当前位置:文档之家› 碳材料科学 期末复习题

碳材料科学 期末复习题

碳材料科学 期末复习题
碳材料科学 期末复习题

?1、炭材料的多样性?(广义和狭义定义)

是主要以煤、石油或它们的加工产物等(主要为有机物质)作为主要原料经过一系列加工处理过程得到的一种非金属材料,其主要成分是碳。

广义上看:金刚石、石墨、咔宾都属于炭材料,这是一个广义的定义,但由于金刚石和咔宾在自然界存在非常少,结构也单一,不象石墨那样具有众多的过渡态中间结构(如焦炭、CF、煤炭、炭黑、木炭等)。

狭义上看:炭材料一般是指类石墨材料,即以SP2杂化轨道为主构成的炭材料,从无定形炭到石墨晶体的所有中间结构物质(过渡态碳),它是由有机化合物炭化制得的人造炭。

?2、炭材料的基本性质?

和金属一样具有导电性、导热性;

和陶瓷一样耐热、耐腐蚀;

和有机高分子一样质量轻,分子结构多样;

另外,还具有比模量、比强度高,震动衰减率小,以及生体适应性好,具滑动性和减速中子等性能。这些都是三大固体材料金属、陶瓷和高分子材料所不具备的。因此,炭及其复合材料被认为是人类必须的第四类原材料。

最硬(金刚石)→软(石墨)

绝缘体(金刚石)→半导体(石墨)→良导体(热解石墨)

绝热体(石墨层间)→良导热体(金刚石、石墨层内)

全吸光(石墨)→全透光(金刚石、石墨烯)

?3、炭材料科学的主要研究内容?

研究自然界中(广义)一切增炭化(富碳)物质的形成过程机理,特别是着重于它(包括原料经历部分炭化的中间产物)多层次的微观结构的形成,以及此结构在外界条件(如温度、压力)影响下的转变。此外,炭科学还研究炭集合体的各种物理与化学性质。核心内容:自有机物前驱体出发,通过热处理使有机物转化成具有可被控制的微晶排列的炭固体,这一知识乃是炭材料科学的最核心部分。

?第一部分碳的结构与性能

?1、碳的结晶形式有哪些,阐述其结构与性能的关系?

★大量的中间过渡状态,很少的纯碳结晶形式。★结晶形式:金刚石、石墨、咔宾、富勒烯★非晶态:多种过渡形式炭,包括高变质程度煤、人造石墨、热解炭、玻璃炭、炭黑、CF等。

碳原子杂化态键型晶系密度晶格参数

金刚石SP3 4σ立方 3.51 A03.5667A

石墨SP2 3σ1π六方

菱面

2.265

2.29

A2.4612c6.7080

A2.4612c10.062

咔宾SP 2σ2π六方(α)

六方(β)

2.68

3.13

A8.72c15.36

A8.27c7.68

富勒烯C60 变形SP2 3σ1π立方 1.678 A10.02c1636 金刚石:

1)硬而脆;2)碳中密度最大(3.52g/cm3);3) 1800℃以上转换为石墨;4)电绝缘体和热良导体;5)具四个等同轨道,如果与氢、碳结合就形成典型的脂肪族化合物。

石墨:

特性:1)不熔融和极高的化学稳定性,a 面内抗拉强度极高;2)导电导热性好;黑色;3)解离性和自润滑性,易形成层间化合物;4)各向异性。 咔宾:

线状,单元链长10-12C 原子,六方晶体;树脂状组织,白色,白碳

◆具有半导体及超导体性质;◆生物相容性好;◆由α聚炔出发易于转化为金刚石。 富勒烯:

C60为球形分子,可以在有机溶剂中溶解;相等的化学环境,芳香性;C60直径7.1A ,分子晶体,有机与无机的交叉点。 ? 2、碳的相图及其相互转化?

C(diamand) C(graphite) ΔH=-2.1KJ/mol 石墨低压稳定相、金刚石高压稳定相

碳原子的生成热:

C60 ΔH=10.16kcal/克分子 C70 ΔH=9.65kcal/克分子 Graphite ΔH=0kcal/克分子 Diamond ΔH=0.4kcal/

克分子 ? 3、概念:

炭化,Carbonizationis a process of formation of material with increasing carbon content from organic material, usually by pyrolysis, ending with an almost pure carbon residue at temp. up to 1600K.自有机物通过热解而导致生成含碳量不断增加的化合物的一个长过程,它的最终产物为在1600K 下的纯碳物质。

石墨化,Graphitizationis a solid state transformation of thermodynamically unstable non-graphitic carbon into graphite by thermal activation.

