当前位置:文档之家› 传输矩阵在物理学

传输矩阵在物理学

传输矩阵在物理学
传输矩阵在物理学

传输矩阵在物理学中的前沿应用

2013261021 李霄强

传输矩阵在物理学中的前沿应用

2013261021 李霄强

传输矩阵法(TMM) 就是将麦克斯韦方程组转换为传输矩阵的形式, 应用传输矩阵进行分析的方法。

为了了解传输矩阵的前沿应用,我查找并阅读了几篇关于传输矩阵应用的文献,这些都是使用传输矩阵解决问题。列如《传输矩阵法在行波管内部反射引起的增益波动计算中的应用》、《光纤光栅法布里-珀罗腔的V-I传输矩阵法研究》及《用传输矩阵法研究微波波段准一维同轴光子晶体能隙结构》。

在《传输矩阵法在行波管内部反射引起的增益波动计算中的应用》一文中,研究者分析了由于行波管慢波结构制造误差引入的多个不连续点对小信号增益的影响. 行波管内部反射对增益波动的影响, 须采用考虑反射波的四阶模型进行分析, 用传输矩阵法对节点处的自左至右入射和自右至左入射两种散射类型建立传输矩阵, 研究在不同空间电荷参量下, 慢波电路的单个反射节点以及慢波电路的皮尔斯速度参量b 和增益参量C 的多个随机分布不连续性对行波管小信号增益的影响。即通过传输矩阵可以将一个层面上的电磁波幅值与紧邻的另一个层面的电磁波幅值联系起来,如果知道了第一段入射波分布, 就可以利用传输矩阵法计算最后一段电磁波分布,将第一段电磁波幅值与最后一段电磁波幅值联系起来, 通过求解边界条件, 就可以求任一段电磁波幅值,也可以求出行波管的增益。

在《光纤光栅法布里-珀罗腔的V-I传输矩阵法研究》中,研究者要进行光纤光栅法布里-珀罗腔反射光谱特性的分析,由于目前对于结构简单的光栅构成的法布里-珀罗腔的特性分析多采用偶合模理论。但对于复杂结构的光栅,由于难以得到解析解,一般采用四阶的龙格-库塔方法进行数值求解或采用多层膜法进行分析计算。这两种方法都可以保证分析精度,但求解速度较慢。要快速实时获得光器件、光通信系统以及光传感系统的特性,由于庞大的运算量而引起耗费时间过长成为突出问题。研究者将V-I传输矩阵法用于光纤光栅法布里-珀罗腔反射光谱特性的分析,并建立了V-I传输矩阵模型。V-I传输矩阵法是2003年Capmany 基于多层膜方法提出的用于计算光纤光栅反射谱特性的方法,采用该模型对三种不同结构的光纤光栅法布里-珀罗腔在不同参数下的光谱特性进行分析,并与传统多层膜法的分析结果相比较,表明V-I传输矩阵法能够在保证分析精度的前提下大大节省运算时间。而且实验结果表明,V-I传输矩阵法对光纤光栅法布里-珀罗腔特性的分析结果比耦合模法更准确。这表明,传输矩阵法将会推动对级联光纤光栅、多法布里-珀罗腔级联的理论研究,并进一步发挥更大的作用。

在《用传输矩阵法研究微波波段准一维同轴光子晶体能隙结构》一文中,作者使用ABCD 传输矩阵传输线等效模型和布洛赫周期性边界条件分析计算了同轴准一维光子晶体中具有明显的光子带隙,而且计算结果与实验测试结果能很好地吻合。该文章中,作者写出了运用ABCD矩阵的详细过程。即利用ABCD传输矩阵与周期性边界条件分析输入变量和输出变量之间存在的关系,得到计算结果。

传输矩阵方法作为一种时域的数值方法,可以克服一般的频域分析方法所难以克服的问题,即(1)由于频域分析方法基于叠加原理,故而很难处理非线性问题。(2)不能处理具有时变特性的结构和介质的场问题。(3)由于一般的频域分析方法都要进行空间的傅里叶变换,故而很难处理具有复杂的,不规则的结构和边界的场问题。

传输矩阵方法也具有以下优点:(1)传输矩阵方法避免了求解复杂的方程组,因而不存在收敛与否,稳定与否和有无奇异解的问题。(2)物理概念清晰,非常便于计算机程序实现,而且程序的通用性很强。不同的结构、不同的介质只需改变相应的数据文件就可以计算。(3)可以用于分析高频(几十GHz到几百GHz的频率)、高速微波和数字电路的特性。

正是由于传输矩阵方法具有上述诸多优点,使得他一出现,就引起很大的反响。众多学者教授对其表现出很大热情,是的传输矩阵方法经过二十余年的发展,得以不断完善提高,同时其应用范围也不断扩大。

传输矩阵方法传统的应用领域有:

1、矩形波导的二维散射问题

2、二维本征值问题

3、三维本征位和混合场问题

而正在发展的应用领域有

1、运用传输矩阵法对一阶比例方程组和非线性常微分方程组进行求解

2、有源器件特性的模拟,包括半导体中电子的漂移,扩散和复合效应的模拟

3、半导体激光器及光通信系统的模拟

4、声学、电磁场、遥感及高温超导等方面

传输矩阵方法之所以得到迅速的发展的一个很重要的原因便是受益于计算机技术的发展。可以说没有计算机技术的发展和推广应用,就没有传输矩阵方法的发展。而未来的传输矩阵也必将与计算机技术紧密结合并长足发展!

