当前位置:文档之家› 障碍空间中的飞行器编队与集群控制研究_赵刚

障碍空间中的飞行器编队与集群控制研究_赵刚

障碍空间中的飞行器编队与集群控制研究_赵刚
障碍空间中的飞行器编队与集群控制研究_赵刚

临近空间用途及发展优势与潜力

一、临近空间的概念 临近空间是指介于普通航空飞行器最高飞行高度和天基卫星最低轨道高度之间的空域。天基卫星的最低轨道约为200km,航空飞机的最大飞行高度约为20km,但从应用上讲,由于100km以下为临近空间飞行器的主要活动区域,故在国内一般定义临近空间为离地球表面约20-120km的空域,美军定义为20-100km的空域。过去所称的“近空间”、“亚轨道”、“空天过渡区”、“亚太空”、“超高空”或“高高空”等区域,都是指临近空间。 图表临近空间区域划分 资料来源:产研智库 二、临近空间飞行器综述 所谓临近空间飞行器,顾名思义是指能够飞行在临近空间执行特定任务的一种飞行器,既能比卫星提供更多更精确的信息(相对于某一特定区域),并节省使用卫星的费用,又能比通常的航空器减少遭地面敌人攻击的机会。临近空间飞行器能快速飞行在敌方战区上空而不易被敌方防空监视系统发现,从而为作战指挥官提供不间断的监视情报,以增强其对战场情况的了解能力。部署这种高空飞行器,成本低、时间快,适合现代战争的需求。 图表临近空间飞行器的设计思想、特点与关键技术 资料来源:产研智库

三、临近空间飞行器发展优势 民用领域以通信监测领域为例,与卫星相比,临近空间飞行器造价明显低于卫星,载荷能力超过卫星的2倍,延迟时间、衰减更小,且可以多次回收、重复利用。 图表临近空间飞行器与通信卫星的比较优势 资料来源:产研智库 除此之外,临近空间飞行器还具有一下优势: (一)持续工作时间长。 传统飞机的留空时间以小时为单位,临近空间飞行器的留空时间则以天为单位,目前正在研制的临近空间平台预定留空时间长达6个月,规划中的后续平台预定留空时间可达1年以上,易于长期、不间断地获得情报和数据,可对紧急事件迅速做出响应,而且人员保障少、后勤负担轻。 (二)覆盖范围广。 临近空间飞行器的飞行高度在传统飞机之上,其侦察覆盖范围比传统飞机要广得多。 (三)生存能力强。 气球或软式飞艇的囊体采用非金属材料而且低速运行,雷达和热反射截面很小,传统的跟踪和瞄准办法不易发现。与传统飞机相比,气球或软式飞艇的缺点是:充灌氦气的时间较长,在充气时需要保持稳固,有时还需要占用机库;在放飞、通过平流层上升、下降、回收和放气的过程中,由于其庞大的体积,容易受到风和湍流的影响。 四、临近空间飞行器军事用途

航天器总体设计答案总结(新)

航天器总体设计 (无平时成绩,考试试卷满分制,内容为21题中抽选13题) 1、航天器研制及应用阶段的划分。 主要划分为工程论证、工程研制、发射、在轨测试与应用四个阶段。 1)工程论证阶段:开展任务分析、方案可行性论证工作。 2)工程研制阶段:包括方案设计阶段、初样设计与研制阶段、正样设计与研制阶段。 3)发射阶段:发射场测试及发射。 4)在轨测试与应用阶段:在轨测试阶段、在轨应用阶段。 2、航天工程系统的组成及各自的任务。 组成:航天工程系统是由航天器、航天运输系统、航天发射场、航天测控网、应用系统组成的完成特定航天任务的工程系统。 任务: 1)航天器:指在地球大气层以外的宇宙空间执行探索、开发和利用太空以及地球以外天体的特定任务飞行器,又称空间飞行器。 2)航天运输系统:指在地球和太空之间或在太空中运送航天器、人员或物资的飞行器系统,包括运载器、运输器、轨道机动飞行器和轨道转移飞行器等。 3)航天发射场:系指发射航天器的基地,包括测试区、发射区、发射指挥控制中心、综合测量设施、勤务保障设施等。 4)航天测控网:系指对航天运输系统、航天器进行跟踪、测量、监视、指挥和控制的综合系统,包括发射指挥控制中心、测控中心、航天指挥控制中心、测控站和多种传输线路及设备。 5)应用系统:系指航天器的用户系统,一般是地面应用系统,如各类应用卫星的地面应用系统、载人航天器的地面应用系统、空间探测器的地面应用系统。 3、航天器总体设计概念及主要阶段划分。 概念:航天器总体设计是指为完成航天任务规定的目标所开展的以航天器为对象的一系列设计活动。 主要阶段划分:主要分为任务分析、总体方案可行性论证、总体方案设计、总体详细设计四个阶段。总体详细设计又分为总体初样设计和总体正样设计。 4、航天器总体设计的基本原则。 满足用户需求的原则、系统整体性原则、系统层次性原则、研制的阶段性原则、创新性和继承性原则、效益性原则。 5、航天器技术从成熟程度上可分为哪四类技术,各自的含义。 1)成熟技术:已经过在轨飞行考验,沿用原有的分系统方案、部件、电路和结构。 2)成熟技术基础上的延伸技术:在成熟技术基础上需要进行少量修改设计的分系统方案、部件、电路和结构。 3)不成熟技术(关键技术):必须经过研究、生产和试验(攻关)后才能在卫星上应用的技术。 4)新技术(关键技术):尚未在卫星上使用过的技术。 6、航天器总体方案设计阶段的主要工作。 1)用户使用要求及技术指标要求的确定。 2)总体方案的确定。 3)总体技术指标的分析、分配及预算。 4)分系统方案及技术指标的确定。

