当前位置:文档之家› ALV总结

ALV总结

ALV总结
ALV总结

ALV1:使用函数显示ALV格式报表

1)定义ALV

type-pools slis. "调用类型组

data: myrepid like sy-repid. "程序为当前程序

data: i_layout type slis_layout_alv. "ALV显示格式内表

data: allfields type slis_t_fieldcat_alv. " ALV显示字段内表

data: i_fieldcat type line of slis_t_fieldcat_alv. "ALV字段信息结构

data: e_status type slis_formname value 'STANDARD_ER01'. "ALV自定义非标准按钮myrepid = sy-repid.

2)ALV显示属性

i_layout-colwidth_optimize = 'X'. "自动调整列宽

i_layout-zebra = 'X'. "变换行颜色

2)ALV写法,有两种:

(1)法一,写成块形式

data: pos type i.

define alv_append_field. "定义模块

i_fieldcat-col_pos = pos. "列标志

i_fieldcat-fieldname = &1. "字段名

i_fieldcat-seltext_l = &2. "字段描述

i_fieldcat-no_zero = 'X'. "不显示值为0的数据和前导0

... "其它的fieldcat属性

append i_fieldcat to allfields. "写进显示字段内表

clear i_fieldcat.

pos = pos + 1. "下一列

end-of-definition.

refresh allfields.

pos = 1.

clear i_fieldcat.

alv_append_field 'FLDNAME' 'FLDTXT' .

(2)法二:标准形式

clear i_fieldcat.

i_fieldcat-fieldname = 'FLDNAME'. "字段名

i_fieldcat-seltext_l = 'FLDTXT'. "字段描述

i_fieldcat-no_zero = 'X'.

... "其它fieldcat属性

append i_fieldcat to allfields.

... "循环同上

3)调用ALV显示函数

call function 'REUSE_ALV_GRID_DISPLAY' "statt LIST

exporting

i_callback_program = myrepid

i_callback_pf_status_set = e_status "使用非标准按钮

is_layout = i_layout

i_CALLBACK_USER_COMMAND = 'USER_COMMAND' "非标准按钮动作

it_fieldcat = allfields "显示字段的内表

i_save = 'A' "是否打开保存

tables

t_outtab = itab " 内表名

exceptions

program_error = 1

others = 2.

注:alv有两种显示格式的function:(1)REUSE_ALV_LIST_DISPLAY(和write到屏幕一样的样式);(2)REUSE_ALV_GRID_DISPLAY(单元格样式)。

ALV2:ALV列、行、单元格颜色设置

1)颜色含义

1:海蓝;2:浅清;3:黄色;4:浅蓝;5:青色;6:红色;7:橙色。

(1)首位为主颜色;

(2)次位为辅助颜色;

(3)末位为0时,表示首位数字表为表格的底色;

末位为1时,则表示以1为底色,首位数字则表为表格字体的颜色;

末位为其它颜色时,则表示底色为ALV的默认颜色;

以上三条是本人大概总结出来的规律,本人发现的现象基本如上,但也不一定全部正确。其中C200与系统标准ALV底色比较相似;C410与系统标准关键字颜色比较相似。

2)列颜色:

设置ALV字段fieldcat属性:i_fieldcat-emphasize = &3. "颜色

把fieldcat属性写入属性内表allfields:alv_append_field 'WERKS' '工厂' 'C110'.

C110:为颜色代码;

3)行颜色:

(1)在内表itab定义一个字段line_color来存储颜色;loop内表itab,在需要显示颜色的行其值赋为颜色'C110';

(2)在定义alv显示格式定义:

设置ALV显示layout属性:i_layout-info_fieldname = 'LINE_COLOR',line_color为内

表定义的存储颜色的列名。

4)单元格颜色

单元格颜色属性:LVC_S_SCOL,该属性为一结构,含三个字段:FNAME(30)、COLOR(颜色结构,含三个字段:col(10)、int(3)、inv(10))、NOKEYCOL(1)(覆盖

码颜色)

ALV列属性:coltab_fieldname

exa:

定义内表itab含字段FLDNAME type LVC_S_SCOL;

定义单元格颜色结构cellcolor type LVC_S_SCOL;

循环内表,当要设置单元格颜色所在的列字段colname要设置颜色时

fldname-FNAME = …COLNAME?

fldname-COLOR-col = …2?(颜色代码)

fldname-COLOR-int = …1?

fldname-COLOR-inv = …0?。

ALV3:ALV的html表头

在ALV的function的exporting里添加属性:

I_CALLBACK_HTML_TOP_OF_PAGE = 'HTML_TOP_OF_PAGE 定义form响应上述ALV属性

form html_top_of_page using document type ref to cl_dd_document. DATA: text TYPE SDYDO_TEXT_ELEMENT.

text = titlname

CALL METHOD DOCUMENT->ADD_TEXT

EXPORTING

TEXT = text

SAP_STYLE = 'HEADING'.

"换行写另一标题

CALL METHOD DOCUMENT->NEW_LINE.

或使用空格

CALL METHOD DOCUMENT->ADD_GAP

EXPORTING

WIDTH = 10. "空格宽10

...

endform.

ALV4:ALV里显示状态灯

1)在alv引用类型池定义时加入icon,如type-pools: slis, icon.

2)给显示内表itab定义一字段statu存储状态灯;

3)循环内表itab给字段statu值赋:

绿灯:itab-statu = icon_led_green.

红灯:itab-statu = icon_led_red.

4)alv的fieldcat属性i_fieldcat-icon = 'X'.

