正三角形中心的连线垂直于正三角形所在的密置层,参看下图,黑色代表的不是球而是正八面体的中心。 在这两种最密堆积方式中,每个球与同一密置层的六个球相切,同时与上一层的三个球和下一层的三个球相切,即每个球与周围十二个球相切(配位数为12)。中心这个球与周围的球围出八 个正四面体空隙,平均分摊到每个正四面体空隙的是八分之一个球。这样,每个正四面体空隙分摊到的球数是四个八分之一,即半个。中心这个球周围还围出六个八面体空隙,它平均分摊到每个正八面体空隙的是六分之一个球。这样,每个正八面体空隙分摊到的球数是六个六分之一,即一个。总之,这两种最密堆积中,球数 : 正八面体空隙数 : 正四面体空隙数 = 1:1:2 。等径球的两种最密堆积具有相同的堆积密度,都为74.05%. 下面计算四面体空隙和八面体空隙中所能容纳的球的半径的大小。

关于密堆积原理

关于密堆积原理 高剑南 ﹙华东师范大学 200062﹚ 1. 从教材的一个改动说起 某《化学》拓展型教材﹙试验本﹚p.48图2.17列了三种类型金属晶体的结构示意图﹙确切的表述是等径圆球的三种密堆积形式﹚,其中图⑴为体心立方堆积,图⑵为六方最密堆积,图⑶为立方最密堆积,文中第4行说“铝晶体中铝原子的堆积形式如图2.17⑵所示”。在该教材试行本出版时,p.35图2.16除三种类型金属晶体的结构示意图由黑白图改为彩图,⑴⑵⑶分别改为﹙a ﹚﹙b ﹚﹙c ﹚外,重要的是p.34文中倒4行说“铝晶体中铝原子的堆积形式如图2.16﹙c ﹚所示”。 那么,铝晶体中铝原子的堆积形式究竟是六方最密堆积还是立方最密堆积?堆积形式与物质的性质又有什么关系?这些问题涉及到密堆积原理以及几种堆积方式。 2. 密堆积原理 所谓密堆积原理是指由无方向性的金属键、离子键和范德华力等结合的晶体中,原子、离子和分子等微粒总是趋向于相互配位数高,堆积密度大,能充分利用空间,因而体系稳定的那些结构。金属原子的电子云分布基本上是球对称的,可以把同一种金属晶体看成是由半径相等的圆球构成,因此金属晶体的结构可用等径圆球的密堆积模型来研究。常见的堆积形式有:1A 、2A 、3A 和4A 等。 2.1 等径球的密置层和密置双层 1A 和3A 堆积是等径球的密置层以两种不同方式堆积而成的最密堆积。密置层的结构如图1所示,每个球与6个球紧密接触,形成6个三角形空隙,其中1、3、5三角形空隙的底边在下、顶点在上,2、4、6三角形空隙的底边在上、顶点在下。 图1 等径球的密置层 在堆积第二层等径球时,这个密置层中圆球的凸出部位正好处于第一密置层的凹陷部位,也就是一个球同时与第一密置层的三个球接触,它可以占据1、3、5空隙,也可占据2、4、6空隙,但不会两者都占,也不会混合占据。如果占据1、3、5空隙,第一密置层中的1、3、5三角形空隙转化成密置双层中的底面在下、顶点在上的正四面体空隙T +,见图2-(a )。而2、4、6三角形空隙转化成正八面体空隙O ,见图2-(c )。注意在7位还有一个底面在上、顶点在下的正四面体空隙T -,见图2-(b )。两个密置层间形成的空隙

固体物理学基础概念

第一章晶体结构 晶体-----内部组成粒子(原子、离子或原子团)在微观上作有规则的周期性重复排列构成的固体。 晶体的通性------所有晶体具有的共通性质,如自限性、最小内能性、锐熔性、均匀性和各向异性、对称性、解理性等。 单晶体和多晶体-----单晶体的内部粒子的周期性排列贯彻始终;多晶体由许多小单晶无规堆砌而成。 基元、格点和空间点阵------基元是晶体结构的基本单元,格点是基元的代表点,空间点阵是晶体结构中等同点(格点)的集合,其类型代表等同点的排列方式。原胞、WS原胞-----在晶体结构中只考虑周期性时所选取的最小重复单元称为原胞;WS原胞即Wigner-Seitz原胞,是一种对称性原胞。 晶胞-----在晶体结构中不仅考虑周期性,同时能反映晶体对称性时所选取的最小重复单元称为晶胞。 原胞基矢和轴矢----原胞基矢是原胞中相交于一点的三个独立方向的最小重复矢量;晶胞基矢是晶胞中相交于一点的三个独立方向的最小重复矢量,通常以晶胞基矢构成晶体坐标系。 布喇菲格子(单式格子)和复式格子------晶体结构中全同原子构成的晶格称为布喇菲格子或单式格子,由两种或两种以上的原子构成的晶格称为复式格子。简单格子和复杂格子(有心化格子)------一个晶胞只含一个格点则称为简单格子,此时格点位于晶胞的八个顶角处;晶胞中含不只一个格点时称为复杂格子,其格点除了位于晶胞的八个顶角处外,还可以位于晶胞的体心(体心格子)、一对面的中心(底心格子)和所有面的中心(面心格子)。 密堆积和配位数-----晶体组成原子视为等径原子时所采取的最紧密堆积方式称为密堆积,晶体中只有六角密积与立方密积两种密堆积方式。晶体中每个原子周围的最近邻原子数称为配位数。由于晶格周期性限制,晶体中的配位数只能取:12,8,6、4、3(二维)和2(一维)。 晶列、晶向(指数)和等效晶列-----晶列是晶体结构中包括无数格点的直线,

