当前位置:文档之家› 超临界萃取技术的应用

超临界萃取技术的应用

超临界萃取技术的应用
超临界萃取技术的应用

超临界流体萃取技术的应用

1.原理:

超临界流体萃取分离过程的原理是超临界流体对脂肪酸、植物碱、醚类、酮类、甘油酯等具有特殊溶解作用,利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以超临界流体萃取过程是由萃取和分离组合而成的。

2、农药残留分析

农药的广泛大量使用,不仅提高了农作物的产量,而且减轻了人们的劳动量。但是农药的大量使用也使害虫天敌受到摧残,使害虫的危害加大,从而增加了农业生产对农药的依赖,并由此引起了一系列的农产品和食品安全问题¨J,食品中的农药残留对人类健康造成的负面影响也日益显露出来。人类食用被农药污染的粮食、水果和蔬菜后,残留的农药会在人体内累积或富集,当富集到一定浓度时,会造成人体急性或慢性中毒。因此,研究快速、可靠、灵敏的农药

残留分析方法,无疑是控制农药残留,保证食用安全的基础。超临界流体萃取(Supercritical Fluid Extraction,SFE)技术作为一门新兴的化工分离新技术,在食品、香料、医药、化工等领域得到了广泛应用,并取得了一系列成果。近年来,该技术在农药残留分析上的研究日益广泛,并显示了其独特的优势。

农药残留分析属于复杂混合物中痕量组分的分析技术。在农药残留分析中,萃取和分离净化是最关键的技术。目前常用的萃取方法有:溶剂萃取法、索氏提取法、组织捣碎、震荡提取等方法。这些方法需要经过萃取、净化、浓缩等过程,耗时费力,提取过程还要消耗大量有机溶剂,不仅造成环境污染,而且萃取过程繁杂,样品回收率低,重现性较差,严重影响测定结果的准确性…J。超临界流体萃取具有样品前处理简单、萃取时间短、提取效率高、结果准确、重现性好等优点,极大程度地推动其在农药残留分析中的应用。

2.1在食品中农药残留分析上的应用

由于食品组成成分复杂,农药残留水平较低,一般在mg /kg~gg/kg之间,因此要求灵敏度高、特异性强的提取及分析方法。超临界流体具有特殊的溶解性,特别适合于微量成分的提取分离。邱明月等用超临界流体萃取和气相色谱联用(sFE—GC)测定粮谷和茶叶中17种有机氯农药的残留量,

并与传统方法进行了比较,认为超临界流体萃取技术是一种快速高效的方法。李新社用超临界二氧化碳流体萃取蔬菜中的残留农药,萃取效率较高,而且不影响样本分析的准确性。王建华等建立了用超临界流体萃取、气相色谱测定韭菜中百菌清、艾氏剂、狄氏剂、异狄氏剂残留量的方法,取得了令人满意的效果。应用超临界流体测定其它蔬菜、水果中有机农药残留量也有较多的报道。

2.2中药材中农药残留的脱除

目前用于脱除中药材残留农药的方法主要有水洗法、炮制法等。水洗法适用于污染植株表面及鲜品中药材的水溶性农药,而对于生物附集系数大、具有较强穿透性易进入植株内部的绝大多数脂溶性农药则效果较差。炮制法适用于脱除药材中分解温度或降解温度低的农药。超临界流体对脂溶性农药溶解度大,使得该技术既能脱除中药材中残留农药,又不会对中药材的有效成分损失过多,特别适合于中药材中残留农药的脱除。万绍晖等用超If6i界C02萃取法去除当归中有机氯农药,使药材净化。采用正交试验获得最佳萃取条件为:萃取压力15 MPa,萃取温度60℃,萃取时间20 min,流速1.5 mL/min,当归中残留农药去除率达95.1%,相关组分含量没有显著性变化,表明超临界C02萃取法去除当归中残留有机氯农药效果明显。李欢欣等采用超临界C02流体萃取法去除黄芪中残留的有机氯农药,用毛细管气相色谱

法测定除毒前后黄芪中农药残留量,评价除毒率。试验结果表明,黄芪中残留农药去除率达87.6%,黄芪甲苷的相对含量为94.5%,相关组分含量没有显著性变化,说明方法可行。

2.3在土壤中农药残留分析上的应用

有机农药或其代谢产物在进入土壤之后,可以与土壤有机质或矿质形成结合残留物。处于结合残留态的农药难以用常规方法提取。超临界流体以其独特的优势成为目前研究土壤和植物中结合残留最理想的技术。最早应用超临界流体萃取进行结合态农药残留分析的溶剂是甲醇,1986年Peter c.首次应用超临界甲醇法提取样品中的结合残留农药,测得2,4-D的结合残留占施用量的27%t23 J。 Shahamat u.K.等用超临界C02萃取土壤中的2,4-D的回收率为78.3%。Celi,L.等测得土壤中结合态三氟羧草醚(Ac)占施药量的0.8%,而其降解产物(AAC)的结合态占施药量的15%。苏允兰等采用超临界C02流体研究2甲4氯(MCPA)、2,4-D、除草醚三种除草剂在土壤中的结合残留状况,认为超临界C02流体萃取可以有效地应用于土壤中结合态农药的提取,温度、压力和改性剂的改变均能够影响超临界流体的提取效率。对于苯氧羧酸类除草剂,本身极性较大,要提取其结合态比较困难,需要加入一定量的改性剂甲醇才能提取出来。

3、食品方面的应用

伴随着人类社会的进步,饮食文化的内涵不断丰富,人们对食品提出了营养性、方便性功能性等更多的要求,同时还越来越强调其安全性。我国食品工业

应用超临界萃取技术已逐步由实验室研究走向产业化,集中用在脱咖啡因、啤花有效成分萃取、植物油脂的萃取、色素的分离等方面。

3.1脱咖啡因

超临界流体萃取技术得到较早大规模的工业化应用的是天然咖啡豆的脱咖啡因。咖啡因是一种较强的中枢神经系统兴奋剂,富含于咖啡豆和茶叶中,许多人饮用咖啡或茶时,不喜欢咖啡因含量过高,而且从植物中脱下的咖啡因可做药用。它常作为药物中的掺合剂,因此咖啡豆和茶叶脱咖啡因的研究应运而生。韩佳宾、江和源等通过正交实验确定了超临界流体脱除茶叶中咖啡因的最佳工艺参数。结果表明,茶样形态对咖啡因脱除影响极大,60目磨碎茶样的咖啡因脱除率可达85.63%,咖啡因含量≤0.5%;含水率对茶叶中咖啡因的脱除率影响也较大,含水率为35%~50%时较适宜。正交实验中,咖啡因脱除率的影响因子主次顺序为压力>温度>动态

循环时间>夹带剂用量,而对儿茶素来说,夹带剂的影响较为明显。

3.2啤酒花有效成分萃取

啤酒花中对酿酒有用的部分是挥发油和软树脂中的律草酮又称α─酸。挥发油赋予啤酒特有的香气,而α─酸在麦芽汁煮沸过程中将异构化为异α─酸,这是造成啤酒苦味的重要物质。用超临界二氧化碳萃取啤酒花,α─酸的萃取率可达95%以上。萃取物为黄绿色的带芳香味的膏状物。张侃

、黄亚东等对啤酒花的超临界CO2萃取物的组分进行了分析,气相色谱图表明了超临界CO2和液态CO2萃取物的异同;并对超临界CO2萃取物进行酿酒试验,结果表明超临界CO2萃取物不仅增加啤酒香味,还能改善口味。

3.3植物油脂的萃取

超临界二氧化碳萃取对植物油脂的应用比较广泛成熟,吕维忠等研究了大豆粗磷脂的超临界CO2提纯工艺,探讨萃取压力、萃取温度、萃取时间对萃取率的影响。通过正交试验得到优化工艺条件为:萃取压20MPa,萃取温度50℃,萃取时间5h。银建中等建立了一套超临界流体萃取实验装置,就大豆和花生两种植物油超临界流体萃取进行了较为详细的实验研究。在探讨了压力、温度、颗粒度、空隙率以及时间等对萃取率的影响之后,获得了指导实际生产的最佳工艺参数条件。

