当前位置:文档之家› 牛顿望远镜实验报告

牛顿望远镜实验报告

牛顿望远镜实验报告
牛顿望远镜实验报告

实验一、牛顿望远镜

1.实验目的

学习运用ZEMAX综合性的光学仿真软件,将实际光学系统的设计概念、优化、分析、公差以及报表整合在一起。

通过ZEMAX软件的仿真应用,对牛顿望远镜的原理进行深层次的了解,并加深对牛顿望远镜使用的熟练度。

2.基本原理

ZEMAX光学设计程序是一个完整的光学设计软件,是将实际光学系统的设计概念,优化,分析,公差以及报表集成在一起的一套综合性的光学设计仿真软件。包括光学设计需要的所有功能,可以在实践中对所有光学系统进行设计,优化,分析,并具有容差能力,所有这些强大的功能都直观的呈现于用户界面中。ZEMAX功能强大,速度快,灵活方便,是一个很好的综合性程序。ZEMAX能够模拟连续和非连续成像系统及非成像系统。

牛顿反射望远镜采用抛物面镜作为主镜,光进入镜筒的底端,然后折回开口处的第二反射镜(平面的对角反射镜),再次改变方向进入目镜焦平面。目镜为便于观察,被安置靠近望远镜镜筒顶部的侧方。

由于光学系统的原理,牛顿望远镜的成像是一个倒像,倒像并不影响天文观测,因此牛顿反射望远镜是天文学使用的最佳选择。通过正像镜等附加镜头,可以将图像校正过来,但会降低成像质量。

3.系统结构

一个1000mm F/5的望远镜,这暗指需要一个曲率半径为2000mm的镜面,和一个200mm的孔径。光阑面的曲率半径列Radius,输入

-2000.0,负号表示为凹面。现在在同一个面上输入厚度值Thickness-1000,这个负号表示通过镜面折射后,光线将往“后方”传递.“Glass”列输入“MIRROR”,输入一个200的孔径值. ZEMAX使用的缺省值是波长550,视场角0.光源为无穷远处。

4.像质分析

该牛顿望远镜系统需要在前面设置一个面挡板,挡住一部分回散的光(该挡板的直径要适宜)。

标准点列图Spot Diagram。

光线密度有一个依据视场数目,规定的波长数目和可利用的内存的最大值。列在曲线上的每个视场点的GEO点尺寸是参考点(参考点可以是主波长的主光线,所有被追寻的光线的重心。或点集的中点)到距离参考点最远的光线的距离。GEO点尺寸是包含了所有光线交点的以参考点为中心的圆的半径。

RMS点尺寸是径向尺寸的均方根。先把每条光线和参考点之间的距离的平方,求出所有光线的平均值,然后取平方根。点列图的RMS 尺寸取决于每一根光线,因而他给出光线扩散的粗略概念。

本实验中RMS : 77.6um

定义抛射面

我们原先所输入的2000这个曲率半径只是定义了一个球形,我们需要一个锥形常量-1来定义抛物线。

目的:显示作为光瞳坐标函数的光线像差。

横向特性曲线是用光线光瞳的y坐标的函数表示的横向光线像差的x 或y分量。缺省选项是画出像差的y分量曲线。但是由于横向像差是矢量,他不能完整的描述像差。绘图的数据时光线坐标和主光线坐标之差。另外,像差曲线仅仅表示了通过光瞳的两个切面的状况,而不是整个光瞳。

这个高像质的图象所处的位置并不好。由于像处在入射光路的光程中,图象无法接收。这通常在主镜面后安放一个转折光线用的反射面来调整,反射镜面以45度的角度倾斜,将像从光轴上往外转出来。为了使用转折面,我们首先必须定下它该安放在哪儿。由于入射的光束为200mm宽,我们所需要的像平面至少要离开光轴100mm。我们选择200mm,因此折叠镜面必须距主反射面有800mm。

另外一些图:

5.系统优化

优化后图

目的:通过调整后截距对光学系统快速调焦。

选择编辑》优化函数。弹出窗口选择工具》默认优化函数弹出窗口执行最终优化。

大学物理仿真实验报告牛顿环法测曲率半径

大学物理仿真实验报告-牛顿环法测曲率半径

————————————————————————————————作者: ————————————————————————————————日期:

大学物理仿真实验报告 实验名称 牛顿环法测曲率半径 班级: 姓名: 学号: 日期:

牛顿环法测曲率半径 实验目的 1.学会用牛顿环测定透镜曲率半径。 2.正确使用读书显微镜,学习用逐差法处理数据。 实验原理 如下图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光程差等于膜厚度e的两倍。此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差π,与之对应的光程差为λ/2 ,所以相干的两条光线还具有λ/2的附加光程差,总的光程差为 (1) 当?满足条件(2) 时,发生相长干涉,出现第K级亮纹,而当 (k = 0,1,2…) (3) 时,发生相消干涉,出现第k级暗纹。因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。 如图所示,设第k级条纹的半径为,对应的膜厚度为,则

(4) 在实验中,R的大小为几米到十几米,而的数量级为毫米,所以R>> ek,ek 2相对于2Re 是一个小量,可以忽略,所以上式可以简化为 k (5) 如果rk是第k级暗条纹的半径,由式(1)和(3)可得 (6) 代入式(5)得透镜曲率半径的计算公式 (7) 对给定的装置,R为常数,暗纹半径 (8) 和级数k的平方根成正比,即随着k的增大,条纹越来越细。 同理,如果r k是第k级明纹,则由式(1)和(2)得 (9) 代入式(5),可以算出 (10)

