当前位置:文档之家› 神经网络基本知识

神经网络基本知识

神经网络基本知识
神经网络基本知识

(一)三层神经网络

1)该模型的参数通过两个步骤训练获得:在该网络的第一层,将输入映射

至隐藏单元激活量的权值可以通过稀疏自编码器训练过程获得。

在第二层,将隐藏单元映射至输出的权值可以通过 logistic

回归或 softmax 回归训练获得。

2)在描述上述过程时,假设采用了“替代(Replacement)”表示而不是“级联

(Concatenation)”表示。在替代表示中,logistic 分类器所看到的训练样

本格式为;而在级联表示中,分类器所看到的训练样本格式

为。在级联表示神经网络中,输入值也直接被输入

至 logistic 分类器。

3)在训练获得模型最初参数(利用自动编码器训练第一层,利用

logistic/softmax 回归训练第二层)之后,可以进一步修正模型参数,进而降低训练误差。具体来说,可以对参数进行微调,在现有参数的基础上采用梯度下降或者 L-BFGS 来降低已标注样本集

上的训练误差。

微调的作用在于,已标注数据集也可以用来修正权值,这样可以对

隐藏单元所提取的特征做进一步调整。

对于微调来说,级联表示相对于替代表示几乎没有优势。因此,如果需要开展微调,通常使用替代表示的网络。但是如果不开展微调,级联表示的效果有时候会好得多。

通常仅在有大量已标注训练数据的情况下使用微调。在这样的情况下,微调能显著提升分类器性能。如果有大量未标注数据集(用于非监督特征学习/预训练),却只有相对较少的已标注训练集,微调的作用非常有限。

(二)深度网络

深度神经网络,即含有多个隐藏层的神经网络。通过引入深度网络,可以计算更多复杂的输入特征。因为每一个隐藏层可以对上一层的输出进行非线性变换,因此深度神经网络拥有比“浅层”网络更加优异的表达能力。

1.深度神经网络的优势

1)当训练深度网络的时候,每一层隐层应该使用非线性的激活函数。这

是因为多层的线性函数组合在一起本质上也只有线性函数的表达能力(例如,将多个线性方程组合在一起仅仅产生另一个线性方程)。因此,在激活函数是线性的情况下,相比于单隐藏层神经网络,包含多隐藏层的深度网络并没有增加表达能力。

2)深度网络最主要的优势在于,它能以更加紧凑简洁的方式来表达比浅层网络

大得多的函数集合。即可以找到一些函数,这些函数可以用层网络简洁地表达出来(这里的简洁是指隐层单元的数目只需与输入单元数目呈多项式

关系)。但是对于一个只有层的网络而言,除非它使用与输入单元

数目呈指数关系的隐层单元数目,否则不能简洁表达这些函数。

3)当处理对象是图像时,使用深度网络,能够学习到“部分-整体”的分解关

系。例如,第一层可以学习如何将图像中的像素组合在一起来检测边缘,第二层可以将边缘组合起来检测更长的轮廓或者简单的“目标的部件”,在更深的层次上,可以将这些轮廓进一步组合起来以检测更为复杂的特征。

这种分层计算很好地模仿了大脑皮层对输入信息的处理方式。视觉图像在人脑中是分多个阶段进行处理的,首先是进入大脑皮层的“V1”区,然后紧跟着进入大脑皮层“V2”区,以此类推。

2.训练深度网络的困难

目前主要使用的学习算法是:首先随机初始化深度网络的权重,然后使用有

监督的目标函数在有标签的训练集上进行训练。其中通过使用梯度下降法来降低训练误差,这种方法通常不是十分凑效。

1)数据获取问题

使用上面提到的方法,需要依赖于有标签的数据才能进行训练。然而有标签的数据通常是稀缺的,因此对于许多问题,我们很难获得足够多的样本来拟合一个复杂模型的参数。例如,考虑到深度网络具有强大的表达能力,在不充足的数据上进行训练将会导致过拟合。

2)局部极值问题

使用监督学习方法来对浅层网络(只有一个隐藏层)进行训练通常能够使参数收敛到合理的范围内。但是当用这种方法来训练深度网络的时候,并不能取得很好的效果。特别的,使用监督学习方法训练神经网络时,通常会涉及到求解一个高度非凸的优化问题。对深度网络而言,这种非凸优化问题的搜索区域中充斥着大量“坏”的局部极值,因而使用梯度下降法(或者像共轭梯度下降法,L-BFGS 等方法)效果并不好。

3)梯度弥散问题

梯度下降法(以及相关的L-BFGS算法等)在使用随机初始化权重的深度网络上效果不好的技术原因是:梯度会变得非常小。具体而言,当使用反向传播方法计算导数的时候,随着网络的深度的增加,反向传播的梯度(从输出层到网络的最初几层)的幅度值会急剧地减小。结果就造成了整体的损失函数相对于最初几层的权重的导数非常小。这样,当使用梯度下降法的时候,最初几层的权重变化非常缓慢,以至于它们不能够从样本中进行有效的学习。这种问题通常被称为“梯度的弥散”.

与梯度弥散问题紧密相关的问题是:当神经网络中的最后几层含有足够数量神经元的时候,可能单独这几层就足以对有标签数据进行建模,而不用最初几层的帮助。因此,对所有层都使用随机初始化的方法训练得到的整个网络的性能将会与训练得到的浅层网络(仅由深度网络的最后几层组成的浅层网络)的性能相似。

3.逐层贪婪训练方法

逐层贪婪训练方法是训练深度网络取得一定成功的一种方法。简单来说,逐层贪婪算法的主要思路是:

每次只训练网络中的一层,即首先训练一个只含一个隐藏层的网络,仅当这层网络训练结束之后才开始训练一个有两个隐藏层的网络,以此类推。

在每一步中,把已经训练好的前层固定,然后增加第层(也就是

将已经训练好的前的输出作为输入)。

每一层的训练可以是有监督的(例如,将每一步的分类误差作为目标函数),但更通常使用无监督方法(例如自动编码器)。

这些各层单独训练所得到的权重被用来初始化最终(或者说全部)的深度网络的权重,然后对整个网络进行“微调”(即把所有层放在一起来优化有标签训练集上的训练误差)。

逐层贪婪的训练方法取得成功要归功于以下两方面:

?数据获取

虽然获取有标签数据的代价是昂贵的,但获取大量的无标签数据是容易的。自学

习方法的潜力在于它能通过使用大量的无标签数据来学习到更好的模型。具体而言,该方法使用无标签数据来学习得到所有层(不包括用于预测标签的最终分类

层)的最佳初始权重。相比纯监督学习方法,这种自学习方法能够利用多

得多的数据,并且能够学习和发现数据中存在的模式。因此该方法通常能够提高分类器的性能。

更好的局部极值

当用无标签数据训练完网络后,相比于随机初始化而言,各层初始权重会位于参数空间中较好的位置上。然后我们可以从这些位置出发进一步微调权重。从经验上来说,以这些位置为起点开始梯度下降更有可能收敛到比较好的局部极值点,这是因为无标签数据已经提供了大量输入数据中包含的模式的先验信息。