计算机网络(第5版)课后习题答案:第2章 物理层

第二章物理层 2-01 物理层要解决哪些问题物理层的主要特点是什么 答:物理层要解决的主要问题: (1)物理层要尽可能地屏蔽掉物理设备和传输媒体,通信手段的不同,使数据链路层感觉不到这些差异,只考虑完成本层的协议和服务。 (2)给其服务用户(数据链路层)在一条物理的传输媒体上传送和接收比特流(一般为串行按顺序传输的比特流)的能力,为此,物理层应该解决物理连接的建立、维持和释放问题。(3)在两个相邻系统之间唯一地标识数据电路。 物理层的主要特点: ①由于在OSI之前,许多物理规程或协议已经制定出来了,而且在数据通信领域中,这些物理规程已被许多商品化的设备所采用,加之,物理层协议涉及的范围广泛,所以至今没有按OSI的抽象模型制定一套新的物理层协议,而是沿用已存在的物理规程,将物理层确定为描述与传输媒体接口的机械、电气、功能和过程特性。 ②由于物理连接的方式很多,传输媒体的种类也很多,因此,具体的物理协议相当复杂。 2-02 归层与协议有什么区别 答:规程专指物理层协议。 2-03 试给出数据通信系统的模型并说明其主要组成构建的作用。 答:源点:源点设备产生要传输的数据。源点又称为源站。 发送器:通常源点生成的数据要通过发送器编码后才能在传输系统中进行传输。 接收器:接收传输系统传送过来的信号,并将其转换为能够被目的设备处理的信息。 终点:终点设备从接收器获取传送过来的信息。终点又称为目的站。 传输系统:信号物理通道。 2-04 试解释以下名词:数据,信号,模拟数据,模拟信号,基带信号,带通信号,数字数据,数字信号,码元,单工通信,半双工通信,全双工通信,串行传输,并行传输。 答:数据:是运送信息的实体。 信号:则是数据的电气的或电磁的表现。 模拟数据:运送信息的模拟信号。 模拟信号:连续变化的信号。 基带信号(即基本频带信号):来自信源的信号。像计算机输出的代表各种文字或图像文件的数据信号都属于基带信号。 带通信号:把基带信号经过载波调制后,把信号的频率范围搬移到较高的频段以便在信道中传输(即仅在一段频率范围内能够通过信道)。 数字数据:取值为不连续数值的数据。 数字信号:取值为有限的几个离散值的信号。 码元(code):在使用时间域(或简称为时域)的波形表示数字信号时,代表不同离散数值的基本波形。 单工通信:即只有一个方向的通信而没有反方向的交互。 半双工通信:即通信和双方都可以发送信息,但不能双方同时发送(当然也不能同时接收)。这种通信方式是一方发送另一方接收,过一段时间再反过来。 全双工通信:即通信的双方可以同时发送和接收信息。

传递函数矩阵的状态空间最小实现

传递函数矩阵最小实现方法 降阶法人们在设计复杂系统时,总是希望在构造系统之前用模拟计算机或数字计算机对所设计的系统进行仿真,以检查系统性能是否达到指标要求。给定严格真传递函数矩阵G(s),为寻找一个维数最小的(A,B,C),使C(sl - A)」B二G(s),则称该(A,B,C )是G(s)的最小实现,也称为不可约实现。最小实现是系统实现的一种非常重要的实现方式,关于最小实现的特性,有下列几个重要结论: (1)( A,B,C )为严格真传递函数矩阵G(s)的最小实现的充要条件是(A,B) 能控且(A,C)能观测。 (2)严格真传递函数矩阵G(s)的任意两个最小实现(A,B,C)与(A,B,C5之 间必代数等价,即两个最小实现之间由非奇异线性变换阵T使得式子 A =T」AT, B =T J B, C =CT 成立。 (3)传递函数矩阵G(s)的最小实现的维数为G(s)的次数n.,或G(s)的极点多项式的最高次数。 为了寻求传递函数矩阵的最小实现,就意味着要把系统中不能控和不能观测的状态变量消去而不至于影响系统的传递函数。求最小实现的方法有三种: 1、降阶法。根据给定的传递函数矩阵G(s),第一步先写出满足G(s)的能控型实现,第二步从中找出能观测子系统;或者第一步先写出满足G(s)的能观测型实现,第二步从中找出能控子系统,均可求得最小实现。 2、直接求取约当型最小实现的方法。若G(s)诸元容易分解为部分分式形式,运用直接求取约当型最小实现的方法是较为方便的。 3用汉克尔矩阵法求取最小实现的方法。 下面主要研究降阶法(先求能控型再求能观测子系统的方法)并举例说明。 先求能控型再求能观测子系统的方法设(px q)传递函数矩阵G(s),且p v q时,

光子晶体原理及应用

一、绪论 1.1光子晶体的基本概念 光子晶体是由不同介电常数的介质材料在空间呈周期排布的结构,当电磁波受到调制而形成类似于电子的能带结构,这种能带结构称为光子能带。在合适的晶格常数和介电常数比的条件下,类似于电子能带隙,在光子晶体的光子能带间可出现使某些频率的电磁波完全不能透过的频率区域,将此频率区域称为光子带隙或光子禁带。人们又将光子晶体称为光子带隙材料。 与一般的电子晶体类似,光子晶体也有一维、二维、三维之分。一维光子晶体是介电常数不同的两种介质块交替堆积形成的结构。实际上,一维光子晶体已经被广泛应用,如法布里-珀罗腔光学多层的增反/透膜等。二维光子晶体是介电常数在二维空间呈周期性排列的结构。 光子晶体中存在光子禁带的物理机理是基于固体物理的布洛赫理论。 1.2光子带隙 光子在光子晶体中的行为类似于电子在半导体晶体中的行为,通过独特的光子禁带可改变光的行为。研究表明,光子带隙有完全光子带隙与不完全光子带隙的区分。所谓完全光子带隙,是指在一定频率范围内,无论其偏振方向及传播方向如何,光都禁止传播,或者说光在整个空间的所有传播方向上都有能隙,且每个方向上的能隙能互相重叠。所谓不完全光子带隙,则是相应于空间各方向上的能隙并不能完全重叠,或只在特定的方向上有能低折射率的介质在晶格中所占比率以及它们在空间的排列结构。总的来说,折射率差别越大带隙越大,能够达到的效率也就越高。 二、光子晶体的晶体结构和能带结构特性研究 2.1一维光子晶体的传输矩阵法 设一维光子晶体由两种材料周期性交替排列构成,通常称一维二元光子晶体,类似固体能带理论中的Kroning-penney模型,在空气中由A、B薄层交替构成一维人工周期性结构材料,其中A材料的折射率是na,厚度为ha,B材料的