插值法数值上机实验报告

插值法数值上机实验报告 实验题目: 利用下列条件做插值逼近,并与R (x) 的图像比较 考虑函数:R x y=1 1+x2 (1)用等距节点X i=?5+i,i=0,1,...,10.给出它的10次Newton插值多项式的图像; π),i=0,1,...,20.给出它的20次Lagrange插值多项式(2)用节点X i=5cos(2i+1 42 的图像; (3)用等距节点X i=?5+i,i=0,1,...,10.给出它的分段线性插值函数的图像;(4)用等距节点X i=?5+i,i=0,1,...,10.给出它的三次自然样条插值函数的图像; (5)用等距节点X i=?5+i,i=0,1,...,10.给出它的分段三次Hermite插值函数的图像; 实验图像结果:

实验结果分析: 1.为了验证Range现象,我还特意做了10次牛顿插值多项式和20次牛顿插值多项式的对比图像,结果如下图(图对称,只截取一半) 可以看出,Range现象在高次时变得更加明显。这也是由于高次多项式在端点处的最值随次数的变大很明显。可以料定高次多项式在两侧端点处剧烈震荡,在更小的间距内急剧上升然后下降,Range现象非常明显。

2.分析实验(2)的结果,我们会惊讶地发现,由于取21个点逼近,原本预料的Range现象会很明显,但这里却和f(x)拟合的很好。(即下图中Lagrange p(x)的图像)。可是上图中取均匀节点的20次牛顿多项式逼近的效果在端点处却很差。料想是由于节点X i=5cos2i+1 42 π ,i=0,1,...,20 取得很好。由书上第五章的 知识,对于函数y=1 1+x ,y 1 2对应的cherbyshev多项式的根恰好为X i= 5cos2i+1 42 π ,i=0,1,...,20 。由于所学限制,未能深入分析。 (3)比较三次样条插值图像和Hermit插值图像对原函数图像的逼近情形。见下图:

望远镜和显微镜实验报告

望远镜和显微镜 实验报告 BME8 鲍小凡 2008013215 【实验目的】 (1)了解望远镜和显微镜的构造及其放大原理,并掌握其使用方法; (2)了解放大率等的概念并掌握其测量方法; (3)进一步熟悉透镜成像规律。 【实验原理】 一、望远镜 1、望远镜的基本光学系统 无穷远处物体发出的光经物镜后在物镜焦平面上成一倒立缩小的实像,再利用目镜将此实像成像于无穷远处,使视角增大,利于人眼观察。 图1 望远镜的基本光学系统 使用望远镜时,应先调目镜,看清分划板,再调镜筒长度。使被观察物清晰可见并与分划板叉丝无视差(中间像落在分划板平面上)。 2、望远镜的视放大率。 记目视光学仪器所成的像对人眼的张角为ω’,物体直接对人眼的张角为ω,则视放大率: tan 'tan ωωΓ= 由几何光路可知: 0'''tan ,tan '''e e y y y f f f ωω= == 因此,望远镜的视放大率: 0' 'T e f f Γ= 实际测量望远镜无焦系统的视放大率时,利用图二所示的光路图。当物y 较近时,即物距: () 100'1''e L f f f <+ 时,物镜所成的像会位于O e 右侧(实像)或左侧(虚像),经目镜后,即成缩小的实像y’’,于是视放大率: 00'''''T e e f f y f f y Γ= ==

图2 测望远镜的视放大率图 3、物像共面时的视放大率。 当望远镜的被观测物位于有限远时,望远镜的视放大率可以通过移动目镜把像y’’推远到与物y 在一个平面上来测量。如图三。此时: ''tan ',tan y y L L ωω= = 于是可以得到望远镜物像共面时的视放大率: ()() 010''''''e T e L f f y y f L f +Γ= =- 可见,当物距L 1大于20倍物镜焦距时,它和无穷远时的视放大率差别很小。 可见,当物距L 1大于20 倍物镜焦距时,它和无穷远时的视放大率差别很小。 图3 测望远镜物象共面时的视放大率 二、显微镜 1、显微镜的基本光学系统 显微镜的物镜、目镜都是会聚透镜,位于物镜物方焦点外侧附近的微小物体经物镜放大后先成一放大的实像,此实像再经目镜成像于无穷远处,这两次放大都使得视角增大。为了适于观察近处的物体,显微镜的焦距都很短。 图4 显微镜基本光学系统 使用时需先进行视度调节使分划板叉丝的像位于人眼明视距离处,再调焦使被观察物清晰可见并与分划板叉丝的像无视差。 2、显微镜的视放大率。 显微镜的视放大率定义为像对人眼的张角的正切和物在明视距离D =250㎜处时直接对人眼的张角的正切之比。于是由三角关系得:

等厚干涉--牛顿环实验报告

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪

三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在一块光学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 2222222)(r d Rd R r d R R ++-=+-= 由于r R >>,可以略去d 2得

R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来2λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1,0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环的几何中心。实际测量时,我们可以通过测量距中心较远的两个暗环半径r m 和r n 的平方差来计算曲率半径R 。因为 λMR r m =2 λnR r n =2 两式相减可得 λ)(22n m R r r n m -=-

光学设计报告

湖北第二师范学院《光学系统设计》 题目:望远镜的设计 姓名:刘琦 学号:1050730017 班级:10应用物理学

目录 望远系统设计............................................................................................... 第一部分:外形尺寸计算 .......................................................................... 第二部分:PW法求初始结构参数(双胶合物镜设计) ....................... 第三部分:目镜的设计 .............................................................................. 第四部分:像质评价 .................................................................................. 第五部分心得体会 ..................................................................................