第二章 晶体的基本概念

第二章晶体的基本概念 z第一节晶体的基本性质 z第二节空间点阵 z第三节整数定律及晶面指数 z第四节晶体投影

晶体研究的早期成就 1690年惠更斯提出:晶体中质点的有序排列导致晶体具有某种多面体外形。 1812年浩羽(R.J.Hauy)提出:晶体是由具有多面体外形的“分子” 成的。 1669年,丹麦人斯登诺(Steno,N.1638-1686),1783年法国矿物学家爱斯尔(DeI Isle,R.1736-1790)分别在观测各种矿物晶体时发现了晶体的第一个定律──晶面夹角守恒定律。

晶体的对称原理 在1805-1809年间,德国学者魏斯(Weiss,C.S.1780-1856开始研究晶体外形的对称性 1830年德国人赫塞尔(Hessel,J.F.Ch.1796-1872),1867年俄国人加多林分别独立地推导出,晶体外形对称元素的一切可能组合方式(也就是晶体宏观对称类型)共有32种(称为32种点群) 19世纪40年代,德国人弗兰根海姆(Frankenheim,M.L.1801-1869)和法国人布拉维(Bravais,A.1811-1863)发展前人的工作,奠定了晶体结构空间点阵理论(即空间格子理论)的基础。弗兰根海姆首次提出晶体内部结构应以点为单位,这些点在三度空间周期性的重复排列。他于1842年推出了15种可能的空间点阵 形式。 布拉维明确地提出了空间格子理论。认为晶体内物质微粒的质心分布在空间格子的平行六面体单位的顶角、面心或体心上,从而它们在三度空间作周期性的重复排列。他于1848年指出,弗兰根海姆的15种空间点阵形式中有两种实质上是相同的,确定了空间点阵的14种形式

六方最密堆积中正八面体空隙和正四面体空隙

六方最密堆积中正八面体空隙和正四面体空隙 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

六方最密堆积中正八面体空隙 和正四面体空隙中心的分数坐标 等径圆球紧密排列形成 密置层,如图所示。 在密置层内,每个圆球 周围有六个球与它相切。相 切的每三个球又围出一个三 角形空隙。仔细观察这些三 角形空隙,一排尖向上,接 着下面一排尖向下,交替排列。而每个圆球与它周围的六个球围出的 六个三角形空隙 中,有三个尖向 上,另外三个尖向 下。如图所示,我 们在这里将尖向上 的三角形空隙记为 B,尖向下的三角 形空隙记为C。第 二密置层的球放在 B之上,第三密置 层的球投影在C 中,三层完成一个

周期。这样的最密堆 积方式叫做立方最密 堆积(ccp,记为 A1 型),形成面心立方 晶胞。 若第三密置层的 球投影与第一密置层 的球重合,两层完成 一个周期。这样的最密堆积方式叫做六方最密堆积(hcp,记为A3型),形成六方晶胞,如图所示。 在这两种堆积方式中,任何四个相切的球围成一个正四面体空隙;另外,相切的三个球如果与另一密置层相切的三个球空隙对应,它们六个球将围成一个正八面体空隙。也就是说,围成正八面体空隙的这六个球可以分为相邻的两层,每层的正三角形中心的连线垂直于正三角形所在的密置层,参看下图,黑色代表的不是球而是正八面体的中心。 在这两种最密堆积方式中,每个 球与同一密置层的六个球相切,同时 与上一层的三个球和下一层的三个球 相切,即每个球与周围十二个球相切 (配位数为12)。中心这个球与周围 的球围出八个正四面体空隙,平均分摊到每个正四面体空隙的是八分之一个球。这样,每个正四面体空隙分摊到的球数是四个八分之一,

结晶学学习笔记__第一章 晶体(基本概念)