计算机网络物理层复习题(带答案)

计算机网络物理层复习题 一、单选 1、网络接口卡的基本功能包括:数据转换、通信服务和 A、数据传输 B、数据缓存 C、数据服务 D、数据共享 2、在中继系统中,中继器处于 A、物理层 B、数据链路层 C、网络层 D、高层 3、各种网络在物理层互连时要求 A、数据传输率和链路协议都相同 B、数据传输率相同,链路协议可不同 C、数据传输率可不同,链路协议相同 D、数据传输率和链路协议都可不同 4、下面关于集线器的缺点描述的是. A 集线器不能延伸网络可操作的距离 B 集线器不能过滤网络流量 C 集线器不能在网络上发送变弱的信号 D 集线器不能放大变弱的信号 5、在同一个信道上的同一时刻,能够进行双向数据传送的通信方式是 C 。 A. 单工 B. 半双工 C. 全双工 D. 上述三种均不是 6、能从数据信号波形中提取同步信号的典型编码是 A.归零码 B.不归零码 C.定比码 D.曼彻斯特编码 7、计算机网络通信采用同步和异步两种方式,但传送效率最高的是 A.同步方式 B.异步方式C.同步与异步方式传送效率相同 D.无法比较 8、有关光缆陈述正确的是 A.光缆的光纤通常是偶数,一进一出 B.光缆不安全 C.光缆传输慢 D.光缆较电缆传输距离近 9、通过改变载波信号的相位值来表示数字信号1、0的方法叫做 A. ASK B. FSK C. PSK D. A TM 10、同轴电缆与双绞线相比,同轴电缆的抗干扰能力。 A、弱 B、一样 C、强 D、不能确定 11、ATM采用的线路复用方式为。 A、频分多路复用 B、同步时分多路复用 C、异步时分多路复用 D、独占信道 12、数据传输速率是描述数据传输系统的重要指标之一。数据传输速率在数值上等于每秒钟传输构成数据代码的二进制 A.比特数 B.字符数 C.桢数 D.分组数 13、将一条物理信道按时间分成若干时间片轮换地给多个信号使用,每一时间片由复用的一个信号占用,这样可以在一条物理信道上传输多个数字信号,这就是 A.频分多路复用 B.时分多路复用 C.空分多路复用 D.频分与时分混合多路复用 14.在同一个信道上的同一时刻,能够进行双向数据传送的通信方式是 A.单工 B.半双工 C.全双工 D.上述三种均不是 15、下面叙述正确的是 A.数字信号是电压脉冲序列 B.数字信号不能在有线介质上传输 C.数字信号可以方便地通过卫星传输 D.数字信号是表示数字的信号 16、数字传输的优点不包括 A.设备简单

传输矩阵法复习进程

传输矩阵法 一、 传输矩阵法概述 1. 传输矩阵 在介绍传输矩阵的模型之前,首先引入一个简单的电路模型。如图1(a)所示, 在(a)中若已知A 点电压及电路电流,则我们只需要知道电阻R ,便可求出B 点电压。传输矩阵具有和电阻相同的模型特性。 (a) (b) 图1 传输矩阵模型及电路模拟模型 如图1(b)所示,有这样的关系式存在: E 0=M(z)E 1。M(z)即为传输矩阵,它将介质前后空间的电磁场联系起来,这和电阻将A 、B 两点的电势联系起来的实质是相似的。 图2 多层周期性交替排列介质 传输矩阵法多应用于多层周期性交替排列介质(如图2所示), M(z)反映的介质前后空间电磁场之间的关系,而其实质是每层薄膜特征矩阵的乘积,若用 j M 表示第j 层的特征矩阵,则有: 1 2 3 4 …… j …… N

(1) 其中, (2) j δ为相位厚度,有 (3) 如公式(2)所示,j M 的表示为一个2×2的矩阵形式,其中每个矩阵元都没有任何实际物理意义,它只是一个计算结果,其推导过程将在第二部分给出。 2. 传输矩阵法 在了解了传输矩阵的基础上,下面将介绍传输矩阵法的定义: 传输矩阵法是将磁场在实空间的格点位置展开,将麦克斯韦方程组化成传输矩阵形式,变成本征值求解问题。 从其定义可以看出,传输矩阵法的实质就是将麦克斯韦方程转化为传输矩阵,也就是传输矩阵法的建模过程,具体如下:利用麦克斯韦方程组求解两个紧邻层面上的电场和磁场,从而可以得到传输矩阵,然后将单层结论推广到整个介质空间,由此即可计算出整个多层介质的透射系数和反射系数。 传输矩阵法的特点:矩阵元少(4个),运算量小,速度快;关键:求解矩阵元;适用介质:多层周期性交替排列介质。 二、 传输矩阵的基础理论——薄膜光学理论 1.麦克斯韦方程组 麦克斯韦方程组由四个场量:D 、E 、B 、H ,两个源量:J 、ρ以及反映它们之间关系的方程组成。而且由媒质方程中的参数ε、μ、σ反映介质对电磁场的影响。方程组的实质是描述电磁场的传播,即:一个变化的磁场引起邻近区域的电场变化,而此电场的变化又引起邻近磁场的变化,如此进行下去,便可抽象出电磁场的传播。如图3 所示。 ? ? ? ???==∏=D C B A M z M N j j 1)(????? ?????=j j j j j j j i i M δδηδηδcos sin sin cos j j j j d N θλπ δcos 2=ε

自动控制复习题

第一章绪论 1.自动控制理论的三个发展阶段是(经典控制理论、现代控制理论、 智能控制理论) 2.偏差量指的是(给定量)与反馈量相减后的输出量 3.负反馈是指将系统的(输出量)直接或经变换后引入输入端,与 (输入量)相减,利用所得的(偏差量)去控制被控对象,达到减少偏差或消除偏差的目的。 4.对控制系统的基本要求有(稳定性、快速性、准确性) 5.稳定性是系统正常工作的必要条件,,要求系统稳态误差(要小) 6.快速性要求系统快速平稳地完成暂态过程,超调量(要小),调节 时间(要短) 7.自动控制理论的发展进程是(经典控制理论、现代控制理论、智 能控制理论) 8.经典控制理论主要是以(传递函数)为基础,研究单输入单输出 系统的分析和设计问题 第二章自动控制系统的数学模型 1.数学模型是描述系统输出量,输入量及系统各变量之间关系的(数 学表达式) 2.传递函数的分母多项式即为系统的特征多项式,令多项式为零, 即为系统的特征方程式,特征方程式的根为传递函数的(极点),分子的形式的根是传递函数的(零点)