望远镜设计 第一部分:外形尺寸计算 一、各类尺寸计算 1、计算'f o 和'f e 由技术要求有:1 '4 o D f = ,又30D mm =,所以'120o f mm =。 又放大率Γ=6倍,所以' '206o e f f mm ==。 2、计算D 出 30 3056 D D D mm =∴= = =Γ物出物 3、计算D 视场 2'2120416.7824o o D f tg tg mm ω==??=视场 4、计算'ω(目镜视场) ''45o tg tg ωωωΓ?=?≈ 5、计算棱镜通光口径D 棱 (将棱镜展开为平行平板,理论略) 该望远系统采用普罗I 型棱镜转像,普罗I 型棱镜如下图: 将普罗I 型棱镜展开,等效为两块平板,如下图:

牛顿环测量曲率半径实验报告

实验名称:牛顿环测量曲率半径实验 1.实验目的: 1 观察等厚干涉现象,理解等厚干涉的原理和特点 2 学习用牛顿环测定透镜曲率半径 3 正确使用读数显微镜,学习用逐差法处理数据 2.实验仪器: 读数显微镜,钠光灯,牛顿环,入射光调节架 3.实验原理 图1 如图所示,在平板玻璃面DCF上放一个曲率半径很大的平凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到透镜上,透过透镜,近似垂直地入射于空气膜。分别从膜的上下表面反射的两条光线来自同一条入射光线,它们满足相干条件并在膜的上表面相遇而产生干涉,干涉后的强度由相遇的两条光线的光程差决定,由图可见,二者的光 程差等于膜厚度e的两倍,即

此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差π,与之对应的光程差为λ/2 ,所以相干的两条光线还具有λ/2的附加光程差,总的光程差为 (1) 当?满足条件 (2) 时,发生相长干涉,出现第K级亮纹,而当 (3) 时,发生相消干涉,出现第k级暗纹。因为同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。 如图所示,设第k级条纹的半径为,对应的膜厚度为,则 (4) 在实验中,R的大小为几米到十几米,而的数量级为毫米,所以R >> e k, e k 2相对于2Re k 是一个小量,可以忽略,所以上式可以简化为 (5) 如果r k是第k级暗条纹的半径,由式(1)和(3)可得 (6)代入式(5)得透镜曲率半径的计算公式

等厚干涉牛顿环实验报告

等厚干涉牛顿环实验报告 Prepared on 22 November 2020

等厚干涉——牛顿环等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪 三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在一块光 学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻 璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平

凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 由于r R >>,可以略去d 2得 R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来2λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1, 0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环的几何

数值分析实验报告记录

数值分析实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

数值分析实验报告 (第二章) 实验题目: 分别用二分法、牛顿迭代法、割线法、史蒂芬森迭代法求方程 的根,观察不同初始值下的收敛性,并给出结论。 问题分析: 题目有以下几点要求: 1.不同的迭代法计算根,并比较收敛性。 2.选定不同的初始值,比较收敛性。 实验原理: 各个迭代法简述 二分法:取有根区间的重点,确定新的有根区间的区间长度仅为区间长度的一版。对压缩了的有根区间重复以上过程,又得到新的有根区间,其区间长度为的一半,如此反复,……,可得一系列有根区间,区间收敛到一个点即为根。 牛顿迭代法:不动点迭代法的一种特例,具有局部二次收敛的特性。迭代格式为 割线法:是牛顿法的改进,具有超线性收敛的特性,收敛阶为1.618. 迭代格式为 史蒂芬森迭代法:采用不动点迭代进行预估校正。至少是平方收敛的。迭代格式为 这里可采用牛顿迭代法的迭代函数。 实验内容:

1.写出该问题的函数代码如下: function py= f(x) syms k; y=(k^2+1)*(k-1)^5; yy=diff(y,k); py(1)=subs(y,k,x); py(2)=subs(yy,k,x); end 2.分别写出各个迭代法的迭代函数代码如下: 二分法: function y=dichotomie(a,b,e) i=2; m(1)=a; while abs(a-b)>e t=(a+b)/2; s1=f(a); s2=f(b); s3=f(t); if s1(1)*s3(1)<=0 b=t; else a=t; end m(i)=t; i=i+1; end y=[t,i+1,m]; end 牛顿迭代法: function y=NewtonIterative(x,e) i=2; en=2*e;m(1)=x; while abs(en)>=e s=f(x); t=x-s(1)/s(2); en=t-x; x=t; m(i)=t; i=i+1; end y=[x,i+1,m]; end 牛顿割线法: function y=Secant(x1,x2,e) i=3; m(1)=x1,m(2)=x2; while abs(x2-x1)>=e s1=f(x1); s2=f(x2); t=x2-(x2-x1)*s2(1)/(s2(1)-s1( 1)); x1=x2; x2=t; m(i)=t; i=i+1; end