The degree of graphitization depends upon the temp. of the heat treatment and the time allowed to anneal structure.

可石墨化炭,Graphitizable Carbon are those which can be transformed into graphitic carbon by heat treatment up to 3300K under atmospheric or lower pressure.

不可石墨化炭,Non-graphitizable Carbon are those which cannot be transformed into graphitic

A :石墨催化转化为金刚石的区域

B :石墨自发快速转化为金刚石的区域

C :金刚石自发快速转化为石墨的区域

D :石墨自发缓慢转化为金刚石的区域

T1: 4100K P1: 12GPa T2: 4020±50K

P2: 12.25 ±1.47MPa

carbon solely by heat treatment up to 3300K under atmospheric or lower pressure. Many non-graphitic carbon can be converted into graphitic carbons by heat treatment to about 2500K. Such conversion is called graphitization.

石墨化性炭,Graphitic Carbonare all varieties of substance consisting of the element carbon in the allotropic form of graphite irrespective of the presence of structural defects.

非石墨化性炭,

4、石墨化度的表征?

石墨化度:XRD: d002LaLc

MaireandMering

d002=3.354g+3.440(1-g) g=0-1

g=(3.440-d002)/(3.440-3.354)

L(hkl)=kλ/βcosθ

5、炭材料具有优良抗热震性能的原因?

A、热导率λ值大和线膨胀系数αl值小;

B、模量E值小,缓解热应力的效果好;

C、提高材料的抗拉或抗切强度有利于改善抗热震性。

6、炭材料热膨胀的特点?

A、αl比金属材料小得多;

Al 23.6x10-6/K Cu 17x10-6/K

石墨(1-2)x10-6/K

石墨材料的αl随温度升高的增量Δαl

B、易石墨化炭材料的线膨胀系数随石墨化度提高而减小,难石墨化炭材料则相反

C、炭材料的线膨胀系数具有各向异性

a方向:<400℃,变化很小,常温达到极

小,随后增大,800℃1x10-6/K

c方向:为正值,(25-30)10-6/K

6、炭材料导电的特点?

A

、电阻率具有明显的各向异性

B、石墨化程度高则电阻率小

C、电阻温度系数

不同炭材料的电阻率和电阻温度系数不同,有的随温度升高而减小,有的则增大。

在一定温度下的导电性是在此温度下材料内自由电子热激发和晶格点阵热振动的综合反映。

7、影响炭材料力学性能(强度和模量)的因素,如何提高CF的力学性能?

1)多晶多层结构;2)宏观组织特征是含有气孔。因此,炭材料的力学性能受到气孔率、孔径分布、组织缺陷、晶粒大小、石墨化度等因素的影响。

提高CF强度的主要措施:细晶化和减少缺陷。

8、炭与过渡金属的反应类型?

1)ⅠB、ⅡB(以Cu,Zn为代表,d10),不与碳反应;

2)ⅧB族(Fe,Co,Ni为代表,d层6-10电子),催化熔解碳,形成固溶体;

第二部分有机物成炭的途径

1、炭化的概念及包含哪些类型?

炭化:ICCTC 自有机物通过热解而导致生成含碳量不断增加的化合物的一个长过程,它的最终产物为在1600K下的纯碳物质。

按照炭化反应进行的状态,炭化可分为:

气相炭化:挥发先于热解,即沸点在200℃以下,碳原子数在1-20之间的有机物和CO都可经气相成碳;

液相炭化:热解先于挥发的液体或高温下熔融的固体烃类有机物在惰性气氛中热解时,一般经历液相炭化成碳;

固相炭化:炭化过程中炭原料不熔融的成碳过程。

2、炭化反应的实质?

A 能量观点看ΔG

室温—200 ℃烷烃<芳烃<烯烃

300-500 ℃芳烃<烷烃<烯烃

>600 ℃芳烃<烯烃<烷烃

B 共振能

芳香缩合环数愈多,其稳定性愈高

不同环数多环芳烃的共振能

?3、有机物热解的一般规律?