3. 惯性环节的传递函数为( 1 1 +Ts ) 4. 惯性环节的微分方程为(T ) () (t d t dc +c (t )=r(t) 5. 振荡环节的传递函数为(G (s )=n n s s 222 2ωζωω++) 6. 系统的开环传递函数为前向通道的传递函数与反馈通道的传递函数的(乘积) 7. 信号流图主要由(节点和支路)两部分组成 8. 前向通道为从输入节点开始到输出节点终止,且每个节点通过(一次)的通道 9. 前向通道增益等于前向通道中各个支路增益的(乘积) 10. 在线性定常系统中,当初始条件为零时,系统输出的拉氏变换与输入的拉氏变换之比称作系统的(传递函数) 11. 传递函数表示系统传递,变换输入信号的能力,只与(结构和参数)有关,与(输入输出信号形式)无关 12. 信号流图主要由两部分组成:节点和支路,下面有关信号流图的术语中,正确的是(B ) A . 节点表示系统中的变量或信号 B . 支路是连接两个节点的有向线段,支路上的箭头表示传递的方 向,传递函数标在支路上 C . 只有输出支路的节点称为输入节点,只有输入支路的节点为输 出节点,既有输入支路又有输出支路的节点称为混合节点 D . 前向通道为从输入节点开始到输出节点终止,且每个节点通过

传递矩阵-matlab程序

%main_critical.m %该程序使用Riccati传递距阵法计算转子系统的临界转速及振型 %本函数中均采用国际单位制 % 第一步:设置初始条件(调用函数shaft_parameters) %初始值设置包括:轴段数N,搜索次数M %输入轴段参数:内径d,外径D,轴段长度l,支撑刚度K,单元质量mm,极转动惯量Jpp[N,M,d,D,l,K,mm,Jpp]=shaft_parameters; % 第二步:计算单元的5个特征值(调用函数shaft_pra_cal) %单元的5个特征值: %m_k::质量 %Jp_k:极转动惯量 %Jd_k:直径转动惯量 %EI:弹性模量与截面对中性轴的惯性矩的乘积 %rr:剪切影响系数 [m_k,Jp_k,EI,rr]=shaft_pra_cal(N,D,d,l,Jpp,mm); % 第三步:计算剩余量(调用函数surplus_calculate),并绘制剩余量图 %剩余量:D1 for i=1:1:M ptx(i)=0; pty(i)=0; end for ii=1:1:M wi=ii/1*2+50; [D1,SS,Sn]=surplus_calculate(N,wi,K,m_k,Jp_k,JD_k,l,EI,rr); D1; pty(ii)=D1; ptx(ii)=w1 end ylabel(‘剩余量’); plot(ptx,pty) xlabel(‘角速度red/s’); grid on % 第四步:用二分法求固有频率及振型图 %固有频率:Critical_speed wi=50; for i=1:1:4 order=i [D1,SS,Sn]=surplus_calculate(N,wi,k,m_k,Jp_k,Jd_k,l,EI,rr); Step=1; D2=D1; kkk=1; while kkk<5000 if D2*D1>0 wi=wi+step;

传递函数矩阵的状态空间小实现

传递函数矩阵的状态空间最小实现

————————————————————————————————作者:————————————————————————————————日期:

传递函数矩阵最小实现方法 ——降阶法 人们在设计复杂系统时,总是希望在构造系统之前用模拟计算机或数字计算机对所设计的系统进行仿真,以检查系统性能是否达到指标要求。给定严格真传递函数矩阵()G s ,为寻找一个维数最小的(A,B,C ),使1()()C sI A B G s --=,则称该(A,B,C )是()G s 的最小实现,也称为不可约实现。最小实现是系统实现的一种非常重要的实现方式,关于最小实现的特性,有下列几个重要结论: (1)(A,B,C )为严格真传递函数矩阵()G s 的最小实现的充要条件是(A,B )能控且(A,C )能观测。 (2)严格真传递函数矩阵()G s 的任意两个最小实现(A,B,C )与(,,)A B C 之间必代数等价,即两个最小实现之间由非奇异线性变换阵T 使得式子 11,,A T AT B T B C CT --===成立。 (3)传递函数矩阵()G s 的最小实现的维数为()G s 的次数n δ,或()G s 的极点多项式的最高次数。 为了寻求传递函数矩阵的最小实现,就意味着要把系统中不能控和不能观测的状态变量消去而不至于影响系统的传递函数。求最小实现的方法有三种: 1、降阶法。根据给定的传递函数矩阵()G s ,第一步先写出满足()G s 的能控型实现,第二步从中找出能观测子系统;或者第一步先写出满足()G s 的能观测型实现,第二步从中找出能控子系统,均可求得最小实现。 2、直接求取约当型最小实现的方法。若()G s 诸元容易分解为部分分式形式,运用直接求取约当型最小实现的方法是较为方便的。 3用汉克尔矩阵法求取最小实现的方法。 下面主要研究降阶法(先求能控型再求能观测子系统的方法)并举例说明。 先求能控型再求能观测子系统的方法设(p ×q )传递函数矩阵()G s ,且p <q 时,优先采用本法。取出()G s 的第j 列,记为j ()G s ,是j u 至()y s 的传递函