3.4色素的分离

超临界CO2还可以分离天然色素,随着合成色素的不安全性日益受到人们的重视,世界各国使用合成色素的种类日趋减少。天然色素不仅使用安全,而且常有一定的营养价值,深受消费者喜爱。孙庆杰等采用超临界CO2萃取技术从番茄加工副产品番茄皮中提取出番茄红素。研究了不同的压力、温度、流量和萃取时间对萃取率的影响。当萃取压力在15~25MPa,温度40~50℃,流量20kg/h,萃取1~2h,既可将番茄皮中90%以上的番茄红素萃取出来。姜炜介绍超临界二氧化碳萃取技术提纯辣椒红色素的工作原理及工艺流程。工艺流程通过改变萃取压力、萃取温度、萃取时间和流速等参数确定了最佳工艺条件,在此条件下,得到的辣椒红色素的色价达150以上,且杂质含量符合国家标准。

4.药物分析

1 . 1 在中药提取物( 有效部位)研究中的应用

超临界流体萃取有效部位相关成果较多,往往提取物本身就是产品(标准提取物),只要达到标准,便可进入市场。

1.2 在中药化学成分( 组分) 研究中的应用

超临界CO2 萃取(SFE-CO2)技术进行中草药化学成分的研究,与传统溶剂法比较,可在简化提取分离工艺的同时得到一些传统方法得不到的组分,而对有效成分的萃取率大大高于传统提取法,对中药化学成分(组分)的研究有着积

极的意义。

在红豆杉紫杉烷类化学成分的研究中,进行红豆杉中紫杉烷类成分的提取分离,传统的植物化学分离要得到单体难度大、步骤繁琐。此过程中,要用多种有毒有机溶剂。而用SFE-CO2 对云南红豆杉(Taxusyunnensis)的化学成分进行

3 h 提取所得粗浸膏,只需进行一次硅胶柱层析就能得到6个紫杉烷类单体和2 个其它单体,UV、IR、1H-NMR 和

13C-NMR、MS等光谱分析和化学鉴定为紫杉醇(taxol),taxuchin A,taxinineE,taxinine J,baccatin,

1-hydroxybaccatin 及β - 谷甾醇和硬脂酸-1- 甘油酯。

在姜黄(Curcuma longa)油化学成分的研究中采用

SFE-CO2 技术,对所得的姜黄油进行GC / MS分离鉴定,确定了包括姜黄酮在内的26 个成分。

在进行中药挥发油或脂肪油化学成分的研究中,采用SFE-CO2技术得到总成分后,直接进行GCMS-计算机联用技术分析,即可分析鉴定油中化学成分。采用SFECO2 技术提取黄花蒿、当归等挥发油,能提取分离出水蒸汽蒸馏法提取不出的成分。

1 . 3 联用技术的应用

单独采用SFE技术往往满足不了高纯度的要求。为此,人们进行了工艺改造,开发了SFE 技术与其他分离手段的联用。

美国Schaeffer 等人用SFE技术从豆科植物美丽猪屎豆种子中萃取得到纯度为50% 单猪屎豆碱,然后结合阳离子交换树脂进行分离纯化,可将纯度提高到95%。意大利的Fabio 等人采用浓缩富集、离心分离、冷冻干燥等工艺从苜蓿中分离得到富含胡萝卜素和叶黄素的浓缩物,而后联用SFE 工艺,分别得到胡萝卜素和叶黄素。采用国产

10L × 2SFE-CO2 装置及平板超滤器等联合生产工艺设备,以含量为10%~14% 的银杏黄酮粗品为原料,经联合工艺处理,得到黄酮含量大于30%、内酯为6%~8% 的产品。经检测,产品各指标均能达到国际质量标准。从银杏中提取银杏黄酮的方法中,单一溶剂法产物有残留,纯度难以提高,纯化工艺复杂,成本高;而单一SFE-CO2 法提取率低。如联合应用溶剂法和SFE-CO2法,则可避免和克服二者存在的问题和困难,省时省料,大大降低了生产成本。

从获取蒜油的得率和品质上讲,SFE-CO2 法是最有效的,但就工业化而言,操作技术上有难点,大蒜头在高压萃取釜中难以实现连续加料,浆状蒜泥粘度大,且蒜头规模化打浆属放热过程,蒜素损失严重。臧志清等提出,由溶剂浸出与SFE-CO2 提纯结合提取的工艺。先用乙醇浸出,获取大蒜浸出液,再经SFE-CO2连续萃取分离大蒜精油,实现连续稳定的高压萃取操作。

1 . 4 在复方中药新药研发中的应用

中药复方是传统中药的最主要的、也是中药与国际接轨难度最大的部分。迄今大量的研发工作几乎都集中在单味药物的提取方面,而中药复方由于其成分多而复杂,且各成分之间可能存在协同或拮抗作用,药理作用复杂。因此,利用SFE 技术研究复方难度较大,国内的研究报道也很少。但可以预计采用种分离技术能为中草药应用开辟出为广阔的新

领域。

在对几味单方中药SFE 技术研究( 包括药效学) 的基础上,用SFE 技术对结合传统中医理论组成的复方新药研发过程中,葛发欢等人首次用SFE-CO2 技术对中药复方进行研究,并发现在合适的SFE-CO2 参数条件下,按处方比例混合四味中药一起提取,四味中药中的有效成分均被提出,有效部位( 浸膏) 收率比单味提取有所增加,复方浸膏收率比单味浸膏收率高。这有可能是因为复方提取时,一些中药成分的提取由于互溶作用,促进其它中药成分的提取。按照此类中药复方的传统用药和提取方法,进行了该复方的传统提取,发现此复方浸膏的收率比SFE 高0.34 倍,然而其中有效成分,比SFE 低近40倍。这说明传统复方提取杂质多,有效成分少,外观颜色差,且批与批间重复性较差,而复方的SFE,有效成分高度浓缩,杂质少,外观颜色较好,各批次之间重复性较好;药效学证明该复方的SFE 有效部位,具有传统中医所要求的药效,且复方后具有协同补充效果。

研究证明,中药复方的研究与开发可以应用SFE 新技术,是改进中药复方生产工艺的有效途径,其工业化应用将有可能对中药复方的提取带来革命性的进展。

1 . 5 在中药质量标准化研究中的应用

质量标准是影响中药进入国际市场的又一重要因素。采用先进、准确的分析方法进行中药质量控制有利于中药现代化。

曾有报道,分析型SFE-CO2 或超临界色谱用于药物分析具有省时、样品用量少、条件易于控制、不分解、不污染样品等优点,特别是能从复杂组分中分离、鉴定痕量组分。因此,对成分复杂的中药特别是复方中药的分析尤为适用。特别是它应用于分析更能为准确客观评价所要分析的有效成分的

含量。

2SFE 技术在中药新药研发过程中的应用局限性及应注意的问题

2 . 1 在中药新药研发过程中的应用局限性

当然SFE 技术对中药的活性成分提取也不是万能的,它同样具有自身固有的局限性: 1.1 SFE 技术的普适性不好。

由于CO2的非极性和低分子量的特点,SFE-CO2 主要适合那些非极性或弱极性、分子量小的物质(如油脂、挥发油等) 的萃取。对于极性强、分子量较大的物质(如多糖类、皂苷类、黄酮类等) 的萃取,则有难度,要加提携剂或较高压

力下分段进行萃取。不过国外已有报道应用全氟聚醚碳酸铵(PEPE)使SFE技术扩展到水溶性体系,使难以提取的强极性化合物如蛋白等由SFE 萃取。1.2 萃取过程中的装卸料未实现

连续化生产。中草药原料多为固体(切制成片状或捣碎成粒状等),装卸料多采用间歇式。同时萃取产物的收集必须在无菌箱中进行,为防止交叉污染,更换产品时,装置的清洗尤为重要,也较为困难,故存在萃取装置的转产问题。所以,在萃取过程中,装卸料的连续化生产成为有待解决的问题; 1.3 设备造价昂贵,一次性投资大。建一套500L× 3的国外进口超临界装置大约4 000 多万~5 000 万元,建一套1500L × 3 的超临界装置大约8 000 多万~1 亿元,实际投资还要更高。这导致产品成本较高,工业化普及困难。

2 . 2 在中药新药研发过程中应用应注意的问题

SFE 技术是一个非常新的、受到国内外高度重视的分离提取技术,但不是一项万能技术。这是所有从事这项技术研究开发的科技术工作者必须面对的现实。鉴于该技术还存在以上缺陷,在中药新药研发应用过程中应注意以下几方面的问题: 2.1 对癌症和心脑血管等疾病有显着疗效的多糖类、皂苷类、黄酮类等的提取,SFE-CO2 技术几乎无能为力,这种尴尬局面促使人们大胆地将SFE-CO2技术的长处与其它方法有机结合,从而取得了各种联用技术的成功。因此进