骑士飞行棋实训报告

山东理工大学计算机学院 实训报告 《DOS界面开发基础实训》 班级 姓名 学号 指导教师 二○一二年七月五日 实训任务书及成绩评定 课题名称骑士飞行棋 Ⅰ、题目的目的和要求: 1、设计目的 本实训是实践性教学环节之一,旨在锻炼学生的实践操作能力和综合应用能力,希望通过案例实践,帮助学生掌握DOS界面的开发和应用,具备熟练使用C语言开发界面、感受游戏开发过程等。 2.要求学生掌握: (1)、C语言的规范、结构和标记。 (2)、数组、链表的定义和使用。 (3)、C语言的程序设计基础、面向对象编程、操作、事件处理和特效,感受游戏的开发过程等 (4)、综合应用各种前台技术开发DOS页面。 2、设计题目要求: 第一部分 游戏端首页 (1)角色的分配及及游戏规则: 游戏规则和传统的飞行棋一样,支持两人对战 采用100格小型游戏棋盘 游戏规则:对战双方轮流掷骰子控制自己的骑兵前进或后退,在游戏棋盘上设置有关卡普通 地雷 暂停 时空隧道

幸运轮盘(提供两种运气:交换位置和轰炸) 棋盘上的关卡只在骑兵第一次移动遇到时有效 (2)棋盘示例: 第二部分:游戏过程 (1)地图显示思路: 将对战地图划分成4个部分分别显示 奇数行:顺序输出地图数组中代号对应图像 右竖行:先输出空格,再输出数组中代号对应图像 偶数行:逆序输出地图数组中代号对应图像 (2)游戏进行中的界面 第三部分:游戏结束,玩家胜负已分 Ⅱ、设计进度及完成情况 日期内容 分析所给题目,初步划分侧重点,并初步制定流程 对所给题目进行详细的研究并细读有关资料 做出所给题目,讨论研究并调试检查错误, 对所给题目进行综合考虑,并进行再次修改 答辩,思考老师的评价 Ⅲ、系统实现--主要功能代码 void Welcome() { printf("※※※※※※※※※※※※※※※※※※※※※※※※※※※※※※\n"); printf("操 2.孙权 3.刘备 \n"); printf("请玩家1选择角色:");个玩家轮流掷骰子,如果上轮走到暂停关卡,停掷一次\n\n"); printf("2.若玩家走到幸运轮盘,则和对方交换位置或者对方后退6步\n\n"); printf("3.若玩家走到某格,而对方也在此格,则对方退回原点\n\n"); printf("4.若遇到地雷后退6步\n\n"); printf("5.若遇到暂停则此玩家下一回合停止掷骰子\n\n"); printf("6.若遇到时空隧道再前进10步\n\n");

无人机编队分布式体系结构

1.1 无人机编队分布式体系结构 1.1.1 单无人机体系结构 单无人机体系结构包含定位感知、控制、规划三个层面。其主要研究如何将各个子模块集成在一体以达到个体的最优。感知层解决“我在哪”的问题,规划层解决“我要去哪”的问题,控制层解决“我要怎么去”的问题。图2.1为单无人机体系的结构图。本文中感知层采用EKF (Extended Kalman Filter)算法进行多传感器数据融合,输入量为IMU(Inertial Measurement Unit)和GPS(Global Position System),经过融合后可以得到更高频更精确的导航数据,包括姿态、速度和位置。在单机体系结构中,地面站仅负责任务的上传和遥测数据的回传。控制层接收地面站的规划航线并将其作为期望轨迹,结合感知层得到的导航数据,经过控制算法处理可以得到四通道的PWM输出,最后发送给执行机构。 图2.1 单无人机体系结构 1.1.2 多无人机分布式体系结构 在分布式体系结构中,各无人机节点通过拓扑网络进行信息交互,将个体间简单的行为规则合理组合在一起形成智能有序的集体。在编队协同飞行阶段,群体内无中心节点,个体的行动是独立的,仅需要知道邻居信息即可以参与行动[39]。图2.2是本文设计的多无人机分布式体系结构图。图中结构可以分为空中端、通信层、地面站三部分。空中端包含各个无人机节点的导航传感器模块、飞行控制系统模块、接收机模块、机载端数传模块等。通信层为各无人机节点实现信息共享的媒介,信息的共享形式会在后面几节中详细介绍。地面端主要是地面控制系统,功能包括上传群体的整体任务和监视群体以及群体中的每个个体的遥测数据,在遇到意外突发情况时,地面站监测人员可以随时介入获得该无人机的操作权,尽最大可能保证无人机编队飞行的安全性。