传输矩阵在物理学

传输矩阵在物理学中的前沿应用 2013261021 李霄强

传输矩阵在物理学中的前沿应用 2013261021 李霄强 传输矩阵法(TMM) 就是将麦克斯韦方程组转换为传输矩阵的形式, 应用传输矩阵进行分析的方法。 为了了解传输矩阵的前沿应用,我查找并阅读了几篇关于传输矩阵应用的文献,这些都是使用传输矩阵解决问题。列如《传输矩阵法在行波管内部反射引起的增益波动计算中的应用》、《光纤光栅法布里-珀罗腔的V-I传输矩阵法研究》及《用传输矩阵法研究微波波段准一维同轴光子晶体能隙结构》。 在《传输矩阵法在行波管内部反射引起的增益波动计算中的应用》一文中,研究者分析了由于行波管慢波结构制造误差引入的多个不连续点对小信号增益的影响. 行波管内部反射对增益波动的影响, 须采用考虑反射波的四阶模型进行分析, 用传输矩阵法对节点处的自左至右入射和自右至左入射两种散射类型建立传输矩阵, 研究在不同空间电荷参量下, 慢波电路的单个反射节点以及慢波电路的皮尔斯速度参量b 和增益参量C 的多个随机分布不连续性对行波管小信号增益的影响。即通过传输矩阵可以将一个层面上的电磁波幅值与紧邻的另一个层面的电磁波幅值联系起来,如果知道了第一段入射波分布, 就可以利用传输矩阵法计算最后一段电磁波分布,将第一段电磁波幅值与最后一段电磁波幅值联系起来, 通过求解边界条件, 就可以求任一段电磁波幅值,也可以求出行波管的增益。 在《光纤光栅法布里-珀罗腔的V-I传输矩阵法研究》中,研究者要进行光纤光栅法布里-珀罗腔反射光谱特性的分析,由于目前对于结构简单的光栅构成的法布里-珀罗腔的特性分析多采用偶合模理论。但对于复杂结构的光栅,由于难以得到解析解,一般采用四阶的龙格-库塔方法进行数值求解或采用多层膜法进行分析计算。这两种方法都可以保证分析精度,但求解速度较慢。要快速实时获得光器件、光通信系统以及光传感系统的特性,由于庞大的运算量而引起耗费时间过长成为突出问题。研究者将V-I传输矩阵法用于光纤光栅法布里-珀罗腔反射光谱特性的分析,并建立了V-I传输矩阵模型。V-I传输矩阵法是2003年Capmany 基于多层膜方法提出的用于计算光纤光栅反射谱特性的方法,采用该模型对三种不同结构的光纤光栅法布里-珀罗腔在不同参数下的光谱特性进行分析,并与传统多层膜法的分析结果相比较,表明V-I传输矩阵法能够在保证分析精度的前提下大大节省运算时间。而且实验结果表明,V-I传输矩阵法对光纤光栅法布里-珀罗腔特性的分析结果比耦合模法更准确。这表明,传输矩阵法将会推动对级联光纤光栅、多法布里-珀罗腔级联的理论研究,并进一步发挥更大的作用。 在《用传输矩阵法研究微波波段准一维同轴光子晶体能隙结构》一文中,作者使用ABCD 传输矩阵传输线等效模型和布洛赫周期性边界条件分析计算了同轴准一维光子晶体中具有明显的光子带隙,而且计算结果与实验测试结果能很好地吻合。该文章中,作者写出了运用ABCD矩阵的详细过程。即利用ABCD传输矩阵与周期性边界条件分析输入变量和输出变量之间存在的关系,得到计算结果。 传输矩阵方法作为一种时域的数值方法,可以克服一般的频域分析方法所难以克服的问题,即(1)由于频域分析方法基于叠加原理,故而很难处理非线性问题。(2)不能处理具有时变特性的结构和介质的场问题。(3)由于一般的频域分析方法都要进行空间的傅里叶变换,故而很难处理具有复杂的,不规则的结构和边界的场问题。 传输矩阵方法也具有以下优点:(1)传输矩阵方法避免了求解复杂的方程组,因而不存在收敛与否,稳定与否和有无奇异解的问题。(2)物理概念清晰,非常便于计算机程序实现,而且程序的通用性很强。不同的结构、不同的介质只需改变相应的数据文件就可以计算。(3)可以用于分析高频(几十GHz到几百GHz的频率)、高速微波和数字电路的特性。

物理层之传输媒体

传输媒体可分为两大类,导引型传输媒体和非导引型传输媒体。 在导引型传输媒体中,电磁波被导引沿着固体媒体(铜线或光纤)传播;非导引型传输媒体就是指自由空间,在非导引传输媒体中电磁波的传输常成为无线传输。 常用的导引传输媒体有以下几种。 1.双绞线:最古老又是最常用的传输媒体,就是把两根互相绝缘的铜导线并排放在一起, 然后用规则的方法绞合起来。双绞线的价格便宜且性能也不错,其通信距离一般为几到几十公里,使用十分广泛。分为屏蔽双绞线和无屏蔽双绞线两大类,后者更加便宜,但传输距离和抗干扰性能比不上前者。 2.同轴电缆:由内导体铜质芯线(单股实心线或多股绞合线)、绝缘层、网状编织的外导 体屏蔽层(也可以是单股的)以及保护塑料外层所组成。由于外导体屏蔽层的作用,同轴电缆具有很好的抗干扰特性,被广泛用于传输较高速率的数据。在局域网的初期曾广泛的使用同轴电缆作为传输媒体。但随着技术的进步,在局域网领域基本上都采用双绞线作为传输媒体。目前同轴电缆主要用在有线电视网的居民小区中,同轴电缆的带宽取决于电缆的质量,目前高质量的同轴电缆的带宽已接近1GHz。 3.光缆:利用光导纤维(以下简称光纤)传递光脉冲来进行通信。光纤不仅具有通信容量 非常大的特点,而且还具有其他的一些特点:(1)传输损耗小,中继距离长,对远距离传输特别经济。(2)抗雷电和电磁干扰性能好。这有在大电流脉冲干扰的条件下尤为重要。(3)无串音干扰,保密性好,也不易被窃听或截取数据。(4)体积小,重量轻。4.架空明线:安装简单但通信质量差,受气候环境等影响较大。 非导引型传输媒体 非导引型传输媒体就是利用无线电波在自由空间的传播就可以较快的实现多种的通信。最近十几年无线电通信发展的特别快,因为利用无线信道进行信息的传输,是在运动中通信的唯一手段。 无线传输可使用的频段很广。例如:短波通信:通信距离远,但通信质量较差。微波波段:直线传播,其主要特点是(1)频率很高,频段范围也很宽。(2)传输质量较高。(3)投资少,见效快,易于跨越山区、江河。缺点:(1)相邻站之间必须直视,不能有障碍物,否则可能失真。(2)也会受到恶劣天气的影响。(3)隐蔽性和保密性较差。(4)对大量中继站的使用和维护要耗费较多的人力和物力。