牛顿望远镜实验报告

实验一、牛顿望远镜 1.实验目的 学习运用ZEMAX综合性的光学仿真软件,将实际光学系统的设计概念、优化、分析、公差以及报表整合在一起。 通过ZEMAX软件的仿真应用,对牛顿望远镜的原理进行深层次的了解,并加深对牛顿望远镜使用的熟练度。 2.基本原理 ZEMAX光学设计程序是一个完整的光学设计软件,是将实际光学系统的设计概念,优化,分析,公差以及报表集成在一起的一套综合性的光学设计仿真软件。包括光学设计需要的所有功能,可以在实践中对所有光学系统进行设计,优化,分析,并具有容差能力,所有这些强大的功能都直观的呈现于用户界面中。ZEMAX功能强大,速度快,灵活方便,是一个很好的综合性程序。ZEMAX能够模拟连续和非连续成像系统及非成像系统。 牛顿反射望远镜采用抛物面镜作为主镜,光进入镜筒的底端,然后折回开口处的第二反射镜(平面的对角反射镜),再次改变方向进入目镜焦平面。目镜为便于观察,被安置靠近望远镜镜筒顶部的侧方。

由于光学系统的原理,牛顿望远镜的成像是一个倒像,倒像并不影响天文观测,因此牛顿反射望远镜是天文学使用的最佳选择。通过正像镜等附加镜头,可以将图像校正过来,但会降低成像质量。 3.系统结构 一个1000mm F/5的望远镜,这暗指需要一个曲率半径为2000mm的镜面,和一个200mm的孔径。光阑面的曲率半径列Radius,输入

-2000.0,负号表示为凹面。现在在同一个面上输入厚度值Thickness-1000,这个负号表示通过镜面折射后,光线将往“后方”传递.“Glass”列输入“MIRROR”,输入一个200的孔径值. ZEMAX使用的缺省值是波长550,视场角0.光源为无穷远处。

实验报告:牛顿环与劈尖干涉

实验八牛顿环与劈尖干涉 实验时间:实验人: 实验概述 【实验目的及要求】 1.掌握用牛顿环测定透镜曲率半径的方法; 2.掌握用劈尖干涉测定细丝直径(或薄片厚度)的方法; 3.通过实验加深对等厚干涉原理的理解. 【仪器及用具】 钠灯、移测显微镜、玻璃片(连支架)、牛顿环仪、光学平玻璃板(两块)和细丝(或薄片)等. 【实验原理】 牛顿环仪是由待测平凸透镜L和磨光的平玻璃板P叠合安装在金属框架F中构成的(图1).框架边上有三个螺旋H,用以调节L和P之间的接触,以改变干涉环纹的形状和位置.调节H时,不可旋得过紧,以免接触压力过大引起透镜弹性形变,甚至损坏透镜. 当一曲率半径很大的平凸透镜的凸面与一平玻璃板相接触时,在透镜的凸面与平玻璃板之间形成一空气薄膜.薄膜中心处的厚度为零,愈向边缘愈厚,离接触点等距离的地方,空气膜的厚度相同,如图2所示,若以波长为λ的单色平行光投射到这种装置上,则由空气膜上下表面反射的光波将在空气膜附近互相干涉,两束光的光程差将随空气膜厚度的变化而变化,空气膜厚度相同处反射的两束光具有相同的光程差,形成的干涉条纹为膜的等厚各点的轨迹,这种干涉是一种等厚干涉。

在反射方向观察时,将看到一组以接触点为中心的亮暗相间的圆环形干涉条纹,而且中心是一暗斑[图3(a)];如果在透射方向观察,则看到的干涉环纹与反射光的干涉环纹的光强分布恰成互补,中心是亮斑,原来的亮环处变为暗环,暗环处变为亮环[图3(b) ],这种干涉现象最早为牛顿所发现,故称为牛顿环。 在图2中,R 为透镜的曲率半径,形成的第m 级干涉暗条纹的半径为r m ,第m ’级干涉暗条纹的半径为r m ’。 不难证明: λmR r m = (1) ()2 12λ ?-= 'R m m (2) 以上两式表明,当A 已知时,只要测出第m 级暗环(或亮环)的半径,即可算出透镜的曲率半径R ;相反,当R 已知时,即可算出 .但是,由于两接触面之间难免附着尘埃以及在接触时难免发生弹性形变,因而接触处不可能是一个几何点,而是一个圆斑,所以近圆心处环纹粗且模糊,以致难以确切判定环纹的干涉级数,即于涉环纹的级数和序数不一定一致. 因而利用式(1)或式(2)来测量R 实际上也就成为不可能,为了避免这一困难并减少误差,必须测量距中心较远的、比较清晰的两个环纹韵半径,例如测出第m 1个和第m 2个暗环(或亮环)的半径(这里m 1 、 m 2

牛顿环实验报告

北京师范大学珠海分校大学物理实验报告 实验名称:牛顿环实验测量 学院工程技术学院 专业测控技术与仪器 学号 1218060075 姓名钟建洲 同组实验者 1218060067余浪威 1218010100杨孟雄 2013 年 1 月 17日

实验名称 牛顿环实验测量 一、实验目的 1.观察牛顿环干涉现象条纹特征; 2.学习用光的干涉做微小长度的测量; 3.利用牛顿环干涉测量平凸透镜的曲率半径; 4.通过实验掌握移测显微镜的使用方法 二、实验原理 在一块平面玻璃上安放上一焦距很大的平凸透镜,使其凸面与平面相接触,在接触点 o 附近就形成一层空 气膜。当用一平行的准单色光垂直照射时,在空气膜上表面反射的光束和下表面反射的光束在膜上表面相遇相干,形成以 o 为圆心的明暗相间的环状干涉图样,称为牛顿环。如果已知入射光波长,并测得第 k 级 暗环的半径 r k ,则可求得透镜的曲率半径 R 。但 实际测量时,由于透镜和平面玻璃接触时,接触点有压力产生形变或有微尘产生附加光程差,使得干涉条纹的圆心和环级确定困难。第m 环与第n 环 用直径 D m 、 D n 。 () λ n m n D m D R +-= 42 2此为计算 R 用的公式,它与附加厚度、