一步开发和完善SFE-CO2和各种分离手段的联用技术,对于促进SFECO2 技术应用的发展具有重要意义。2.2 在中药新药研发过程中,中药超临界萃取对象的多种多样,选择应视情况而定。从学术或科技立项的角度,应该是没人做过或有人做过但有创新的品种。从经济角度考虑,要有市场,要考虑成本,要符合药政要求。目前,搞中药标准提取物、中间体,用于出口,或注册后于国内销售;对现有品种进行二次开发,改革工艺;从头到尾采用该技术进行新药研发,根据新药的特点,这是难度最大,也最有竞争力的选择。这都是较好的研究方向。 2.3 虽然很多中药的超临界CO2萃取物可直接应用于中药制剂,也确实能解决质量、剂量、疗效等问题,但是在中药新药研发过程中,还是应以药理活性和药物疗效为核心。不能将所有的萃取产物均视为有效成分。如有研究发现,超临界CO2 容易萃取出的地肤子油抗菌效果不明显,而有效成分是在萃取出油之后加入乙醇作提携剂提出的部分。2.4 迄今为止,可以说大量的工作都是集中在单味药物的提取方面,这显然与传统中药以复方为主的事是极不相称的。中药或中药复方是一个复杂体系,很多时候是多成分、多靶点起作用,而进行中药的超临界萃取时,不能将其中的一个部位代表该中药的全部有效部位。今后在复方提取或分组提取方面的工作,将是一个很有意义的方向。2.5 在应用SFE技术进行中药新药研发过程中,无论是简单

实验,或是单因素实验、正交实验,都要有考查指标,不能仅以指标性成分的得率或含量作为提取效果的判断指标,还要兼顾指标性成分与药理疗效的相关性。判断中药SFE 效果最好的方法是药理临床效果,药理的配合是超临界CO2萃取中药新药研发最好的方法。如:丹参酮类,当用作抗肝炎时,丹参酮ⅡA 就不是有效成分。2.6 提携剂使用范围越来越宽,装置腐蚀问题应引起重视。不锈钢设备的腐蚀常为局部腐蚀,当处于钝态和活态边缘,在含有卤素离子的提携剂中可能产生孔蚀,在含有对应力腐蚀敏感离子(如Cl-、OH -等)的提携剂中,受应力的部分(如焊缝附板)则可能产生应力腐蚀。 2.7 由于天然药物种类很多,分子结构颇为复杂,其蒸汽压、粘度、表面张力等物系参数积累甚少,物系的溶解度曲线、状态方程与高压下的相平衡图等均需建立,所以超临界CO2 萃取的基础研究应予以加强。 2.8 在工业化方面,尽管目前在实验室已取得了大量的研究成果,然而要将这些初步成果转化为现实的生产力,还有许多问题需要解决。如将实验室的新的超临界CO2萃取物让中药学家进行必要的药理药效实验,并建立与之相应的质量标准体系,这就需要两类科学工作者之间建立良好而密切的联系;对于基础研究和化学工程方面,要力求能对获取目标成分的可能性进行良好的预测,能设计出最经济、最高效的工艺流程,能找到与其他方法最佳搭配的结合点。

3SFE-CO2技术在中药新药研发过程中的应用前景和趋势

SFE-CO2 技术是一项有生命力的技术,将会为种类繁多、组成复杂、性质差异很大的中药有效成分的提取提供一条新的途径,随着入世的深入,国际市场对中药标准提取物、中间体的需求越来越广泛,可以预计,将给超临界CO2 萃取进行的中药标准提取物或中间体带来更广阔的市场空间。就中草药原料而言,SFE 能用于各种植物固体原料和常规提取后的固体及液体粗品原料;就提取对象而言,可用于挥发油、各种含氧化合物[ 如醇、醛、酚、酮、酸、( 内) 酯等] 、色素及生物碱等的提取、各种常规提取粗品的纯化及去除有机溶剂和有害杂质。

SFE所具备的这些优点是其他现有各种方法无法比拟的,其萃取中药的优势及中药现代化的客观需求决定了该技术在

中药研究开发及产业化中具有的广阔前景。在国外,特别是在日本,经过20 世纪80 年代的大量应用后,目前这一技术已在中草药研究和生产的许多方面得到了应用。

近年来在我国,继其成功用于食品和香料的提取之后,SFE具备的良好设备和技术背景,利用SFE 技术对中草药的研究和开发也取得了很大进步,发展迅速。这一新技术在中药学领域正受到前所未有的普遍重视,早期萃取科学工作者与中药科学家正紧密地走到一起,已对近百种中药原料进

行了实验室小试研究和近20 个品种的中间放大实验,有些产品已经走向工业化应用。国产SFE-CO2 设备已研制成功,具备生产分析型和生产型两档SFECO2 设备的能力。研究和开发出的成熟的SFE-CO2工艺技术(软件)的中草药有:银杏叶、金银花、紫草、紫杉、沙棘油、牛膝、乳香、没药、月见草、黄花蒿、白芍、生姜、当归、珊瑚姜、石菖蒲、飞龙掌血、长春藤、茵陈、光菇子、大蒜、木香等近30 种。同时国家的产业政策推进了该技术的的研究,如鼓励采用该技术进行新药的研究或二次开发、对一些提取物或中间体将采用简化注册的方式等。这将更加有利于该技术在中药中的产业化。

就国产设备研发与工业化应用而言,应加强基础理论和化学工程方面的研究,完善和丰富超临界条件下各种物系的相平衡、物理化学和传热传质等数据,预测和建立起有关超临界萃取过程的热力学和动力学模型。在计划产业化之前,针对被开发对象的特点,深入做好应用基础研究和全面的优化设计,综合评估产品质量、环境影响、生产成本等各方面优势,兼顾该技术的适用性、安全性、节能性以及是否符合GMP 要求,将SFE 技术与其它分离技术集成。随着基础研究与应用研究的不断深入,国产化设备质量的进一步提高,中医药界与相关工程技术领域的专家强强联手、协同攻关,

超临界萃取技术必将大量服务于中药的产业化、中药的现代化、中药的国际化。

典型的超临界萃取流程

利用SCF 的溶解能力随温度或压力改变而连续变化的特点,可将SFE 过程大致分为两类,即等温变压流程和等压变温流程。前者是使萃取相经过等温减压,后者是使萃取相经过等压升(降)温,结果都能使SCF 有很高的扩散系数,故传质过程很快就到达平衡。此过程维持压力恒定,则温度自然下降,密度必定增加,到状态点 2 ,然后萃取物流进入分离器,进行等温减压分离过程,到状态点 3 ,这时SCF 的溶解能力减弱,溶质从萃取相中析出,SCF 再进入压缩机进行升温加压,回到状态点 1 ,这样只需要不断补充少量溶剂,过程就可以周而复始。

超临界萃取技术应用及发展

石河子大学 分离工程课程论文 《超临界萃取技术的应用及发展》 学院:化学化工学院 专业:生物化工 学号: 姓名: 指导教师: 中国·新疆·石河子 2012年7月

超临界萃取技术的应用及发展 (石河子大学化学化工学院/新疆兵团化工绿色过程重点实验室,新疆石河子,832003) 摘要: 超临界流体萃取(SFE)是一种新型的分离方法,具有广阔的发展前景。本文简要介绍了超临界流体的基本性质,原理、萃取过程和技术特点,综述了超临界技术在萃取分离、环境保护、材料科学、反应工程、生物技术、清洗工业等方面的发展状况,并对超临界技术对多氯联苯的提取中的应用作了简要介绍。 关键词:超临界流体超临界萃取应用有机农药 引言 超临界流体萃取(Supercritical Fluid Extraction,简称SFE)是一种提取天然物质成分的新技术。其起源于20世纪40年代,70年代投入工业应用,以其环保、高效等显著特性迅速超越了传统技术,并取得成功。过去,分离天然的有机成分一直沿用水蒸汽蒸馏法、压榨法、有机溶剂萃取法等。水蒸汽蒸馏法需要将原料加热,不适用于化学性质不稳定成分的提取;压榨法得率低;有机溶剂萃取法在去除溶剂时会造成产品质量下降或有机溶剂残留;超临界流体萃取法则有效地克服了传统分离方法的不足,它利用在临界温度以上的高压气体作为溶剂,分离、萃取、精制有机成分。近二十多年来,超临界技术在国内外迅猛发展,在食品、化工、香料、环保、纳米材料、生物医药等诸多领域均有广阔的应用前景,也取得了众多的重要成果。 德国在1978年建立了世界上第一套用于脱除咖啡豆中咖啡因的工业化SFE 装置[1],后各国也相继建立了SFE实用装置。随后美国、日本等国也投人大量人力物力对超临界流体萃取技术进行研究,其研究范围涉及食品、香料、化工、医药等领域,并取得一系列进展[2-3]。我国从事SFE技术的研究是近十几年的事,也取得了一些可喜的成绩[4]。本文针对目前研究很热的超临界流体萃取技术进行一个简单的综述,并对其巨大的应用的前景提出展望。 1 超临界流体特性简介[5] 超临界流体(Supercritical fluid,简写SCF)是处于临界温度和临界压力以上的非凝缩性的高密度流体。物质的气液平衡线并不随温度和压力的增加而无限延伸,当系统处于高于临界压力和临界温度时,气相和液相的界面消失,这时称为