(三)卷积特征提取和池化

1)全联通网络

把输入层和隐含层进行“全连接”的设计,从整幅图像中计算特征,从计算的角度来讲,对相对较小的图像是可行的。但是,如果是更大的图像,要通过全联通网络的这种方法来学习整幅图像上的特征,将是非常耗时。

2)部分联通网络

解决以上问题的一种简单方法是对隐含单元和输入单元间的连接加以限制:每个隐含单元仅仅只能连接输入单元的一部分。例如,每个隐含单元仅仅连接输入图像的一小片相邻区域。

网络部分连通的思想,也是受启发于生物学里面的视觉系统结构。视觉皮层的神经元就是局部接受信息的(即这些神经元只响应某些特定区域的刺激)。

3)卷积

自然图像有其固有特性,也就是说,图像的一部分的统计特性与其他部分是一样的。这也意味着我们在这一部分学习的特征也能用在另一部分上,所以对于这个图像上的所有位置,都能使用同样的学习特征。

当从一个大尺寸图像中随机选取一小块,比如说 8x8 作为样本,并且从这个小块样本中学习到了一些特征,这时可以把从这个 8x8 样本中学习到的特征作为探测器,应用到这个图像的任意地方中去。特别是,可以用从 8x8 样本中所学习到的特征跟原本的大尺寸图像作卷积,从而对这个大尺寸图像上的任一位置获得一个不同特征的激活值。

实例:假设已经从一个 96x96 的图像中学习到了它的一个 8x8 的样本所具有的特征,假设这是由有 100 个隐含单元的自编码完成的。为了得到卷积特征,需要对 96x96 的图像的每个 8x8 的小块图像区域都进行卷积运算。也就是说,抽取 8x8 的小块区域,并且从起始坐标开始依次标记为(1,1),(1,2),...,

一直到(89,89),然后对抽取的区域逐个运行训练过的稀疏自编码来得到特征的激活值。在这个例子里,显然可以得到 100 个集合,每个集合含有 89x89 个卷积特征。

假设给定了的大尺寸图像,将其定义为 xlarge。首先通过从大尺寸图

像中抽取的的小尺寸图像样本 xsmall 训练稀疏自编码,计算 f = σ(W(1)xsmall + b(1))(σ是一个 sigmoid 型函数)得到了 k 个特征,其中 W(1) 和 b(1) 是可视层单元和隐含单元之间的权重和偏差值。对于每一

个大小的小图像 xs,计算出对应的值 fs = σ(W(1)xs + b(1)),对这

些 fconvolved 值做卷积,就可以得到个卷

积后的特征的矩阵。

4)池化

在通过卷积获得了特征之后,下一步是要利用这些特征去做分类。理论上讲,可以用所有提取得到的特征去训练分类器,例如 softmax 分类器,但这样做面临计算量的挑战。例如:对于一个 96X96 像素的图像,假设已经学习得到了400个定义在8X8输入上的特征,每一个特征和图像卷积都会得到一个 (96 ?8 + 1) * (96 ? 8 + 1) = 7921 维的卷积特征,由于有 400 个特征,所以每个样例都会得到一个7921 * 400 = 3,168,400 维的卷积特征向量。学习一个拥有超过 3 百万特征输入的分类器十分不便,并且容易出现过拟合。

为了解决这个问题,即为了描述大的图像,一个很自然的想法就是对不同位置的特征进行聚合统计,例如,人们可以计算图像一个区域上的某个特定特征的平均值 (或最大值)。这些概要统计特征不仅具有低得多的维度 (相比使用所有提取得到的特征),同时还会改善结果(不容易过拟合)。这种聚合的操作就叫做池化(pooling),有时也称为平均池化或者最大池化 (取决于计算池化的方法)。

池化的不变性

如果选择图像中的连续范围作为池化区域,并且只是池化相同(重复)的隐藏单元产生的特征,那么,这些池化单元就具有平移不变性。这就意味着即使图像经历了一个小的平移之后,依然会产生相同的 (池化的) 特征。

形式化描述

形式上,在获取到卷积特征后,就要确定池化区域的大小(假定为),来

池化卷积特征。那么,把卷积特征划分到数个大小为的不相交区域上,

然后用这些区域的平均(或最大)特征来获取池化后的卷积特征。这些池化后的特征便可以用来做分类。

(四)白化

为了使每个输入特征具有单位方差,可以直接使用作为缩放因子来缩

放每个特征。具体地,定义白化后的数据如下:

是数据经过PCA白化后的版本: 中不同的特征之间不相

关并且具有单位方差。

白化与降维相结合:如果想要得到经过白化后的数据,并且比初始输入维数更

低,可以仅保留中前个成分。当我们把PCA白化和正则化结合起

来时,中最后的少量成分将总是接近于0,因而舍弃这些成分不会带来很大的问题。

1) ZCA白化

数据的协方差矩阵变为单位矩阵的方式并不唯一。具体地,如果是任意

正交矩阵,即满足 (说它正交不太严格,可以是旋转或

反射矩阵), 那么仍然具有单位协方差。在ZCA白化中,

令。我们定义ZCA白化的结果为:

可以证明,对所有可能的,这种旋转使得尽可能地接近原始输入

数据。

当使用 ZCA白化时(不同于 PCA白化),我们通常保留数据的全部个维度,不尝试去降低它的维数。

2) 正则化

实践中需要实现PCA白化或ZCA白化时,有时一些特征值在数值上接近于0,

这样在缩放步骤时我们除以将导致除以一个接近0的值;这可能使数据上溢 (赋为大数值)或造成数值不稳定。因而在实践中,使用少量的正则化实现这个缩放过程,即在取平方根和倒数之前给特征值加上一个很小的常数:

当在区间上时, 一般取值为。

对图像来说, 这里加上,对输入图像也有一些平滑(或低通滤波)的作用。这样处理还能消除在图像的像素信息获取过程中产生的噪声,改善学习到的特征。

ZCA 白化是一种数据预处理方法,它将数据从映射到。事实证

明这也是一种生物眼睛(视网膜)处理图像的粗糙模型。具体而言,当你的眼睛感知图像时,由于一幅图像中相邻的部分在亮度上十分相关,大多数临近的“像素”在眼中被感知为相近的值。因此,如果人眼需要分别传输每个像素值(通过

视觉神经)到大脑中,会非常不划算。取而代之的是,视网膜进行一个与ZCA 中相似的去相关操作 (这是由视网膜上的ON-型和OFF-型光感受器细胞将光信号转变为神经信号完成的)。由此得到对输入图像的更低冗余的表示,并将它传输到大脑。