圆心位置、绝对级次无关,克服了由这些因素带来的系统误差,并且D m 、 D n 可以是弦长。 三、实验内容与步骤 用牛顿环测量透镜曲率半径 (1).按图布置好实验器材,使用单色扩展光源,将牛顿环装置放在读数显微镜工作台毛玻璃中央,并使显微镜筒正对牛顿环装置中心。 (2).调节读数显微镜。 1.调节目镜,使分划板上的十字刻度线清晰可见,并转动目镜,使十字刻度线的横线与显微镜筒的移动方向平行。 2.调节45度反射镜,使显微镜视觉中亮度最大,这时基本上满足入射光垂直于待测量透镜的要求。 1.转动手轮A,使显微镜平移到标尺中部,并调节调焦手轮B,使物镜接近牛顿环装置表面。 2.对显微镜调焦。缓慢地转动调焦手轮B,使显微镜筒由下而上移动进行调焦,直到从目镜中清楚地看到牛顿环干涉条纹且无视差为止;然后移动牛顿环装置,使目镜中十字刻度线交点与牛顿环中心重合 (1).观察条纹的特征。 观察各级条纹的粗细是否一致,其间距有无差异,并做出解释。观察牛顿环中心是亮斑还是暗斑? (2).测量暗环的直径 转动读数显微镜的读数鼓轮,同时在目镜中观察,使十字刻度线由牛顿环中心缓慢地向一侧移动到43环;然后再回到第42环。自42环起,单方向移动十字刻度,每移3环读数一——直到测量完成另一侧的第42环。并将所测量的第42环到第15环各直径的左右两边的读数记录在表格内。 四、数据处理与结果 1.求透镜的曲率半径。 测出第15环到第42环暗环的直径,取m-n=15,用逐差法求出暗环的直径平方 差的平均值,按算出透镜的曲率半径的平均值R。 R1=(d422-d272)/[4(42-27]λ= 895.85 mm R2=(d392-d242)/[4(39-24]λ= 896.97 mm R3=(d362-d212)/(4(36-21)λ= 887.94mm R4=(d332-d182)/(4(33-18)λ= 893.30mm

牛顿插值法试验报告

. 牛顿插值法一、实验目的:学会牛顿插值法,并应用算法于实际问题。 x?x)f(二、实验内容:给定函数,已知: 4832401.2)?.?1449138f(2.f.f(20)?1.414214(2.1) 549193.)?1f(2.4516575(f2.3)?1. 三、实验要求:以此作为函数2.15插值多项式在处的值,用牛顿插值法求4 次Newton( 1)2.15?N(2.15)。在MATLAB中用内部函数ezplot绘制出的近似值4次Newton插值多项式的函数图形。 (2)在MATLAB中用内部函数ezplot可直接绘制出以上函数的图形,并与作出的4次Newton插值多项式的图形进行比较。 四、实验过程: 1、编写主函数。打开Editor编辑器,输入Newton插值法主程序语句: function [y,L]=newdscg(X,Y,x) n=length(X); z=x; A=zeros(n,n);A(:,1)=Y';s=0.0; p=1.0; for j=2:n for i=j:n A(i,j)=(A(i,j-1)- A(i-1,j-1))/(X(i)-X(i-j+1)); end end C=A(n,n); for k=(n-1):-1:1 C=conv(C,poly(X(k))); d=length(C);C(d)=C(d)+A(k,k); end y(k)= polyval(C, z); L(k,:)=poly2sym(C); 0 / 3 . %%%%%%%%%%%%%%%%%% t=[2,2.1,2.2,2.3,2.4]; fx=sqrt(t); wucha=fx-Y; 以文件名newdscg.m保存。 2、运行程序。 (1)在MATLAB命令窗口输入: >> X=[2,2.1,2.2,2.3,2.4]; Y =[1.414214,1.449138,1.483240,1.516575,1.549193]; x=2.15;[y,P]=newdscg(X,Y,x) 回车得到:

光学设计报告

光学设计课程报告 班级: 学号: 姓名: 日期:

目录 双胶合望远物镜的设计 (02) 摄远物镜的设计 (12) 对称式目镜的设计与双胶合物镜的配合 (20) 艾尔弗目镜的设计 (30) 低倍消色差物镜的设计 (38) 无限筒长的高倍显微物镜的设计 (47) 双高斯照相物镜的设计 (52) 反摄远物镜的设计 (62) 课程总结 (70)