超临界萃取原理

超临界萃取原理 超临界流体萃取是当前国际上最先进的物理分离技术。 常见的临界流体中,由于CO2化学性质稳定,无毒害和无腐蚀性,不易燃和不爆炸,临界状态容易实现,而且其临界温度(31.1℃)接近常温,在食品及医药中香气成分,生理活性物质、酶及蛋白质等热敏物质无破坏作用,因而常用CO2作为作为萃取剂进行超临界萃取。 一、超临界CO2 纯CO2的临界压力是7.3MPa和31.1℃时,此状态CO2被称为超临界CO2。在超临界状态下,CO2流体是一种可压缩的高密度流体,成为性质介于液体和气体之间的单一状态,兼有气液两相的双重特点:它的密度接近液体,粘度是液体的1%,自扩散系数是液体的100倍,因而它既具有与气体相当的高扩散系数和低粘度,又具有与液体相近的密度和对某些物质很强的溶解能力,可以说超临界CO2对某些物质有着特殊的渗透力和溶解能力。 二、超临界CO2萃取过程 超临界CO2密度对对温度和压力变化十分敏感,所以调节正在使用的CO2的压力和密度,就可以通过调节CO2密度来调整该CO2对欲提取物质的溶解能力;对应各压力范围所得到的的萃取物不是单一的,可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,与被萃取物质完全或部分分开,从而达到分离提纯的目的。 三、超临界CO2溶解选择性 超临界状态下的CO2具有选择性溶解,对低分子、弱极性、脂溶性、低沸点的成分如挥发油、烃、酯、内脂、醚、环氧化合物等表现出优异的溶解性,而对具有极性集团(-OH、-COOH等)的化合物,极性基团愈多,就愈难萃取,故多元醇、多元酸及多羟基的芳香物质均难溶于超临界CO2。对于分子量大的化合物,分子量越大,越难萃取,分子量超过500的高分子化合物几乎不溶,因而对这类物质的萃取,就需加大萃取压力或者向有效成分和超临界CO2组成的二元体系中加入具有改变溶质溶解度的第三组成粉(即夹带剂),来改变原来有效成分的溶解度。一般来说,具有很好性能的溶剂,也往往是很好的夹带剂,如甲

超临界萃取的技术原理

一、超临界萃取的技术原理 利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以超临界CO2流体萃取过程是由萃取和分离过程组合而成的。 超临界CO2是指处于临界温度与临界压力(称为临界点)以上状态的一种可压缩的高密度流体,是通常所说的气、液、固三态以外的第四态,其分子间力很小,类似于气体,而密度却很大,接近于液体,因此具有介于气体和液体之间的气液两重性质,同时具有液体较高的溶解性和气体较高的流动性,比普通液体溶剂传质速率高,并且扩散系数介于液体和气体之间,具有较好的渗透性,而且没有相际效应,因此有助于提高萃取效率,并可大幅度节能。 超临界CO2的物理化学性质与在非临界状态的液体和气体有很大的不同。由于密度是溶解能力、粘度是流体阻力、扩散系数是传质速率高低的主要参数,因此超临界CO2的特殊性质决定了超临界CO2萃取技术具有一系列的重要特点。超临界CO2的粘度是液体的百分之一,自扩散系数是液体的100倍,因而具有良好的传质特性,可大大缩短相平衡所需时间,是高效传质的理想介质;具有比液体快得多的溶解溶质的速率,有比气体大得多的对固体物质的溶解和携带能力;具有不同寻常的巨大压缩性,在临界点附件,压力和温度的微小变化会引起CO2的密度发生很大的变化,所以可通过简单的变化体系的温度或压力来调节CO2 的溶解能力,提高萃取的选择性;通过降低体系的压力来分离CO2和所溶解的产品,省去消除溶剂的工序。 在传统的分离方法中,溶剂萃取是利用溶剂和各溶质间的亲和性(表现在溶解度)的差异来实现分离的;蒸馏是利用溶液中各组分的挥发度(蒸汽压)的不同来实现分离的。而超临界CO2萃取则是通过调节CO2的压力和温度来控制溶解度和蒸汽压这2个参数进行分离的,故超临界CO2萃取综合了溶剂萃取和蒸馏的2种功能和特点,进而决定了超临界CO2萃取具有传统普通流体萃取方法所不具有的优势:通过调节压力和温度而方便地改变溶剂的性质,控制其选择性;适当地选择提取条件和溶剂,能在接近常温下操作,对热敏性物质可适用;因粘度小、扩散系数大,提取速度较快;溶质和溶剂的分离彻底而且容易。从它的特性和完整性来看,相当于一个新的单元操作,因此引起了国内外的广泛关注。二、超临界萃取的特点

超临界萃取技术在制药行业中的应用

目录 摘要 ................................................................................................................ 错误!未定义书签。关键字 ............................................................................................................ 错误!未定义书签。 一、超临界流体........................................................................................... 错误!未定义书签。 二、超临界流体萃取原理............................................................................. 错误!未定义书签。 三、超临界流体萃取技术在制药工业中对中药有效成分的应用........... 错误!未定义书签。 1、萜类和挥发油的提取....................................................................... 错误!未定义书签。 2、黄酮类化合物的提取..................................................................... 错误!未定义书签。 四、超临界流体技术在医药工业中的应用............................................... 错误!未定义书签。 五、超临界CO2,萃取在药物分析中的应用........................................... 错误!未定义书签。 六、SCF微粒化技术及在药物微粒化制备中的应用............................. 错误!未定义书签。 七、超临界流体快速膨胀过程(RESS)............................................. 错误!未定义书签。 八、超临界流体抗溶剂过程(SAS)..................................................... 错误!未定义书签。 十、结束语..................................................................................................... 错误!未定义书签。参考文献....................................................................................................... 错误!未定义书签。

超临界二氧化碳萃取技术

摘要:介绍了超临界二氧化碳萃取技术的基本原理和特点,简单说明了该技术在香料、医药、食品等工业上的应用。 关键词:超临界二氧化碳萃取分离技术基本原理 前言 超临界流体萃取,又称超临界萃取、压力流体萃取、超临界气体萃取。它是以高压、高密度的超临界状态流体为溶剂,从液体或固体中萃取所需要的组分,然后采用升温、降压或二者兼用和吸收(吸附)等手段将溶剂与所萃取的组分分离。 早在1897年,人们就已经认识到了超临界萃取这一概念。当时发现超临界状态的压缩气体对于固体具有特殊的溶解作用。例如再高于临界点的条件下,金属卤化物可以溶解再在乙醇或四氯化碳中,当压力降低后又可以析出。但直到20世纪60年代,才开始了其工业应用的研究。目前超临界二氧化碳萃取已成为一种新型萃取分离技术,被广泛应用于食品、医药、化工、能源、香精香料的工业的生产部门。 1 超临界萃取的原理 当液体的温度和压力处于它的临界状态。 如图1是纯流体的典型压力—温度图。图中, AT表示气—固平衡的升华曲线,BT表示液— 固平衡的熔融曲线,CT表示气-液平衡的饱 和液体的蒸汽压曲线,点T是气-液-固三相 共存的三相点。按照相率,当纯物的气-液- 固三相共存时,确定系统状态的自由度为零, 即每个纯物质都有自己确定的三相点。将纯物 质沿气-液饱和线升温,当达到图中的C时, 气-液的分界面消失,体系的性质变得均一, 不再分为气体和液体,称点C为临界点。与该点相对应的临界温度和压力分别称 为临界温度T 0和临界压力P 。图中高于临界温度和临界压力的有影阴的区域属 于超临界流体状态。 在这种状态下,它既不完全与一般气相相同,又不是液相,故称为超临界流体。超临界流体有气、液相的特点,它既有与气体相当的高渗透力和低粘度,又兼有液体相近的密度和对物质优良的溶解能力。这种溶解能力能随体系参数的变化而连续的改变,因而可以通过改变体系的温度和压力,方便的调节组分的溶解度和萃取的选择性。利用上述特点,超临界二氧化碳萃取技术主要分为两大类原理流程即恒温降压流程和恒压升温流程。前者萃取相经减压,后者萃取相经升温。