临近空间低速飞行器螺旋桨技术

临近空间低速飞行器螺旋桨技术 杜绵银,陈培,李广佳,周波 (中国航天空气动力技术研究院,北京 100074) 摘要:临近空间飞行器因其显著特点和潜在的军、民两用价值而成为当前各国研究的热点。螺旋桨推进是低速临近空间飞行器的主要推进动力方式。本文介绍了临近空间发展、螺旋桨的发展及其在低速临近空间飞行器特别是高空飞艇及高空太阳能无人机上的应用,分析了低速临近空间飞行器螺旋桨设计、试验、制造的技术特点及技术难点。 关键词:临近空间;螺旋桨;平流层飞艇;高空长航时无人机 引言 未来战争是空天地海电磁五位一体的体系对抗,空天是重要的战略制高点,图1显示了各个高度范围人类研制和构想的各种空天飞行器。距地面20km以下的范围是传统航空器主要活动区域,100km以上的太空则是航天器的运行空间。而介于两者之间即20~100km的临近空间,该空域大气稀薄、气象活动较弱包括了大气层中对流层顶、平流层、中间层和热层下边界,由于技术和认识上的原因,长期以来是一个相对独立的“和平地带”,各国均未给予太多关注。目前,随着航空航天技术的统一和融合,临近空间作为一个新兴的技术领域,其重要的战略价值日益受到世界各国的高度重视。美国、俄罗斯、欧洲、韩国、英国、日本、以色列等国家纷纷投入大量的经费,积极开展临近空间飞行器的技术与应用研究。但从发展总体水平上看,国外临近空间飞行器技术仍处于关键技术攻关与演示验证阶段,要获得较高的军用价值仍需实现关键技术上的突破[1]。 图1 空间飞行器概念示意图 临近空间飞行器特指能在近空间作持续飞行并完成一定使命的飞行器,具有突防能力强生存力高和应用范围广的特点,能执行快速远程投放、侦察、监视、预警、通信中继、导航和信息干扰等诸多任务[2-3]。按飞行速度,临近空间飞行器可分为高速飞行器和低速飞行器两类。临近空间高速飞行器又可分为超声速和高超声速飞行器,飞行高度涵盖20~100km,一般以火箭或吸气式发动机为动力,主要包括超声速飞机和巡航导弹,高超声速巡航导弹、高超声速滑翔导弹和可重复使用的空天飞行器等,如美国的X-43A(图2)。临近空间低速飞行器主要包括高空气球、平流层飞艇(图3)和高空长航时无人机(图4)等,飞行高度约20~30km,飞行速度为低速和亚声速。 图 2 X-43A 图3 洛马公司的高空飞艇想象图 图4探路者高空长航时无人机 高空气球由于没有动力装置,易受风力影响,无法实现定点和机动,其应用价值有限。平流层飞艇和高空长航时无人机大多以太阳能电池和燃料电池提供能源,驱动螺旋桨产生推力来克服空气阻力。与传统飞机相比,留空时间长,覆盖范围广,制造和运行维护费用低;与卫星相比, 由于临近空间飞行器运行高度低,容易实现高分辨

无人机编队队形变换

1.1 无人机编队队形变换 1.1.1 队形变换问题描述 图4.1给出了队形变化的示意图,图中红色飞机代表长机,其他飞机代表僚机,无人机编队由原三角形队形16P P 变换到目标矩阵队形''16P P 。队形变换选择的路线和目标队形的位置是影响队形变换效率的两个主要因素。当目标队形确定时,选择不同的对应路线,其效率是不一致的。本章队形变换问题主要研究如何选取最优的对应路线。定义队形变化的最优效率为由原队形变换到期望队形的时间最短。 1P 4P 5P 2 P 3P 6P '1P '2P ' 4P '3P '6P ' 5P 图4.1 队形变换示意图 假设编队中有n 架飞机,各飞机i 变化前的位置为i P ,期望队形的位置为' i P ,飞机i 从i P 到'i P 的变换效率为i ξ,经过的时间为i t ,走过的路程为i s 。则一次变换中的能量效率为: 0n tran i i W ξ==∑ (4.1) 队形变换的时间和总的路程为: 12max(,, ,)tran n T t t t = (4.2) n tran i i S s ==∑ (4.3) 则队形变换的最优解问题转换为求取当tran T 最小时的各飞机间的对应关系。由第三章编队保持阶段可以知道,本文的僚机跟踪过程需要根据纵向x 轴的距离不断调整自己的速度。只要保证距离期望点的位置距离最近,根据僚机纵向编队跟踪的串级PID 控制系统,僚机就能以最快的时间到达。则问题可以进一步转化为求取当tran S 最小时的各飞机间的对应关系。假设队形变换在无障碍物情况下进行变换,则i P 到'i P 时的直线路径最短,最后可以将队形变化最优解问题简化为指派问题。编队中有n 架飞机,则共有n n ?中对应关系。若最优的对应方法为' (,)i i J P P 。则其数学表达式为: '12(,)min(,,,)n n i i tran tran tran J P P S S S ?= (4.4) 1.1.2 匈牙利算法的应用 匈牙利算法又名为Munkres 分配算法,该算法最早由匈牙利数学家Dénes K?nig 和Jen?

飞行器控制实验报告剖析

H a r b i n I n s t i t u t e o f T e c h n o l o g y 飞行器制导与控制 实验报告 专业:自动化 班级: 学号:1120410333 姓名: 设计时间:2015/12/12

上机实验1: 使用四阶龙格库塔法求解微分方程 sin()ω=+dy t b dx (1) 先定义参数,ωb ,初值条件可以自己任取。 1. 源程序: function [x,y] = M1(fun,x0,xt,y0,PointNum) if nargin<4 | PointNum<=0 PointNum=100; end if nargin<3 y0=0; end y(1,:)=y0(:)'; h=(xt-x0)/(PointNum-1); x=x0+[0:(PointNum)]'*h; for k=1:(PointNum) f1=h*feval(fun,x(k),y(k,:)); f1=f1(:)'; f2=h*feval(fun,x(k)+h/2,y(k,:)); f2=f2(:)'; f3=h*feval(fun,x(k)+h/2,y(k,:)); f3=f3(:)'; f4=h*feval(fun,x(k)+h,y(k,:)); f4=f4(:)'; y(k+1,:)=y(k,:)+(f1+2*(f2+f3)+f4)/6; end 2、运行文件: x0=0; xt=2; Num=100; h=(xt-x0)/(Num-1); x=x0+[0:Num]*h; a=1; yt=1-exp(-a*x); fun=inline('-y+1','x','y'); y0=0; PointNum=100; [xr,yr]=M1(fun,x0,xt,y0,Num); M1_x=xr'