第一章晶体(掌握基本概念) 晶体:内部质点周期重复排列的物体。 格子构造:晶体内部质点排列周期重复规律。 空间格子:表示晶体结构周期重复规律的简单几何图形。 相当点:1.点的性质(种类)相同;2.点的周围环境相同。 导出空间格子的方法:1.找出相当点。2.连接起来 空间格子与具体晶体结构关系:具体晶体结构>>> 的格子组成的。 空间格子比具体晶体结构简单,化繁为简 空间格子的要素:1.结点:空间格子中的点(代表相当点);2.行列:结点在直线上的排列(节点间距)。 任意行列上节点间距相等;相互平行的行列上的节点间距相等。 面网:结点在平面上的分布(面网间距(垂直距离)、面网密度(点的分布稀疏、结点数)) 周期性导致的 面网密度与面网间距成正比 平行六面体:结点在三维空间形成的最小重复单位(引出,a,b,c; α,β,γ,称为轴长与轴角,也称晶胞参数)。a:前后方向;b:左右方向;c:上下方向。平行六面体范围内的晶体>>>晶胞 平行六面体的形状总共有7种,对应有7套晶胞参数,也对应7个晶系。不同形状决定了晶体具有不同的对称性质。 晶体的基本性质: 自限性:晶体能够自发地生长成规则的几何多面体形态。 均一性:同一晶体的不同部分物理化学性质完全相同。 晶体的平面就是一个面网,晶棱就是一个行列(宏观微观对应) 晶体均一性是绝对的,非晶体均一性是统计性的,小范围内(到纳米级)不一定性质相同 异向性:同一晶体不同方向具有不同的物理性质。

晶体自限性体现了晶体的异向性,外在形态上的体现 对称性:同一晶体中,晶体形态相同的几个部分(或物理性质相同的几个部分)有规律的重复出现。 最小内能性:晶体与同种物质的非晶体相比,内能最小。 晶体具有固定的熔点 稳定性:晶体比非晶体稳定 会用格子构造解释这些性质 非晶体(玻璃)的定义及特点?(引出远程规律和近程规律):非晶体具有近程规律 液体、气体的结构具有什么规律? 晶体与非晶体的转化? 准晶体的发现及定义:1984年发现的新现象,具有近程、远程规律但没有重复周期。 准晶体与晶体、非晶体的关系 晶体的测量与投影 一、面角守恒定律 实际晶体形态(歪晶):偏离理想晶体形态。,“歪晶”导致同种矿物晶体形态变化无常。尽管形态各不相同,看似无规,但对应的晶面面角相等,即发现“面角守恒定律”。 同种矿物的晶体,其对应晶面间角度守恒。(结晶学发展的奠基石) 二、晶体的测量: 测量晶面之间的夹角。注意:晶面夹角与面角(晶面法线的夹角)的区别。它们之间的关系为互补关系。通常都用面角(晶面法线的夹角),测完晶面夹角,要算出面角,要的是面角数据。 测角两种方法:①接触测角;②反射测角:单圈反射测角仪、双圈反射测角仪三、晶体的投影 将晶面的空间分布转化为平面图 (一)极射赤平投影: 投影的原理及过程:投影球、投影面(赤平面)、投影轴,北极点与南极点(目

六方最密堆积中正八面体空隙和正四面体空隙

六方最密堆积中正八面体 空隙和正四面体空隙 This model paper was revised by the Standardization Office on December 10, 2020

六方最密堆积中正八面体空隙 和正四面体空隙中心的分数坐标 等径圆球紧密排列形成密置 层,如图所示。 在密置层内,每个圆球周围 有六个球与它相切。相切的每三 个球又围出一个三角形空隙。仔 细观察这些三角形空隙,一排尖 向上,接着下面一排尖向下,交 替排列。而每个圆球与它周围的六个球围出的六 个三角形空隙中,有三个尖向 上,另外三个尖向下。如图所 示,我们在这里将尖向上的三角 形空隙记为B,尖向下的三角形 空隙记为C。第二密置层的球放 在B之上,第三密置层的球投影 在C中,三层完成一个周期。这 样的最密堆积方式叫做立方最密 堆积(ccp,记为 A1型),形 成面心立方晶胞。

若第三密置层的球投影与第一密置层的球重合,两层完成一个周期。这样的最密堆积方式叫做六方最密堆积(hcp,记为A3型),形成六方晶胞,如图所示。 在这两种堆积方式中,任何四个相切的球围成一个正四面体空隙;另外,相切的三个球如果与另一密置层相切的三个球空隙对应,它们六个球将围成一个正八面体空隙。也就是说,围成正八面体空隙的这六个球可以分为相邻的两层,每层的正三角形中心的连线垂直于正三角形所在的密置层,参看下图,黑色代表的不是球而是正八面体的中心。 在这两种最密堆积方式中,每个球与同一密置层的六个球相切,同时与上一层的三个球和下一层的三个球相切,即每个球与周围十二个球相切(配位数为12)。中心这个球与周围的球围出八个正四面体空隙,平均分摊到每个正四面体空隙的是八分之一个球。这样,每个正四面体空隙分摊到的球数是四个八分之一,即半个。中心这个球周围还围出六个八面体空隙,它平均分摊到每个正八面体空隙的是六分之一个球。这样,每个正八面体空隙分摊到的球数是六个六分之一,即一个。总之,这两种最密堆积中,球数 : 正八面体空隙数 : 正四面体空隙数 = 1:1:2 。 面心立方最密堆积(ccp, A1型)中正八面体空隙和正四面体空隙的问题比较简单、直观。下面我们集中讨论六方最密堆积(hcp,A3型)中正八面体空隙和正四面体空隙中心的分数坐标。 在六方最密堆积中画出一个六方晶胞,如下面两幅图所示。

相关主题
文本预览
相关文档 最新文档