超临界流体技术原理及其应用

“超临界流体技术原理及其应用” 院选课读书报告 (2012~2013下学期) 题目:SC—CO2流体技术基本原理及其应用前景系专业名称: 学生姓名: 学号: 指导教师:

SC—CO2流体技术基本原理及其应用前景 摘要 超临界流体是指物质处于极其临界的温度和压强下形成的一种新的流体,它的性质介于液体和气体之间,并且兼具二者的有点。现研究较多的流体包括:二氧化碳等。超临界二氧化碳是一种液态的二氧化碳,在一定的条件,如果达到临界点或者以上,会形成一种新的状态,兼顾气态和液态的部分性质,而且拥有新的性质。超临界二氧化碳萃取技术是一种新型分离技术,超临界CO2萃取是采用CO2作为溶剂,在超临界状态下的CO2流体密度和介电常数较大,对物质溶解度很大,并随压力和温度的变化而急剧变化,因此,不仅对某些物质的溶解度有选择性,且溶剂和萃取物非常容易分离。超临界CO2萃取特别适用于脂溶性,高沸点,热敏性物质的提取,同时也适用于不同组分的精细分离,即超临界精镏。超流体流体应用前景目前应用十分的广泛,目前已应用于食品工业、化妆品香料工业、医药工业、化工工业等方面,超临界流体应用将越来越广泛于各个行业的发展。 关键词:“超临界流体,超临界二氧化碳,超临界二氧化碳萃取,超临界流体应用前景” 一、SC—CO2流体技术基本原理 (一)SC—CO2超流体技术的基本原理概述 超临界流体(SCF)是指处于临界温度和压强的情况下,它的物理性质介于液体和气体之间。⑴这种流体同时据有气态和液态的特点,它既具有与液体相近的密度和其优良的溶解性。溶质在某溶剂中的溶解度与溶剂的密度相关,溶质在超临界流体中的溶解度也与其类似。因此,通过改变超临界流体的压强和温度,改变其密度,便可以溶解许多不同类型的物质。 超临界流体萃取分离过程是利用超临界流体的溶解力和其密度的关系,即利用压强和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,其拥有

超临界二氧化碳萃取的过程及设备教学教材

超临界二氧化碳萃取的过程及设备

3.2 超临界流体萃取过程的设计与开发 除了在一些食品提取工业中实现超临界流体萃取的工业化外,其在高附加值产品分离中也展现出新的活力,特别是在制药工业中,其重要性也日显增加。尤其是随着有关毒性物质排放越来越受到严格限制,SCFE的使用范围也会日渐扩大。但是SCFE的使用可行性是与过程的规模、产品的价值、是否需用无毒溶剂的一些因素有关。因此,只有进行周密的设计后,才能定量权衡上面提出的种种因素。一旦得出具有可行性的设计,便会吸引到企业界和研究者的重视和关注。 当前,不仅仅是国外的一些学者和专家作了扼要而实用的综述[1],而且在国内召开的“超临界流体技术学术及应用研讨会”上有多篇论文专门讨论了SCFE 的工艺与设备设计。早八十年代就出现了SCFE过程设计和开发的报告,近30年间,有关SCFE的设计研究还在不断进展,逐渐完善。有些产品,如真菌脂质的提取,不仅要作SCFE的过程设计,而且还要作其他单元操作,如对液液萃取的设计进行比较,从经济上确定何种过程有优势,从而便于在进一步的投资中作出判断。可以说,目前SCFE已如其他比较成熟的单元操作一样,设计、仿真和优化(design,simulation and optimization)的工作已全面开展,这也从-个侧面表明SCFE的实用性正在受到越来越多的科技工作者的关注。 3.2.1 超临界流体萃取工业装置的开发步骤 图3-16示出了任一扩散分离过程科学开发的流程示意图。在步骤2中确定所涉及物料的特征后,一般情况下,若选用传统的分离单元操作,如蒸馏、液液萃取等,往往是凭设计者的经验来选定,较少采用预设计的方法。在开发过程中直接进行实验研究。但SCFE是新技术,对其了解不多。为了能和其他分

二氧化碳超临界萃取技术

超临界CO2萃取装置 该装置主要由萃取釜、分离釜、精镏柱、CO2高压泵、副泵、制冷系统、CO2贮罐、换热系统、净化系统、流量计、温度、压力控制(保护)系统等组成。 超临界CO2萃取装置的主要技术指标 萃取釜:0.5L、1L、2L、5L/50Mpa;10L、24L/40Mpa;50-200L/32Mpa,固态两用。配水夹套循环加热,温度可调。 分离釜:0.3-10L/30Mpa;50-100L/16-22Mpa。配水夹套循环加热,温度可调。 精镏柱:内径ф25×2-3m/30Mpa;ф35×2-3m/30Mpa;ф48×4-6m/30Mpa;ф78×4-6m/30Mpa,根据工艺要求可分4节、6节、8节梯度控温;柱内根据工艺要求由用户选相关填料。 CO2高压泵:20L/40Mpa·h双柱塞,50L/50Mpa·h双柱塞调频,400L/40Mpa·h三柱塞调频,800L/40Mpa·h三柱塞调频,泵头带冷却系统。 携带剂泵:用于萃取过程中,夹带溶剂来改变CO2极性,扩大应用范围。 制冷系统:配半封式、全封式压缩机,制冷量满足工艺要求。 换热及温度的控制系统:根据工艺要求,萃取釜、分离釜、精镏柱分别配置换热和温控系统,温度控制-85℃水循环、室温-150℃油循环,温度控制数显双屏控制水浴温度,测试CO2流体温度,控温±1℃ 压力控制(保护):高压泵出口配电接点压力表,设定工作压力,超压自动保护停泵。高压泵、萃取釜、分离釜、精镏柱,根据最高工作压力,分别配安全阀,超压自动泄压保护。萃取釜出口配背压阀系统,压力稳定,易于调整,压控制精度(动态)±0.1Mpa 流量显示:金属转子流量计,数显远传,分别显示瞬时流量和累积流量 管路:接触流体的容器、阀门、管件、管线均采用不锈钢制作。 其他:电源三相四线制380V/50Hz,CO2食品级≥99.5,用户自备 超临界CO2萃取装置的基本流程 1、CO2→萃取釜→分离Ⅰ→分离Ⅱ→回路; 2、CO2→萃取釜→分离Ⅰ→分离Ⅱ→精镏柱→回路; 3、CO2→萃取釜→精镏柱→分离Ⅰ→分离Ⅱ→回路; 4、CO2→萃取釜→分离Ⅰ→精镏柱→分离Ⅱ→回路。 超临界CO2萃取装置的特点

超临界萃取技术及其在食品工业中的应用

超临界流体萃取技术及其在食品工业中的应用 摘要:超临界流体萃取技术作为一种环境友好、高效新型的分离技术,因其分离效率高、能耗低等诸多优点而受到人们越来越多的关注。本文对超临界萃取技术的基本原理及特点作了简要介绍,并对超临界流体萃取技术在天然香料、天然色素的提取、油脂的提取分离、食品中有害成分的分离等方面的应用进行了综述。关键词:超临界萃取;食品工业;应用 Supercritical Fluid Extraction Technology and its Application in Food Industry Abstract: Supercritical fluid extraction (SFE) technology as a clean, efficient separation method, it has attract attention of more and more people because of its feature that the advantages of higher separation efficiency and lower energy consumption. The basic principle, features and impact factors of Supercritical fluid extraction technology were briefly described in this article. And the applications of SFE in natural spices and pigment, oil extraction and separation, separation of the harmful ingredients in food were also introduced. Keywords: Supercritical fluid extraction technology; Food industry; Application 超临界萃取技术(SCFE,Supercritical Fluid Extraction),是利用超临界流体的特殊性进行萃取的一种新型高效分离技术,于20世纪70年代开始成功应用于工业中,在食品加工业、精细化工业、医药工业、环境领域等,超临界萃取技术作为一种独特、高效、清洁的新型萃取手段,已显示出良好的应用前景,成为替代传统化学萃取方法的首选。目前,在研究超临界萃取技术的基础理论、萃取设备和工业应用等方面,世界各国都取得明显进展。在食品、医药及化工领域发展迅速,特别在提取生物资源的活性有效成分方面取得了很大发展,在多个行业成为研究的新热点[1,2]。 1超临界萃取技术的概念 1.1超临界萃取技术的基本原理及流程