提示:可以在PCA白化过程中同时降低数据的维度。这是一个很好的主

意,因为这样可以大大提升算法的速度(减少了运算量和参数数目)。

确定要保留的主成分数目有一个经验法则:即所保留的成分的总方差达

到总样本方差的 99% 以上。

注意: 在使用分类框架时,应该只基于练集上的数据计算PCA/ZCA白化

矩阵。需要保存以下两个参数留待测试集合使用:(a)用于零均值化数据

的平均值向量;(b)白化矩阵。测试集需要采用这两组保存的参数来进行

相同的预处理。

人工神经网络原理及实际应用

人工神经网络原理及实际应用 摘要:本文就主要讲述一下神经网络的基本原理,特别是BP神经网络原理,以及它在实际工程中的应用。 关键词:神经网络、BP算法、鲁棒自适应控制、Smith-PID 本世纪初,科学家们就一直探究大脑构筑函数和思维运行机理。特别是近二十年来。对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在“计算"某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统。1943年Macullocu和Pitts融合了生物物理学和数学提出了第一个神经元模型。从这以后,人工神经网络经历了发展,停滞,再发展的过程,时至今日发展正走向成熟,在广泛领域得到了令人鼓舞的应用成果。本文就主要讲述一下神经网络的原理,特别是BP神经网络原理,以及它在实际中的应用。 1.神经网络的基本原理 因为人工神经网络是模拟人和动物的神经网络的某种结构和功能的模拟,所以要了解神经网络的工作原理,所以我们首先要了解生物神经元。其结构如下图所示: 从上图可看出生物神经元它包括,细胞体:由细胞核、细胞质与细胞膜组成;

轴突:是从细胞体向外伸出的细长部分,也就是神经纤维。轴突是神经细胞的输出端,通过它向外传出神经冲动;树突:是细胞体向外伸出的许多较短的树枝状分支。它们是细胞的输入端,接受来自其它神经元的冲动;突触:神经元之间相互连接的地方,既是神经末梢与树突相接触的交界面。 对于从同一树突先后传入的神经冲动,以及同一时间从不同树突输入的神经冲动,神经细胞均可加以综合处理,处理的结果可使细胞膜电位升高;当膜电位升高到一阀值(约40mV),细胞进入兴奋状态,产生神经冲动,并由轴突输出神经冲动;当输入的冲动减小,综合处理的结果使膜电位下降,当下降到阀值时。细胞进入抑制状态,此时无神经冲动输出。“兴奋”和“抑制”,神经细胞必呈其一。 突触界面具有脉冲/电位信号转换功能,即类似于D/A转换功能。沿轴突和树突传递的是等幅、恒宽、编码的离散电脉冲信号。细胞中膜电位是连续的模拟量。 神经冲动信号的传导速度在1~150m/s之间,随纤维的粗细,髓鞘的有无而不同。 神经细胞的重要特点是具有学习功能并有遗忘和疲劳效应。总之,随着对生物神经元的深入研究,揭示出神经元不是简单的双稳逻辑元件而是微型生物信息处理机制和控制机。 而神经网络的基本原理也就是对生物神经元进行尽可能的模拟,当然,以目前的理论水平,制造水平,和应用水平,还与人脑神经网络的有着很大的差别,它只是对人脑神经网络有选择的,单一的,简化的构造和性能模拟,从而形成了不同功能的,多种类型的,不同层次的神经网络模型。 2.BP神经网络 目前,再这一基本原理上已发展了几十种神经网络,例如Hopficld模型,Feldmann等的连接型网络模型,Hinton等的玻尔茨曼机模型,以及Rumelhart 等的多层感知机模型和Kohonen的自组织网络模型等等。在这众多神经网络模型中,应用最广泛的是多层感知机神经网络。 这里我们重点的讲述一下BP神经网络。多层感知机神经网络的研究始于50年代,但一直进展不大。直到1985年,Rumelhart等人提出了误差反向传递学习算法(即BP算),实现了Minsky的多层网络设想,其网络模型如下图所示。它可以分为输入层,影层(也叫中间层),和输出层,其中中间层可以是一层,也可以多层,看实际情况而定。

神经网络控制

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。 图1 生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉冲幅度达到一定强度,即超过其阈值电位后,突触前膜将向突触间隙释放神经传递的化学物质,突触有两

基于神经网络的专家系统

基于神经网络的专家系统 摘要:人工神经网络与专家系统,作为人工智能应用的两大分支,在实际应用中都有许多成功的范例,但作为单个系统来讲,二者都存在很大的局限性。主要是专家系统知识获取的“瓶颈问题”和神经网络知识表达的“黑箱结构”。为解决这个问题,本文提出将专家系统与神经网络技术集成,达到优势互补的目的。利用神经网络优良的自组织、自学习和自适应能力来解决令家系统知识获取的困难,同时用专家系统良好的解释机能来弥补神经网络中知识表达的缺陷。论文提出了基于神经网络专家系统的结构模型,知识表示方式以及推理机制等。 关键词:专家系统;神经网络;系统集成; 0 引言 专家系统(Expert System)是一种设计用来对人类专家的问题求解能力建模的计算机程序。专家系统是一个智能计算机程序,其内部含有大量的某个领域专家水平的知识和经验,能够利用人类专家的知识和解决问题的方法来处理该领域问题。一个专家系统应具有以下三个基本特征:启发性——不仅能使用逻辑性知识还能使用启发性知识;透明性——能向用户解释它们的推理过程,还能回答用户的一些问题;灵活性——系统中的知识应便于修改和扩充;推理性——系统中的知识必然是一个漫长的测试,修改和完善过程。专家系统是基于知识的系统。它由如图1所示的5个基本的部分组成[1,2,3]。 知识库存储从专家那里得到的特定领域的知识,这些知识包括逻辑性的知识和启发性知识两类。数据库用于存放专家系统运行过程中所需要和产生的信息。推理机的作用是按照一定的控制策略,根据用户提出的问题和输入的有关数据或信息,按专家的意图选择利用知识库的知识,并进行推理,以得到问题的解答,它是专家系统的核心部分。人机接口部分的功能是解释系统的结论,回答用户的问题,它是连接用户与专家系统之间的桥梁。知识的获取是为修改知识库原有的知识和扩充知识提供的手段。 1 传统专家系统存在的问题 传统专家系统是基于知识的处理的系统,将领域知识整理后形式化为一系列系统所能接受并能存储的形式,利用其进行推理实现问题的求解。尽管与人类专家相比,专家系统具有很大的优越性。但是,随着专家系统应用的日益广泛及所处理问题的难度和复杂度的不断扩大和提高,专家系统在某些方面已不能满足是实际工作中的需求,具体体现在以下一个方面[1,2]:(1)知识获取的“瓶颈”问题。(2)知识获取的“窄台阶”。(3)缺乏联想功能、推理能力弱。(4)智能水平低、更谈不上创造性的知识。(5)系统层次少。(6)实用性差。 2 神经网络与传统专家系统的集成 神经网络是基于输入\输出的一种直觉性反射,适用于进行浅层次的经验推理,其特点是通过数值计算实现推理;专家系统是基于知识匹配的逻辑推理,是深层次的符号推理。将两者科学的结合形成神经网络专家系统,可以取长补短。根据侧重点的不同,神经网络与专家系统的集成有三种模式[2]:(1)神经网络支持专家系统。以传统的专家系统为主,以神经网络的有关技术为辅。 (2)专家系统支持神经网络。以神经网络的有关技术为核心,建立相应领域的专家系统,采用专家系统的相关技术完成解释等方面的工作。 (3)协同式的神经网络专家系统。针对大的复杂问题,将其分解为若干子问题,针对每个子问题的特点,选择用神经网络或专家系统加以实现,在神经网络和专家系统之间建立一种耦合关系。