航天器总体设计作业【哈工大】

2017年《航天器总体设计》课程作业 1.嫦娥三号探测器航天工程系统的组成及各自的任务 嫦娥三号探测器由月球软着陆探测器(简称着陆器)和月面巡视探测器(简称巡视器)组成。 (1)探测器系统:主要任务是研制嫦娥三号月球探测器。嫦娥三号探测器由着陆器和巡视器组成。着陆月面后,在测控系统和地面应用系统的支持下,探测器携带的有效载荷开展科学探测。 (2)运载火箭系统:主要任务是研制长征三号乙改进型运载火箭,在西昌卫星发射中心,将嫦娥三号探测器直接发射至近地点高度200公里、远地点高度约38万公里的地月转移轨道。 (3)发射场系统:主要任务是由西昌卫星发射中心承担嫦娥三号发射任务。发射场系统通过适应性改造,具备长征三号乙改进型火箭的测试发射能力。 (4)测控系统:主要任务是对运载火箭、探测器在各个飞行阶段以及探测器在月面工作阶段的测控、轨道测量、月面目标定位以及落月后着陆器和巡视器的控制。 (5)地面应用系统:主要任务是根据科学探测任务,提出有效载荷配置需求;制定科学探测计划和有效载荷的运行计划,监视着陆器和巡视器有效载荷的运行状态,编制有效载荷控制指令和注入数据,完成有效载荷运行管理。 2.我国载人航天工程系统的组成及各自的任务 (1)航天员系统:主要任务是选拔、训练航天员,并在载人飞行任务实施过程中,对航天员实施医学监督和医学保障。研制航天服、船载医监医保设备、个人救生等船载设备。 (2)空间应用系统:主要任务是研制用于空间对地观测和空间科学实验的有效载荷,开展相关研究及应用实验。 (3)载人飞船系统:主要任务是研制“神舟”载人飞船。“神舟”载人飞船采用轨道舱、返回舱和推进舱组成的三舱方案,额定乘员3人,可自主飞行7天,具有出舱活动和交会对接功能,可与空间实验室和空间站进行对接并停靠飞行半年。 (4)运载火箭系统:主要任务是研制满足载人航天要求的大推力长征二号F型运载火箭,对长征系列

飞行控制系统大作业

《飞行控制系统》课程实验报告 班级 0314102 学号 031410224 姓名孙旭东 成绩 南京航空航天大学 2017年4月

(一)飞机纵向飞行控制系统的设计与仿真 1、分析飞机纵向动力学模态,求飞机的长周期与短周期阻尼与自然频率。 在MATLAB环境下导入数据文件,输入damp(alon),得出结果: Eigenvalue Damping Freq. (rad/s) -2.29e+000 + 4.10e+000i 4.88e-001 4.69e+000 -2.29e+000 - 4.10e+000i 4.88e-001 4.69e+000 -3.16e-002 1.00e+000 3.16e-002 -7.30e-003 + 3.35e-002i 2.13e-001 3.42e-002 -7.30e-003 - 3.35e-002i 2.13e-001 3.42e-002 长周期的根为 -7.30e-003 + 3.35e-002i 和 -7.30e-003 - 3.35e-002i 阻尼为 2.13e-001 自然频率为 3.42e-002(rad/s) 短周期的根为 -2.29e+000 + 4.10e+000i 和 -2.29e+000 - 4.10e+000i 阻尼为 4.88e-001 自然频率为 4.69e+000(rad/s) 2、对升降舵及油门单位阶跃输入下的飞机自然特性进行仿真,画出相应的状态曲线。 sys=ss(alon,blon,clon,dlon) [y,t]=step(sys,500) subplot(221) plot(t,y(:,1,1)) xlabel('t(s)') ylabel('\Deltau(m/s)') subplot(222) plot(t,y(:,1,2)) xlabel('t(s)') ylabel('\Deltau(m/s)') subplot(223) plot(t,y(:,2,1)) xlabel('t(s)') ylabel('\Delta\alpha(deg)') subplot(224) plot(t,y(:,2,2)) xlabel('t(s)') ylabel('\Delta\alpha(deg)')

临近空间飞行器特点及用途应用

专业经济研究智库 权威行业研究报告 一.临近空间飞行器基本概述及发展特点 (一)、临近空间的概念 临近空间是指介于普通航空飞行器最高飞行高度和天基卫星最低轨道高度之间的空域。天基卫星的最低轨道约为200km ,航空飞机的最大飞行高度约为20km ,但从应用上讲,由于100km 以下为临近空间飞行器的主要活动区域,故在国内一般定义临近空间为离地球表面约20-120km 的空域,美军定义为20-100km 的空域。过去所称的“近空间”、“亚轨道”、“空天过渡区”、“亚太空”、“超高空”或“高高空”等区域,都是指临近空间。 图表 临近空间区域划分 资料来源:产研智库 (二)、临近空间飞行器综述 所谓临近空间飞行器,顾名思义是指能够飞行在临近空间执行特定任务的一种飞行器,既能比卫星提供更多更精确的信息(相对于某一特定区域),并节省使用卫星的费用,又能比通常的航空器减少遭地面敌人攻击的机会。临近空间飞行器能快速飞行在敌方战区上空而不易被敌方防空监视系统发现,从而为作战指挥官提供不间断的监视情报,以增强其对战场情况的了解能力。部署这种高空飞行器,成本低、时间快,适合现代战争的需求。 图表 临近空间飞行器的设计思想、特点与关键技术

资料来源:产研智库 (三)、临近空间飞行器发展优势 民用领域以通信监测领域为例,与卫星相比,临近空间飞行器造价明显低于卫星,载荷能力超过卫星的2倍,延迟时间、衰减更小,且可以多次回收、重复利用。 图表临近空间飞行器与通信卫星的比较优势 资料来源:产研智库 除此之外,临近空间飞行器还具有一下优势: (一)持续工作时间长。 传统飞机的留空时间以小时为单位,临近空间飞行器的留空时间则以天为单位,目前正在研制的临近空间平台预定留空时间长达6个月,规划中的后续平台预定留空时间可达1年以上,易于长期、不间断地获得情报和数据,可对紧急事件迅速做出响应,而且人员保障少、后勤负担轻。 (二)覆盖范围广。 临近空间飞行器的飞行高度在传统飞机之上,其侦察覆盖范围比传统飞机要广得多。 (三)生存能力强。 气球或软式飞艇的囊体采用非金属材料而且低速运行,雷达和热反射截面很小,传统的跟踪和瞄准办法不易发现。与传统飞机相比,气球或软式飞艇的缺点是:充灌氦气的时间较长,在充气时需要保持稳固,有时还需要占用机库;在放飞、通过平流层上升、下降、回收和放气的过程中,由于其庞大的体积,容易受到风和湍流的影响。 二、临近空间的用途应用