双胶合望远物镜的设计 1、设计指标: 设计一个周视瞄准镜的双胶合望远物镜(加棱镜),技术要求如下:视放大率: 3.7?;出瞳直径:4mm ;出瞳距离:大于等于20mm ;全视场角:210w =?;物 镜焦距: ' =85f mm 物;棱镜折射率:n=(K9);棱镜展开长:31mm ;棱镜与物镜的 距离40mm ;孔径光阑为在物镜前35mm 。 2、初始结构计算 (1) 求 J h h z ,, 根据光学特性的要求4.728.142=== D h : 44.75tan 85tan ''=?=?=οωf y 0871 .0''==f h u 648.0'''==y u n J (2)计算平行玻璃板的像差和数 C S S S I I I I ,, 平行玻璃板入射光束的有关参数为 0871.0=u 0875.0)5tan(-=-=οz u 005 .1-=u u z 平行玻璃板本身的参数为 d=31mm ; n=; 1.64=ν 带入平行玻璃板的初级像差公式可得: 000665.01.51631-1.5163×0.0871×-3113 24 432-==--=I du n n S 0.0006682=(-1.005)×-0.000665=u u × =z I I I S S 000824.0087.05163.11.6415163.131122 22-=??-?-=--=I u n n d S C υ

牛顿环实验报告

等厚干涉——牛顿环 【实验目的】 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; (3)学会使用读数显微镜测距。 【实验原理】 在一块平面玻璃上安放上一焦距很大的平凸透镜,使其凸面与平面相接触,在接触点附近就形成一层空气膜。当用一平行的准单色光垂直照射时,在空气膜上表面反射的光束和 下表面反射的光束在膜上表面相遇相干,形成以接触点为圆心的明暗相间的环状干涉图样,称为牛顿环,其光路示意图如图。 如果已知入射光波长,并测得第k 级暗环的半径 k r ,则可求得透镜 的曲率半径R 。但实际测量时,由于透镜和平面玻璃接触时,接触点有压力产生形变或有微尘产生附加光程差,使得干涉条纹的圆心和环级确定困难。用直径 m D 、n D ,有 λ)(42 2n m D D R n m --= 此为计算R 用的公式,它与附加厚光程差、圆心位置、绝对级次无关,克服了由这些因素带来的系统误差,并且 m D 、n D 可以是弦长。 【实验仪器】 JCD3型读数显微镜,牛顿环,钠光灯,凸透镜(包括三爪式透镜夹和固定滑座)。 【实验内容】 1、调整测量装置 按光学实验常用仪器的读数显微镜使用说明进行调整。调整时注意: (1)调节450玻片,使显微镜视场中亮度最大,这时,基本上满足入射光垂直于透镜的要求(下部反光镜不要让反射光到上面去)。 (2)因反射光干涉条纹产生在空气薄膜的上表面,显微镜应对上表面调焦才能找到清

晰的干涉图像。 (3)调焦时,显微镜筒应自下而上缓慢地上升,直到看清楚干涉条纹时为止,往下移动显微镜筒时,眼睛一定要离开目镜侧视,防止镜筒压坏牛顿环。 (4)牛顿环三个压紧螺丝不能压得很紧,两个表面要用擦镜纸擦拭干净。 2、观察牛顿环的干涉图样 (1)调整牛顿环仪的三个调节螺丝,在自然光照射下能观察到牛顿环的干涉图样,并将干涉条纹的中心移到牛顿环仪的中心附近。调节螺丝不能太紧,以免中心暗斑太大,甚至损坏牛顿环仪。 (2)把牛顿环仪置于显微镜的正下方,使单色光源与读数显微镜上45角的反射透明玻璃片等高,旋转反射透明玻璃,直至从目镜中能看到明亮均匀的光照。 (3)调节读数显微镜的目镜,使十字叉丝清晰;自下而上调节物镜直至观察到清晰的干涉图样。移动牛顿环仪,使中心暗斑(或亮斑)位于视域中心,调节目镜系统,使叉丝横丝与读数显微镜的标尺平行,消除视差。平移读数显微镜,观察待测的各环左右是否都在读数显微镜的读数范围之内。 3、测量牛顿环的直径 (1)选取要测量的m和n(各5环),如取m为55,50,45,40,35,n为30,25,20,15,10。 (2)转动鼓轮。先使镜筒向左移动,顺序数到55环,再向右转到50 环,使叉丝尽量对准干涉条纹的中心,记录读数。然后继续转动测微鼓轮,使叉丝依次与45,40,35,30,25,20,15,10,环对准,顺次记下读数;再继续转动测微鼓轮,使叉丝依次与圆心右10,15,20,25,30,35,40,45,50,55环对准,也顺次记下各环的读数。注意在一次测量过程中,测微鼓轮应沿一个方向旋转,中途不得反转,以免引起回程差。 4、算出各级牛顿环直径的平方值后,用逐差法处理所得数据,求出 直径平方差的平均值代入公式求出透镜的曲率半径,并算出误差。.注意: (1)近中心的圆环的宽度变化很大,不易测准,故从K=lO左右开始比较好; (2)m-n应取大一些,如取m-n=25左右,每间隔5条读一个数。 (3)应从O数到最大一圈,再多数5圈后退回5圈,开始读第一个数据。 (4)因为暗纹容易对准,所以对准暗纹较合适。,

数值分析实验报告-插值、三次样条(教育教学)

