当前位置:文档之家› 欧洲车联网项目 5GCAR_D3.2-Channel Modelling and Positioning for 5G V2X

欧洲车联网项目 5GCAR_D3.2-Channel Modelling and Positioning for 5G V2X

欧洲车联网项目 5GCAR_D3.2-Channel Modelling and Positioning for 5G V2X
欧洲车联网项目 5GCAR_D3.2-Channel Modelling and Positioning for 5G V2X

Fifth Generation Communication Automotive Research and innovation

Deliverable D3.2

Report on Channel Modelling and

Positioning for 5G V2X

Version: v1.0

2018-11-30

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 761510. Any 5GCAR results reflects only the authors’ view and the Commission is thereby not responsible for any use that may be made of the information it contains.

http://www.5g-ppp.eu

Deliverable D3.2

Report on Channel Modelling and Positioning for 5G V2X

Abstract

5GCAR has identified the most important use cases for future V2X communications together with their key performance indicators and respective requirements. One outcome of this study is that accurate positioning is important for all these use cases, however with different level of accuracy. In this deliverable we summarize existing solutions for positioning of road users and justify that they are not sufficient to achieve the required performance always and everywhere. Therefore, we propose a set of solutions for different scenarios (urban and highway) and different frequency bands (below and above 6 GHz). Furthermore, we link these new technical concepts with the ongoing standardization of 3GPP New Radio Rel-16.

An important prerequisite for this work is the availability of appropriate channel models. For that reason, we place in front a discussion of existing channel models for V2X, including the sidelink between two road users, their gaps, as well as our 5GCAR contributions beyond the state of the art. This is complemented with results from related channel measurement campaigns.

Executive summary

In this deliverable we present results obtained in 5GCAR for two important topics related to V2X: channel modelling and positioning. Section 2 deals with channel modelling. First, the state-of-the-art channel models for V2X communications are described, including their most relevant components: LOS blockage analysis, path loss and shadow fading modelling, and fast fading modelling. Based on the existing work, Section 2 describes the gap in terms of the key missing components required for complete solution for V2X channel modelling. Based on the gap and beyond prior art, Section 2 describes:

?New V2V measurements and characterization of channels above 6 GHz

?Multi-link shadowing model based on measurements below 6 GHz

?Channel measurements for massive MIMO adaptive beamforming.

In terms of positioning, Section 3 firstly summarizes existing solutions for positioning and their limitations, including both non-radio and radio-based techniques. As part of the 5GCAR contributions, Section 3 describes the following technology components that are essential for a positioning solution needed to enable 5G V2X use cases:

?Trajectory prediction with channel bias compensation and tracking

?Beam-based V2X positioning

?Multi-array V2V relative positioning

?Tracking of a vehicle’s position and orientation with a single base station in the downlink ?Harnessing data communication for low latency positioning

?Enhanced assistance messaging scheme for GPS and OTDOA positioning.

For both channel modelling and positioning, this deliverable analyzes the compliance of 5GCAR solutions with existing standards and provides an overview of ongoing standardization with focus on 3GPP New Radio Rel-16.

In a nutshell we claim:

?Very good alignment between 5GCAR activities and ongoing 3GPP NR standardization for both channel modelling and positioning. In particular our channel modelling activities led to agreements in 3GPP meetings and results achieved in 5GCAR are reflected in 3GPP V2X channel models.

?While positioning in LTE is based on time measurements only, most 5GCAR approaches integrate enhanced time measurements with angle measurements. This becomes possible through smaller antenna array sizes in the frequency range above 6 GHz. In this deliverable we show that the desired accuracy below one meter is in principle achievable. By rule of thumb this corresponds to an improvement of one order of magnitude with respect to the reference cases LTE and GPS.

Contents

1Introduction (9)

1.1Objective of the Document (9)

1.2Structure of the Document (9)

2Channel Modelling (10)

2.1V2X Environments and Link Types (10)

2.2State of the Art Channel Models for V2X (11)

2.2.1Channel Modelling Framework and Gap Analysis (11)

2.2.2Path Loss Models (17)

2.2.3Shadow Fading Models (20)

2.2.4Fast-Fading Parameters (22)

2.2.5Summary (22)

2.3Contributions in 5GCAR Beyond State of the Art (24)

2.3.1V2V Measurements in cmWave and mmWave (24)

2.3.2mmWave V2V (Sidelink) Channel Modelling (29)

2.3.3Multi-Link Shadowing Extensions (32)

2.4New Channel Measurements for Predictor Antenna for M-MIMO Adaptive Beamforming (35)

2.5Status of Standardization and Contributions of 5GCAR (40)

3Positioning (45)

3.1Review of Existing Solutions (45)

3.1.1Positioning with GNSS (45)

3.1.2Positioning in IEEE 802.11p Vehicular Ad-Hoc Networks (VANET) (47)

3.1.3Positioning with Cellular Radio Access Technologies (48)

3.25GCAR Technology Components (49)

3.2.1Trajectory Prediction with Channel Bias Compensation and Tracking (51)

3.2.2Beam-Based V2X Positioning (55)

3.2.3Tracking of a Vehicle’s Position and Orientation with Single Base Station in the

Downlink (57)

3.2.4Harnessing Data Communication for Low-Latency Positioning (60)

3.2.5Enhanced Assistance Messaging Scheme for GNSS and OTDOA Positioning (63)

3.2.6Multi-Array V2V Relative Positioning: Performance Bounds (69)

3.3Status of Standardization (73)

4Conclusions (77)

5References (79)

A Simulation Assumptions (85)

A.1System-Level Simulation Assumptions (85)

A.1.1Deployment Scenarios for Base Stations (85)

A.1.2Deployment Scenarios for Road Sign Units (86)

A.1.3Deployment Scenarios for UEs (87)

A.1.4User Deployment and Mobility (88)

A.1.5Data Traffic Models (89)

A.1.6In-Band Emission Model (90)

A.1.7Performance Metrics (90)

A.2Link-level Simulation Assumptions (91)

List of Abbreviations and Acronyms

1 Introduction

1.1 Objective of the Document

This deliverable summarizes 5GCAR activities concerning channel modelling and positioning. It is inspired from the public deliverable of 5GCAR about scenarios, use cases, requirements and Key Performance Indicators (KPIs) [5GC17-D21]. All identified use cases in 5GCAR need accurate, ubiquitous and real-time positioning, a requirement that cannot be fulfilled with existing technologies which are mainly based on cameras, radar, Global Navigation and Satellite Systems (GNSS), such as the Global Positioning System (GPS), as well as vehicle sensors. It is envisaged to complement these existing systems to fill gaps, e.g. in tunnels, and to enhance the overall reliability. This deliverable also reflects recent results and agreements from V2X radio design [5GC18-D31] and V2X system level architecture [5GC18-D41] aiming at an overall 5G-based V2X solution with accurate positioning as one of the fundamental features.

The availability of appropriate channel models for V2X communications are an imperative prerequisite for the air interface design activities in 5GCAR. Existing models do not yet consider the full range of V2X-specific scenarios, such as the direct communication between two moving vehicles in a dense urban environment, or the characteristics of V2X-specific network elements like Roadside Units (RSUs). In particular, there are still significant gaps in the frequency range above 6 GHz. We aim to derive extended channel models based on the measurement campaigns presented in this deliverable.

In addition, we link the research activities in 5GCAR with the ongoing standardization in 3GPP.

1.2 Structure of the Document

This deliverable is organized as follows: Section 2 is dedicated to channel modelling and channel measurements. After an introduction of the scenarios and link types we consider in 5GCAR, we give an overview of existing channel models and a gap analysis. Important aspects are Line-of-Sight (LOS) probability and path loss, shadowing and fast fading. Next, we present the activities in 5GCAR beyond prior art. Important components are measurement campaigns in different frequency bands, scenarios, link types and antenna configurations. Based on that, extended channel model parameters for different frequencies are discussed. We conclude this first part of the deliverable with a status update of the ongoing standardization in 3GPP.