四旋翼无人机编队问题方案

多旋翼无人机协同编队飞行控制研究方案 摘要:无人机协同编队飞行控制已经成为时代热题。本文主要是对MMR之间、MMR与GCS之间的通信模式进行穷尽,并对CFF组织架构,3架MMR编队的几何结构进行总结概括,重点分析了CFF队形与所执行任务之间的内在关系。在对CFF控制问题上主要总结了主-僚机控制方式及其常规问题和整体式飞行控制方案的研究。并最终对MMR故障、GCS故障、编队阵型故障、其它应急情况下的容错机制、队形重构机制的研究MMR编队内部避障、整体避障问题研究进行了总结概括。 关键字:通信模式多旋翼无人机协同编队控制方式故障诊断与应急措施 一、序言 无人机(Unmanned Aerial Vehicle, UAV)是现代战争中重要的作战武器,能够代替有人机执行多种复杂危险的任务。尽管如此,单架的UAV 执行任务时仍存在相应的问题,如执行侦察任务时,单架UAV可能会受到传感器的角度限制,不能从多个不同方位对目标区域进行观测,当面临大范围搜索任务时,不能有效地覆盖整个侦察区域;而如果是执行攻击任务,同样,单架UAV在作战范围、杀伤半径、摧毁能力以及攻击精度等方面受到的限制,会影响整个作战任务的成功率。另外,一旦单架UAV中途出现故障,必须立即中断任务返回,在战争中有可能贻误战机而破坏整个战计划。 针对以上现状,多年来人们通过分析生物群体的社会性现象,如模仿群鸟迁徙过程中,其队形保持、节省能量以及协同对抗天敌等能力,来解决目所关注的问题,其目的是为了尽可能地发挥单架UAV的作用,实现多UAV协同编队飞行的控制、决策和管理,从而提高UAV完成任务的效率,拓宽UAV 使用范围,达到安全、高可靠性地执行多种任务的目的。 无人机技术经过几十年的发展已经相对成熟,在军事和民用中发挥了独特的作用。为了适应未来的挑战,除了提高单机的功能和效用外,还需要考虑如何以现在的技术为基础,发展更加有效的无人机管理和组织模式。无人机编队飞行是近年来提出的无人机合作化发展方向中的一个核心概念。 无人机编队飞行,即多架无人机为适应任务要求而进行的某种队形排列和任务分配的组织模式,它既包括编队飞行的队形产生、保持和变化,也包括飞行任务的规划和组织。无人机编队飞行是无人机发展的一个重要趋势,拥有广阔的发展前景。 UAV的编队飞行可以提高UAV完成任务的效率,拓宽UAV使用范围,达到安全、高可靠性地执行中加油、空中监视、侦察和作战等多种任务的目

空间飞行器展开与驱动机构研究进展_马兴瑞

第27卷第6期2006年11月  宇 航 学 报 Journal of Astronautics Vol .27 No .6 November 2006 空间飞行器展开与驱动机构研究进展 马兴瑞1 ,于登云2 ,孙 京2 ,胡成威 2 (1.中国航天科技集团公司,北京100037;2.中国航天科技集团公司五院总体部,北京100094) 摘 要:空间飞行器展开与驱动机构是空间飞行器机构领域的一个重要组成部分。随着我国航天技术的发展,该项技术有了长足进步,对其设计方法和具体工程问题的研究也日渐深入。本文概述了空间飞行器机构的分类与构成,对展开与驱动机构的国内外研究概况进行了分析。结合工程应用,提出了在系统任务分析与设计中的力矩(力)裕度、精度分配、机构非线性、阻尼控制、热匹配、空间润滑、可靠性分析与试验七个典型工程问题。对这些问题逐一分析了其性质、作用及其对系统的影响,探讨了其研究内容和研究方向。展望了我国空间飞行器展开与驱动机构的发展前景。 关键词:空间飞行器;展开机构;驱动机构 中图分类号:V475 文献标识码:A 文章编号:1000-1328(2006)06-1123-09 收稿日期:2006-04-20; 修回日期:2006-09-11 0 引言 随着空间飞行器技术的迅速发展,其构造日趋复杂,功能不断增多,需要采取各种机构来完成多种任务,机构已成为现代空间飞行器中必不可少的重要组成部分。空间飞行器机构是指使得空间飞行器及其部件或附件完成规定动作或运动的机械组件 [1] 。其基本功能是:在空间飞行器发射入轨后实 现各种动作或运动,使空间飞行器或者其部件、附件处于要求的工作状态或工作位置。在此前提下,不同的机构具有不同的具体功能,并且随着航天技术的发展,特别是随着载人航天和深空探测技术的发展,空间飞行器机构的具体功能正在不断变化、发展和扩大。 空间飞行器机构有多种分类方法,其中主要的两种是依据使用状态和依据其功能分类。依据使用状态可以将其划分为两类:一次性工作机构,例如:星箭分离机构、太阳翼压紧释放机构和展开机构等;连续或间歇运动机构,例如天线指向机构,太阳翼驱动机构等 [1] 。依据基本功能可以将其划分为五类, 即:连接分离机构,如包带、爆炸螺栓、对接机构等;锁(压)紧释放机构,如太阳翼压紧释放机构、天线锁紧释放机构等;展开锁定机构,如太阳翼铰链、天线 展开机构等;驱动伺服机构,如雷达伺服机构、天线指向机构、机械臂关节等;阻尼与缓冲机构,如展开阻尼装置,着陆缓冲机构等。通常的空间飞行器机构由三个主要部分构成:动力源、传动副、执行部件。运动需要动力,因此动力源是机构的核心部分。传动副是将动力源输出的能量和运动形式传递、转换到执行部件的部分。执行部件是直接实现机构功能的部件。 本文结合研究组在空间飞行器机构领域的工程研究实践,重点针对展开锁定机构和驱动伺服机构两大机构类型,分析其研究概况与进展,总结并归纳出工程中的若干问题,并提出了相应研究与解决途径。1 空间飞行器展开机构研究进展 空间飞行器展开锁定机构是实现空间飞行器主结构、次结构或某一部件由初始位置或形态,变化到最终位置或形态,并保持该状态的机构。它是伴随着卫星的诞生、发展、成熟,而由简单到复杂逐步发展起来的一个机构领域。早期的卫星靠自旋动力展开杆状天线[2,3] ;展开式太阳翼出现后,折叠式展开 机构成为一直应用到现在的最为典型的展开机 构 [4] ;重力梯度稳定卫星的出现,推动了套筒式展开 机构和轻型桁架式展开机构的发展[5] ;随着航天器