ALV5:ALV的layout属性

ALV里的显示属性可通过定义i_layout TYPE slis_layout_alv来使用不同的显示风格。可双击“slis_layout_alv”来查看类型组SLIS里的layout属性:

运筹学第一部分 规划论学习总结

运筹学第一部分规划论学习总结 一、线性规划(LP) 1.1线性规划的基本概念 线性规划;目标函数,约束条件;可行解,可行域;最优解,最优值; 1.2 用图解法解两个变量的LP 知识要点: 1)图解法解LP的目的是理解LP的几何性质,不是为了求解,因为它只适用于简单的LP。 2)图解法最适合两个决策变量的LP(约束可以是等式或不等式)。对于一个变量的LP,图形在一维直线上,过分简单;对于三个变量的LP,图形在三维空间,过于复杂。 3)图解法的基本步骤: (1)依次画出适合各约束的区域。重点是会画直线方程的图像。对不等式约束,再判断是直线划分的哪一个半平面。 (2)找出适应各个约束的公共区域,即LP的可行域。 (3)对于目标函数,画出几条等值线,并判断等值线的值上升的方向。 (4)平移目标函数等值线,找出使目标函数最优的点,即LP的最优解。 若找不到最优点,为无界解。 重点或难点:画对应直线方程的直线,注意斜率的符号。 1.3线性规划的图解法的灵敏性分析,对偶价格(影子价格)。 1.4有关LP的基本定理: 线性规划问题的可行域非空时(除无可行解时),其可行域是凸集。(它是有界或无界的凸多边形) 如果线性规划问题有最优解,则一定有一个可行域的顶点对应一个最优解;(一定可以在其顶点达到,但不一定只在其顶点达到,有时在两顶点的连线上得到,包括顶点) 1.5 可行域与最优解及相互之间的关系: 可行域:空集非空(有界、无界) 最优解:无解唯一最优解无穷多最优解无界解 1.6线性规划的标准化

1)松弛量:对一个“≤” 约束条件中,没有使用完的资源或能力的大小称为松弛量(松弛或空闲能力);加上一个松弛量 2)约束方程左边为“≥”不等式时,则可在左边减去一个非负剩余变量,变成等式约束条件。 3)右边的常量Bj ≤0时,两边都要乘以-1。 4)当变量XK <0时,可令XK= - XK, , XK, >0 5)当变量XK为无约束时,可令XK= XK,- XK,,,其中,XK, , XK,, ≥0。 6)令z,=-z,把求min z问题改求为max z, ,即可得到该问题的标准型。 1.7线性规划的计算机解法 (1)Excel求解线性规划问题 规划求解的主要步骤: 设置目标单元格-目标函数,需要最大化(或最小化)的单元格; 设置可变单元格-自变量,需要决定的数目; 约束-约束条件,可通过添加、修改、删除来灵活修改; 要注意,使用线性规划模型,需要修改选项,选中采用线性模型和假 定非负。 (2)Lindo_w 注意事项: 1) 基本程序架构lindo是这样的: MAX 目标函数表达 ST 变量约束1 变量约束2 变量约束3 END 求解一个问题,送入的程序必须以MIN或MAX开头,以END 结束;然后按Ctrl + S(或按工具栏中的执行快捷键)进行求解; 2)低版本的LINDO要求变量一律用大写字母表示; 3) 目标函数及各约束条件之间一定要有"Subject to (ST) "分开.其中字母全部大写; 4) 变量名不能超过8个字符. 在LINDO命令中,约束条件的右边只能是常数,不能有变量; 5) 变量与其系数间可以有空格,不能有任何运算符号(如乘号"*"等). 6) 要输入<=或>=约束,相应以<或>代替即可. 7) 一般LINDO 中不能接受括号"()"和逗号",", 例:400(X1+X2) 需写成400X1+400X2;10,000 需写成10000. 8) 表达式应当已经过简化。不能出现 2X1+3X2-4X1,而应写成-2X1+3X2. LINDO 对目标函数的要求,每项都要有变量,例如,LINDO不认识MIN 2000-X+Y,要改为MIN –X+Y; 9)在LINDO中使用!构造注释语句

运筹学学习心得体会

运筹学学习心得体会 运筹学学习心得体会 学习体会运筹学学习心得体会心得体会学习运筹 古人作战讲夫运筹帷幄当中,决胜千里之外。在现代贸易社会中,更加讲求运筹学的利用。作为一位物流管理的学生,更应当能够熟练地把握、应用运筹学的精华,用运筹学的思惟思考题目。即:利用分析、试验、量化的方法,对实际生活中人、财、物等有限资源进行兼顾安排。本着这样的心态,在本学期运筹学行将结课之时,我得出以下关于运筹学的知识。是虽上机考试没有通过,感到不安,但是我明白要将理论联系实际,才能更好的发挥。 线性规划解决的是: 在资源有限的条件下,为到达预期目标最优,而寻觅资源消耗最少的方案。其数学模型有目标函数和束缚条件组成。一个题目要满足一下条件时才能归结为线性规划的模型: ⑴要求解的题目的目标能用效益指标度量大小,并能用线性函数描写目标的要求; ⑵为到达这个目标存在很多种方案; ⑶要到达的目标是在一定束缚条件下实现的,这些条件可以用线性等式或不等式描写。解决线性规划题目的关键是找出他的目标函数和束缚方程,并将它们转化为标准情势。简单的设计2个变量的线性规划题目可以直接应用图解法得到。但是经常在现实生活中,线性规划题目触及到的变量很多,很难用作图法实现,但是应用单纯形法记比较方便。单纯形法的发展很成熟利用也很广泛,在应用单纯形法