超临界流体萃取原理及其特点

超临界流体萃取技术 超临界流体概念 任何物质,随着温度、压力的变化,都会相应的呈现为固态、液态和气态这三种状态,称为物质的三态。三态之间互相转化的温度和压力值叫做三相点,每种分子量不太大的稳定的物质都具有一个固有的临界点,严格意义上,临界点由临界温度、临界压力、临界密度构成。在临界温度以上,无论怎样加压,气态物质绝不会被液化。当温度和压力超过了临界点时,该物质就进入了超临界状态,超临界状态下的物质既非气体又非液体的状态,叫做超临界流体[11],SCF是气体和液体状态以外的第三流体。 超临界流体萃取原理及其特点 所谓超临界流体萃取[12],是指利用超临界条件下的流体作为萃取剂,从液体或固体中萃取出特定成分,以达到某种分离目的。SCF的密度对温度和压力的变化很敏感,而其溶解能力在一定压力范围内与其密度成比例,因此可以通过控制温度和压力来改变物质在SCF中的溶解度,特别是在临界点附近,温度和压力的微小变化可导致溶质溶解度发生几个数量级的突变,这就是SFE的依据。 与其它常规分离方法相比,SFE具有以下特点[13]: 1) 通过调节温度和压力可全部或选择性地提取有效成分或脱除有害物质; 可在较低温度和无氧环境下操作,分离、精制热敏 2)选择适宜的溶剂如CO 2 性物质和易氧化物质; 3)临界流体具有良好的渗透性和溶解性,能从固体或粘稠的原料中快速提 取有效成分; 4)降低超临界相的密度,很容易使溶剂从产品中分离,无溶剂污染,且回 收溶剂无相变过程,能耗低; 5)兼有蒸馏和萃取双重功能,可用于有机物的分离、精制。 SFE存在的不足有[14]: 1) 高压下萃取,相平衡较复杂,物性数据缺乏; 2) 高压装置与高压操作,投资费用高,安全要求亦高; 3) 超临界流体中溶质浓度相对还是较低,故需大量溶剂循环; 4) 超临界流体萃取过程固体物料居多,连续化生产较困难。 超临界流体的选择

超临界二氧化碳萃取设备操作步骤

SFE-CO2萃取技术操作步骤 一、开机操作 1.开启墙上的总电源(最下面一排右数第二个),面板总电源。开启萃取1、分离1、分离2按钮,设定萃取温度(范围35~60℃,正常约45℃)和分离1温度(范围35~65℃,正常约50~60℃),分离2的温度不动(正常约35℃)。2.看三个水箱的水位离口1至2公分,看水泵是否运转(水面有波动的话一般为转动或查看泵的叶片)。 3.开启面板制冷电源,启动制冷箱(顺时针扭90°,与地垂直)。 4.等萃取分离温度达到设定温度和冷机停时(此时准备向料桶加料),打开阀门1,2(逆时针旋3圈,每圈360°),打开球阀(在主机背面,逆时针扭至水平),关阀门4,5,慢慢打开阀门3,排气(听排气声),使萃取压力为0,打开堵头。 二、装料操作 1.加料:自下而上依次为物料(得率不少于5%,量至少达料筒高度一半,最高离料口2公分)→脱脂棉(圆形,直径比滤网长1公分)→白圈→滤纸→滤网→盖子(注意反正,细口朝下,用专用工具盖紧,能用吊篮提住)。 2.装料筒:自下而上依次为料筒→黑色细O型环→通气环→堵头(内部套黑色粗O型环,用水润湿)。 三、萃取操作 1.关阀门3,慢慢打开阀门4(稍微逆时针扭一下,幅度很小),使萃取1压力与贮罐压力相等。 2.慢慢打开阀门3排气5~10秒,关上。 3.全开阀门4和5(逆时针旋3圈,每圈360°),关阀门6(先顺时针旋2圈),泵电源,即绿灯(泵1调频,频率范围12~18,一般16~18,此时设定开CO 2 为18),按RUN,看萃取1压力,等萃取1压力达到设定压力(最高不超过35MPa,正常20~30MPa,此时设为约25MPa),调阀门6使之平衡,关阀门8,升分离1压力(最高不要超过11MPa,正常8~10MPa,此时设定为10MPa),等分离1压力达到设定压力,调阀门8使之平衡。(注:分离2的压力永远不能关,与贮罐压力相等)看时间开始循环(一般每半小时一个循环)。

超临界二氧化碳萃取技术在几个方面的应用

湖北民族学院 本科生文献综述 题目超临界二氧化碳萃取技术的 应用 作者所在系别化学与环境工程学院 作者所在专业化工与制药 作者所在班级0408405 作者姓名简丹 作者学号0404840547 指导教师姓名李国祥 指导教师职称博士 完成时间2011 年 5 月

超临界二氧化碳萃取技术的应用 简丹 (湖北民族学院化学与环境工程学院,恩施 445000) 摘要:本文系统的介绍了超临界二氧化碳萃取技术在环境领域,放射性金属离子萃取领域,油脂工业中的应用与发展现状,对超临界二氧化碳萃取技术在这三个方面应用所遇到的问题做了总结,并对未来的发展做了展望。 关键词:超临界二氧化碳;萃取;放射金属离子;油脂工业 Application of supercritical CO2 extraction in some fields Jian dan (Hubei University for Nationalities School of Chemistry and Environmental Engneering,Enshi 445000,China) Abstract:This artical systematically introduces application of supercritical CO2 extraction in the fields of environment,extraction of radioactive metals,oil industry.This artical also introduces the present development situation and tendency in these fields. Key words:CO2-SFE;environment; extraction ofradioactive metals;oil industry 1、前言 超临界流体二氧化碳萃取(supercritical CO2 extraction ,CO2-SFE或CO2-SCFE)技术是超临界流体萃取(superccritical fluid extraction,SCEF或SEF)技术的一种,由于CO2具有无毒、无味、无臭、化学惰性,超临界点低(Tc=31·1℃,Pc=7·28 MPa),不污染环境和产品,廉价易得,不易染易爆,使用安全等诸多优点,所以CO2已经成为工业上和首选的绿色萃取剂,成为超临界萃取技术最重要的应用技术[1]。CO2-SFE的研究在国内研究起步晚,现在有关CO2-SFE的应用主要集中在环境,放射金属离子萃取,油脂工业,