神经网络模型预测控制器

神经网络模型预测控制器 摘要:本文将神经网络控制器应用于受限非线性系统的优化模型预测控制中,控制规则用一个神经网络函数逼近器来表示,该网络是通过最小化一个与控制相关的代价函数来训练的。本文提出的方法可以用于构造任意结构的控制器,如减速优化控制器和分散控制器。 关键字:模型预测控制、神经网络、非线性控制 1.介绍 由于非线性控制问题的复杂性,通常用逼近方法来获得近似解。在本文中,提出了一种广泛应用的方法即模型预测控制(MPC),这可用于解决在线优化问题,另一种方法是函数逼近器,如人工神经网络,这可用于离线的优化控制规则。 在模型预测控制中,控制信号取决于在每个采样时刻时的想要在线最小化的代价函数,它已经广泛地应用于受限的多变量系统和非线性过程等工业控制中[3,11,22]。MPC方法一个潜在的弱点是优化问题必须能严格地按要求推算,尤其是在非线性系统中。模型预测控制已经广泛地应用于线性MPC问题中[5],但为了减小在线计算时的计算量,该部分的计算为离线。一个非常强大的函数逼近器为神经网络,它能很好地用于表示非线性模型或控制器,如文献[4,13,14]。基于模型跟踪控制的方法已经普遍地应用在神经网络控制,这种方法的一个局限性是它不适合于不稳定地逆系统,基此本文研究了基于优化控制技术的方法。 许多基于神经网络的方法已经提出了应用在优化控制问题方面,该优化控制的目标是最小化一个与控制相关的代价函数。一个方法是用一个神经网络来逼近与优化控制问题相关联的动态程式方程的解[6]。一个更直接地方法是模仿MPC方法,用通过最小化预测代价函数来训练神经网络控制器。为了达到精确的MPC技术,用神经网络来逼近模型预测控制策略,且通过离线计算[1,7.9,19]。用一个交替且更直接的方法即直接最小化代价函数训练网络控制器代替通过训练一个神经网络来逼近一个优化模型预测控制策略。这种方法目前已有许多版本,Parisini[20]和Zoppoli[24]等人研究了随机优化控制问题,其中控制器作为神经网络逼近器的输入输出的一个函数。Seong和Widrow[23]研究了一个初始状态为随机分配的优化控制问题,控制器为反馈状态,用一个神经网络来表示。在以上的研究中,应用了一个随机逼近器算法来训练网络。Al-dajani[2]和Nayeri等人[15]提出了一种相似的方法,即用最速下降法来训练神经网络控制器。 在许多应用中,设计一个控制器都涉及到一个特殊的结构。对于复杂的系统如减速控制器或分散控制系统,都需要许多输入与输出。在模型预测控制中,模型是用于预测系统未来的运动轨迹,优化控制信号是系统模型的系统的函数。因此,模型预测控制不能用于定结构控制问题。不同的是,基于神经网络函数逼近器的控制器可以应用于优化定结构控制问题。 在本文中,主要研究的是应用于非线性优化控制问题的结构受限的MPC类型[20,2,24,23,15]。控制规则用神经网络逼近器表示,最小化一个与控制相关的代价函数来离线训练神经网络。通过将神经网络控制的输入适当特殊化来完成优化低阶控制器的设计,分散和其它定结构神经网络控制器是通过对网络结构加入合适的限制构成的。通过一个数据例子来评价神经网络控制器的性能并与优化模型预测控制器进行比较。 2.问题表述 考虑一个离散非线性控制系统: 其中为控制器的输出,为输入,为状态矢量。控制

人工神经网络复习题

《神经网络原理》 一、填空题 1、从系统的观点讲,人工神经元网络是由大量神经元通过极其丰富和完善的连接而构成的自适应、非线性、动力学系统。 2、神经网络的基本特性有拓扑性、学习性和稳定收敛性。 3、神经网络按结构可分为前馈网络和反馈网络,按性能可分为离散型和连续型,按学习方式可分为有导师和无导师。 4、神经网络研究的发展大致经过了四个阶段。 5、网络稳定性指从t=0时刻初态开始,到t时刻后v(t+△t)=v(t),(t>0),称网络稳定。 6、联想的形式有两种,它们分是自联想和异联想。 7、存储容量指网络稳定点的个数,提高存储容量的途径一是改进网络的拓扑结构,二是改进学习方法。 8、非稳定吸引子有两种状态,一是有限环状态,二是混沌状态。 9、神经元分兴奋性神经元和抑制性神经元。 10、汉明距离指两个向量中对应元素不同的个数。 二、简答题 1、人工神经元网络的特点? 答:(1)、信息分布存储和容错性。 (2)、大规模并行协同处理。 (3)、自学习、自组织和自适应。 (4)、人工神经元网络是大量的神经元的集体行为,表现为复杂

的非线性动力学特性。 (5)人式神经元网络具有不适合高精度计算、学习算法和网络设计没有统一标准等局限性。 2、单个神经元的动作特征有哪些? 答:单个神经元的动作特征有:(1)、空间相加性;(2)、时间相加性;(3)、阈值作用;(4)、不应期;(5)、可塑性;(6)疲劳。 3、怎样描述动力学系统? 答:对于离散时间系统,用一组一阶差分方程来描述: X(t+1)=F[X(t)]; 对于连续时间系统,用一阶微分方程来描述: dU(t)/dt=F[U(t)]。 4、F(x)与x 的关系如下图,试述它们分别有几个平衡状态,是否为稳定的平衡状态? 答:在图(1)中,有两个平衡状态a 、b ,其中,在a 点曲线斜率|F ’(X)|>1,为非稳定平稳状态;在b 点曲线斜率|F ’(X)|<1,为稳定平稳状态。 在图(2)中,有一个平稳状态a ,且在该点曲线斜率|F ’(X)|>1,为非稳定平稳状态。