时,需要先将题目化为标准情势,求出基可行解,列出单纯形表,进行单纯形迭代,当所有的变量检验数不大于零,且基变量中不含人工变量,计算结束。将所得的量的值代入目标函数,得出最优值。 碰到评价同类型的组织的工作绩效相对有效性的题目时,可以用数据包络进行分析,应用数据包络分析的的决策单元要有相同的投入和相投的产出。 对偶理论: 其基本思想是每个线性规划题目都触及一个与其对偶的题目,在求一个解的时候,也同时给出另外一题目的解。对偶题目有:对称情势下的对偶题目和非对称情势下的对偶题目。非对称情势下的对偶题目需要将原题目变形为标准情势,然后找出标标准情势的对偶题目。由于对偶题目存在特殊的基本性质,所以我们在解决实际题目比较困难时可以将其转化成其对偶题目进行求解。 灵敏度分析: 分析在线性规划题目中,一个或几个参数的变化对最优解的影响题目。可以分析目标函数中变量系数、束缚条件的右端项、增加一个束缚变量、增加一个束缚条件、束缚条件的系数矩阵中的参数值等的变化。假如将题目转化为研究参数值在保持最优解或最优基不变时的答应范围或改变到某一值时对题目最优解的影响时,就属于参数线性规划的内容。 运输题目是解决多个产地和多个销地之间的同品种物品的规划题目。根据运输题目的独特性,一般采用一种简单而有效的方法:表上作业法。表上作业法先找出运输题目的基可行解,方法有:

高等数学极限计算方法总结

极限计算方法总结 《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可 以用上面的极限严格定义证明,例如: )0,(0lim ≠=∞→a b a an b n 为常数且; 5 )13(lim 2 =-→x x ; ???≥<=∞→时当不存在, 时 当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运 用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条 件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x

(2) e x x x =+→10 ) 1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+ ∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的 等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数)(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且 )(x f ~)(1x f ,)(x g ~)(1x g ,则当) ()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)(x f )()(lim 110 x g x f x x →,即)() (lim 0x g x f x x →=) ()(lim 110x g x f x x →。 5.洛比达法则 定理5 假设当自变量x 趋近于某一定值(或无穷大)时,函数)(x f 和)(x g 满 足:(1))(x f 和)(x g 的极限都是0或都是无穷大; (2))(x f 和)(x g 都可导,且)(x g 的导数不为0; (3)) () (lim x g x f ''存在(或是无穷大);

运筹学学习心得

运筹学学习心得 运筹学学习心得 古人作战讲“夫运筹帷幄之中,决胜千里之外”。在现代商业社会中,更加讲求运筹学的应用。作为一名企业管理的学生,更应该能够熟练地掌握、运用运筹学的精髓,用运筹学的思维思考问题。即:应用分析、试验、量化的方法,对实际生活中人、财、物等有限资源进行统筹安排。本着这样的心态,在本学期运筹学即将结课之时,我得出以下关于运筹学的知识。 线性规划解决的是:在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。其数学模型有目标函数和约束条件组成。一个问题要满足一下条件时才能归结为线性规划的模型:⑴要求解的问题的目标能用效益指标度量大小,并能用线性函数描述目标的要求;⑵为达到这个目标存在很多种方案;⑶要到达的目标是在一定约束条件下实现的,这些条件可以用线性等式或者不等式描述。解决线性规划问题的关键是找出他的目标函数和约束方程,并将它们转化为标准形式。简单的设计2个变量的线性规划问题可以直接运用图解法得到。但是往往在现实生活中,线性规划问题涉及到的变量很多,很难用作图法实现,但是运用单纯形法记比较方便。单纯形法的发展很成熟应用也很广泛,在运用单纯形法时,需要先将问题化为标准形式,求出基可行解,列出单纯形表,进行单纯形迭代,当所有的变量检验数不大于零,且基变量中不含人工变量,计算结束。将所得的量的值代入目标函数,得出最优值。 遇到评价同类型的组织的工作绩效相对有效性的问题时,可以用数据包络进行分析,运用数据包络分析的的决策单元要有相同的投入和相投的产出。 对偶理论:其基本思想是每一个线性规划问题都涉及一个与其对偶的问题,在求一个解的时候,也同时给出另一问题的解。对偶问题有:对称形式下的对偶问题和非对称形式下的对偶问题。非对称形式下的对偶问题需要将原问题变形为标准形式,然后找出标标准形式的对偶问题。因为对偶问题存在特殊的基本性质,所以我们在解决实际问题比较困难时可以将其转化成其对偶问题进行求解。 灵敏度分析:分析在线性规划问题中,一个或几个参数的变化对最优解的影响问题。可以分析目标函数中变量系数、约束条件的右端项、增加一个约束变量、增加一个约束条件、约束条件的系数矩阵中的参数值等的变化。如果将问题转化为研究参数值在保持最优解或最优基不变时的允许范围或改变到某一值时对问题最优解的影响时,就属于参数线性规划的内容。 运输问题是解决多个产地和多个销地之间的同品种物品的规划问题。根据运输问题的独特性,一般采用一种简单而有效的方法:表上作业法。表上作业法先找出运输问题的基可行解,方法有:最小元素法、西北角法、沃格尔法。其中沃格尔法得出的解最接近最优解。然后利用闭回路法或对偶变量法对得到解进行最优性判别。当检验的结果为非最优解时,进行解的改进,然后再进行最优性判别,直到所有的非基变量检验数全非负,得到最优解。在解决运输问题时会遇到产销不平衡的情况,在该情况下,要将该问题转化为产销平衡问题,只需增加一个假象的产地或销地,并将表示该地的变量在目标函数中的系数设为零即可。 整数规划是解决决策变量只能取整数的规划问题,整数规划的解法有割平面法和分支定解法。整数规划中的0-1规划整数问题是一个非常有用的方法。在实际问题中,该方法能够解决很多问题。0-1整数规划的解决方法有枚举法和隐枚