8 传递函数矩阵的零极点

第七章:矩阵分式描述 传递函数矩阵的矩阵分式描述是复出频域理论中表征线性时不变系统输入输出关系的一种基本模型。 采用矩阵分式描述(MFD )和多项式矩阵理论可使线性时不变系统的频域分析和综合的理论和方法简便和实用。 主要介绍:1、矩阵分式描述的形式和构成 2、矩阵分式描述的真性和严真性 3、矩阵分式描述的不可简约性 7-1 矩阵分式描述的基本概念 矩阵分式描述(MFD )的实质:就是把有理分式矩阵形式的传递函数矩阵G(s)表示为两个多项式矩阵之比。 MFD 形式上是对标量有理分式形式传递函数g(s)相应表示的一种推广 右MFD : 对p 输入,q 输出线性时不变系统。有理分式矩阵G(s),存在多项式矩阵p q s N ?)(和多项式矩阵p p s D ?)(使下式成立: 称p p p q s D s N ?-?)()(1为G(s)的一个右MFD 。 左MFD :p q L q q L p q s N s D s G ??-?=)()()(1 称p q L q q L s N s D ??-)()(1 为G(s)的一个左MFD 。 例:8.1 构造G(s)的一个右MFD ,=)(s G ?? ???++++?????210 210 1 1 2s s s s s s 方法:先确定各列的最小公分母,)2(1+=s s d c 22s d c = )2(3+=s d c 1 2 22)2(10)1(012210 ) 2() 1(01 ) 2(2)(-???? ? ?????++?? ???+++???? ? =?????++++++????? =s s s s s s s s s s s s s s s s s s s G p p p q p q s D s N s G ?-??=)()()(1

自动控制原理典型习题含答案

自动控制原理习题 一、(20分) 试用结构图等效化简求下图所示系统的传递函数 ) ()(s R s C 。 解: 所以: 3 2132213211)()(G G G G G G G G G G s R s C +++= 二.(10分)已知系统特征方程为06363234=++++s s s s ,判断该系统的稳定性,若 闭环系统不稳定,指出在s 平面右半部的极点个数。(要有劳斯计算表) 解:劳斯计算表首列系数变号2次,S 平面右半部有2个闭环极点,系统不稳定。 三.(20分)如图所示的单位反馈随动系统,K=16s -1,T=0.25s,试求: (1)特征参数n ωξ,; (2)计算σ%和t s ; (3)若要求σ%=16%,当T 不变时K 应当取何值 解:(1)求出系统的闭环传递函数为: 因此有: (2) %44%100e %2 -1-=?=ζζπ σ (3)为了使σ%=16%,由式

可得5.0=ζ,当T 不变时,有: 四.(15分)已知系统如下图所示, 1.画出系统根轨迹(关键点要标明)。 2.求使系统稳定的K 值范围,及临界状态下的振荡频率。 解 ① 3n =,1,2,30P =,1,22,1m Z j ==-±,1n m -= ②渐进线1条π ③入射角 同理 2?2135sr α=-? ④与虚轴交点,特方 32220s Ks Ks +++=,ωj s =代入 222K K -0=1K ?= ,s = 所以当1K > 时系统稳定,临界状态下的震荡频率为ω 五.(20分)某最小相角系统的开环对数幅频特性如下图所示。要求 (1) 写出系统开环传递函数; (2) 利用相角裕度判断系统的稳定性; (3) 将其对数幅频特性向右平移十倍频程,试讨论对系统性能的影响。

传递函数矩阵的状态空间最小实现

传递函数矩阵最小实现方法 ——降阶法 人们在设计复杂系统时,总是希望在构造系统之前用模拟计算机或数字计算机对所设计的系统进行仿真,以检查系统性能是否达到指标要求。给定严格真传递函数矩阵()G s ,为寻找一个维数最小的(A,B,C ),使1()()C sI A B G s --=,则称该(A,B,C )是()G s 的最小实现,也称为不可约实现。最小实现是系统实现的一种非常重要的实现方式,关于最小实现的特性,有下列几个重要结论: (1)(A,B,C )为严格真传递函数矩阵()G s 的最小实现的充要条件是(A,B )能控且(A,C )能观测。 (2)严格真传递函数矩阵()G s 的任意两个最小实现(A,B,C )与(,,)A B C 之间必代数等价,即两个最小实现之间由非奇异线性变换阵T 使得式子 11,,A T AT B T B C CT --===成立。 (3)传递函数矩阵()G s 的最小实现的维数为()G s 的次数n δ,或()G s 的极点多项式的最高次数。 为了寻求传递函数矩阵的最小实现,就意味着要把系统中不能控和不能观测的状态变量消去而不至于影响系统的传递函数。求最小实现的方法有三种: 1、降阶法。根据给定的传递函数矩阵()G s ,第一步先写出满足()G s 的能控型实现,第二步从中找出能观测子系统;或者第一步先写出满足()G s 的能观测型实现,第二步从中找出能控子系统,均可求得最小实现。 2、直接求取约当型最小实现的方法。若()G s 诸元容易分解为部分分式形式,运用直接求取约当型最小实现的方法是较为方便的。 3用汉克尔矩阵法求取最小实现的方法。 下面主要研究降阶法(先求能控型再求能观测子系统的方法)并举例说明。 先求能控型再求能观测子系统的方法设(p ×q )传递函数矩阵()G s ,且p <q 时,优先采用本法。取出()G s 的第j 列,记为j ()G s ,是j u 至()y s 的传递函