基于神经网络专家系统的研究与应用

摘要 现代化的建设需要信息技术的支持,专家系统是一种智能化的信息技术,它的应用改变了过去社会各领域生产基层领导者决策的盲目性和主观性,缓解了我国各领域技术推广人员不足的矛盾,促进了社会的持续发展。但传统专家系统只能处理显性的表面的知识,存在推理能力弱,智能水平低等缺点,所以本文引入了神经网络技术来克服传统专家系统的不足,来试图解决专家系统中存在的关系复杂、边界模糊等难于用规则或数学模型严格描述的问题。本文采用神经网络进行大部分的知识获取及推理功能,将网络输出结果转换成专家系统推理机能接受的形式,由专家系统的推理机得到问题的最后结果。最后,根据论文中的理论建造了棉铃虫害预测的专家系统,能够准确预测棉铃虫的发病程度,并能给用户提出防治建议及措施。有力地说明了本论文中所建造的专家系统在一定程度上解决了传统专家系统在知识获取上的“瓶颈”问题,实现了神经网络的并行推理,神经网络在专家系统中的应用具有较好的发展前景。 关键词神经网络专家系统推理机面向对象知识获取

Abstract Modern construction needs the support of IT, expert system is the IT of a kind of intelligence, its application has changed past social each field production subjectivity and the blindness of grass-roots leader decision-making, have alleviated the contradiction that each field technical popularization of our country has insufficient people, the continued development that has promoted society. But traditional expert system can only handle the surface of dominance knowledge, existence has weak inference ability, intelligent level is low, so this paper has led into artificial neural network technology to surmount the deficiency of traditional expert system, attempt the relation that solution has in expert system complex, boundary is fuzzy etc. are hard to describe strictly with regular or mathematics model. This paper carries out the most of knowledge with neural network to get and infer function , changes network output as a result into expert system, inference function the form of accepting , the inference machine from expert system gets the final result of problem. Finally, have built the expert system of the cotton bell forecast of insect pest according to the theory in this thesis, can accurate forecast cotton bell insect become sick degree, and can make prevention suggestion and measure to user. Have proved on certain degree the expert system built using this tool have solved traditional expert system in knowledge the problem of " bottleneck " that gotten , the parallel inference that has realized neural network, Neural network in expert system application has the better prospect for development. Key words Neural network Expert system Reasoning engine Object-orientation Knowledge acquisition

神经网络

人工神经网络概念 人工神经网络(ArtificialNeuralNetwork,简称ANN)是人工智能领域中的一个重要分支,它是由大量的、简单的处理单元(或称神经元)广泛地互连成网络系统。它反映了人脑智能的许多基本特征,但并不是人脑神经元联系网的真实写照,而只是对其作某种简化、抽象和模拟。人工神经网络是由各种神经元按一定的拓扑结构相互连接而成的,它通过对连续的和间析的输入做出状态反馈而完成信息处理工作。神经网络有许多种类型,主要有前向型、反馈型、随机型和自组织竞争型等。其中前向型神经网络是数据挖掘中广为应用的一种网络,其原理或算法也是其他一些网络的基础。比较成熟的有BP神经网络、径向基函数(RBF)神经网络等。 人工神经元模型 人工神经网络结构和工作机理基本上是以人脑的组织结构(大脑神经元结构)和活动规律为背景的,参照生物神经元网络发展起来的人工神经元网络现己有许多种类型,但是它们中的基本单元一一神经元的结构是基本相同的〔27]。人工神经元是生物神经元的模拟与抽象;按照生物神经元的结构和工作原理,构造一个人工神经元如图3一1所示。人工神经元是人工神经网络的基本单元,从图中可 以看出,它相当于一个多输入单输出的非线性闭值器件。定义表示 其他神经元的轴突输出,亦即该神经元的输入向量表示其他神经元与该神经元R个突触的连接强度,亦即权值向量,其每个元素的值可正可负,分别表示为兴奋性突触和抑制性突触,为神经元的闭值,如果神经元输入向量的加权和大于。,则该神经元被激活,所以渝入向量的加权和也称为激活值;f表示神经元的输入输出关系函数,称为激活函数或传输函数。因为激活值越大,表示神经元的膜电位总和越大,该神经元兴奋所发放的脉冲越多,所以传输函数一般为单调升函数。但它又是一个有限值函数,因为神经元发放的脉冲数是有限的。这样,神经元的输出可以表示为 神经元

神经网络控制完整版

神经网络控制 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

人工神经网络控制 摘要: 神经网络控制,即基于神经网络控制或简称神经控制,是指在控制系统中采用神经网络这一工具对难以精确描述的复杂的非线性对象进行建模,或充当控制器,或优化计算,或进行推理,或故障诊断等,亦即同时兼有上述某些功能的适应组合,将这样的系统统称为神经网络的控制系统。本文从人工神经网络,以及控制理论如何与神经网络相结合,详细的论述了神经网络控制的应用以及发展。 关键词: 神经网络控制;控制系统;人工神经网络 人工神经网络的发展过程 神经网络控制是20世纪80年代末期发展起来的自动控制领域的前沿学科之一。它是智能控制的一个新的分支,为解决复杂的非线性、不确定、不确知系统的控制问题开辟了新途径。是(人工)神经网络理论与控制理论相结合的产物,是发展中的学科。它汇集了包括数学、生物学、神经生理学、脑科学、遗传学、人工智能、计算机科学、自动控制等学科的理论、技术、方法及研究成果。 在控制领域,将具有学习能力的控制系统称为学习控制系统,属于智能控制系统。神经控制是有学习能力的,属于学习控制,是智能控制的一个分支。神经控制发展至今,虽仅有十余年的历史,已有了多种控制结构。如神经预测控制、神经逆系统控制等。 生物神经元模型 神经元是大脑处理信息的基本单元,人脑大约含1012个神经元,分成约1000种类型,每个神经元大约与 102~104个其他神经元相连接,形成极为错综复杂而又灵活多变的神经网络。每个神经元虽然都十分简单,但是如此大量的神经元之间、如此复杂的连接却可以演化出丰富多彩的行为方式,同时,如此大量的神经元与外部感受器之间的多种多样的连接方式也蕴含了变化莫测的反应方式。 图1 生物神经元传递信息的过程为多输入、单输出,神经元各组成部分的功能来看,信息的处理与传递主要发生在突触附近,当神经元细胞体通过轴突传到突触前膜的脉