运筹学知识点总结

运筹学 考试时间: 2009-1-4 10:00-12:00 考试地点: 金融1、2:(二)201,会计1、2:(二)106 人资1、2:(二)203,工商1、2:(二)205 林经1、2:(二)306 ( 答疑时间: 17周周二周四上午8:00-11:00 18周周一周三上午8:00-11:00 地点:基础楼201 {

线性规划 如何建立线性规划的数学模型; 线性规划的标准形有哪些要求如何把一般的线性规划化为标准形式 如何用图解法求解两个变量的线性规划问题由图解法总结出线性规划问题的解有哪些性质 如何用单纯形方法求解线性规划问题 如何确定初始可行基或如何求初始基本可行解(两阶段方法)如何写出一个线性规划问题的对偶问题如果已知原问题的最优解如何求解对偶问题的最优解(对偶的性质,互补松紧条件); 对偶单纯形方法适合解决什么样的问题如何求解 对于已经求解的一个线性规划问题如果改变价值向量和右端向量原最优解/基是否仍是最优解/基如果不是,如何进一步求解 !

1、建立线性规划的数学模型: 特点: (1)每个行动方案可用一组变量(x 1,…,x n )的值表示,这些变量一般取非负值; (2)变量的变化要受某些限制,这些限制条件用一些线性等式或不等式表示; ~ (3)有一个需要优化的目标,它也是变量的线性函数。 2、线性规划的标准形有哪些限制如何把一般的线性规划化为标 准形式 目标求极小;约束为等式;变量为非负。 min b 0 T z C X AX X ==?? ≥? 例:把下列线性规划化为标准形式: 12 1212112 max 2328 1 20,0z x x x x x x x x x =++≤?? -+≥?? ≤??≤<>? 解:令1 3245,,x x x x x =-=-标准型为: $

(完整版)学习运筹学的体会与心得

学习运筹学的总结与心得体会古人云“夫运筹帷幄之中,决胜千里之外”,怀着对运筹学的憧憬与崇拜之情,这学期我选择了运筹学这门课程。通过学习,我知道了运筹学是一门具有多科学交叉特点的边缘科学,是一门以数学为主要工具,寻求各种问题最优方案的优化学科。 经过一个学期的学习,我们应该熟练地掌握、运用运筹学的精髓,用运筹学的思维思考问题,即:应用分析、试验、量化的方法,对实际生活中的人力、财力、物力等有限资源进行合理的统筹安排。本着这样的心态,在本学期运筹学课程将结束之际,我对本学期所学知识作出如下总结。 一、线性规划 线性规划解决的是:在资源有限的条件下,为达到预期目标最优,而寻找资源消耗最少的方案。而线性规划问题指的是在一组线性等式或不等式的约束下,求解一个线性函数的最大或最小值的问题。其数学模型有目标函数和约束条件组成。 解决线性规划问题的关键是找出他的目标函数和约束方程,并将它们转化为标准形式。解决线性规划问题的主要方法有:图解法、单纯型法、两阶段法、对偶单纯型法、计算机软件求解等方法。简单的设计2个变量的线性规划问题可以直接运用图解法得到。但是往往在现实生活中,线性规划问题涉及到的变量很多,很难用作图法实现,但是运用单纯形法记比较方便。单纯形法的发展很成熟应用也很广泛,在运用单纯形法时,需要先将问题化为标准形式,求出基可行解,列出单纯形表,进行单纯形迭代,当所有的变量检验数不大于零,且基变量中不含人工变量,计算结束。将所得的量的值代入目标函数,得出最优值。 利用单纯形表我们可以(1)直接找出基本可行解与对应的目标函数值;(2)通过检验数判断原问题解的性质以及是否为最优解。 每一个线性规划问题都有和它伴随的另一个问题,若一个问题称为原问题,则另一个称为其对偶问题,原问题和对偶问题有着非常密切的关系,以至于可以根据一个问题的最优解,得出另一个问题的最优解的全部信息。 对偶问题有:对称形式下的对偶问题和非对称形式下的对偶问题。非对称形式下的对偶问题需要将原问题变形为标准形式,然后找出标准形式的对偶问题。因为对偶问题存在特殊的基本性质,所以我们在解决实际问题比较困难时可以将其转化成其对偶问题进行求解。 在解决线性规划问题时,我们往往会在求出最优解后,对问题进行灵敏度分

数学分析中求极限的方法总结

数学分析中求极限的方法 总结 This model paper was revised by the Standardization Office on December 10, 2020

数学分析中求极限的方法总结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理:如果0 x x lim f x =,lim g x =x x →→A B ()() (1)[]0 lim ()()lim ()lim ()x x x x x x f x g x f x g x →→→±=±=A ±B (2)[]0 x x lim f x g x =lim f x)lim ()x x x x g x →→→??=A?B ()()( (3)若B ≠0 (4)0 x lim c ()lim ()x x x f x c f x c →→?=?=A (5)[]00lim ()lim ()n n n x x x x f x f x →→??==A ????(n 为自然数) 上述性质对于,,x x x →∞→+∞→-∞也同样成立i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。 例1. 求225 lim 3x x x →+-的极限 解:由定理中的第三式可以知道 例2. 求3 x →的极限