超临界萃取

超临界流体的溶剂强度取决于萃取的温度和压力。利用这种特性,只需改变萃取剂流体的压力和温度,就可以把样品中的不同组分按在流体中溶解度的大小,先后萃取出来,在低压下弱极性的物质先萃取,随着压力的增加,极性较大和大分子量的物质与基本性质,所以在程序升压下进行超临界萃取不同萃取组分,同时还可以起到分离的作用。 温度的变化体现在影响萃取剂的密度与溶质的蒸汽压两个因素,在低温区(仍在临界温度以上),温度升高降低流体密度,而溶质蒸汽压增加不多,因此,萃取剂的溶解能力时的升温可以使溶质从流体萃取剂中析出,温度进一步升高到高温区时,虽然萃取剂的密度进一步降低,但溶质蒸汽压增加,挥发度提高,萃取率不但不会减少反而有增大的趋势。 除压力与温度外,在超临界流体中加入少量其他溶剂也可改变它对溶质的溶解能力。其作用机理至今尚未完全清楚。通常加入量不超过10%,且以极性溶剂甲醇、异丙醇等居多。加入少量的极性溶剂,可以使超临界萃取技术的适用范围进一步扩大到极性较大化合物。 编辑本段一、超临界流体 物质是以气、液和固3种形式存在,在不同的压力和温度下可以相的转换。在温度高于某一数值时,任何大的压力均不能使该纯物质由气相转化为液相,此时的温度即被称之为临界温度Tc;而在临界温度下,气体能被液化的最低压力称为临界压力Pc。当物质所处的温度高于临界温度,压力大于临界压力时,该物质处于超临界状态。在压温图中,高于临界温度和临界压力的区域就称为超临界区,如果流体被加热或被压缩至其临界温度(Tc)和临界压力(Pc)以上状态时,向该状态气体加压,气体不会液化,只是密度增大,具有类似液体性质,同时还保留有气体性能,这种状态的流体称为超临界流体。 编辑本段二、超临界萃取的技术原理 超临界CO2流体萃取(SFE)分离过程的原理是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以超临界CO2流体萃取过程是由萃取和分离过程组合而成的。 编辑本段三、超临界萃取的特点 1、超临界萃取可以在接近室温(35~40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。因此,在萃取物中保持着药用植物的有效成分,而且能把高沸点、低挥发性、易热解的物质在远低于其沸点温度下萃取出来; 2、使用SFE是最干净的提取方法,由于全过程不用有机溶剂,因此萃取物绝无残留的溶剂物质,从而防止了提取过程中对人体有害物的存在和对环境的污染,保证了100%的纯天然性; 3、萃取和分离合二为一,当饱和的溶解物的CO2流体进入分离器时,由于压力的下降或温度的变化,使得CO2与萃取物迅速成为两相(气液分离)而立即分开,不仅萃取的效率高而且能耗较少,提高了生产效率也降低了费用成本; 4、CO2是一种不活泼的气体,萃取过程中不发生化学反应,且属于不燃性气体,无味、无臭、无毒、安全性非常好;

超临界二氧化碳萃取的过程及设备

3.2 超临界流体萃取过程的设计与开发 除了在一些食品提取工业中实现超临界流体萃取的工业化外,其在高附加值产品分离中也展现出新的活力,特别是在制药工业中,其重要性也日显增加。尤其是随着有关毒性物质排放越来越受到严格限制,SCFE的使用范围也会日渐扩大。但是SCFE的使用可行性是与过程的规模、产品的价值、是否需用无毒溶剂的一些因素有关。因此,只有进行周密的设计后,才能定量权衡上面提出的种种因素。一旦得出具有可行性的设计,便会吸引到企业界和研究者的重视和关注。 当前,不仅仅是国外的一些学者和专家作了扼要而实用的综述[1],而且在国内召开的“超临界流体技术学术及应用研讨会”上有多篇论文专门讨论了SCFE 的工艺与设备设计。早八十年代就出现了SCFE过程设计和开发的报告,近30年间,有关SCFE的设计研究还在不断进展,逐渐完善。有些产品,如真菌脂质的提取,不仅要作SCFE的过程设计,而且还要作其他单元操作,如对液液萃取的设计进行比较,从经济上确定何种过程有优势,从而便于在进一步的投资中作出判断。可以说,目前SCFE已如其他比较成熟的单元操作一样,设计、仿真和优化(design,simulation and optimization)的工作已全面开展,这也从-个侧面表明SCFE的实用性正在受到越来越多的科技工作者的关注。 3.2.1 超临界流体萃取工业装置的开发步骤 图3-16示出了任一扩散分离过程科学开发的流程示意图。在步骤2中确定所涉及物料的特征后,一般情况下,若选用传统的分离单元操作,如蒸馏、液液萃取等,往往是凭设计者的经验来选定,较少采用预设计的方法。在开发过程中直接进行实验研究。但SCFE是新技术,对其了解不多。为了能和其他分离过程作出比较,必须在此前作出预设计或过程仿真、优化,其流程如图3-16所描述。按照科学开发的原则,不管采用何种分离过程,理应先进行仿真,再作实验验证,有利于省时省力。随着计算机的快速发展,图3-16的开发流程,更为开发研究者乐于采用。Lira[2]指出,图3-16中的步骤4和6是决定最终SCFE是否成功的关键。但是没有步骤3和5,更多的优化工作要在实验验证(步骤7)后进行,这就延缓开发进程和花费更多的人力、物力。

超临界萃取技术+

超临界萃取技术 超临界流体是指物质处于其临界温度和临界压力之上的状态。超临界流体兼有气、液两重性的特点,它既有与气体相当的高渗透能量和低的黏度,又具有与液体相近的密度和对物质优良的溶解能力。应用超临界流体可以从原料中提取有用的成分或脱除有害成分,从而达到所需要的分离目的。超临界萃取工艺已成为食品工业的先进技术,特别是天然食品的加工,如植物原料中各种香料、色素的提取。在可作为超临界流体的各种物质中,CO2最适合于食品工业生产,它价廉、易得、萃取功能强、无毒、不会产生环境污染、可在低温下萃取,食品产品质量明显优于传统方法所得。在温度超过31.1℃,压力超过7.38MPa的领域,二氧化碳就成为超临界流体,此时,其密度接近液体,扩散系数和黏性接近气体。 超临界萃取工艺可应用于咖啡豆脱咖啡因,烟草脱尼古丁,奶油脱胆固醇,啤酒花有效成分、天然香精香料以及色素的提取。已经产业化的有啤酒花的萃取、咖啡豆和红茶脱咖啡因、天然香料提取精油等领域。将原料装入萃取罐,起动升压泵,调成超临界压力,并用热交换器调成超临界温度,在萃取罐内溶解萃取成分后,超临界流体在恒温下减压,通过降低密度失去溶解力,在分离罐内分离出溶质和流体。此时,分离出来的流体二氧化碳用冷却器转变成液体,再度使用,或者放入大气。

一、超临界流体萃取技术原理 有机物的密度和介电常数均随压力增高而上升,其密度随温度升高而下降,特别是在临界点附近压力和温度的微小变化都会引起气体密度的很大变化。在超临界流体中物质的溶解度在恒温下随压力升高而增加,而在恒压下溶解度随温度升高而下降,这一性质有利于从物质中提取某些易溶解的成分。而超临界流体的高流动性和高扩散能力,则有助于溶解的各成分之间的分离,并能加速溶解平衡,提高萃取效率。随着超临界萃取研究领域的不断拓宽,超临界萃取的工艺及设备不断革新,现在的分离技术已由过去的单一分离器发展为多级串联分离器,由同一原料可以生产不同等级的产品。超临界流体技术工艺流程图如图4-1所示。 图4-1 超临界流体技术工艺流程图 选择萃取剂的原则是,在保证特定产品要求的前提下,尽量选择较低 的临界温度和压力、化学性质稳定、惰性、安全、来源广、价格低的萃取剂为好。在食品工业中多采用CO2为萃取剂。 原料经除杂质、粉碎或压片后,装入萃取器,流体CO2由CO2储罐供给,然后通过贮存器经过高压泵至理想压力,并经加热器至特定温度,使其在通过萃取器之前处于超临界状态。超临界CO2由下而上流经萃取器,原料的可溶成分进入超临界CO2相,经调节压力和温度,使超临界CO2的密度降低,可选择性地使萃取物在分离器中分离出来。含脂产品在低压下不溶于CO2,沉淀于分离器的底部。萃取液由第一分离器经减压后流入第二分离器,含油产品在更低的压力下不溶于CO2,沉淀于分离器的底部。CO2经第二分离器后,回收循环使用或排放掉。降压通过半自动压力阀调节,温度通

超临界萃取及其应用

1概述 英文名称 supercritical fluid extraction 简介 超临界流体的溶剂强度取决于萃取的温度和压力。利用这种特性,只需改变萃取剂流体的压力和温度,就可以把样品中的不同组分按在流体中溶解度的大小,先后萃取出来,在低压下弱极性的物质先萃取,随着压力的增加,极性较大和大分子量的物质与基本性质,所以在程序升压下进行超临界萃取不同萃取组分,同时还可以起到分离的作用。 温度的变化体现在影响萃取剂的密度与溶质的蒸汽压两个因素,在低温区(仍在临界温度以上),温度升高降低流体密度,而溶质蒸汽压增加不多,因此,萃取剂的溶解能力时的升温可以使溶质从流体萃取剂中析出,温度进一步升高到高温区时,虽然萃取剂的密度进一步降低,但溶质蒸汽压增加,挥发度提高,萃取率不但不会减少反而有增大的趋势。 除压力与温度外,在超临界流体中加入少量其他溶剂也可改变它对溶质的溶解能力。其作用机理至今尚未完全清楚。通常加入量不超过10%,且以极性溶剂甲醇、异丙醇等居多。加入少量的极性溶剂,可以使超临界萃取技术的适用范围进一步扩大到极性较大化合物。 2流体 物质是以气、液和固3种形式存在,在不同的压力和温度下可以相的转换。在温度高于某一数值时,任何大的压力均不能使该纯物质由气相转化为液相,此时的温度即被称之为临界温度Tc;而在临界温度下,气体能被液化的最低压力称为临界压力Pc。当物质所处的温度高于临界温度,压力大于临界压力时,该物质处于超临界状态。在压温图中,高于临界温度和临界压力的区域就称为超临界区,如果流体被加热或被压缩至其临界温度(Tc)和临界压力(Pc)以上状态时,向该状态气体加压,气体不会液化,只是密度增大,具有类似液体性质,同时还保留有气体性能,这种状态的流体称为超临界流体。 3技术原理