The topic of Section 3 is positioning. First, we briefly summarize the capabilities of common positioning methods used for Vehicle-to-Everything (V2X) Communications today. Afterwards, we introduce the ongoing research activities in 5GCAR concerning positioning and present the current status of the performance evaluation. Again, we consider different frequency bands and scenarios. Finally, we summarize recent agreements in the related 3GPP Rel-16 Study Item.

2 Channel Modelling

This section covers the relevant state of the art channel models for V2X communication, along with describing the work done beyond state of the art in the 5GCAR project. First, the section describes environments relevant for V2X communication, together with link types subsumed under the term “V2X”. Next, we describe state of the art channel models, including their most relevant components: LOS blockage analysis, path loss and shadow fading modelling, and fast fading modelling. The contributions beyond state of art pertain to: i) new Vehicle-to-Vehicle (V2V) measurements and characterization of channels above 6 GHz; ii) multi-link shadowing model based on measurements below 6 GHz; and iii) channel measurements for massive MIMO adaptive beamforming. Finally, the section concludes by analyzing the compliance of 5GCAR channels with existing standards and providing possible recommendations from 5GCAR to standardization bodies.

2.1 V2X Environments and Link Types

Radio propagation is influenced by the type of objects found in the environment where the communication occurs. In case of V2X communications, the most important objects that influence the propagation are buildings, vehicles (both static and mobile), and different types of vegetation (e.g., trees, shrubbery, etc.). Relevant scenarios for V2X channel modelling, link types, vehicle types, and main propagation states are described in Figure 2.1 below. Environments can be divided qualitatively into highway, rural, and (sub)urban, with a word of caution: the division between environments is not an exact one, and the differences in certain cases might be hard to define. For example, rural and highway scenario differ in the number of lanes (typically larger in case of highways) and surroundings (typically more foliage in rural, guard rails more often existent in highways), but the two environments can also share a lot of characteristics. Furthermore, the impact of foliage cannot be neglected in any of the environments, as shown in measurements studies [ABV+16; BBT14].

Figure 2.1: Environments, link types, and specific considerations for V2X channel

modelling.

2.2 State of the Art Channel Models for V2X

The goal of this section is to define the most relevant state of art models available for use in the simulations across the 5GCAR project. Below we list the relevant channel modelling components.

2.2.1 Channel Modelling Framework and Gap Analysis

The technical report 3GPP TR 38.901: “Study on channel model for frequencies from 0.5 to 100 GHz” [3GPP17-38901] defines a Geometry-Based Stochastic (GBS) framework for channel modelling from 0.5 GHz to 100 GHz. It Specifies parameters for LOS probability, Path Loss (PL), Shadow Fading (SF), and Fast Fading (FF) and covers several scenarios: Urban Macro (UMa), Urban Micro (UMi), Indoor Office, and Rural Macro (RMa). The report is focused on BS-to-UE communication and does not explicitly address V2X channels. Specifically, the following components important for V2X are not covered:

?No dual mobility (V2V)

?No V2X-specific scenarios (RSU-Vehicle, V2V)

?No V2X antenna considerations

?No V2X-specific parameterization (especially for V2V)

?No PL, SF, FF for V2V

?No LOS probability and blockage evolution for V2V and V2P channels.

Components above are crucial for realistic modelling of vehicular channels. To enhance the 3GPP framework, this deliverable attempts at filling as many gaps as possible by using state of art literature on V2X channels and by also providing new channel parameterization based on recent measurements. In sections 2.2.2 to 2.2.4 we elaborate on specific components of V2X channel model, predominantly focusing on V2V case, since [3GPP17-38901] covers the Vehicle-to-Infrastructure (V2I) channels comprehensively (particularly the vehicle-to-base station case). More specifically, we describe the parameters to be included in [3GPP17-38901], as depicted in Figure 2.2 ranging from selecting the correct scenario (block 1) to LOS propagation condition (block 2), path loss (block 3), etc. In summary, we propose to use the framework in [3GPP17-38901] for all channel generations, whereas for specific components of the process, to use the parameters and models listed in sections 2.2.2 to 2.2.4.

Figure 2.2: Channel Coefficient Generation Process based on [3GPP17-38901].

Table 2.1: Summary of the availability of V2X channel modelling aspects.

Legend: “+”: the model exists in the literature; “-“:the model does not exist in the literature

Table 2.1 provides a summary of the availability in the existing literature of models for specific propagation effect, along with desirable properties of the models. While it is difficult to provide a comprehensive summary, we attempt to identify which components of V2X channel modelling are available in well-defined, feasible channel models available in the literature.

Assigning propagation condition for V2V channels – LOS blockage and evolution model

In relation to defining LOS/NLOS conditions in the different scenarios, there exists a need to model the transitions between different LOS states as described in [BGX16]. Realistic LOS blockage realization is required in order to assign the appropriate path loss, shadowing, small-scale, and large-scale parameters over time and space. LOS blockage modelling is particularly important for V2X communication, because of:

?High mobility, possibly on both sides of the link (e.g., in the case of V2V communication), resulting in more dynamic LOS blockage

?Have low antenna heights, resulting in more frequent LOS blockage

?V2X communication will be used for applications related to safety, either directly (e.g., emergency braking, intersection collision avoidance application, etc.) or indirectly (e.g., platooning, lane-change maneuvers, etc.). LOS blockage is critical for safety related

applications because the reliability of the communication link suffers from sudden

fluctuations of the received signal.

The work described in [BGX16] designs a time and space consistent model for LOS blockage of V2V channels. It models the evolution of states using Markov chain as shown in Figure 2.3. The three-state discrete-time Markov chain was used, comprised of the following states: i) Line-of-Sight (LOS), ii) Non-Line-of-Sight (NLOS) due to static objects, e.g., buildings, trees, etc. (NLOSb) and iii) non-LOS due to mobile objects (vehicles) (NLOSv). If the LOS is blocked by both a static object and a vehicle at the same time, we assume the static object (e.g., building) is the dominant one and categorize the channel as NLOSb. Results presented in [BGX16] showed significant difference compared to standard cellular models for LOS blockage, thus emphasizing the need for bespoke modelling of blockage for V2V links.

Figure 2.3: Markov chain for modelling the time evolution of V2V links [BGX16]. LOS probability and transition probability curves

Based on the extensive ray-tracing simulations in real cities (combined Rome, New York, Munich, Tokyo, and London) with real road layout and realistic vehicle mobility simulation explained in [BGX16], Figure 2.4, Figure 2.5, Figure 2.6, and Figure 2.7 (all from [BGX16]), which show the extracted LOS probability and transition probability curves for the Markov model shown in Figure 2.3 depending on the distance between transmitting and receiving vehicle.

Figure 2.4: LOS probabilities in urban environment, medium density.

Figure 2.5: LOS probabilities on highway, medium density.

Figure 2.6: Transition probabilities in urban environment, medium density.

Figure 2.7: Transition probabilities on A6 highway, medium density.

As key take-away from these results, we derived a tractable model for the generation of time-evolved V2V links through curve fitting for LOS (Figure 2.4, Figure 2.5) and transition (Figure 2.6, Figure 2.7) probabilities. This resulted in two sets of equations, one from LOS probabilities curves (Table 2.2, from [BGX16]) and the second set for transition probabilities (Table III in [BGX16]).

Table 2.2: LOS probability equations for highway and urban environment, medium

density.