用传输矩阵法计算一维光子晶体的带隙特性研究

一维光子晶体带隙特性研究1103011013 黄蓓粉体一班 摘要:光子晶体是20世纪80年代末提出的新概念和新型人工微结构光学材料。光子晶体以光子禁带的存在为主要特征,其典型结构为一个折射率周期变化的物体。一维光子晶体是光子晶体最基本的构型,其折射率在一维空间方向上呈周期性分布。一维光子晶体结构简单、易于制备,同时具备二维、三维光子晶体的性质,极有可能成为全光通信领域中的关键材料,因此具有较高的理论价值和广泛的应用前景。 关键词:光子带隙特征矩阵规律 1 引言 光子晶体是一种折射率周期变化的人工微结构材料,其典型结构为一个折射率周期变化的三维物体,周期为光波长量级. 光子在光子晶体中传播存在光子带隙.,频率落在光子带隙的电磁波不能在光子晶体中传播,光子晶体的这种特性具有极大的理论价值和潜在的应用前景。在光子晶体中掺杂后,会在光子能隙中引入局域模式,这将给激光技术和非线性光学等带来全新的应用,如制作零阈值激光器、光滤波器、慢光缓存器、慢光传感器等。 理论研究发现,对于含有缺陷的一维光子晶体,在光子禁带(PBG:Photonic Band Gap)的带边和缺陷模对应的频率位置,

光的传输具有极低的群速度,Scalorta 等人发现在带边处,光脉冲传输速度可以降低到c/17(c 为真空中光速),大约为1.76×107m/s 。 光子晶体的理论计算已相对成熟 ,本文旨在应用现有的计算方 法,建立一维光子晶体模型并讨论一维光子晶体在不同结构参数和参数下的光学传输特性。 2方法与原理 2.1模型的建立 一维光子晶体由两种不同相对介电常量 (εa ,εb ) 、厚度( a , b) 的薄介质层交替排列构成的一维周期性结构 材料. 如图 1 所示 ,空间周期为 d = a + b ,一束频率 为 ω的光从左向右正入射到图中所示的一维周期 性结构材料中. 将光波在介质层中的行 进看作是正向行进电磁波 (下行波) 和反向行进电磁 波 (上行波) 的叠加. 介质交界面处的电磁场满足边 界条件. 每一介质层与光波的相互作用可由其矩阵完全决定. 介质层两边的场矢量 E Ⅰ , H Ⅰ , E H Ⅱ的模可用特征矩阵联系起来 : E E M H H I II I II ????=????????

改进传递矩阵法

JOURNAL OF SOUND AND VIBRATION Journal of Sound and Vibration 289(2006)294–333 A modi?ed transfer matrix method for the coupling lateral and torsional vibrations of symmetricrotor-bearing systems Sheng-Chung Hsieh a ,Juhn-Horng Chen b ,An-Chen Lee a,? a Department of Mechanical Engineering,National Chiao Tung University,1001Ta Hsueh Road, Hsinchu 30049,Taiwan,ROC b Department of Mechanical Engineering,Chung Hua University,Taiwan,ROC Received 27January 2004;received in revised form 9August 2004;accepted 8February 2005 Available online 28April 2005 Abstract This study develops a modi?ed transfer matrix method for analyzing the coupling lateral and torsional vibrations of the symmetricrotor-bearing system with an external torque.Euler’s angles are used to describe the orientations of the shaft element and disk.Additionally,to enhance accuracy,the symmetric rotating shaft is modeled by the Timoshenko beam and considered using a continuous-system concept rather than the conventional ‘‘lumped system’’concept.Moreover,the harmonic balance method is adopted in this approach to determine the steady-state responses comprising the synchronous and superharmonic whirls.According to our analysis,when the unbalance force and the torque with n ?frequency of the rotating speed excite the system simultaneously,the en t1T?and en à1T?whirls appear along with the synchronous whirl.Finally,several numerical examples are presented to demonstrate the applicability of this approach. r 2005Elsevier Ltd.All rights reserved. 1.Introduction Rotor dynamics plays an important role in many engineering ?elds,such as gas turbine,steam turbine,reciprocating and centrifugal compressors,the spindle of machine tools,and so on.Owing to the growing demands for high power,high speed,and light weight of the rotor-bearing https://www.doczj.com/doc/2312770288.html,/locate/jsvi 0022-460X/$-see front matter r 2005Elsevier Ltd.All rights reserved.doi:10.1016/j.jsv.2005.02.004 ?Corresponding author.Tel.:+88635728513;fax:88635725372. E-mail address:aclee@https://www.doczj.com/doc/2312770288.html,.tw (An-Chen Lee).

自动控制原理习题及其解答-第三章

第三章 例3-1 系统的结构图如图3-1所示。 已知传递函数 )12.0/(10)(+=s s G 。 今欲采用加负反馈的办法,将过渡过程时间t s 减小为原来的0.1倍,并保证总放大系数不变。试确定参数K h 和K 0的数值。 解 首先求出系统的传递函数φ(s ),并整理为标准式,然后与指标、参数的条件 对照。 一阶系统的过渡过程时间t s 与其时间常数成正比。根据要求,总传递函数应为 ) 110/2.0(10 )(+= s s φ 即 H H K s K s G K s G K s R s C 1012.010)(1)()()(00++=+= )()11012.0(101100s s K K K H H φ=+++= 比较系数得 ??? ??=+=+10 10110101100 H H K K K 解之得 9.0=H K 、100=K 解毕。 例3-10 某系统在输入信号r (t )=(1+t )1(t )作用下,测得输出响应为: t e t t c 109.0)9.0()(--+= (t ≥0) 已知初始条件为零,试求系统的传递函数)(s φ。 解 因为 22111)(s s s s s R +=+= )10()1(10109.09.01)]([)(22 ++=+-+= =s s s s s s t c L s C 故系统传递函数为