(完整版)深度神经网络全面概述

深度神经网络全面概述从基本概念到实际模型和硬件基础 深度神经网络(DNN)所代表的人工智能技术被认为是这一次技术变革的基石(之一)。近日,由IEEE Fellow Joel Emer 领导的一个团队发布了一篇题为《深度神经网络的有效处理:教程和调研(Efficient Processing of Deep Neural Networks: A Tutorial and Survey)》的综述论文,从算法、模型、硬件和架构等多个角度对深度神经网络进行了较为全面的梳理和总结。鉴于该论文的篇幅较长,机器之心在此文中提炼了原论文的主干和部分重要内容。 目前,包括计算机视觉、语音识别和机器人在内的诸多人工智能应用已广泛使用了深度神经网络(deep neural networks,DNN)。DNN 在很多人工智能任务之中表现出了当前最佳的准确度,但同时也存在着计算复杂度高的问题。因此,那些能帮助DNN 高效处理并提升效率和吞吐量,同时又无损于表现准确度或不会增加硬件成本的技术是在人工智能系统之中广泛部署DNN 的关键。 论文地址:https://https://www.doczj.com/doc/2a9297739.html,/pdf/1703.09039.pdf 本文旨在提供一个关于实现DNN 的有效处理(efficient processing)的目标的最新进展的全面性教程和调查。特别地,本文还给出了一个DNN 综述——讨论了支持DNN 的多种平台和架构,并强调了最新的有效处理的技术的关键趋势,这些技术或者只是通过改善硬件设计或者同时改善硬件设计和网络算法以降低DNN 计算成本。本文也会对帮助研究者和从业者快速上手DNN 设计的开发资源做一个总结,并凸显重要的基准指标和设计考量以评估数量快速增长的DNN 硬件设计,还包括学界和产业界共同推荐的算法联合设计。 读者将从本文中了解到以下概念:理解DNN 的关键设计考量;通过基准和对比指标评估不同的DNN 硬件实现;理解不同架构和平台之间的权衡;评估不同DNN 有效处理技术的设计有效性;理解最新的实现趋势和机遇。 一、导语 深度神经网络(DNN)目前是许多人工智能应用的基础[1]。由于DNN 在语音识别[2] 和图像识别[3] 上的突破性应用,使用DNN 的应用量有了爆炸性的增长。这些DNN 被部署到了从自动驾驶汽车[4]、癌症检测[5] 到复杂游戏[6] 等各种应用中。在这许多领域中,DNN 能够超越人类的准确率。而DNN 的出众表现源于它能使用统计学习方法从原始感官数据中提取高层特征,在大量的数据中获得输入空间的有效表征。这与之前使用手动提取特征或专家设计规则的方法不同。 然而DNN 获得出众准确率的代价是高计算复杂性成本。虽然通用计算引擎(尤其是GPU),已经成为许多DNN 处理的砥柱,但提供对DNN 计算更专门化的加速方法也越来越热门。本文的目标是提供对DNN、理解DNN 行为的各种工具、有效加速计算的各项技术的概述。 该论文的结构如下:

人工神经网络复习资料题

《神经网络原理》 、填空题 1、从系统的观点讲,人工神经元网络是由大量神经元通过极其丰富和完善的连接而构成的自适应、非线性、动力学系统。 2、神经网络的基本特性有拓扑性、学习性和稳定收敛性。 3、神经网络按结构可分为前馈网络和反馈网络,按性能可分为 离散型和连续型,按学习方式可分为有导师和无导师。 4、神经网络研究的发展大致经过了四个阶段。 5、网络稳定性指从t=0时刻初态开始,到t时刻后v(t+ △)=▼(◎,(t>0),称网络稳定。 6、联想的形式有两种,它们分是自联想和异联想。 7、存储容量指网络稳定点的个数,提高存储容量的途径一是改—进网络的拓扑结构,二是改进学习方法。 8、非稳定吸引子有两种状态,一是有限环状态,二是混沌状态。 9、神经元分兴奋性神经元和抑制性神经元。 10、汉明距离指两个向量中对应元素不同的个数。 二、简答题 1、人工神经元网络的特点? 答:(1 )、信息分布存储和容错性。 (2 )、大规模并行协同处理。 (3)、自学习、自组织和自适应。

(4)、人工神经元网络是大量的神经元的集体行为,表现为复杂

的非线性动力学特性。 (5)人式神经元网络具有不适合高精度计算、学习算法和网络 设计没有统一标准等局限性。 2、单个神经元的动作特征有哪些? 答:单个神经元的动作特征有:(1 )、空间相加性;(2 )、时间相加性;(3)、阈值作用;(4 )、不应期;(5 )、可塑性;(6)疲劳。 3、怎样描述动力学系统? 答:对于离散时间系统,用一组一阶差分方程来描述: X(t+1)=F[X(t)]; 对于连续时间系统,用一阶微分方程来描述: dU(t)/dt=F[U(t)]。 4、F(x)与x的关系如下图,试述它们分别有几个平衡状态,是 否为稳定的平衡状态? 答:在图(1、中,有两个平衡状态a、b,其中,在a点曲线斜率|F' (X)|>1 ,为非稳定平稳状态;在b点曲线斜率|F' (X)|<1 ,为稳定平稳状态。 在图(2、中,有一个平稳状态a,且在该点曲线斜率|F' (X)|>1 ,为非稳定平稳状态。

人工神经网络基本概念

《神经网络》讲稿 主讲人:谷立臣教授 2003年9月

第1章基本概念 ?作为自然实例的人脑 ?人工神经元模型 ●人工神经网络的拓扑结构及其学习规则?神经网络的学习策略 ?人工神经网络与生物神经网络的比较?人工神经网络的发展与现状 ?人工神经网络与自动控制 ?人工神经网络与设备故障诊断 ?参考文献

?脑神经生理学家告诉我们:人脑借以记忆与思维的最基本单元是神经元,其数量 约为个; ?每一神经元约有个突触; ?神经元间通过突触形成的网络,传递着彼此间的兴奋与抑制;全部大脑神经元构成拓扑上极其复杂的网络群体,由这一网络群体实现记忆与思维。见图1-1。 111210~103410~10

每一个神经元包括细胞体(Cell body或Soma)和突起(Process)两部分。 ◆细胞体是神经元新陈代谢的中心,还是接收与处理信息的部件 ◆突起有两类,即轴突(Axon)与树突(Dendrite)。轴突的长度相差很大,长的可达1米。轴突的末端与树突进行信号传递的界面称为突触(synapse),通过突触向其他神经元发送出生物信息,在轴突中电脉冲的传导速度可达到10~100米/秒。另一类突起——树突(输入),一般较短,但分枝很多,它能接收来自其他神经元的生物电信号,从而与轴突一起实现神经元之间的信息沟通。突起的作用是传递信息。 ◆通过“轴突---突触――树突”这样的路径,某一神经元就有可能和数百个以至更多的神经元沟通信息。那些具有很长轴突的神经元,更可将信息从一脑区传送到另一脑区。