Since LOS, NLOS, and NLOSv states were shown to have distinct path loss, shadowing, large-scale, and small-scale parameters [BBT14], when transitioning between states, it is necessary to avoid hard transitions in the adjacent channel realizations resulting from different path loss and fast fading parameters. To circumvent such hard transitions between all three states, the optional “soft LOS” state from [3GPP17-38901] can be considered to determine the PL and the channel impulse responses containing characteristics of the preceding and following state. Path loss comparison of V2V LOS probability model with 3GPP/ITU Urban Micro (UMi) LOS probability model

Since there are no comprehensive V2V link LOS blockage and transition probability models available in the literature, we compare the proposed model with the well-established 3GPP/ITU Urban Micro (UMi) LOS probability model, which is currently used by 3GPP for LOS probability of V2X and D2D links [3GPP17-38901]:

where d is distance between Tx and Rx, d 1 is a parameter set to 18 meters, and d 2 to 36 meters. For illustration purposes, we use the states generated by the two models to calculate

the path loss for a Tx-Rx pair that moves apart at 1 m/s starting from 1 to 500 meters. We use the parameters for urban medium density. For LOS and NLOSb path loss parameters, we use the values based on measurements reported in [BBT14]. For NLOSv, we use the multiple knife-edge attenuation model described in [BBT14]. For clarity, we show path loss only (i.e., without additional log-normal distributed shadow fading). Figure 2.8 shows the path loss results for the proposed model and 3GPP UMi LOS probability model [3GPP17-38901]. Since UMi model does not model dependency on the previous LOS state, the number of transitions between the states is considerably higher than in the proposed model, particularly when the probability of LOS is close to 50% (i.e., between 50 and 100 meters). This is clearly an unrealistic behavior, since two vehicles will not move between LOS and NLOS states so rapidly. While Figure 2.8 shows a single realization of state changes and resulting path loss, we ran simulations for a large number (105) of V2V pairs with distances between 0 and 500 m. UMi model resulted in an average state change every 5 seconds, while the proposed model averaged one state change every 17 seconds.

P(LOS)=min ? ???? d 1d ,1× ?

????1–e ?d d 2+e ?d d 2,

Figure 2.8: Comparison of path loss generated by proposed model and 3GPP UMi LOS probability model for a single V2V link with Tx and Rx moving apart from 0 to 500 m with

relative speed of 1 m/s [BGX16].

For reference, path loss for LOS, NLOSv, and NLOSb states is plotted Figure 2.8 also indicates why models based on correlation distance for spatial consistency (e.g., model in Section 7.6.3 in [3GPP17-38901] are not sufficient for modelling time- and space- evolved V2V links. Shadowing decorrelation distance in urban and highway environment for V2V links is on the order of tens of meters (e.g., [ASK+15] reports decorrelation distances of 5 m in urban and 30 m in highway environment) and is assumed to be independent of the Tx-Rx distance. However, Figure 2.8 shows that a single decorrelation distance value cannot capture the changing behavior as Tx-Rx distance changes: at low distances, the LOS decorrelation distance is high and decreases with increasing Tx-Rx distance, whereas NLOSb decorrelation distance increases with increasing Tx-Rx distance. By using distance-dependent transition probabilities, the proposed model is capable of capturing this behavior.

2.2.2 Path Loss Models

Path loss for V2V LOS links

Free space path loss

The free space path loss model is the resulting loss in signal strength when the electromagnetic wave traverses from TX to RX through free space, without any obstacles nearby that could cause reflections or diffractions. The free space path loss FSPL is given by the equation

where d is the distance between the transmitter and receiver in meter, f is the carrier frequency in Hz, G Tx and G Rx are the dimensionless gains of the transmitting and receiving antenna, respectively. Free space is a theoretical model which by itself does not model well the path loss for V2X channels since, at the very least, there are perturbations of the free space signal by the reflections coming from the road on which the vehicles travel.

Two-ray ground reflection model

The free space propagation model assumes the existence of only the LOS ray. However, due to the inherent structure of the environment where V2V communication occurs – over the face of road surface – in case of LOS communication the propagation characteristics are most often influenced by at least two dominant rays: LOS ray and ground-reflected ray. Two-way ground reflection model with appropriately adjusted reflection coefficient was shown as a very good path loss model for LOS V2V channels [KCP11; BVT13]. In this scenario, the LOS path interferes with the ground reflected path. The two rays arrive at the receiver with a different phase and a different power. The different phase leads to constructive and destructive interference depending on the distance, d, between the receiver and the transmitter, as shown in Figure 2.9. When increasing the distance between the transmitter and the receiver, the alternating pattern of constructive and destructive interference stops at break point d b . From this distance onwards, the length difference between the two rays is smaller than half the wavelength and the small Angle of Arrival (AOA) on the ground causes a phase shift of 180° for the reflected wave, leading to destructive interference.

Figure 2.9: The two-ray ground reflection model.

For these two rays and referring to Figure 2.9 the resulting E-field is equal to: E TOT =E LOS +E Ground = E 0

d 0

d LOS

cos [ωc (t ?

d LOS

c

)]+R Ground E 0d 0

d

ground

cos [ωc (t ?

d ground

c

)], (1)

where E Ground is the E-field of the ground-reflected ray, R Ground is the ground reflection coefficient,

and d ground is the propagation distance of the ground-reflected ray, where h t and h r is the height of the transmitting and receiving antenna, respectively, and d LOS is the ground distance between the antennas (d in Figure 2.9). Note that using the exact height of the antennas (h t and h r ) is important, since a small difference in terms of either h t or h r results in significantly different interference relationship between the LOS and ground-reflected ray. When the originating medium is free space, the reflection coefficient R is calculated as follows for vertical and horizontal polarization respectively:

R ||=

r i r 2i r i r 2i

(2)

and

R ?=

i r 2i i r 2i (3)

where θi is the incident angle, and ?r is the relative permittivity of the material. From E-fields in eq.1, the ensuing received power P r (in Watts) is calculated as follows (assuming unit antenna gain at the receiver):

P r=|E TOT|2λ2

(4)

4πη

where λis the wavelength and η is the intrinsic impedance (η = 120πΩin free space). Appropriate reflection coefficient needs to be used to match the measurements. To that end in [BVT13] curve fitting of the above model to measurement data yielded ?r value of 1.003 as the best fit (note that remaining parameters in the calculation of reflection coefficient are dependent on geometry only.

Path loss for V2V channels obstructed by vehicles: Vehicles-as-obstacles

When vehicles are causing the blockage to the LOS link, they induce additional attenuation. Model for vehicles-as – obstacles is described in [BVF+11], where vehicles are modelled using the (multiple) knife-edge diffraction. The model uses free space path loss model as the baseline, with additional attenuation due to each of the vehicles blocking the LOS link. Attenuation (in dB) due to a single knife-edge obstacle A sk is obtained using the following equation:

(5)

where v =21/2H/r f , H is the difference between the height of the obstacle and the height of the straight line that connects TX and RX, and r f is the Fresnel ellipsoid radius (as shown in Figure 2.10).

Figure 2.10: Vehicles-as-obstacles path loss model (figure adapted from [BVF+11]).

To calculate the attenuation due to multiple vehicles, the model employs the ITU-R multiple-knife diffraction method [ITU13]. Vehicles-as-obstacles model was validated experimentally and was shown to model well the path loss of V2V channels obstructed by other vehicles [BBT14].

Path loss for V2V channels obstructed by buildings and other objects: Log-distance path loss model

Log-distance path loss is an extension of the free space path loss, where the path loss exponent does not necessarily equal two (as is the case in free space propagation) but is a function of the environment surrounding TX and RX.

Log-distance path loss model is formally expressed as:

PL(d) = PL(d0) + 10γlog(d/d0) + Xσ

where PL is the total path loss measured in decibel (dB), PL(d0) is the path loss at the reference distance d0, d is th e distance between TX and RX, γ is the path loss exponent and Xσ describes the random shadowing effects.