1 1.01 )()()(+== s s R s C s φ 解毕。 例3-3 设控制系统如图3-2所示。 试分析参数b 的取值对系统阶跃响应动态性能的影响。 解 由图得闭环传递函数为 1 )()(++= s bK T K s φ 系统是一阶的。动态性能指标为 ) (3)(2.2)(69.0bK T t bK T t bK T t s r d +=+=+= 因此,b 的取值大将会使阶跃响应的延迟时间、上升时间和调节时间都加长。解毕。 例 3-12 设二阶控制系统的单位阶跃响应曲线如图3-34所示。试确定系统的传递函数。 解 首先明显看出,在单位阶跃作用下响应的稳态值为3,故此系统的增益不是1, 而是3。系统模型为 22 223)(n n n s s s ω ξωωφ++= 然后由响应的%p M 、p t 及相应公式,即可换算出ξ、n ω。 %333 3 4)()()(%=-=∞∞-=c c t c M p p 1.0=p t (s ) 1+Ts K bs 4 3 0 0.1 t 图3-34 二阶控制系统的单位阶跃 响应 h (t )

计算机网络答案(第五版)-谢希仁-第二章物理层

第二章物理层 2-01 物理层要解决什么问题?物理层的主要特点是什么? (1)物理层要解决的主要问题: ①.物理层要尽可能屏蔽掉物理设备、传输媒体和通信手段的不同,使上面的数据链路层感觉不到这些差异的存在,而专注于完成本曾的协议与服务。 ②.给其服务用户(数据链路层)在一条物理的传输媒体上传送和接收比特流(一般为串行按顺序传输的比特流)的能力。为此,物理层应解决物理连接的建立、维持和释放问题。 ③.在两个相邻系统之间唯一地标识数据电路。 (2)物理层的主要特点: ①.由于在OSI 之前,许多物理规程或协议已经制定出来了,而且在数据通信领域中,这些物理规程已被许多商品化的设备锁采用。加之,物理层协议涉及的范围广泛,所以至今没有按OSI 的抽象模型制定一套心的物理层协议,而是沿用已存在的物理规程,将物理层确定为描述与传输媒体接口的机械、电气、功能和规程特性。②.由于物理连接的方式很多,传输媒体的种类也很多,因此,具体的物理协议相当复 杂。 2-02 规程与协议有什么区别? 答:在数据通信的早期,对通信所使用的各种规则都称为“规程”(procedure),后来具有体系结构的计算机网络开始使用“协议”(protocol)这一名词,以前的“规程”其实就是“协议”,但由于习惯,对以前制定好的规程有时仍常用旧的名称“规程”。2-03 试给出数据通信系统的模型并说明其主要组成构件的作用。 答:一个数据通信系统可划分为三大部分: 源系统(或发送端)、传输系统(或传输网络)、和目的系统(或接收端)。源系统一般包括以下两个部分:?源点:源点设备产生要传输的数据。例如正文输入到PC 机,产生输出的数字比特流。 ?发送器:通常源点生成的数据要通过发送器编码后才能在传输系统中进行传输。例如,调制解调器将PC 机输出的数字比特流转换成能够在用户的电话线上传输的模拟信号。 ?接收器:接收传输系统传送过来的信号,并将其转换为能够被目的设备处理的信息。例如,调制解调器接收来自传输线路上的模拟信号,并将其转换成数字比特流。计算机调制解调器调制解调器计算机数字比特流模拟信号模拟信号数字比特流 正文正文源点发送器传输系统接收器终点输入信息输入数据发送的信号接收的信号输出数据输出信息源系统传输系统目的系统 数据通信系统数据通信系统的模型公用电话网?终点:终点设备从接收器获取传送过来的信息。 2-04 试解释以下名词:数据、信号、模拟数据、模拟信号、基带信号、带通信号、数字数据、数字信号、码元、单工通信、半双工通信、全双工通信、串行传输、并行传输。答:数据:是运送信息的实体。信号:则是数据的电气的或电磁的表现。 模拟数据:运送信息的模拟信号。 模拟信号:连续变化的信号。 基带信号:来自信源的信号。 带通信号:经过载波调制后的信号。 数字信号:取值为有限的几个离散值的信号。 数字数据:取值为不连续数值的数据。 码元:在使用时间域的波形表示数字信号时,代表不同离散数值的基本波形 单工通信:即只有一个方向的通信而没有反方向的交互。半双工通信:即通信和双方都可以发送信息,但不能双方同时发送(当然也不能同时接收)。这种通信方式是一方发送另一方接收,过一段时间再反过来。 全双工通信:即通信的双方可以同时发送和接收信息。基带信号(即基本频带信号)——来自信源的信号。像计算机输出的代表各种文字或图像文件的数据信号都属于基带信号。带通信号——把基带信号经过载波调制后,把信号的频率范围搬移到较高的频段以便在信道 中传输(即仅在一段频率范围内能够通过信道)。 2-05 物理层的接口有哪几个特性?各包含什么内容? 答:(1)机械特性:指明接口所用的接线器的形状和尺寸、引线数目和排列、固定和锁定装置等等。 (2)电气特性:指明在接口电缆的各条线上出现的电压的范围。 (3)功能特性:指明某条线上出现的某一电平的电压表示何意。 (4)规程特性:说明对于不同功能的各种可能事件的出现顺序。 2-06 数据在信道中的传输速率受哪些因素的限制?信噪比能否任意提高?香农公式在数据通信中的意义是什么?“比特/秒”和“码元/秒”有何区别? 答:限制码元在信道上的传输速率的因素有以下两个:(1)在任何信道中,码元传输速率是有上限的,传输速率超过此上限,就会出现严重的码元间串扰的问题,使接收端对码元的判决(即识别)成为不可能。 (2)由于噪声会使接收端对码元的判决产生错误(1 判决为0 或0 判决为1)。所以信噪比要限制在一定范围内。由香农公式可知,信息传输速率由上限。信噪比越大,量化性能越好;均匀量化的输出信噪比随量化电平数的增加而提高;非均匀量化的信号量噪比,例如PCM 随编码位数N 指数规律增长,DPCM 与频率有关等。但实际信噪比不能任意提高,都有一定限制。例如增加电平数会导致接收机的成本提高,制作工艺 复杂等。香农公式的意义在于:只要信息传输速率低于信

相关主题
文本预览
相关文档 最新文档