式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可 例3. 已知 ()1111223 1n x n n = +++ ??-?,求lim n n x →∞ 解: 观察 11=112 2-? 111=2323- ?因此得到 ()1111223 1n x n n = +++ ??-? 所以 1lim lim 11n n n x n →∞→∞ ?? =-= ??? 2 利用导数的定义求极限 导数的定义:函数f(x)在0x 附近有定义,χ??,则 如果 存在, 则此极限值就称函数f(x)在点0x 的导数记为 () 0'f x 。 即 在这种方法的运用过程中,首先要选好f(x)。然后把所求极限都表示成f(x)在定点 x 的导数。

浅谈管理运筹学学习心得体会

浅谈管理运筹学学习心得体会 简单的来说,运筹学就是通过数学模型来安排物资,它是一门研究如何有效的组织和管理人机系统的科学,它对于我们逻辑思维能力要求是很高的。从提出问题,分析建摸到求解到方案对逻辑思维的严密性也是一种考验,但它与我们经济管理类专业的学生以后走上工作岗位是息息相关的。 运筹学应用分析,试验,量化的方法,对经济管理系统中人财物等有限资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。对经济问题的研究,在运筹学中,就是建立这个问题的数学和模拟的模型。建立模型是运筹学方法的精髓。通常的建模可以分为两大步:分析与表述问题,建立并求解模型。通过本学期数次的实验操作,我们也可以看到正是对这两大步骤的诠释和演绎。 运筹学模型的建立与求解,是对实际问题的概括与提炼,是对实际问题的数学解答。而通过本次的实验,我也深刻的体会到了这一点。将错综复杂的实例问题抽象概括成数学数字,再将其按要求进行求解得出结果,当然还有对结果的检验与分析也是不可少的。在这一系列的操作过程中,不仅可以体会到数学问题求解的严谨和规范,同时也有对运筹学解决问题的喜悦。 通过一个学期的实验学习,我对有关运筹学建模问题有了更深刻的认识和把握;对运筹学的有关知识点也有了进一步的学习和掌握,下面是我的一些实验心得和体会。 对于这种比较难偏理的学科来说确实是的,而且往往老师也很难把这么复杂的又与实际生活联系的我们又没亲身经历过的问题分析的比较透彻,所以很多同学从一开始听不懂就放弃了。但对于上课认真听讲,课后认真复习并且做相应习题的同学来说,学好它也不是一件难事,应该比较有把握的,毕竟题目是百变不离其中的,这也是这门课的好处。 对我而言学习运筹学,并没有把它当作是一件难事,以平常心对待。它更多的是联系实际,对一步步的推论推理过程,我个人认为是比较有挑战性的,所以我也用心学好它。其实学习这门课时,大家压力还是比较大的,老担心期末会挂,至少我身边有很多同学是这样的,因为一打开书就可以看到很多复杂的图形,一个个步骤也更是吓人,有的题目甚至要解好几页。就因为这样,我课上就比较注重听讲,尽量把每道题目的关键都听懂,有的不是很清楚的及时向人问完并记下要点,这样也方便自己课后仔细想这道题的解法。因为这门不象其他课上课不听还可以蒙混过关,对于一连串的解题思路只有经过分析才会明白,因为一点不明白有可能导致整个题目前功尽弃。在平时做作业时我会认真分析老师提供给我们的答案的解题思路,在不懂的地方记一下,抽时间问老师问同学,以便在能掌握好所学内容。因为考试的时候还是要求我们把自己的思路、步骤写清楚。毕竟这门课程学习并不是只为了考试,它与以后生活也是息息相关的。

运筹学学习心得

学习心得 姓名:陈相宇班级:石油七班学号: 3120540714经过上了十几次运筹学的课,我觉得运筹学这门课程内容真的很丰富,涉及的内容有很多,例如数学,决策学等。当然,在这短短的时间了,我不可能完全掌握老师所说的内容,只能说了解什么是运筹学?如何运用运筹学?运筹学是一个应用数学和形式科学的跨领域研究,利用数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答,所以说好运筹学对我们以后的生活是很有的帮助的 自古以来,运筹学就无处不在,小到菜市场买菜,大到处理国家事务,都会用到运筹学,“运筹帷幄之中,决胜千里之外”这句话就很好的形容了运筹学的重要性。中国古代有一个著名例子“田忌赛马”,就是对运筹学中博弈论的运用,通过巧妙的安排部署马匹的出场顺序,利用了现有马匹资源的最大效用,设计出了一个最佳方案,取得了一个最好的效果。从中我们不难发现,在已有的条件下,经过筹划、安排,选择一个最好的方案,就会取得最好的效果。可见,筹划安排是十分重要的。 在现在社会中,运筹学是一门重要的课程知识,它在现实生活中无处不在,经常用于解决复杂问题,特别是改善或优化现有系统的效率。经济、金融、工程、管理等都与运筹学的发展密切相关。随着科学技术和生产的发展,运筹学已渗入很多领域里,发挥了越来越重要的作用,运筹学本身也在不断发展,线性规划;非线性规划;整数规划;组合规划等)、图论、网络流、决策分析、排队论、可靠性数学理论、库存论、博弈论、搜索论、模拟等等,因此运筹学有广阔的应用领域,它已渗透到诸如服务、经济、库存、搜索、人口、对抗、控制、时间表、资源分配、厂址定位、能源、设计、生产、可靠性等各个方面。 现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。前者提供模型,后者提供理论和方法。运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。它以整体最优为目标,从系统的观点出发,力图以整个系统最佳的方式来解决该系统各部门之间的利害冲突。对所研究的问题求出最