Finally, the received power P r is calculated as

P r = P t + G t + G r - PL(d)

where P t is the transmit power and G t and G r are antenna gains in dBi. Log-distance path loss with appropriate path loss exponent and shadowing deviation was experimentally shown to model well the path loss for V2V links in non-LOS cases [BBT14]. For V2V links at 5.9GHz, the following values can be used [BBT14]:

?d0 = 1 meter

?PL(d0) = 47.8649 dB

?γ= 2.5 (s light obstruction by building)

?γ= 3 (s trong obstruction by building).

2.2.3 Shadow Fading Models

Single-link shadow fading for V2V and V2I channels

In log-distance path loss equation, the value of standard deviation σ of the shadow fading variable Xσ(0, σ), can be adjusted so that it better describes a specific environment and the link type. For V2V links, [BBT14] contains a detailed measurement-based analysis of σ for both highway and urban environments for the 6 GHz band. Furthermore, the code implementing both the path loss and shadow fading model is available at https://www.doczj.com/doc/2a953254.html,/. The values of σ are shown in Table 2.3.

Table 2.3: Shadow-fading parameter σ for V2V communication (6 GHz band).

车联网产品项目可行性研究报告

车联网产品项目 可行性研究报告 xxx科技发展公司

第一章项目概况 一、项目概况 (一)项目名称 车联网产品项目 近几年我国汽车市场发展迅猛,汽车销量和保有量增速显著。车联网 市场规模巨大。据相关专家及媒体预测,2020年中国汽车保有量约为2.5- 3亿辆,按照15%的渗透率,具备联网能力的车辆将达到4000万辆左右。 以每辆车1000元的硬件产品价格来估算,单是硬件市场就有400亿元规模。而随着产品功能的丰富,单辆车的硬件产值也会翻倍提高,加之互联网服务,车联网市场的空间可以在5-10年内达到千亿甚至万亿规模。 (二)项目选址 某某经济园区 项目选址应符合城乡建设总体规划和项目占地使用规划的要求,同时 具备便捷的陆路交通和方便的施工场址,并且与大气污染防治、水资源和 自然生态资源保护相一致。 (三)项目用地规模 项目总用地面积48397.52平方米(折合约72.56亩)。 (四)项目用地控制指标

该工程规划建筑系数69.48%,建筑容积率1.09,建设区域绿化覆盖率7.14%,固定资产投资强度191.92万元/亩。 (五)土建工程指标 项目净用地面积48397.52平方米,建筑物基底占地面积33626.60平 方米,总建筑面积52753.30平方米,其中:规划建设主体工程39900.91 平方米,项目规划绿化面积3767.65平方米。 (六)设备选型方案 项目计划购置设备共计107台(套),设备购置费5419.17万元。 (七)节能分析 1、项目年用电量1079889.55千瓦时,折合132.72吨标准煤。 2、项目年总用水量29252.61立方米,折合2.50吨标准煤。 3、“车联网产品项目投资建设项目”,年用电量1079889.55千瓦时,年总用水量29252.61立方米,项目年综合总耗能量(当量值)135.22吨标准煤/年。达产年综合节能量50.01吨标准煤/年,项目总节能率26.10%, 能源利用效果良好。 (八)环境保护 项目符合某某经济园区发展规划,符合某某经济园区产业结构调整规 划和国家的产业发展政策;对产生的各类污染物都采取了切实可行的治理 措施,严格控制在国家规定的排放标准内,项目建设不会对区域生态环境 产生明显的影响。

车联网项目立项申请报告

车联网项目 立项申请报告 泓域咨询规划设计/投资分析/产业运营

车联网项目 车联网是自动驾驶感知层的不可替代环节。当前的自动驾驶大多依靠 雷达、摄像头、定位等手段实现感知层信息的输入,但依靠以上技术远远 不够,信息的实时交互能力和广度都无法突破,在这一背景下车联网成为 自动驾驶感知层的不可替代的环节。 在数字经济时代,数字化转型是必然的要求和发展方向。无论是数字 政府、数字社会还是数字经济本身,数字化转型既是目标和方向又是手段。对于数字化转型的两种形态:产业数字化和数字产业化都离不开新型的基 础设施作为支撑,没有基础设施作为保障条件,数字化转型的目标难以实现。 自2020年3月,提出加快5G和数据中心等新型基础设施建设进度, 工信部倡导加快新型基础设施建设后,引发全民热议的“新基建”概念, 新基建的本质,是能够支撑传统产业向网络化、数字化、智能化方向发展 的信息基础设施的建设。 该车联网设备项目计划总投资9694.02万元,其中:固定资产投资7431.85万元,占项目总投资的76.66%;流动资金2262.17万元,占项目 总投资的23.34%。

达产年营业收入15481.00万元,总成本费用11726.17万元,税金及附加172.71万元,利润总额3754.83万元,利税总额4445.45万元,税后净利润2816.12万元,达产年纳税总额1629.33万元;达产年投资利润率38.73%,投资利税率45.86%,投资回报率29.05%,全部投资回收期4.94年,提供就业职位325个。 坚持“社会效益、环境效益、经济效益共同发展”的原则。注重发挥投资项目的经济效益、区域规模效益和环境保护效益协同发展,利用项目承办单位在项目产品方面的生产技术优势,使投资项目产品达到国际领先水平,实现产业结构优化,达到“高起点、高质量、节能降耗、增强竞争力”的目标,提高企业经济效益、社会效益和环境保护效益。 ...... 自2020年3月,提出加快5G和数据中心等新型基础设施建设进度,工信部倡导加快新型基础设施建设后,引发全民热议的“新基建”概念,新基建的本质,是能够支撑传统产业向网络化、数字化、智能化方向发展的信息基础设施的建设。

车联网总结

车联网的现状及趋势 当前车联网的发展应该说还处在初级阶段,对于无人驾驶、无事故、不堵车、智能停车、智能导航等理想的交通状态相比,还有很长的路要走。因此车联网的发展要更针对当前拥有的技术和需求进行设计:一方面去掉那些现阶段难以实现的功能和华而不实的功能;另一方面应用好RFID和传感器方面的最新进展。车联网是物联网的一个应用方面,因此技术上有很多重合,如RFID和传感器,;又有其特点,是对动态信息的实时采集、处理、传输,对传感器要求更高,对海量数据的处理和分析传输是个难题。 一、车联网主体功能现在对车联网的定义表述不尽相同,但主体大致是连接车和路、人和车、车和车以及车与服务中心的一个网络,主要实现车辆的安全、有序驾驶,交通的智能管理、方便的服务等功能。 二、车联网网络架构根据各个科研单位的侧重点不同,研究的目的不同,车联网的网络架构也不相同。《车联网网络架构与媒质接入机制研究》,同济大学,2011年05月18 日,作者:须超,王新红,刘富强。文章提出面向安全应用的车联网无线网络架构及其协同通信协议栈,并对车联网自适应多信道媒质接入协议进行分析。网址如下: 我们也可以按照自己的想法设计一个网络架构,如按照物联网结构也分为感知层、网络层、应用层三层结构。也可以按照功能来设计网络架构。下图为自己设计。根据具体情况可不断调整扩展。 现阶段车联网的两个关键领域为(ITS)智能交通技术和(RFID)射频识别技术。智能交通包括传感技术、通信技术、数据处理技术和信息发布技术等;射频识别技术可应用于车辆通信、自动识别、移动定位、远距离监控