?绝大多数神经元不论其体积﹑形状﹑功能如何,不论是记忆神经元还是运动神经元,均可分为一个输入(或感知)器官,一个代数求和器官,一个长距离传递器官和一个输出器官。见图1-2。 ?既然所有神经元的功能均是相近的,那么何以实现复杂的功能呢?答案是:无一功能是由单个神经元实现的,而是由许多神经元以不同的拓扑结构所共同产生的。这一平行处理性提高了神经网路系统的冗余度与可靠性。

成套电器设备安装接线基础知识培训教材解读

成套电器设备安装接线基础知识培训教材 培训教材 成套安装接线基础知识 作为一个从事成套电气设备行业的员工:要做好本职工作,他必须要掌握有关成套电器设备在用电配电系统中起的作用。同时懂得一些技术知识及最基本的装配、接线技能要求,做到安全生产、文明生产。要学会看懂、领会有关的图纸。图纸是工程技术界的共同语言,设计部门用图纸表达设计思想意图;生产部门用图纸指导加工与制造;使用部门用图纸指导使用、维修和管理;施工部门用图纸编制施工计划、准备材料组织施工等。 从事成套设备行业的员工要想做好本职工作,就必需要树立文明生产的观念。 在日常生产过程中处处以有关工艺要求来提高质量意识,明确质量就是企业的生命的重要性,要讲究工作效益,创造一个良好的工作环境,有了一个舒畅的工作环境,才能更好地提高工作效益,也就是要处处注意周围的环境卫生,同时在日常的工作中,同事之间要互相配合、互相尊重、互相关照;在技术方面要相互交流经验,不断完善自己,养成对完工工作任务做到自检、互检、后报检的良好工作习惯,来确保质量,为企业创造更好的效益。 要想做好本职工作:(1)每个员工必须做到应该知道什么?熟悉什么?能看懂什么?就成套电器产品而言,每个员工应该知道产品的结构形式、用途;应该熟悉产品的性能、内部的结构、主要的技术参数;应该看懂系统图(一次方案图)、平面布置图、原理图、二次接线安装图。(2 )每位员工必须知道什么是三按生产: 按图纸生产;按工艺生产;按技术规范生产。质量管理方面“五不”,①材料不合格不投料;②上道工序不 合格不流入下道工序;③零件、元器件不合格不装配;④装配不合格不检验;⑤检验不合格不出厂。在日常工作中要有一个比较合理的、完整的装配接线计划。电力的生产、输送、分配和使用,需大量的各种类型的电器设备,以构成电力发、输、配的主系统。这些设备主要是指发电机、变压器、隔离开关、断路器、电压互感器、电流互感器、电力电容器、避雷器、电缆、母 线等。它们在电力系统中通常称为一次设备,把这些设备连接在一起组成的电路称为一次接线,也称主接线, 也就是一次方案回路。为了使电力生产、传输、分 配和使用的各环节安全、可靠、连续、稳定、经济、灵活的运行,并随时监视其 工作情况,在主系统外还需装置相当数量的其它设备,如测量仪表、自动装置继电保护远动及控制信号器具等,这些设备通常与电流、电压互感器的二次绕组直流回路或厂用所用的低压回路连接起来,它们构成的回路称为二次回路,接线称二次接线。描述二次回路的图纸称为二次接线或二次回路(其中包括辅助回路)图。 二次接线的图纸一般有三种形式,即原理图、原理展开图和安装接线图(我们通常所用的是二次接线图)。 在二次接线图中所使用的图形符号和文字符号,它不但用于代表二次接线图中的各电器设备与元件的所在位置,而且反映它所发挥的作用。在二次接线图中,断路器、隔离开关、接触器的辅助触头及继电器的触点,所表示的位置是这些设备在正常状态的位置。所谓正常状态就是指断路器、隔离开关、接触器及继电器处于断路和失电状态。所谓常开、常闭触点是指这些设备在正常状态即断路或失电状态下辅助触点是短开或闭合 的。 二次接线的原理图是用来表示继电保护测量仪表、自动装置的工作原理的。通常是将二次接线和一次接线中与二次接线有关部分画在一起。在原理图上,所有仪表、继电器和其他电器都是以整体形式表示的,其相互联系的电流回路、电压回路、直流回路都是综合在一起,而且还表示有关的一次回路的部分。这种接线图的特点是能够使看图者对整个装置的构成和动作过程有一个明确的整体概念,

神经网络的基本原理

神经网络的基本原理 在神经网络系统中,其知识是以大量神经元互连和各互连的权值表示。神经网络映射辨识方法主要通过大量的样本进行训练,经过网络内部自适应算法不断调整其权值,以达到目的。状态识别器就隐含在网络中,具体就在互连形式与权值上。在网络的使用过程中,对于特定的输入模式,神经网络通过前向计算,产生一输出模式,通过对输出信号的比较和分析可以得到特定解。目前,神经网络有近40多种类型,其中BP 网络是最常用和比较重要的网络之一,本文就应用BP 网络进行齿轮计算中相应数据图表的识别映射。 BP 网络模型处理信息的基本原理是:输入信号X i 通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号Y k ,网络训练的每个样本包括输入向量X 和期望输出量t ,网络输出值Y 与期望输出值t 之间的偏差,通过调整输入节点与隐层节点的联接强度取值W ij 和隐层节点与输出节点之间的联接强度T jk 以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止。此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。 BP 网络的学习过程是通过多层误差修正梯度下降法进行的,称为误差逆传播学习算法。误差逆传播学习通过一个使误差平方和最小化过程完成输入到输出的映射。在网络训练时,每一个输入、输出模式集在网络中经过两遍传递计算:一遍向前传播计算,从输入层开始,传播到各层并经过处理后,产生一个输出,并得到一个该实际输出和所需输出之差的差错矢量;一遍反向传播计算,从输出层至输入层,利用差错矢量对连接权值和阀值,进行逐层修改。 经过训练好的BP 网络即可付诸应用。学习后的网络,其连接权值和阀值均已确定。此时,BP 模型就建立起来了。网络在回想时使用正向传播公式即可。 BP 网络由输入层结点,输出层结点和隐含层结点构成,相连层用全互连结构。图1为典型的三层结构网络模型。 图1 三层网络结构图 神经网络的工作过程主要分为两个阶段:一个是学习期,通过样本学习修改各权值,达到一稳定状态;一个是工作期,权值不变,计算网络输出。 BP 网络的学习过程由正向传播和反向传播两部分组成。在正向传播过程中,输入信息从输入层经隐含层单元逐层处理,并传向输出层,每一层神经元的状态只影响下一层神经元的状态。如果在输出层不能得到期望的输出,则转入反向传播,将误差信号沿原来的路径返回,通过修改各层神经元的权值,使得误差信号最小。当给定一输入模式 12(,,...,)m X x x x =和希望输出模式12(,,...,)n Y y y y = 时,网络的实际输出和实际误差,可用下列公式求出:

神经网络基本概念

二.神经网络控制 §2.1 神经网络基本概念 一. 生物神经元模型:<1>P7 生物神经元,也称作神经细胞,是构成神经系统的基本功能单元。虽然神经元的形态有极大差异,但基本结构相似。本目从信息处理和生物控制的角度,简述其结构和功能。 1.神经元结构 神经元结构如图2-1所示 图2-1

1) 细胞体:由细胞核、细胞质和细胞膜等组成。 2) 树突:胞体上短而多分支的突起,相当于神经元的输入端,接收传入的神经冲 动。 3) 轴突:胞体上最长枝的突起,也称神经纤维。端部有很多神经末梢,传出神经 冲动。 4) 突触:是神经元之间的连接接口,每一个神经元约有104~106 个突触,前一个 神经元的轴突末梢称为突触的前膜,而后一个神经元的树突称为突触的后膜。一个神经元通过其轴突的神经末梢经突触,与另一个神经元的树突连接,以实现信息传递。由于突触的信息传递是特性可变的,随着神经冲动传递方式的变化,传递作用强弱不同,形成了神经元之间连接的柔性,称为结构的可塑性。 5) 细胞膜电位:神经细胞在受到电的、化学的、机械的刺激后能产生兴奋,此时细胞膜内外由电位差,称为膜电位。其电位膜内为正,膜外为负。 2. 神经元功能 1) 兴奋与抑制:传入神经元的冲动经整和后使细胞膜电位提高,超过动作电 位的阈值时即为兴奋状态,产生神经冲动,由轴突经神经末梢传出。传入神经元的冲动经整和后使细胞膜电位降低,低于阈值时即为抑制状态,不产生神经冲动。 2) 学习与遗忘:由于神经元结构的可塑性,突触的传递作用可增强与减弱, 因此神经元具有学习与遗忘的功能。 二.人工神经元模型 ,<2>P96 人工神经元是对生物神经元的一种模拟与简化。它是神经网络的基本处理单元。图2-2显示了一种简化的人工神经元结构。它是一个多输入单输出的非线形元件。 图2-2 其输入、输出的关系可描述为 =-= n j i j ji i Q X W I 1 2-1 )I (f y i i = 其中i X (j=1、2、……、n)是从其他神经元传来的输入信号;

人工神经网络及其应用实例解读

人工神经网络及其应用实例人工神经网络是在现代神经科学研究成果基础上提出的一种抽 象数学模型,它以某种简化、抽象和模拟的方式,反映了大脑功能的 若干基本特征,但并非其逼真的描写。 人工神经网络可概括定义为:由大量简单元件广泛互连而成的复 杂网络系统。所谓简单元件,即人工神经元,是指它可用电子元件、 光学元件等模拟,仅起简单的输入输出变换y = σ (x)的作用。下图是 3 中常用的元件类型: 线性元件:y = 0.3x,可用线性代数法分析,但是功能有限,现在已不太常用。 2 1.5 1 0.5 -0.5 -1 -1.5 -2 -6 -4 -2 0 2 4 6 连续型非线性元件:y = tanh(x),便于解析性计算及器件模拟,是当前研究的主要元件之一。

离散型非线性元件: y = ? 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -6 -4 -2 2 4 6 ?1, x ≥ 0 ?-1, x < 0 ,便于理论分析及阈值逻辑器件 实现,也是当前研究的主要元件之一。 2 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -6 -4 -2 2 4 6

每一神经元有许多输入、输出键,各神经元之间以连接键(又称 突触)相连,它决定神经元之间的连接强度(突触强度)和性质(兴 奋或抑制),即决定神经元间相互作用的强弱和正负,共有三种类型: 兴奋型连接、抑制型连接、无连接。这样,N个神经元(一般N很大)构成一个相互影响的复杂网络系统,通过调整网络参数,可使人工神 经网络具有所需要的特定功能,即学习、训练或自组织过程。一个简 单的人工神经网络结构图如下所示: 上图中,左侧为输入层(输入层的神经元个数由输入的维度决定),右侧为输出层(输出层的神经元个数由输出的维度决定),输入层与 输出层之间即为隐层。 输入层节点上的神经元接收外部环境的输入模式,并由它传递给 相连隐层上的各个神经元。隐层是神经元网络的内部处理层,这些神 经元在网络内部构成中间层,不直接与外部输入、输出打交道。人工 神经网络所具有的模式变换能力主要体现在隐层的神经元上。输出层 用于产生神经网络的输出模式。 多层神经网络结构中有代表性的有前向网络(BP网络)模型、

BP神经网络基本原理

5.4 BP神经网络的基本原理 BP(Back Propagation)网络是1986年由Rumelhart和 McCelland为首的科学家小组提出,是一种按误差逆传播算 法训练的多层前馈网络,是目前应用最广泛的神经网络模型 之一。BP网络能学习和存贮大量的输入-输出模式映射关系, 而无需事前揭示描述这种映射关系的数学方程。它的学习规 则是使用最速下降法,通过反向传播来不断调整网络的权值 和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结 构包括输入层(input)、隐层(hide layer)和输出层(output layer)(如图5.2所示)。 5.4.1 BP神经元 图5.3给出了第j个基本BP神经元(节点),它只模仿了生物神经元所具有的三个最基本也是最重要的功能:加权、求和与转移。其中x1、x2…x i…x n分别代表来自神经元1、2…i…n 的输入;w j1、w j2…w ji…w jn则分别表示神经元1、2…i…n与第j个神经元的连接强度,即权值;b j为阈值;f(·)为传递函数;y j为第j个神经元的输出。 第j个神经元的净输入值为: (5.12) 其中: 若视,,即令及包括及,则

于是节点j的净输入可表示为: (5.13)净输入通过传递函数(Transfer Function)f (·)后,便得到第j个神经元的输出 : (5.14) 式中f(·)是单调上升函数,而且必须是有界函数,因为细胞传递的信号不可能无限增加,必有一最大值。 5.4.2 BP网络 BP算法由数据流的前向计算(正向传播)和误差信号的反向传播两个过程构成。正向传播时,传播方向为输入层→隐层→输出层,每层神经元的状态只影响下一层神经元。若在输出层得不到期望的输出,则转向误差信号的反向传播流程。通过这两个过程的交替进行,在权向量空间执行误差函数梯度下降策略,动态迭代搜索一组权向量,使网络误差函数达到最小值,从而完成信息提取和记忆过程。 5.4.2.1 正向传播 设 BP网络的输入层有n个节点,隐层有q个节点,输出层有m个节点,输入层与隐层之间的权值为,隐层与输出层之间的权值为,如图5.4所示。隐层的传递函数为f1(·),输出层的传递函数为f2(·),则隐层节点的输出为(将阈值写入求和项中):

相关主题
文本预览
相关文档 最新文档