极限计算方法总结(简洁版)

极限计算方法总结(简洁版) 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证 明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且;5)13(lim 2=-→x x ;???≥<=∞→时当不存在, 时当,1||1||0lim q q q n n ; 等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 2.极限运算法则 定理 1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1) B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+ →1 )1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如: 133sin lim 0=→x x x ,e x x x =--→21 0)21(lim ,e x x x =+∞→3)3 1(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价

运筹学知识点总结

运筹学知识点总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

运筹学 考试时间: 2009-1-4 10:00-12:00 考试地点: 金融1、2:(二)201,会计1、2: (二)106 人资1、2:(二)203,工商1、2: (二)205 林经1、2:(二)306 答疑时间: 17周周二周四上午8:00-11:00 18周周一周三上午8:00-11:00地点:基础楼201

线性规划 如何建立线性规划的数学模型; 线性规划的标准形有哪些要求如何把一般的线性规划化为标准形式 如何用图解法求解两个变量的线性规划问题?由图解法总结出线性规划问题的解有哪些性质? 如何用单纯形方法求解线性规划问题? 如何确定初始可行基或如何求初始基本可行解(两阶段方法)如何写出一个线性规划问题的对偶问题如果已知原问题的最优解如何求解对偶问题的最优解(对偶的性质,互补松紧条件)对偶单纯形方法适合解决什么样的问题如何求解 对于已经求解的一个线性规划问题如果改变价值向量和右端向量原最优解/基是否仍是最优解/基如果不是,如何进一步求解

1、建立线性规划的数学模型: 特点: (1)每个行动方案可用一组变量(x 1,…,x n )的值表示,这些变量一般取非负值; (2)变量的变化要受某些限制,这些限制条件用一些线性等式或不等式表示; (3)有一个需要优化的目标,它也是变量的线性函数。 2、线性规划的标准形有哪些限制如何把一般的线性规划化为标 准形式 目标求极小;约束为等式;变量为非负。 min b 0 T z C X AX X ==?? ≥? 例:把下列线性规划化为标准形式: 12 1212112 max 2328 1 20,0z x x x x x x x x x =++≤?? -+≥?? ≤??≤<>? 解:令13245,,x x x x x =-=-标准型为:

求极限的方法及例题总结

1.定义: 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5 )13(lim 2 =-→x x (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 利用导数的定义求极限 这种方法要求熟练的掌握导数的定义。 2.极限运算法则 定理1 已知)(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有(1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3) )0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

. 利用极限的四则运算法求极限 这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。 8.用初等方法变形后,再利用极限运算法则求极限 例1 1213lim 1 --+→x x x 解:原式=4 3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。 注:本题也可以用洛比达法则。 例2 ) 12(lim --+∞ →n n n n 解:原式= 2 3 11213lim 1 2)]1()2[(lim = -++ = -++--+∞ →∞ →n n n n n n n n n n 分子分母同除以 。 例3 n n n n n 323)1(lim ++-∞→

运筹学学习总结报告(总结文件)

与生活息息相关的运筹学 ——《运筹学》学习心得中国古代著名的例子“田忌赛马”,通过巧妙的安排部署马匹的出场顺序,利用了现有马匹资源的最大效用,设计出了一个最优的技术指导文件,这就是对运筹学中博弈论的运用,那么运筹学与我们的生活息息相关。 自古以来,运筹学就无处不在。小到菜市场买菜的大妈,大到做军事部署的国家元首,都会用到运筹学。当我们为选择去哪里旅游而犹豫不决,比对了很久终于找到一条最优路线时。当我们考试之前想临时抱佛脚,用最短时间复习而考到尽量高的分数时……无形之中,我们已经在运用运筹学不断的解决我们生活中的问题了。 运筹学是一应用数学和形式科学的跨领域研究,利用像是统计学、数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答。运筹学经常用于解决现实生活中的复杂问题,特别是改善或优化现有系统的效率。 研究运筹学的基础知识包括实分析、矩阵论、随机过程、离散数学和算法基础等。而在应用方面,多与仓储、物流、算法等领域相关。因此运筹学与应用数学、工业工程、计算机科学等专业密切相关。 现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。前者提供模型,后者提供理论和方法。 运筹学的思想在古代就已经产生了。敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法。“运筹”一词,本指运用算筹,后引伸为谋略之意。“运筹”最早出自于汉高祖刘邦对张良的评价:“运筹帷幄之中,决胜千里之外。” 但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却是晚多了。二次大战时,英军首次邀请科学家参与军事行动研究(, 在英国又称或, ),战后这些研究结果用于其他用途,这是现代“运筹学”的起源。也可以说,运筹学是在二十世纪四十年代才开始兴起的一门分支。 本学期,经过周的学习,我对运筹学也有了一定的认识和了解,并且能够运用运筹学解决一些实际生活中的问题。经过学习我了解到运筹学的具体内容