等方面。中国科学院、北京邮电大学、同济大学等几所院校在物联网领域有一定能力。 国内车联网发展资金来源主要有政府专项资金、国有大企业、民间基金三个方面,主要来自于政府支持和国有企业投资。 三、车联网相关科研院校及公司 1.目前车联网终端设备领先的是金龙客车与杭州鸿泉合作开发的G-BOS 设备,即苏州金龙智慧客车3G客车。其车载设备终端整合了数据采集、硬盘录像、车辆身份信息、可视倒车、行车记录仪、GPS导航等主要功能。获得相关专利两项:司机行为监测方法和基于3G无线网络海量实时数据采控装置。 2.同济大学在车联网的应用示范与原型系统搭配方面有实力,它提出的车联网架构包括三个方面:被服务终端(汽车、列车、路上行人等),基础设施(热点接入点、基站、卫星、交通设施等),交通管理和控制实体(交通控制中心)。 3.长安汽车与清华大学:侧重于汽车安全技术,主动安全技术,国外已较为成熟。 4.力帆汽车、长安汽车与重庆邮电大学:国内首个“智能驾驶与车联网实验室”,2011年4月11日成立。 5.车联网车载系统设备产品还有中国电信、华为的车载模块/EVDO车载模块,江苏天泽的天泽星网,潍柴动力的共轨行系统等。 6.国内的宝信软件是公路信息化整体解决方案供应商,启明信息是车载端信息系统开发商,新国都开发了自助缴费系统。

车联网平台软件开发计划书

软件开发计划书项目名称:车联网系统平台

目录 1引言--------------------------------------------------------------------------------------------------------------------- 3 1.1编写目的 ----------------------------------------------------------------------------------------------------- 3 1.2背景------------------------------------------------------------------------------------------------------------ 3 1.3定义------------------------------------------------------------------------------------------------------------ 4 1.4参考资料 ----------------------------------------------------------------------------------------------------- 4 1.5 系统动机(暂时保密) -------------------------------------------------------------------------------------- 4 1.6标准、条件和约定 ---------------------------------------------------------------------------------------- 5 1.7编写文档的WBS ------------------------------------------------------------------------------------------- 5 2项目概述 -------------------------------------------------------------------------------------------------------------- 6功能层次图形:------------------------------------------------------------------------------------------------- 6 2.1开发计划表 -------------------------------------------------------------------------------------------------- 1 2.2主要参加人员 ----------------------------------------------------------------------------------------------- 1 2.3产品及成果 -------------------------------------------------------------------------------------------------- 2 2.3.1程序 --------------------------------------------------------------------------------------------------- 2 2.3.2文件 --------------------------------------------------------------------------------------------------- 2 2.3.3服务 --------------------------------------------------------------------------------------------------- 2 2.3.4非移交产品 ----------------------------------------------------------------------------------------- 2 2.4验收标准----------------------------------------------------------------------------------------------------- 3 2.4.1代码的验收 ----------------------------------------------------------------------------------------- 3 2.4.2 文档验收-------------------------------------------------------------------------------------------- 3 2.4.3 服务验收-------------------------------------------------------------------------------------------- 3 2.5完成项目的最迟期限 ------------------------------------------------------------------------------------ 3 2.6本计划的日期 ----------------------------------------------------------------------------------------------- 3 3实施总计划 ----------------------------------------------------------------------------------------------------------- 4 3.1开发过程 ----------------------------------------------------------------------------------------------------- 4 3.1.1 需求分析-------------------------------------------------------------------------------------------- 4 3.1.2 系统设计-------------------------------------------------------------------------------------------- 4 3.1.3 编码及测试阶段 ---------------------------------------------------------------------------------- 4 3.1.4 文档、产品部署 ---------------------------------------------------------------------------------- 4 3.1.5 项目总结-------------------------------------------------------------------------------------------- 4 3.2工作任务的分解-------------------------------------------------------------------------------------------- 5 3.3接口人员 ----------------------------------------------------------------------------------------------------- 6 3.4进度------------------------------------------------------------------------------------------------------------ 6 3.5预算------------------------------------------------------------------------------------------------------------ 7 3.6关键问题 ----------------------------------------------------------------------------------------------------- 7 4支持条件 -------------------------------------------------------------------------------------------------------------- 8 4.1计算机系统支持-------------------------------------------------------------------------------------------- 8 4.2需要用户承担的工作 ------------------------------------------------------------------------------------- 8

车联网商业计划书

竭诚为您提供优质文档/双击可除 车联网商业计划书 篇一:车联网项目计划书 车联网项目计划书 项目起源................................................. ................................................... . (2) 前期工作................................................. ................................................... . (4) 项目预期................................................. ................................................... . (5) 项目运作.................................................

................................................... . (6) 项目团队................................................. ................................................... . (6) 投资需求................................................. ................................................... . (7) 项目起源 汽车移动物联网(车联网)项目将列为中国重大专项,相关内容已上报国务院,一期拨款有望达百亿级别,预期2020年将实现可控车辆规模达2亿辆。 具体来说,车联网是指装载在车辆上的电子标签通过无线射频等识别技术,实现在信息网络平台上对所有车辆的属性信息和静、动态信息进行提取和有效利用,并根据不同的功能需求对所有车辆的运行状态进行有效的监管和提供综合服务。 目前城市交通的主要问题和压力来自城市道路拥堵。业内越来越多的人士认识到:在目前道路建设跟不上汽车增长的情况下,解决拥堵问题,将主要靠对车辆和交通进行管理

福田汽车车联网应用项目

福田汽车车联网应用项目工程初步设计采购招标书 北汽福田汽车股份有限公司 2019年04月04日

目录 第一章邀请函 (3) 一、合格的投标人需满足以下条件: (4) 二、招标文件 (4) 三、投标文件 (4) 四、投标文件的递交 (7) 五、开标、评标 (7) 第三章服务概况及具体事宜要求 (9) 第一部分服务需求 (9) 第二部分评分标准及报价要求 (10) 第四章投标文件格式 (13) 一、投标人提交文件须知 (13) 二、文件组成 (13)

第一章邀请函 北汽福田汽车股份有限公司将对公司车联网应用项目工程初步设计进行国内邀请招标,现欢迎贵公司前来参与投标。 一、项目名称:车联网应用项目 注:本次招标项目为整体招标,投标人应对上述招标货物(服务)一览表中的所有项目进行投标报价,投标文件应完整, 包含招标文件中约定的内容,评标与授标以整体为单位。 三、招标文件发放时间:2019年4月3日。 四、为保证贵公司对本次招标有充分的了解,我司将组织项目交流会,就项目情况进行说明与交流,项目交流会时间:2019年4月9日 五、递交投标文件截止时间: 2019年4月11日下午14:00(北京时间)。递交地点为北京市昌平区沙阳路北汽福田总部。逾期送达或不符合规定的文件恕不接受。 六、开标时间: 2019年4月11日下午14:00-16:00(北京时间)。 七、开标地点: 递交地点为北京市昌平区沙阳路北汽福田总部 八、联系方式: 招标人:北汽福田汽车股份有限公司 地址:北京市昌平区沙河镇沙阳路北北汽福田汽车股份有限公司 邮编: 102206 联系人:李先生电话: 010-********

车联网产品项目申报材料

车联网产品项目 申报材料 规划设计/投资方案/产业运营

车联网产品项目申报材料说明 车联网产业是以汽车为载体,结合了车载传感器、射频识别、无线通 讯传输及后台云计算等一系列先进的物联网技术。利用车载电子传感装置,通过移动通讯技术、汽车导航系统、智能终端设备与信息网络平台,使车 与路、车与车、车与人、车与城市之间实时联网,实现信息互联互通,从 而对车、人、物、路、位置等进行有效的智能监控、调度、管理的网络系统。车联网能够实现智能化交通管理、智能动态信息服务和车辆智能化控 制的一体化网络,是智慧交通乃至智慧城市的重要基础。 该车联网产品项目计划总投资19203.22万元,其中:固定资产投资15911.26万元,占项目总投资的82.86%;流动资金3291.96万元,占项目 总投资的17.14%。 达产年营业收入22229.00万元,总成本费用16823.07万元,税金及 附加310.68万元,利润总额5405.93万元,利税总额6462.26万元,税后 净利润4054.45万元,达产年纳税总额2407.81万元;达产年投资利润率28.15%,投资利税率33.65%,投资回报率21.11%,全部投资回收期6.24年,提供就业职位424个。 报告根据项目工程量及投资估算指标,按照国家和xx省及当地的有关 规定,对拟建工程投资进行初步估算,编制项目总投资表,按工程建设费