实验报告:牛顿差值多项式&三次样条 问题:在区间[-1,1]上分别取n=10、20用两组等距节点对龙格函数2 1()25f x x 作多项式插值及三次样条插值,对每个n 值,分别画出插值函数及()f x 的图形。 实验目的:通过编程实现牛顿插值方法和三次样条方法,加深对多项式插值的理解。应用所编程序解决实际算例。 实验要求: 1. 认真分析问题,深刻理解相关理论知识并能熟练应用; 2. 编写相关程序并进行实验; 3. 调试程序,得到最终结果; 4. 分析解释实验结果; 5. 按照要求完成实验报告。 实验原理: 详见《数值分析 第5版》第二章相关内容。 实验内容: (1)牛顿插值多项式 1.1 当n=10时: 在Matlab 下编写代码完成计算和画图。结果如下: 代码: clear all clc x1=-1:0.2:1; y1=1./(1+25.*x1.^2); n=length(x1); f=y1(:); for j=2:n for i=n:-1:j f(i)=(f(i)-f(i-1))/(x1(i)-x1(i-j+1)); end end syms F x p ; F(1)=1;p(1)=y1(1); for i=2:n F(i)=F(i-1)*(x-x1(i-1)); p(i)=f(i)*F(i);

end syms P P=sum(p); P10=vpa(expand(P),5); x0=-1:0.001:1; y0=subs(P,x,x0); y2=subs(1/(1+25*x^2),x,x0); plot(x0,y0,x0,y2) grid on xlabel('x') ylabel('y') P10即我们所求的牛顿插值多项式,其结果为:P10(x)=-220.94*x^10+494.91*x^8-9.5065e-14*x^7-381.43*x^6-8.504e-14*x^5+123.36*x^4+2.0202e-1 4*x^3-16.855*x^2-6.6594e-16*x+1.0 并且这里也能得到该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.1)。 Fig.1 牛顿插值多项式(n=10)函数和原函数图形 从图形中我们可以明显的观察出插值函数在两端点处发生了剧烈的波动,产生了极大的误差,即龙格现象,当n=20时,这一现象将更加明显。 1.2 当n=20时: 对n=10的代码进行修改就可以得到n=20时的代码。将“x1=-1:0.2:1;”改为“x1=-1:0.1:1;”即可。运行程序,我们得到n=20时的牛顿插值多项式,结果为:P20(x)= 260188.0*x^20 - 1.0121e6*x^18 + 2.6193e-12*x^17 + 1.6392e6*x^16 + 2.248e-11*x^15 - 1.4429e6*x^14 - 4.6331e-11*x^13 + 757299.0*x^12 + 1.7687e-11*x^11 - 245255.0*x^10 + 2.1019e-11*x^9 + 49318.0*x^8 + 3.5903e-12*x^7 - 6119.2*x^6 - 1.5935e-12*x^5 + 470.85*x^4 + 1.3597e-14*x^3 - 24.143*x^2 - 1.738e-14*x + 1.0 同样的,这里得到了该牛顿插值多项式的在[-1,1]上的图形,并和原函数进行对比(见Fig.2)。

望远镜装配实习报告

生产实习报告 在大三即将结束的时候,学校安排了这次为期三周的望远镜组装实习,对我们来说是个非常好的机会,不仅仅是锻炼了我们的动手能力,也让我们把所学的知识应用到了实践之中,让我们更好地掌握所学的知识与内容。整个实习过程,使我受益匪浅。实践,就是把我们在学校所学的理论知识,运用到客观实际中去,使自己所学的理论知识有用武之地。只学不实践,那么所学的就等于零。理论应该与实践相结合。另一方面,实践可为以后找工作打基础。是为促进大学生素质教育,加强和改进青年学生思想政治工作,引导学生健康成长和成才的重要举措,是学生接触社会、了解社会、服务社会,培养创新精神、实践能力和动手操作能力的重要途径。 一实习目的 生产实习是我们专业知识结构中不可缺少的组成部分,并作为一个独立的项目列入专业教学计划中的。其目的在于通过实习使学生获得基本生产的感性知识,理论联系实际,扩大知识面;同时专业实习又是锻炼和培养学生业务能力及素质的重要渠道,培养当代大学生具有吃苦耐劳的精神,也是学生接触社会、了解产业状况、了解国情的一个重要途径,逐步实现由学生到社会的转变,培养我们初步担任技术工作的能力、初步了解企业管理的基本方法和技能;体验企业工作的内容和方法。这些实际知识,对我们学习后面的课程乃至以后的工作,都是十分必要的基础 二实习时间 2011年6月21日——2011年7月5日 三实习地点 XXXXX

四指导老师 五实习内容 1、双筒望远镜结构与原理 双筒望远镜(以下简称“双筒镜”)具有成像清晰明亮,视场大、携带方便、价格便宜等优点,很适于天文爱好者用来巡天和观测星云、星团、彗星等面状天体。如果你过去一直使用高倍率、长焦距的天文望远镜,也许还没有意识到自己已经失掉了很多观测的乐趣,那么请试用一下双筒镜,你一定会被视场中平时未曾欣赏过的美景深深的陶醉。由于双简镜有着广泛的用途,所以在市场上它的品种繁多,性能也相差很大。 每副双筒望远镜都标有一组数字如 7x50之类。双筒望远镜规格上的第一个数字 "7" 就是倍率,第二个数字 "50" 就是指镜头直径。七倍的机型是一种畅销机型,会让观看的每一样物品拉近七倍。你还可以选购 10x、16x,可能你认为天文用途上高倍率是必要的,其实不然。一付 7x 双筒望远镜就够好了,而且接下来我们还会论及 7x 所拥有的优点超过大部份的高倍率机型。 双筒镜采用的是折射系统,可分为伽利略式和开普勒式两种。伽利略式双筒镜结构简单,光能损失小、镜筒较短、价格也较低,但是,它的放大率一般不能超过6倍,放大率再增加,视场就会迅速减小,视场边缘变暗。成像质量也会下降,所以这种双筒镜用得较少。现在常见的是开普勒式双筒镜,它的视场比伽利略式的大,而且成像更加清晰,但开普勒式双筒镜成的是倒立的像,为了得到正像,在它的光路中加有转像棱镜或转像透镜,这些转像装置在地面观测中是必不可少的。但像的倒正对天文观测来说无关紧要,不过正像望远镜可以给初学者找星带来方便。 光学性能