临近空间飞行器

临近空间飞行器 一、临近空间飞行器的基本概念 临近空间(Near space) 通常是指距地表20~100千米处的空域,其下面的空域我们通常称为“天空”,是传统航空器的主要活动空间;其上面的空域就是我们平常说的“太空”,是航天器的运行空间。临近空间区域包括大气平流层(高度12-50千米)的大部分区域,中间大气层区域(高度50-80千米)和部分电离层区域(高度60-100千米)。 临近空间的显著特点包括:空气相对稀薄;环境压力低;环境温度变化复杂;臭氧和太阳辐射强;20-40千米区域平均风速最小。目前“临近空间”这个词只是一个学术概念,还没有公认的“官方定义”,对其的称呼也有很多种,如“近空间”、“亚轨道”或“空天过渡区”,美国也有人称之为“横断区”,而我国学术界过去则有“亚太空”、“超高空”、“高高空”等称呼。 临近空间飞行器是指高于普通飞行器飞行空间,而低于轨道飞行器运行空间区域的飞行器,主要包括能在近空间作长期、持续飞行的低动态飞行器,和具有高动态(马赫数大于1.0)的亚轨道飞行器或在临近空间飞行的高超声速巡航飞行器。 临近空间飞行器具有航空、航天飞行器所不具有的作用,特别是在通信保障、情报收集、电子压制、预警等方面极具发展潜力。 二、临近空间飞行器的特点 临近空间飞行器的应用前景十分广阔。在民用上可以进行高空大气研究、天气预报、环境及灾害监测、交通管制监测、电信和电视服务。在军事上可用于国界巡逻、侦察、通信中继、电子对抗等,在空间攻防和信息对抗中能发挥重要作用,进一步促进空天一体化的发展,

特殊的战略位置将为未来战争开辟了一个新的战场。其发展和应用将可能对未来整个作战体系和作战思维产生重大而深远的影响。 临近空间飞行器在应用上不同于一般的飞机和卫星,具有一些显著的特点,主要表现在以下几个方面: (1)与传统飞机相比,临近空间飞行器持续工作时间长。传统飞机的留空时间以小时为单位,临近空间飞行器的留空时间则以天为单位,目前正在研制的临近空间平台预定留空时间长达6个月,规划中的后续平台预定留空时间可达1年以上,易于长期、不间断地获得情报和数据,可对紧急事件迅速做出响应,而且人员保障少、后勤负担轻。 (2)覆盖范围广。临近空间飞行器的飞行高度在传统飞机之上,其侦察覆盖范围比传统飞机要广得多。 (3)生存能力强。气球或软式飞艇的囊体采用非金属材料而且低速运行,雷达和热反射截面很小,传统的跟踪和瞄准办法不易发现。与传统飞机相比,气球或软式飞艇的缺点是:充灌氦气的时间较长,在充气时需要保持稳固,有时还需要占用机库;在放飞、通过平流层上升、下降、回收和放气的过程中,由于其庞大的体积,容易受到风和湍流的影响。 (4)飞行高度适中。临近空间飞行器由于飞行高度介于飞机和卫星之间,因此在对地观察分辨率、电子对抗效果等方面优于卫星,而在通信服务覆盖范围、侦察视场范围等方面优于飞机。 (5)部署速度快、机动能力强。卫星的发射准备周期长,约40天,机动变轨次数有限。而临近空间飞行器结构简单,可大量部署,准备时间往往不超过一天,实时性好,威胁作用大。(6)低速临近空间飞行器大量采用全复合材料,没有大尺寸高温部件,具有低可探测性,而且飞行速度较高,目前世界上尚缺乏有效对抗临近空间飞行器的武器。 (7)低速临近空间飞行器飞行高度高,视场大;高速临近空间飞行器不仅飞行高度高,而且速度快,突防能力强。因而临近空间飞行器在战场信息控制和快速精确打击等方面具有很强的威慑作用。可实现局部快速响应和持久部署。一些低速临近空间飞行器处于区域气流稳定,平均风速小,可实现红外凝视的监视侦察,在局部区域的时间分辨率方面,是飞机和卫星不可比拟的。 (8)载荷能力强,效费比高。临近空间飞行器可作为卫星廉价的替代品。用于中继通信和侦察。临近空间飞行器的制作和使用费用远低于现有的无人驾驶飞机和卫星。飞行平台的载荷能力大,飞行器可返回,可重复使用,载荷可维修,可更换。与卫星相比,临近空间飞行器具有效费比高、机动性好、有效载荷技术难度小、易于更新和维护。此种飞行器距目标的距离一般只是低轨卫星的1/10~1/20,可收到卫星不能监听到的低功率传输信号,容易实现

无人机实训报告

关于无人机模拟操控技能实训的报告 目录 一、前言 1.实训背景与意义 (2) 2.无人机的发展现状 (2) 3、本次实训的任务安排与技术要求 (4) 二、实训的基本情况 (5) 三、实训总结 (8)