用、工程建设其他费用、预备费、建设期固定资产借款利息等列出投资总额的构成情况,并提出各单项工程投资估算值以及与之相关的测算值。 ...... 报告主要内容:概述、项目基本情况、市场调研、建设规划分析、选址可行性分析、土建方案说明、项目工艺先进性、项目环保研究、生产安全保护、风险性分析、节能方案、项目进度计划、投资计划方案、经营效益分析、项目综合结论等。

车联网方案1

基于物联网技术的车辆智能综合管理信息系统 (车联网) 建 设 方 案 2014年9月25日

目录 前言 (3) 第1章方案概述 (3) 第2章非法车辆查缉 (4) 2.1电子车牌 (4) 2.1.1 Rfid技术应用 (4) 2.2.2 EPC编码结构 (5) 2.2.3 EPC编码规则 (5) 2.2.4 Savant系统 (5) 2.2.5 ONS系统 (6) 2.2.6 PML系统 (6) 2.2.7车辆电子标签中对应PML数据库中的信息设计 (6) 2.2系统设计 (7) 2.2.1系统结构设计 (7) 2.2.2监控中心设计 (7) 2.2.3信息服务系统设计 (8) 2.2.4车辆识别形象图 (8) 第3章打击涉车犯罪 (9) 3.1车载终端 (9) 3.1.1什么事车载终端 (9) 3.1.2车载终端的功能 (9) 3.2系统设计 (10) 3.2.1车载终端系统架构图 (11) 3.2.2控制中心 (11) 3.2.3通信系统 (11) 3.2.4位置服务系统 (12) 3.2.5应急联动系统 (12) 3.2.6系统数据架构 (13) 3.2.7通信网络设计 (13) 第4章总结 (14) 前言:车联网的提出与应用

据悉,汽车物联网项目已被列为我国重大专项,将获财政扶持资金。知情人士表示,扶持资金将集中在汽车电子、信息通信及软件解决方案上,车联网平台投资需求或超过百亿元。 车联网的核心部分是由电子地图、卫星定位导航、汽车电子、3G移动互联网所组成的Telematics(移动通信导航信息系统),是以无线语音、数字通信和GPS全球定位系统为基础,通过GPS定位系统和无线通信网,向驾驶员和乘客提供交通信息、应付紧急情况的对策、远距离车辆诊断和互联网(金融交易、新闻、电子邮件等)服务。因此,车联网最基础,也是最核心的服务之一首先是通信服务、导航服务、定位和智能交通服务,其中通信服务正是当前的最大焦点。 目前车联网发展的最大热点,就是对3G技术的整合。美国的汽车制造业基本上已经把移动通信模块作为一个标准配件安装在汽车上,使汽车在行驶的过程中与外界沟通联系,这就是车联网的基础应用。中国目前在这方面差距还很大,但是中国作为世界上最大的汽车消费国,车联网的前景非常值得看好。据了解,目前我国已经有超过20万用户正在体验车载信息服务,预计到2015年,用户规模将达到4000万,到2020年将实现可控车辆规模超过一亿。专家指出,由于互联网的发展,特别是移动通信的发展,车联网的概念已经逐渐被广大民众所认同,它正在从一个概念走向应用。 第1章:方案概述 随着我国汽车工业的发展和人民生活水平的提高,汽车越来越多地进入普通家庭。由于各种突发性道路交通事故与汽车盗窃案件的频繁发生,公安机关的工作强度越来越大,人们对汽车安全与防盗的关注度也日益提高。开发汽车安全与防盗系统,是确保查缉非法车辆与打击涉车犯罪的有效措施。 本方案主要利用物联网和云计算技术提高车辆防护能力,采用射频识别系统实现对入网车辆动静态信息全面采集,通过车载设备的地理位置实现对车辆的定位和跟踪,通过公安专网传输到互联网,建设公安机关车辆智能综合管理信息系统,实现对入网车辆的全面监控,能够在入网车辆发生突发事件时(被盗、车祸、故障),及时定位车辆,采取应急措施,保证车主财产和运行安全,全面提高车辆防护能力。 同时本方案也是未来车联网融合的基础。 第2章:非法车辆查缉

车联网项目调研与分析报告

车联网项目调研与分析报告 车联网定义 车联网(Internet of Vehicles)概念引申自物联网(Internet of Things)。车联网设备的人机界面,在现代互联网企业的经典教材《大数据时代》中,被作者Viktor Mayer-Sch?nberger称为继电视、电脑、手机之后的第四块屏。根据车联网产业技术创新战略联盟的定义,车联网是以车内网、车际网和车载移动互联网为基础,按照约定的通信协议和数据交互标准,在车-X(X:车、路、行人及互联网等)之间,进行无线通讯和信息交换的大系统网络,是能够实现智能化交通管理、智能动态信息服务和车辆智能化控制的一体化网络,是物联网技术在交通系统领域的典型应用。 宏观上看,IOV系统是一个“端管云”三层体系。 第一层(端系统):端系统是位于汽车上的物理设备,负责采集与获取车辆的智能信息,感知行车状态与环境;是具有车内通信、车间通信、车网通信的泛在通信终端;同时还是让汽车具备IOV寻址和网络可信标识等能力的设备。也是与汽车使用者的交互终端。传统的3G+GPS的“伪车联网”产品,往往只有信息采集与发送功能,缺少IOV系统中必要的交互能力。 第二层(管系统):解决车与车(V2V)、车与路(V2R)、车与网(V2I)、车与人(V2H)等的互联互通,实现车辆自组网及多种异构网络之间的通信与漫游,在功能和性能上保障实时性、可服务性与网络泛在性,同时它是公网与专网的统一体。这一层系统涵盖计算、调度、监控、管理与应用,通常也是目前的3G+GPS

的“伪车联网”产品的后台系统。 第三层(云系统):车联网是一个云架构的车辆运行信息平台,它的生态链包含了丰富的大数据概念,涵盖了ITS、车管、保险、紧急救援、O2O移动互联网、云支付等,是多源海量信息的汇聚,因此需要虚拟化、安全认证、实时交互、海量存储等云计算功能,其应用系统也是围绕车辆的数据汇聚、跨领域分析和生活消费以及互联网上能达成的绝大多数应用的复合体系。云系统和大数据概念,是真正的车联网系统与传统的3G+GPS前后台系统的本质差异。 前装与后装 虽然目前国内厂商们布局车联网体现出了极大的魄力与实力,但是国内的以设备设计制造商为主的传统汽车电子制造商对于互联网思维的认识缺乏,对于车联网本质特性的理解不足,导致这种用于替换传统的3G导航一体机的车联网设备的互联网特性缺乏,应用基本上照搬手机平台,因而面对已经非常丰富的手机应用几乎不具备竞争力。而国外设备商由于对互联网的理解更加深入透彻,对于应用生态圈和后期O2O盈利的模式思考更加成熟,“苹果推出carpaly就是基于这一思路。前装市场是通过和车厂合作预设车联网场景、占领车主‘第一入口’,让车主买到即用到,这个方式很好,但并不适合照搬国内。”