学习运筹学的心得

学习运筹学的心得 一直以来就对经济类很感兴趣,但是被分配到机械专业,不过我也一直都在关注有关经济,所以这次选修课,我毫不犹豫的选了运筹学,对于运筹学,我还是有一些了解的,知道他同我这机械专业的联系,运筹学在生活中的应用非常广泛,工程,物流,人事安排等很多方面都牵扯到运筹。基本上需要资源优化配置的都有运筹学的影响。你在家里面做个简单的事情安排都由运筹学的影响。比如家务安排,怎么安排最节省人力时间,就运用到了运筹学。运筹学是从生活实践中总结发展出来的学科,影响很广泛,很多人没有接触过运筹学,不知道什么是运筹学,但是在处理问题的时候都用到了运筹学。 刚开始学运筹学对我来说也许有点难度,但我还是会拿起那本厚厚的书静静的看下去,不知不觉就 喜欢上它了,觉得它是我学习的课程最有用的一门学科。也许不光是课程本身的实用性吧!每次看完一点我都要慢慢去体会,原来如此复杂的问题这样就解决了,有点不可思议! 晚上休息的时候也会不知不觉就想起,以至与舍友说我是运筹学学疯了,也许吧!最近发觉 自己有个毛病,总会把运筹学和人生联系到一起,不知不觉就会想到它 学习理论的目的就是为了解决实际问题,下面就谈谈

我对运筹学的理解及我学习运筹学的心得。 其实,运筹思想和方法,早在我国上古就曾闪烁过光辉。《孙子兵法》十分强调决策信息作用,“知己知彼,百战不殆”。我国历史上运筹思想及其应用,在军事上和工程上都有过不少光辉范例。“赤壁鏖兵”、“火烧连营”、“淝水之战”,都因运筹有方,结果以寡胜众。“都江堰水利工程”和北宋修复皇宫“一举三济”的故事,至今仍广为传颂。 运筹学是研究各种广义资源的运用、筹划以及相关决策等问题的,其目的是根据问题的需求,通过数学的分析和运算,做出综合性的、合理的优化安排,以便更有效地发展有限资源的效益。在学习运筹学前我们必须理解这么学科到底是做什么的,并且学习时我们要知道如何运用它达到所需的目的。 刚刚接触运筹学时可能会很迷茫,那一堆堆的数学式子到底让我们做什么,其实刚开始你只需要明白每道题所要表达的意思和最终想要达到的最优效果是什么。然后引入必要的变量,再根据老师的讲解,看明白例题中所列的代数式是不是符合题目要求达到的效果,随后根据题目中所要求的一些条件,用已列出的变量列出不等式,从而符合题目给出的限制条件。这就是运筹学最基础所要理解和掌握的,找出变量,明白题目所要表达的意思列出代数式,然后根据限制条件列

高数-极限求解方法与技巧总结

第一章 极限论 极限可以说是整个高等数学的核心,贯穿高等数学学习的始终。因为有关函数的可积、连续。可导等性质都是用极限来定义的。毫不夸张地说,所谓高数,就是极限。衡量一个人高等数学的水平只需看他对极限的认识水平,对极限认识深刻,有利于高等数学的学习,本章将介绍数列的极限、函数的极限以及极限的求解。重点是求极限。 ??????? ?? ?? ?? 极限的定义数列极限极限的性质 函数极限的定义函数极限函数极限的性质 一、求极限的方法 1.利用单调有界原理 单调有界原理:若数列具有单调性、且有有界性,也即单调递增有上界、单调递减有下界,则该数列的极限一定存在。可以说,整个高等数学是从该结论出发来建立体系的。 利用该定理一般分两步:1、证明极限存在。2、求极限。 说明:对于这类问题,题中均给出了数列的第n 项和第1n +项的关系式,首先用归纳法或作差法或作商法等证明单调性,再证明其有界性(或先证有界、再证单调性),由单调有界得出极限的存在性,在最终取极限。 例1 设0110,0,()0,1,2n n n a a x x x n x +>>=+=,…证{}n x 的极限存在,并求其极限。 分析:本题给出的是数列前后两项的关系,所以应该用单调有界原理求解。 解:由基本不等式,11()2n n n a x x x +=+≥,所以可知数列n x 有下界;下面证单 调性,可知当2n ≥时,有2 111 ()()22n n n n n n n x a x x x x x x +=+≤+=,则n x 单调递减。综 合可得,则n x 单调递减有下界,所以lim n n x →∞ 存在;令lim n n x A →∞ = ,带入等式解得 A = 评注:对于该题,再证明有界性的过程中用到基本不等式;特别是在证明单调性

