当前位置:文档之家› 3d打印金属粉末

3d打印金属粉末

3d打印金属粉末
3d打印金属粉末

3D打印粉末烧结成型材料——金属粉末

来源:中国3D打印网作者:2014-01-08 10:40:26

金属粉末

用SLS 制造金属功能件的方法有间接法和直接法,其中间接法速度较快,精度较高,技术最成熟,应用最广泛。

1 间接烧结成型:

(1)间接烧结成型的原理。用高分子聚合物作为粘结剂。由于聚合物软化温度较低,热塑性较好及粘度低,采用包覆制作工艺,将聚合物包覆在金属粉末表面,或者将其与金属粉末材料以某种形式混在一起,在用SLS成型时,激光加热使聚合物成为熔融态,流入金属粉粒间,将金属粉末粘结在一起而成型。在成型的坯件(green part) 中,既有金属成分,又有聚合物成分。坯件还需要进行热降解、二次烧结和渗金属后处理,才能成为纯金属件。

间接法使用的材料中,结构材料是金属,主要是不锈钢和镍粉,聚合物主要是热塑性材料。

热塑性聚合物材料有两类,一类是无定型,另一类是结晶型。无定型材料分子链上分子的排列是无序的,如PC材料;结晶型材料分子链上分子的排列是有序的,如尼龙(nylon) 材料。这两种热塑性聚合物都可以用来作SLS材料中的粘结剂。

由于无定型材料和结晶型材料各有不同的热特性,因此也决定了SLS工艺参数的不同。

聚合物在成型材料中主要以两种形式存在,一种是聚合物粉末与金属粉末的机械混合物,另一种是聚合物均匀地覆在金属粉粒的表面。将聚合物覆盖在金属粉末表面的方法有多种,如可将热塑性材料制成溶液,稀释后与粉末混合,搅拌,然后干燥;还可将聚合物加热熔化,以雾状喷出,覆在粉粒表面。

在聚合物和金属粉末质量分数相同的情况下,覆层粉末烧结后的强度要高于机械混合的材料。

目前,应用最多的成型材料主要是覆层金属粉末。

(2)间接法烧结成型工艺

激光烧结。

工艺参数:激光功率、扫描速度、扫描间距、粉末预热温度。

后处理工艺。

成型坯件必须进行后处理才能成为密实的金属功能件。后处理一般有三步:降解聚合物、二次烧结和渗金属。这三个阶段可以在同一个加热炉中进行,保护气氛为30%的氢气,70%的氮气。

降解聚合物

降解加热在两个不同温度的保温阶段完成,先将坯件加热到350℃,保温5h,然后再升温到450℃,保温4h。在这两个温度段,聚合物都发生分解,其产物是多种气体,通过加热炉上的抽风系统将其去除。通过降解,98 %以上的聚合物被去除。

二次烧结

当聚合物大部分被降解后,金属粉粒间只靠残余的一点聚合物和金属粉末间的摩擦力来保持,这个力是很小的。要保持形状,必须在金属粉粒间建立新的联系,这就是将坯件加热到更高温度,通过扩散来建立联结。加热温度根据材料确定,对RapidSteel110,加热到约1000℃,保温8h。

渗金属

二次烧结后的成型件是多孔体,强度也不高,提高强度的方法就是渗金属。熔点较低的金属熔化后,在毛细力或重力的作用下,通过成型件内相互连通的孔洞,填满成型件内的所有空隙,使成型件成为密实的金属件。渗金属在可控气氛或真空中进行。在可控气氛中,必须使渗入金属单向流动,这样可让连通孔隙中的空气离开成型件;如多方向渗入,会将成型件中的气体封在体内,形成气孔而削弱强度。如果将成型件置于真空室内渗金属,由于成型件内没有空气存在,可将成型件浸入液态金属中,金属液体从四周同时渗入,渗入速度快,时间短。

(3)间接烧结快速成型零件工艺特点

用SLS系统间接成型金属件,其成型速度较快,可制造形状复杂的金属件,主要用来快速制造注塑模和压铸模。间接法制造金属件的缺点是制件的精度有限,由于在降解和二次烧结过程之中存在体积的收缩,补偿的作用有限;还有后处理时间比较长。

为解决这些问题,在以下两方面进行研究:改进粘结剂,渗入非金属材料,取消降解和二次烧结过程,使坯件不通过加热,这样的成型件具有高的精度,制造周期短,成本低,可满足使用寿命短的模具要求。

2 直接烧结成型

和间接烧结成型相比,直接烧结成型过程明显缩短,无需间接烧结时复杂的后处理阶段。但必须有较大功率的激光器,以保证直接烧结过程中金属粉末的直接熔化。

因而,直接烧结中激光参数的选择,被烧结金属粉末材料的熔凝过程控制是烧结成型中的关键。激光功率是激光直接烧结工艺中的一个重要影响因素。功率越高,激光作用范围内能量密度越高,材料熔化越充分,同时烧结过程中参与熔化的材料就越多,形成的熔池尺寸也就越大,粉末烧结固化后易生成凸凹不平的烧结层面,激光功率高到一定程度,激光作用区内粉末材料急剧升温,能量来不及扩散,易造成部分材料甚至不经过熔化阶段直接汽化,产生金属蒸汽。在激光作用下该部分金属蒸汽与粉末材料中的空气一道在激光作用区内汇聚、膨胀、爆破,形成剧烈的烧结飞溅现象,带走熔池内及周边大量金属,形成不连续表面,严重影响烧结工艺的进行,甚至导致烧结无法继续进行。同时飞溅产物也容易造成烧结过程的“夹杂”。

光斑直径是激光烧结工艺的另外一个重要影响因素。总的来说,在满足烧结基本条件的前提下,光斑直径越小,熔池的尺寸也就可以控制得越小,越易在烧结过程中形成致密、精细、均匀一致的微观组织。同时,光斑越细,越容易得到精度较好的三维空间结构,但是光斑直径的减小,预示着激光作用区内能量密度的提高,光斑直径过小,易引起上述烧结飞溅现象。

扫描间隔是选择性激光烧结工艺的又一个重要影响因素,它的合理选择对形成较好的层面质量与层间结合,提高烧结效率均有直接影响。同间接工艺一样,合理的扫描间隔应保证烧结线间、层面间有适当重叠。

相关主题
文本预览
相关文档 最新文档