一.前言 本次实训主要是通过实体操控四旋翼无人机的不同姿态运动来提升自己对无人机的运动机制、动力原理以及飞行实操的了解。主要要求是使用提供的四旋翼无人机实现无人机在导航模式下实现原地360°旋转、矩形飞行以及固定翼的模拟航线飞行等,需要控制飞机高度方向,指导老师现场考核评分并记录好实训操控时的图像或音频,以完成实训总结报告。 1.实训背景与意义 无人机,是一种不需要有人驾驶,可以通过远程操控来实现某些特定功能的飞行器,具有可持续续航、飞行高度高、可携带外接设备等一系列优点,目前无人机在多个领域取得应用,并且经过行业的不断完善,已经形成初步的产业链。无人机以其自身的突出的优点、高性价比等巨大优势吸引人们的关注,并且在不断地研究中取得了一定的突破,从无人机整个行业的前景来看,无疑是值得肯定的,并且现有技术不断革新的情况下无人机在未来的发展将会越来越好,无人机作为现代的新星宠儿,对它的研究应用无论是对自身发展还是国家技术改革创新都具有很大作用,在无人机势如春笋的发展背景下,通过实训去了解无人机,熟练的操控无人机将对未来就业以及自身发展具有重大意义。 2.无人机的发展现状 20世纪90年代以来,随着信息化技术、轻量化/小型化任务载荷技术、卫星通信技术、复合材料结构技术、高效空气动力技术、新型能源与高效动力技术、起降技术的迅猛发展,无人机性能不断提升、功能不断扩展,各种类型和功能的无人机不断涌现,应用领域也越来越广泛。无人机按规模可分为微型无人机、小型无人机、中型无人机、大型无人机;按飞行高度可分为低空无人机、中空无人机、高空无人机、临近空间无人机;按飞行速度可分为低速无人机、高速无人机;按机动性可分为低机动无人机、高机动无人机;按能源与动力类型可分为螺旋桨式无人机、喷气式无人机、电动无人机、太阳能无人机、燃料电池无人机;按活动半径可分为近程无人机、短程无人机、中程无人机、远程无人机;按起降方式可分为滑跑起降无人机、火箭助推/伞降回收无人机、空投无人机、炮射无人机、潜射无人机等;按功能用途可分为靶标无人机、诱饵无人机、侦察无人机、炮兵校射无人机、电子对抗无人机、电子侦听无人机、心理战无人机、通信中继无人机、测绘无人机、攻击无人机、察打一体无人机、预警无人机…… 人机系统主要包括飞机机体、飞控系统、数据链系统、发射回收系统、电源系统等。飞控系统又称为飞行管理与控制系统,相当于无人机系统的“心脏”部分,对无人机的稳定性、数据传输的可靠性、精确度、实时性等都有重要影响,对其飞行性能起决定性的作用;数据链系统可以保证对遥控指令的准确传输,以及无人机接收、发送信息的实时性和可靠性,以保证信息反馈的及时有效性和顺利、准确的完成任务。发射回收系统保证无人机顺利升空以达到安全的高度和速度飞行,并在执行完任务后从天空安全回落到地面。 无人机主要分为多旋翼无人机、固定翼无人机以及组合式无人机三大类。 多旋翼无人机又有四旋翼、六旋翼、八旋翼甚至十旋翼等,最常见的是四旋翼无人机,以下是常见的多旋翼无人机。

多无人机编队通信方案设计

1.1 多无人机编队通信方案设计 1.1.1 基于图论的无人机通信问题描述 如果将单个无人机看成节点,那么多无人机的行为可以利用图论进行描述,无人机之间的信息交流可以表示为拓扑图形式[40]。假设编队中共有n 架无人机,则图中的边可以表示为无人机之间的通信联系,定义无人机编队的通信连结图为(),,G V E A ,式中, 12{,,,}n V v v v =代表具有n 架无人机节点的集合,{(,),}i j E v v V V i j =∈?≠代表边的 集合,[]ij n n A a ?=代表邻接矩阵,ij a 代表节点i 到j 的权值系数。容易推出0ii a =,并且 0ij ji a a =≥。定义(,),ij i j e v v V V i j =∈?≠,若存在ij ji e e ?,则该图为无向图。定义某 节点i v 的邻居集{,(,)}i j i j N a V a a E =∈∈。图(),,G V E A 的Laplacian 矩阵为[]ij n n L l ?=。 ij l 的值如式(2.1)。 n ij j ij ij a i j l a i j ?=?=? -≠??∑ (2.1) 对于无向图,显然有T L L =。 1223(,)(,)(,),[1,]i j a a a a a a i j n ∈,,代表图中的路, 路是由边构成的序列。 1.1.2 基于Mesh 网络通信结构的设计 在Mesh 网络拓扑中,无线数传可以无需通过主节点直接互相通信,或者在需要时借由另一Mesh 节点中继进行通信,这不同于传统的点对多点(PMP, Point to Multipoint)和点对点(PTP, Point to Point)通信结构。Mesh 网络具有如下特点:从源节点到目标节点的数据传输具有多条冗余路径;可以自动发现未知路径。如果路径由于某个Mesh 突然下线或者移动(如无人机Mesh 节点)而发生更改,Mesh 网络可以生成新的路径来自我修复,从而大大的消除了单点故障的风险。图2.3为一Mesh 网络的拓扑示意图。如图所示,数据可以通过多条路径到达Mesh 网络中的每个目的地。 图2.3 Mesh 网络拓扑示意图 包括Mesh 网络在内的任何跳频网络都需要至少一个节点承担主协调员(P.C, Primary Coordinator),以确保网络中的所有节点都在同一频率上同时跳频。这是通过给所有设备发送同步信号方式来实现的。如果网络需要覆盖更大的范围,还可以给其他节点分发同步任务,此时该节点称为辅助协调员(S.C, Secondary Coordinator)。 在Mesh 网络中,有四种可用的节点类型或者节点任务模式:主协调员、辅助协调员、