运筹学总结

第二章线性规划与单纯形法 所以线性规划问题的求解变得相当的重要,首先最为直观的为图解法,通过作图直观方便的求解相应解。由于其直观的结果,可以轻易地看出三中情况:1、无穷多最优解2、无界解3、无可行解。为了形式化求解办法我们将所有的线性规划问题化为标准形式。 区分四个概念: 1、可行解: 2、基: 3、基可行解: 4、可行基: 由于图解法自身的弊端,即只能表示两个变量(最多三个)的规划问题,所以产生了单纯形法:其本质是对于图解法的拓展,所谓的单纯形其实就是指各个维度中的图形,只不过图解法是单纯形法在二维中的情况。而单纯形的寻优其实就是对于单纯形的各个边界以及定点的寻优。 单纯形法的根基: 单纯形法基于以下几个定理: 几个概念 1、凸集:K是n维空间的一点集,若任意的两点X(1)?K,X(2)?K的连线上的所有的点满 足αX(1)+ (1-α)X(1)?K,(0≤α≤1);则K为凸集。 2、凸组合: 3、顶点: 几个定理: 1、若线性规划问题存在可行域,则其可行域是凸集 2、线性规划问题的可行解X=(x1,x2,x3……xn)T为基可行解的充分必要条件是X的正分 量所对应的系数列向量是线性独立的。 3、线性规划问题的基可行解X对应于可行域D的顶点。 4、若K是有界凸集,则任何一点X ?K科表示为K的顶点的凸组合 5、若可行域有界,线性规划问题的目标函数一定可以再起可行域的顶点上达到最优 松弛变量与人工变量: 为了使约束中的不等式变为等式的标准形式,我们将多余的部分表示成松弛变量就得到了标准形式,加入的松弛变量其实质是表明没有利用上的资源,人工变量其实就像是为了方便找初始基多引入的东西。不过要说的是人工变量在目标函数中的系数的正负要注意。 其实一般来说≤的情况下要“+松弛变量”;在≥的情况下要“-松弛变量+人工变量”。但是可以将≥的情况两边取负,变成≤的情况然后“+松弛变量”,这实质上是等价于在原式子基础上单单“-松弛变量”。人工变量的功用有待探讨……

求极限的方法总结__小论文

求数列极限的方法总结 数学科学学院数学与应用数学08级汉班 ** 指导教师 **** 摘 要 数列极限的求法一直是数列中一个比较重要的问题,本文通过归纳和总结,从不同的方面罗列了它的几种求法。 关键词 数列极限、定义、泰勒公式、无穷小量 极限一直是数学分析中的一个重点内容,而对数列极限的求法可谓是多种多样,通过归纳和总结,我们罗列出一些常用的求法。求数列极限的最基本的方法还是利用数列极限的定义,也要注意运用两个重要极限,其中,可以利用等量代换,展开、约分,三角代换等方法化成比较好求的数列,也可以利用数列极限的四则运算法则计算。夹逼性定理和单调有界原理是很重要的定理,在求的时候要重点注意运用。泰勒公式、洛必达法则、黎曼引理是针对某些特殊的数列而言的。还有一些比较常用的方法,在本文中都一一列举了。 1.定义法 利用数列极限的定义求出数列的极限.设﹛Xn ﹜是一个数列,a 是实数,如果对任意给定的ε〉0,总存在一个正整数N ,当n 〉N 时,都有a Xn -<ε,我们就称a 是数列{Xn}的极限.记为a Xn n =∞ →lim . 例1: 按定义证明0 ! 1lim =∞ →n n . 解:1/n!=1/n(n-1)(n-2)…1≤1/n 令1/n<ε,则让n>ε 1 即可, 存在N=[ε 1 ],当n>N 时,不等式:1/n!=1/n(n-1)(n-2)…1≤1/n<ε成 立, 所以0 ! 1lim =∞ →n n . 2.利用极限四则运算法则 对和、差、积、商形式的函数求极限,自然会想到极限四则运算法则. 例2: 求n n n b b b a a a ++++++++∞ → 2 211lim ,其中1,1<

运筹学方法总结

一.线性规划 1.问题背景:线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人 们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源. 线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题 2.求解方法: a.单纯形法: 适用的问题:约束条件全部为≤,右边常数全部为非负,对目标函数的系数没有要求。 min z=3x1-2x2 s.t. x1+2x2≤12 2x1+ x2≤18 x1,x2≥0 求解步骤: STEP 0 将线性规划问题标准化 STEP 1 是否有明显的初始基础可行解,如果有,转STEP 3,否则,转STEP 2。 STEP 2 构造辅助问题,用两阶段法求解辅助问题。如果辅助问题最优解的目标函数值大于0,原问题无可行解,算法终止。否则转STEP 3。 STEP 3 写出单纯形表,将基变量在约束条件中的系数消为单位矩阵,将基变量在目标函数中的系数消为0。转STEP 4。 STEP 4 如果所有非基变量的检验数全为负数或0,则已获得最优解,算法终止。否则,选择检验数为正数并且绝对值最大的非基变量为进基变量。转STEP 5。 STEP 5 如果进基变量在约束条件中的系数全为负数或0,目标函数无界,算法终止。否则根据右边常数和正的系数的最小比值,确定离基变量。转STEP 6。 STEP 6 进基变量列和离基变量行交叉的元素称为主元。对单纯形表进行行变换,将主元变为1,将主元所在列的其他元素变为0。转STEP 4。 b.对偶单纯形法: 适用的问题:约束条件中至少有一个是≥,相应的右边常数为非负,目标函数系数全部为非负。 min z=3x1+2x2 s.t. x1+2x2≥12 2x1+ x2≤18 x1,x2≥0 求解步骤: 步骤1 确定原问题(L)的初始基B,使所有检验数,即是对偶可行解,建立初始单纯形表。 步骤2 检查基变量的取值,若≥0,则已得最优解,计算停;否则求确定单纯形表第L行对应的基变量为旋出变量。 步骤3 若所有,则原问题无可行解,计算停;否则,计算确定对应的为旋入变量。 步骤4 以为主元作(L,K)旋转变换,得新的单纯形表,转步骤2。可以证明,按上述方法进行迭代,所得解始终是对偶可行解。 二.运输问题 1.问题背景:一般的运输问题就是要解决把某种产品从若干个产地调运到若干个销地,在每个产 地的供应量与每个销地的需求量已知,并知道各地之间的运输单价的前提下,如何确定一个使得总的运输费用最小的方案。

相关主题
文本预览