2014版车联网项目(立项及贷款用)可行性研究报告编制机构服务流程及案例展示

目录 第一部分博思远略编制车联网项目可研报告思路 (3) 一、车联网项目必要性及可行性研究主要内容 (3) 二、车联网项目可行性研究贯彻国家可持续发展政策的基本要求 (3) 第二部分甲级资质单位编制车联网项目可行性研究报告大纲(2014发改委标准,具体编制过程中根据项目不同有所调整) (4) 第三部分关于车联网项目可研不同用途及编制重点差异的说明 (10) 一、车联网项目可研报告按用途分类构成 (10) 二、用于发改委立项的车联网项目可行性研究报告编制注意问题说明 (10) 三、用于银行贷款的车联网项目可行性研究报告编制注意问题说明 (11) 四、用于申请用地的车联网项目可行性研究报告编制注意问题说明 (12) 五、用于IPO上市募投的车联网项目可研报告编制注意问题说明 (13) 第四部分车联网项目可研编制热点问题与专家答疑集锦 (15) 一、企业在项目立项备案过程中需要做哪些工作来提高通过率? (15) 二、哪些项目可行性研究报告需要具有发改委甲级资质的机构撰写? (16) 三、车联网项目投资决策分为哪几个阶段,每个阶段博思远略可以提供哪些 服务? (17) 四、车联网项目可行性研究报告审批流程及各阶段提交材料清单? (18) 第五部分车联网项目可行性研究方案设计(市场前景+技术可行性+经济可行性) (20) 一、“申报单位及项目概况”部分编写要点说明 (20) 二、“发展规划、产业政策和行业准入分析”部分编写要点说明 (20) 四、“节能方案分析”部分编写要点说明 (21) 五、“建设用地、征地拆迁及移民安置分析”部分编写要点说明 (22) 六、“环境和生态影响分析”部分编写要点说明 (23) 七、“经济影响分析”部分编写要点说明 (24) 八、“社会影响分析”部分编写要点说明 (25) 第六部分车联网项目可行性研究报告范文节选(节选成功案例) (27) 一、项目建设投资估算方案 (27) 二、企业介绍说明(图形数据归纳直观化) (27) 三、项目总平面布置图设计方案(根据要求可做效果图) (28) 四、项目综合能耗方案设计 (29)

2020车联网项目可行性报告

车联网项目可行性报告 规划设计 / 投资分析

摘要说明— 该车联网项目计划总投资 17841.20 万元,其中:固定资产投资15513.29 万元,占项目总投资的 86.95%;流动资金 2327.91 万元,占项目总投资的 13.05%。 达产年营业收入 17987.00 万元,总成本费用 13632.04 万元,税金及附加 283.81 万元,利润总额 4354.96 万元,利税总额 5239.45 万元,税后净利润 3266.22 万元,达产年纳税总额 1973.23 万元;达产年投资利润率24.41%,投资利税率 29.37%,投资回报率 18.31%,全部投资回收期 6.96 年,提供就业职位 371 个。 重视施工设计工作的原则。严格执行国家相关法律、法规、规范,做好节能、环境保护、卫生、消防、安全等设计工作。同时,认真贯彻“安全生产,预防为主”的方针,确保投资项目建成后符合国家职业安全卫生的要求,保障职工的安全和健康。 项目概况、建设必要性分析、市场分析、项目方案分析、选址评价、土建工程研究、项目工艺及设备分析、环境保护分析、安全保护、建设风险评估分析、节能说明、计划安排、投资方案计划、盈利能力分析、综合评估等。

第一章建设必要性分析 一、项目建设背景 目前中国车联网的产业化普及存在一系列问题。首先,车联网行业跨 度大、厂商涉及多,导致整个产业链关系复杂,目前只能是局部整合和独 立发展阶段。我国的汽车厂商利用其在前装市场上的优势形成了自己的产 业链结构,这部分厂商借鉴的多是欧美日的发展模式,例如通用的Onstar、丰田的 G-Book 等。移动运行商、设备制造商及其他独立 TSP 也在相互竞争中发展处于一条以车载信息服务商为主导的产业链。 其次,车联网运营模式范围广、盈利模式差异大,商业模式终成悬疑。作为重要的车联网产品之一,车载诊断系统(On-BoardDiagnostic,OBD)虽然产品相似,但盈利模式却各有不同,有“设备及服务费模式、广告营 销增值模式、免费转化模式”。而其运营模式也各不相同,目前就有“移 动互联网模式、4S 店模式、保险模式”,但保险模式在国内也缺乏实质的解决方案。 最后,相关法律法规的匮乏也是车联网处在初级阶段的重要因素。调 研显示,18.8%的机构认为政策导向不明确是阻碍其投资车联网的又一因素。因此政府要构建一个博弈环境,吸引更多的人来参与和开发车联网市场, 引导汽车业、电子业、通讯业等企业协同,共同打造未来车联网价值的增 长点,力推车联网发展尽早摆脱初级阶段。

车联网项目实施方案

车联网项目 实施方案 泓域咨询规划设计/投资分析/产业运营

摘要 车联网是自动驾驶感知层的不可替代环节。当前的自动驾驶大多依靠雷达、摄像头、定位等手段实现感知层信息的输入,但依靠以上技术远远不够,信息的实时交互能力和广度都无法突破,在这一背景下车联网成为自动驾驶感知层的不可替代的环节。 数字经济对高质量发展、培育新动能意义重大,但是对GDP的拉动作用则未必明显。主要是以下两个方面的原因:一是数字经济发展对线下活动存在一定的替代效应。尽管数字经济规模发展很快,其中不仅有对线下的替代,也有很多新增部分。但是它毕竟不像前几次工业革命对纯新增投资的大规模拉动那样显著,其“创造性破坏”的意味更加浓厚。二是数字经济大规模提升了社会总福利、尤其是消费者剩余,但是很多不体现在GDP 上。这方面的研究文献已经比较多了,一个共同认识是:GDP难以反映数字经济的贡献,应该有更好的宏观指标来衡量数字经济贡献。我称之为数字经济的“GDP悖论”。例如美国布鲁金斯学会今年刚刚发布的研究报告《如何测度数字经济价值?》指出,“数字产品通常对用户免费,因此他们对福祉的贡献被排除在GDP之外。但是,除了GDP数据以外,我们在世界各地都看到了数字革命带来的实际好处。” 自2020年3月,提出加快5G和数据中心等新型基础设施建设进度,工信部倡导加快新型基础设施建设后,引发全民热议的“新基建”概念,

新基建的本质,是能够支撑传统产业向网络化、数字化、智能化方向发展 的信息基础设施的建设。 应对疫情影响经济下行,从历史来看,较为有效的方法还是基建。 1998年亚洲金融危机时中国增发特别国债加强基建,2008年全球金融危机 时推出大规模基建投资,尽管当时争议很大、批评很多,但现在看来意义 重大,大幅降低了运输成本,提升了中国制造的全球竞争力,释放了中国 经济高增长的巨大潜力。在印度,经济发展潜力释放不出来,很大程度受 制于基础设施短缺。而在美国,应对2008经济危机,和“四万亿”刺激政 策不同,美国在政策、投资、市场加大了对信息产业扶持,才有了美国经 济今天的增长。美国今天市值破万亿美金的四家公司,都是2008年经济后,重新抓住机会,创造巨大财富的结果。所以以未来的视角审视今天的思维 方式,促进以人工智能、5G、IDC等为代表的信息硬科技发展,才是有效的战略布局。 该车联网设备项目计划总投资22793.72万元,其中:固定资产投 资16615.20万元,占项目总投资的72.89%;流动资金6178.52万元,占项目总投资的27.11%。 达产年营业收入47076.00万元,总成本费用37340.43万元,税 金及附加399.74万元,利润总额9735.57万元,利税总额11478.15 万元,税后净利润7301.68万元,达产年纳税总额4176.47万元;达