飞行器控制系统设计

学号: 课程设计 题目飞行器控制系统设计 学院自动化学院 专业自动化 班级自动化1002班 姓名 指导教师肖纯 2012 年12 月19 日

课程设计任务书 学生姓名: 专业班级:自动化1003班 指导教师: 肖 纯 工作单位: 自动化学院 题 目: 飞行器控制系统设计 初始条件:飞行器控制系统的开环传递函数为: ) 2.361(4500)(+= s s K s G 要求设计控制系统性能指标为调节时间ts 008.0≤秒,单位斜坡输入的稳态误差000443.0≤,相角裕度大于75度。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写 等具体要求) (1) 设计一个控制器,使系统满足上述性能指标; (2) 画出系统在校正前后的奈奎斯特曲线和波特图; (3) 用Matlab 画出上述每种情况的阶跃响应曲线,并根据曲线分析系统 的动态性能指标; (4) 对上述任务写出完整的课程设计说明书,说明书中必须写清楚分析 计算的过程,给出响应曲线,并包含Matlab 源程序或Simulink 仿真模型,说明书的格式按照教务处标准书写。 时间安排: 指导教师签名: 年 月 日 系主任(或责任教师)签名: 年 月 日

随着经济的发展,自动控制技术在国民经济中发挥着越来越重要的作用。自动控制就是在没有人的参与下,系统的控制器自动的按照人预订的要求控制设备或过程,使之具有一定的状态和性能。在实际中常常要求在达到制定性能指标的同时能更加节约成本、能具有更加优良的效果。本次飞行器设计中,采用频域校正的方法使系统达到指定的性能指标,同时采用matlab仿真软件更加直观的进行仿真分析和验证。 在此设计中主要采用超前校正的方法来对系统进行性能的改进,通过分析、设计、仿真、写实验报告书的过程,进一步加深了对自动控制原理基本知识的理解和认识,同时通过仿真系统的奈奎斯特图、bode图、单位阶跃响应曲线,进一步理解了系统的性能指标的含义,同时也加深了对matlab仿真的掌握,培养了认识问题、分析问题、解决问题的能力。

临近空间飞行器表面波等离子体推进新原理

临近空间飞行器表面波等离子体推进新原理 荆志波,江滨浩 哈尔滨工业大学电气工程系,哈尔滨(150001) E-mail: jingzhiboqust@https://www.doczj.com/doc/2a5275368.html, 摘要:针对临近空间大气容易实现放电形成等离子体的天然环境条件,根据流体力学伯努利原理、等离子体中的粒子和波之间共振效应和表面波与定向运动等离子体流之间存在着自恰的耦合关系,本文提出临近空间飞行器表面波等离子体推进的新原理。该原理具有响应速度快、推力可调、机动性强等特点。 关键词:临近空间;伯努利原理;表面波等离子体;波-粒子共振效应 中图分类号:O53 1引言 近年来,临近空间特殊的战略价值受到了许多国家的重视。飞艇类浮空器具有驻空时间长、载重量大、生存能力强、预警功能强、侦察视野广、效费比高等优点,各航天大国纷纷开展以飞艇为主的浮空器平台的研究和应用[1]。飞艇所处的平流层环境比较特殊和复杂,一方面大气稀薄,另一方面风速、风向变化频繁[2]。面向我国未来临近空间信息作战平台的需求,为了使飞艇以较高精度实现定点悬停或低速飞行,从而完成较长时间(半年以上)的预警侦察任务,要求推进装置能克服大气阻力,并能根据周围气流变化情况实现推力的连续可调;升浮控制装置能以较快的响应速度使飞艇升降及时避开强气流区;姿控装置能以较高的精度调整飞艇的姿态,以精确调节飞艇的航向及太阳能电池帆板的接收角度。 目前,美国、日本和以色列在平流层飞艇的推进技术等关键技术研究方面处于世界领先地位[3]。所设计的飞艇几乎都采用电动螺旋桨作为主推进器来抵消风力,实现位置修正、姿态调整和巡航飞行;飞艇升浮控制则都是通过调节气囊中主、副舱之间氦气和空气的体积比来实现。如美国洛克希德·马丁公司的高空飞艇采用了四台电动马达驱动的推力矢量大型双螺旋桨作为推进器[4];日本与美国合作于2005年升空的高空通信平台上的充氦飞艇则采用了由尾部和两舷的螺旋桨提供的驱动力来做位置保持[5];以色列飞机工业公司(IAI)研制的巨型侦察飞艇也已经在21km高度试飞成功,通过艇身后部的电动机带动螺旋桨进行巡航飞行[6]。最近,NASA从未来发展的角度发表了论证报告[7],提出在“临近空间”的相对较低高度采用螺旋桨推进比较合适,但是当进一步提高工作高度时使用等离子推进器就相对比较合适,图1表明等离子体推进的适用空域要高于电动螺旋桨的高度,其根本原因在于,当海拔越来越高时,大气变得越来越稀薄,容易实现电离,采用空气动力学的方式推进不如等离子体推进有效。 驻空类临近空间飞行器的主要特点有以下三个: (1)翼展大、表面积大,因而其表面覆盖的太阳能电池帆板供给的电能相对充足,如美国MDA公司设计的试验型高空飞艇表面积约23550m2,提供的最大电功率为75kW,因此其产生的电能供飞艇内部的有效载荷使用后还有较多的剩余[4]。 (2)周围的空气介质非常稀薄,如在30km高空,气压约1200Pa;在40km高空,气压则降到约280Pa[8];低气压条件下容易放电形成等离子体。 (3)相比大气层内飞行器,其工作时间很长,通常达半年以上,平台自重很大。

相关主题
文本预览
相关文档 最新文档