超临界萃取的技术原理及应用

所谓超临界流体,是指物体处于其临界温度和临界压力以上时的状态。这种流体兼有液体和气体的优点,密度大,粘稠度低,表面张力小,有极高的溶解能力,能深入到提取材料的基质中,发挥非常有效的萃取功能。而且这种溶解能力随着压力的升高而急剧增大。这些特性使得超临界流体成为一种好的萃取剂。而超临界流体萃取,就是利用超临界流体的这一强溶解能力特性,从动、植物中提取各种有效成份,再通过减压将其释放出来的过程。 超临界流体萃取法是一种物理分离和纯化方法,它是以CO2为萃取剂,在超临界状态下,加压后使其溶解度增大。将物质溶解出来,然后通过减压又将其释放出来。该过程中CO2循环使用。在压力为8--40MPa时的超临界CO2足以溶解任何非极性、中极性化合物,在加入改性剂后则可溶解极化物。 一、超临界萃取的技术原理 利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以超临界CO2流体萃取过程是由萃取和分离过程组合而成的。 超临界CO2是指处于临界温度与临界压力(称为临界点)以上状态的一种可压缩的高密度流体,是通常所说的气、液、固三态以外的第四态,其分子间力很小,类似于气体,而密度却很大,接近于液体,因此具有介于气体和液体之间的气液两重性质,同时具有液体较高的溶解性和气体较高的流动性,比普通液体溶剂传质速率高,并且扩散系数介于液体和气体之间,具有较好的渗透性,而且没有相际效应,因此有助于提高萃取效率,并可大幅度节能。 超临界CO2的物理化学性质与在非临界状态的液体和气体有很大的不同。由于密度是溶解能力、粘度是流体阻力、扩散系数是传质速率高低的主要参数,因此超临界CO2的特殊性质决定了超临界CO2萃取技术具有一系列的重要特点。超临界CO2的粘度是液体的百分之一,自扩散系数是液体的100倍,因而具有良好的传质特性,可大大缩短相平衡所需时间,是高效传质的理想介质;具有比液体快得多的溶解溶质的速率,有比气体大得多的对固体物质的溶解和携带能力;具有不同寻常的巨大压缩性,在临界点附件,压力和温度的微小变化会引起CO2的密度发生很大的变化,所以可通过简单的变化体系的温度或压力来调节CO2的溶解能力,提高萃取的选择性;通过降低体系的压力来分离CO2和所溶解的产品,省去消除溶剂的工序。在传统的分离方法中,溶剂萃取是利用溶剂和各溶质间的亲和性(表现在溶解度)的差异来实现分离的;蒸馏是利用溶液中各组分的挥发度(蒸汽压)的不同来实现分离的。而超临界CO2萃取则是通过调节CO2的压力和温度来控制溶解度和蒸汽压这2个参数进行分离的,故超临界CO2萃取综合了溶剂萃取和蒸馏的2种功能和特点,进而决定了超临界CO2萃取具有传统普通流体萃取方法所不具有的优势:通过调节压力和温度而方便地改变溶剂的性质,控制其选择性;适当地选择提取条件和溶剂,能在接近常温下操作,对热敏性物质可适用;因粘度小、扩散系数大,提取速度较快;溶质和溶剂的分离彻底而且容易。从它的特性和完整性来看,相当于一个新的单元操作,因此引起了国内外的广泛关注。 二、超临界萃取的特点 1、超临界萃取可以在接近室温(35~40℃)及CO2气体笼罩下进行提取,有效地防止了热敏性物质的氧化和逸散。因此,在萃取物中保持着药用植物的有效成分,而且能把高沸点、低挥发性、易热解的物质在远低于其沸点温度下萃取出来; 2、使用SFE是最干净的提取方法,由于全过程不用有机溶剂,因此萃取物绝无残留的溶剂物质,从而防止了提取过程中对人体有害物的存在和对环境的污染,保证了100%的纯天然性; 3、萃取和分离合二为一,当饱和的溶解物的CO2流体进入分离器时,由于压力的下降或温度的变化,使得CO2与萃取物迅速成为两相(气液分离)而立即分开,不仅萃取的效率高而且能耗较少,提高了生产效率也降低了费用成本; 4、CO2是一种不活泼的气体,萃取过程中不发生化学反应,且属于不燃性气体,无味、无臭、无毒、安全性非常好; 5、CO2气体价格便宜,纯度高,容易制取,且在生产中可以重复循环使用,从而有效地降低了成本; 6、压力和温度都可以成为调节萃取过程的参数,通过改变温度和压力达到萃取的目的,压力固定通过改变温度也同样可以将物质分离开来;反之,将温度固定,通过降低压力使萃取物分离,因此工艺简单容易掌握,而且萃取的速度快。 4、在化学工业中,混合物的分离。许多碳氢高分子化合物不溶于CO2,只能采用非均相聚合(如分散聚合、沉淀聚合、乳化聚合等);而无定型的碳氟高聚物和硅酮高聚物能溶解于CO2,则可采用均相聚合。在液体或超临界CO2体系中进行高分子材料的合成与加工,其优点在于:不使用有机溶剂避免了对环境的污染;省去了脱溶及回收溶剂的工艺;可改进高分子材料的机械性能及加工性能;可按分子量的大小对产品进行分离;可回收未进行反应的单体并可去除次反应物及过反应物杂质;

超临界萃取技术

超临界萃取技术 魏小东 2012110663 化学工程学院化学工艺专业 2012级12班 摘要:回顾了超临界萃取的发展历程,简要介绍了此技术的基本原理、流程技术、研究概况、影响因素、存在问题,并对超临界萃取技术今后的研究方向做了简单概述。 关键词:超临界萃取;现状;应用 0 引言 超临界萃取技术( Supercritical fluid extraction,简称SCFE) 是一种高效的新型分离技术。与传统的萃取方法如减压蒸馏、水蒸汽蒸馏和溶剂萃取等相比,其工艺简单、选择性好、产品纯度高,而且产品不残留有害物质污染环境,符合当今寻找和开发节能环保的“绿色化学技术”的潮流。 从1869 爱尔兰物理学家Thomas Andrews 在《论物质气态与液态的连续性》一文中提出物质的临界点、临界温度及临界压强的相关概念以来人们对相变的研究已有近150 年的历史,但对超临界流体的研究和工业应用却是近几十年的事。 20 世纪40 年代国外就有学者开展了针对超临界流体的相关研究工作; 70 年代初联邦德国率先将超临界萃取技术应用到工业生产中,并取得显著的经济效益和社会效益; 80 年代以来发达国家在SCFE 方面的研究投入了大量的人力物力,在许多领域取得了一系列进展。以日本为例,1984 年到1991 年 3 月统计显示,日本公布有关超临界流体萃取的公开特许专利共438 件,除1987 年外,基本趋势是逐年递增。SCFE 作为一种共性技术,正逐渐渗透到有关材料、生物技术、环境污染控制等高新技术领域,并被认为是一种“绿色、可持续发展技术”,其理论及应用研究受到越来越多的重视,在化工、医药、石油、食品、香料、香精、化妆品、环保、生物工程等行业均得到了不同程度的应用。我国对SCFE 的研究是最近十几年的事,因此我国在这方面的研究与国际相比还有很大差距。[1] 1 超临界萃取技术概述 1.1 超临界流体特性简介 汽液平衡相图中物质气液平衡线在一定的温度或压强下是呈水平变化的,

相关主题
文本预览
相关文档 最新文档