最新车联网项目商业计划书

最新车联网项目商业计划书 篇一:车联网项目商业计划书 车联网项目 商业计划书 内容详情/syjhs/ 前言 《车联网项目商业计划书》为中国产业信息研究网独家首创针对项目投融资咨询服务的专项计划书。计划书分为:行业通用版、专业定制版。行业通用版是三胜咨询根据行业一般水平测算好了行业指标数据,作为行业通用的模板计划书,企业可以自行补充单位信息,稍做调整就可以作为项目计划书使用。我们也可以根据企业具体项目要求专项编写专业定制版,并根据详细要求合理报价,为企业项目立项、上马、融资提供全程指引服务。 商业计划书(Business Plan)是企业或创业者为了达到招商融资和其它发展目标之目的,在经过前期对项目科学地调研、分析、搜集与整理有关资料的基础上,根据一定的格式和内容的具体要求而编辑整理的一个向投资商及其他相关人员全面展示公司和项目目前状况、未来发展潜力的书面材料。商业计划书是包括项目筹融资、战略规划等经营活动的蓝图与指南,也是企业的行动纲领和执行方案。 商业计划书是一份全方位描述企业发展的文件,是企

业经营者素质的体现,是企业拥有良好融资能力、实现跨式发展的重要条件之一。一份好的商业计划书是获得贷款和投资的关键。如何吸引投资者、特别是风险投资家参与创业者的投资项目,这时一份高品质且内容丰富的商业计划书,将会使投资者更快、更好地了解投资项目,将会使投资者对项目有信心,有热情,动员促成投资者参与该项目,最终达到为项目筹集资金的作用。 商业计划书是争取风险投资的敲门砖。投资者每天会接收到很多商业计划书,商业计划书的质量和专业性就成为了企业需求投资的关键点。企业家在争取获得风险投资之初,首先应该将商业计划书的制作列为头等大事。一份完备的商业计划书,不仅是企业能否成功融资的关键因素,同时也是企业发展的核心管理工具。作为中国最早的投融资策划专业公司之一,三胜咨询具有:一流专家团队、丰富编制经验、数百个可查询案例、国际规范、质量超值。 《车联网项目商业计划书》由三胜咨询公司领衔撰写,依托三胜咨询庞大的细分市场数据库,在大量周密的市场调研基础上,主要依据了国家统计局、国家商务部、国家海关总署、车联网相关行业协会、中国产业信息研究网的基础信息,对我国车联网行业的供给与需求状况、市场格局与分布等多方面进行了分析,并紧密结合项目情况对车联网项目未来发展前景进行了研判。本报告深入挖掘项目的优势,将项

车联网项目计划书

车联网项目计划书 车联网项目计划书 篇一: 车联网项目商业计划书车联网项目商业计划书 2017年前言中商咨询编制的商业计划书可作为项目运作主体的沟通工具,会着力体现企业(项目)的核心价值与竞争优势,有效吸引风险投资者及商业伙伴,促成项目融资。同时,中商咨询编制的商业计划书内容涉及企业(项目)运营的方方面面,能为企业(项目)实施提供建议参考。 中商产业研究院每年完成项目数量达数百个,在养老产业、商业地产、产业地产、产业园区、互联网、电子商务、民营银行、民营医院、农业、养殖业、生态旅 游、酒店、机械电子等行业积累了丰富的项目案例,可对同行业项目提供具有参考性、建设性意见,帮助客户对项目进行梳理和判断。【出版日期】 2017年【交付方式】 Email电子版/特快专递【价格】订制车联网项目商业计划书 第一部分摘要 一、项目背景 二、项目简介 三、项目竞争优势 四、融资与财务说明第二部分车联网行业与市场分析 一、市场环境分析 (一)政策环境分析

(二)经济环境分析 二、车联网行业市场分析 三、车联网市场预测分析 四、市场分析小结第三部分公司介绍 一、公司基本情况 二、公司业务介绍 三、组织架构 四、主要管理团队第四部分产品与技术 一、主要产品介绍 (一)主要产品 (二)产品性能 (三)产品的竞争优势 二、产品制造 (一)产品生产制造方式 (二)生产工艺流程 (三)质量控制 (四)售后服务 (五)生产成本控制 三、技术与研发 (一)关键技术介绍 (二)技术亮点 (三)现有的和正在申请的知识权

(四)研发团队 (五)持续创新安排第五部分营销规划 一、营销战略 二、营销措施第六部分项目发展规划 一、发展战略 二、阶段发展规划 三、实现经营目标采取的具体策略 (一)营销网络计划 (二)人才培养和引进策略 (三)服务提升计划第七部分融资说明 一、资金需求 二、资金使用规划及进度三、资金筹集方式 四、投资者权利 五、投资退出方式 六、项目估值 (一)评估技术说明 (二)收益现值法简介 (三)评估假设与模型 (四)评估值的计算第八部分财务分析与预测 一、财务评价依据 二、财务评价基础数据与参数选取三、有关说明四、经营收入预测

车联网项目计划书

车联网项目计划书 项目起源 (2) 前期工作 (4) 项目预期 (5) 项目运作 (6) 项目团队 (6) 投资需求 (7)

项目起源 汽车移动物联网(车联网)项目将列为中国重大专项,相关内容已上报国务院,一期拨款有望达百亿级别,预期2020年将实现可控车辆规模达2亿辆。 具体来说,车联网是指装载在车辆上的电子标签通过无线射频等识别技术,实现在信息网络平台上对所有车辆的属性信息和静、动态信息进行提取和有效利用,并根据不同的功能需求对所有车辆的运行状态进行有效的监管和提供综合服务。 目前城市交通的主要问题和压力来自城市道路拥堵。业内越来越多的人士认识到:在目前道路建设跟不上汽车增长的情况下,解决拥堵问题,将主要靠对车辆和交通进行管理和调度。城市交通管理亟待建立以车为节点的信息系统,向以车为对象,以热点区域为主的监控和管理的智能交通模式转变。 车联网项目已经于2010年被列为我国重大专项,标志着我国发展智能交通发展新兴智能产业迈出了实质性的步伐,将是我国迎接当代智能化科技革命浪潮、抢占未来发展战略制高点的重大举措,其意义重大影响深远。 从功能上来说,车联网可以优化交通路线,解决交通堵塞,缩短行车

时间,是发展智能交通的重要举措。同时,车联网是建设智慧城市的重要内容,车联网将使城市交通更加高效、环保、智能、安全。此外,专家指出,车联网还可以提供前所未有的交通安全保障,甚至可以将汽车司机发生交通事故的概率降低为零。 作为全球最大的汽车生产和消费国,中国高速发展的传感网和3G网络、得天独厚的体制优势,使中国有能力在全球率先应用车联网。 研究显示,车联网产业链涵盖汽车零部件生产厂家、芯片厂商、软件提供商、方案提供商、网络供应商等多个领域,将为众多新兴产业带来机遇,为国民经济的增长开拓新的增长点。 目前,车联网的主要应用是Telematics(车载信息服务)。 国外:美国、日本和欧洲的Telematics应用较为成熟。全球应用成功的Telematics有日本的VICS 中心、丰田的G-BOOK 以及通用的ONSTAR。韩国正处于初期发展阶段. 国内:Telematics是一个新兴的用于汽车通讯市场及个人应用的系统车联网目前的应用状况 1、中国不停车收费(ETC)应用 2、2011年交通部实施ETC通行费优惠政策 3、中国主要智能交通系统在以往的典型应用 4、北京奥运智能交通管理系统建设应用

相关主题
文本预览
相关文档 最新文档