等厚干涉牛顿环实验报告

等厚干涉牛顿环实验报告 This manuscript was revised on November 28, 2020

等厚干涉——牛顿环 等厚干涉是薄膜干涉的一种。薄膜层的上下表面有一很小的倾角是,从光源发出的光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条纹,这种干涉就叫等厚干涉。其中牛顿环是等厚干涉的一个最典型的例子,最早为牛顿所发现,但由于他主张微粒子学说而并未能对他做出正确的解释。光的等厚干涉原理在生产实践中育有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确地测量微笑长度、厚度和角度,检验物体表面的光洁度、平整度等。 一. 实验目的 (1)用牛顿环观察和分析等厚干涉现象; (2)学习利用干涉现象测量透镜的曲率半径; 二. 实验仪器 读数显微镜钠光灯牛顿环仪 三. 实验原理 牛顿环装置是由一块曲率半径较大的平凸面放在一块光 学玻璃平板(平镜)上构成的,如图。平凸透镜的凸面与玻 璃平板之间的空气层厚度从中心到边缘逐渐增加,若以平行单光垂直照射到牛顿环上,则经空气层上、下表面反射的两光束存在光程差,他们在平凸透镜的凸面相遇后,将发生干涉。从透镜上看到的干涉花样是以玻璃接触点为中心的

一系列明暗相间的圆环,称为牛顿环。同一干涉环上各处的空气层厚度是相同的,因此他属于等厚干涉。 图2 图3 由图2可见,若设透镜的曲率半径为R ,与接触点O 相距为r 处空气层的厚度为d ,其几何关系式为 由于r R >>,可以略去d 2得 R r d 22 = (1) 光线应是垂直入射的,计算光程差时还要考虑光波在平玻璃上反射会有半波损失,,从而带来λ的附加程差,所以总光程差为 2 2λ + =?d (2) 所以暗环的条件是 2 ) 12(λ +=?k (3) 其中 3,2,1, 0=k 为干涉暗条纹的级数。综合(1)(2)(3)式可得第可k 级暗环的半径为 λkR r k =2 (4) 由式(4)可知,如果单色光源的波长λ已知,测出第m 级的暗环半径r m,,即可得出平图透镜的曲率半径R ;反之,如果R 已知,测出r m 后,就可计算出入射单色光波的波长λ。但是用此测量关系式往往误差很大,原因在于凸面和平面不可能是理想的点接触;接触压力会引起局部形变,使接触处成为一个圆形平面,干涉环中心为一暗斑。或者空气间隙层有了灰尘,附加了光程差,干涉环中心为一亮(或暗)斑,均无法确定环

大学物理仿真实验报告 牛顿环

大学物理仿真实验报告 实验名称:牛顿环法测曲率半径实验日期: 专业班级: 姓名:学号: 教师签字:________________ 一、实验目的 1.学会用牛顿环测定透镜曲率半径。 2.正确使用读书显微镜,学习用逐差法处理数据。 二、实验仪器 牛顿环仪,读数显微镜,钠光灯,入射光调节架。 三、实验原理 如图所示,在平板玻璃面DCF上放一个曲率半径很大的平 凸透镜ACB,C点为接触点,这样在ACB和DCF之间,形 成一层厚度不均匀的空气薄膜,单色光从上方垂直入射到 透镜上,透过透镜,近似垂直地入射于空气膜。分别从膜 的上下表面反射的两条光线来自同一条入射光线,它们满 足相干条件并在膜的上表面相遇而产生干涉,干涉后的强 度由相遇的两条光线的光程差决定,由图可见,二者的光 程差等于膜厚度e的两倍,即 此外,当光在空气膜的上表面反射时,是从光密媒质射向光疏媒质,反射光不发生相位突变,而在下表面反射时,则会发生相位突变,即在反射点处,反射光的相位与入射光的相位之间相差π,与之对应的光程差为λ/2 ,所以相干的两条光线还具有λ/2的附加光程差,总的光程差为(1) 当?满足条件(2)时,发生相长干涉,出现第K级亮纹,而当 (k = 0,1,2…)(3)时,发生相消干涉,出现第k级暗纹。因为

同一级条纹对应着相同的膜厚,所以干涉条纹是一组等厚度线。可以想见,干涉条纹是一组以C点为中心的同心圆,这就是所谓的牛顿环。 如图所示,设第k级条纹的半径为,对应的膜厚度为,则 (4) 在实验中,R的大小为几米到十几米,而的数量级为毫米,所以R >> e k,e k2相对于2Re k是一个小量,可以忽略,所以上式可以简化为 (5) 如果r k是第k级暗条纹的半径,由式(1)和(3)可得 (6) 代入式(5)得透镜曲率半径的计算公式 (7) 对给定的装置,R为常数,暗纹半径 (8) 和级数k的平方根成正比,即随着k的增大,条纹越来越细。 同理,如果r k是第k级明纹,则由式(1)和(2)得 (9) 代入式(5),可以算出(10)

相关主题
文本预览
相关文档 最新文档