烷烃—烯烃—芳烃—多环芳烃—六元碳网层片大分子—石墨

?4、气相炭化的定义及包含哪些内容?

定义:考察一切气态原料转化成固体碳的过程,即挥发先于热解的化合物、碳原子数在20个以下的链烷烃、烯烃或芳烃化合物,通常具有200℃以下的沸点,在通常情况下于气相中进行炭化。

主要包括:

1)气态烃高温下在惰性固体表面的沉炭反应;

2)烃类在无氧和有氧热解条件下气相成核和多分散炭黑的形成;

3)在活性金属质点存在下气态烃类经催化分解而生成纤维状炭。

?

?

?

?5、低碳烃的热解反应规律及其化学反应类型?

热解中发生的化学反应

1、脱氢反应

2、D-A反应

3、自由基反应

4、重排反应

?6、热解炭的类型及其形成机理?

1、热解炭的形成机理

1)1905年,法国M. Berthelot

甲烷在1300℃热解于石英管壁获得灰色炭膜及H2气体,认为甲烷在气相中分解和聚合生成复杂的烃分子,最后沉积到表面炭化而成;

2)1908年,德国W.A.Bone and H. F. Coward

在800-1000℃将甲烷通过石英管发现管壁沉积有灰色炭膜及H2气体,认为转化为炭膜的反应为甲烷分子在固体表面直接分解成碳和氢;

3)二十世纪五十年代,美国R. O. Grisdale将Berthelot的观点发展为系统的沉炭液滴理论(Droplet Mechanism of Carbon Deposition)

CH4(1000 ℃)—中间产物(乙烯、苯、萘、多环芳烃等)—于气相形成液滴圆珠—液滴落于固体表面—化学脱氢—表面炭

4)1958年,美国C. R. Kinney将液滴学说和直接分解学说统一起来,用苯在1200℃及较低反应物浓度下进行气相热解,结果在反应管的不同部位得到四种不同形态的炭。

A Ⅰ型炭光泽炭薄膜,原料分子完全和表面接触,进行脱氢缩合而成;

B Ⅱ型炭较厚的层状炭,在反应区的中央部位生成;

C Ⅲ型炭海绵状炭,为气相中逐渐变硬的液滴互相聚附而成;

D Ⅳ型炭炭黑微粉,为典型的圆球形质点。

1)高温热解炭(High temperature pyrocarbons)

甲烷在高于2000℃、减压(2KPa)下热解制备的一种层状织构(Laminar Texture)炭材料。热解石墨(Pyrographite or HOPG):是一种高温热解炭,经> 2000℃加压锻烧(20MPa)而成,具高定向性,类似于石墨单晶,室温热导率是铜的5倍。

2)低温热解炭(Low temperature pyrocarbons)

气体在1000℃左右热解通过CVD、CVI(Chemical vapor infiltration)方法沉积固体表面或浸渗固体内部,达到增加基体材料密度的目的。

主要用来增密纤维预成型体、孔状石墨和炭颗粒制品。

?7、制备高密度热解炭的工艺要求?

1)低温和极低的压力(7x102Pa);

2)等温;

3)低原料气体浓度,以惰性气体稀释以降低原料浓度;

4)添加氢气以抑制热解反应。

?8、炭黑的结构特点及形成机理?

依制备方法各异,炭层平行于球的表面排列,属于无定型结构炭,石墨片层大小、缺陷、杂原子含量、表面官能团、键弯曲程度等均不同。

无氧热解体系中炭黑的形成

通过气相中液滴的形成和进一步的炭化

初始烃高温热解形成主要由多环芳烃构成的大分子,随着反应时间的延长,大分子的蒸气分压逐渐提高,直至达到饱和蒸气压,此时凝结成液滴。多环芳烃大分子继续生成,冷凝到初生成的液滴上,使之长大。液滴继续发生高温炭化反应,转成固态

火焰中炭黑的形成

反应机制十分复杂,在很高温度下进行,反应速率快,炭黑生成的理论尚处于发展和完善中。 扩散火焰Tmax=1300℃

予混合火焰Tmax=1400-1800℃

炭黑生成来源于富勒烯的说法正在兴起

?9、炭黑结构与富勒洋葱结构的差异?不会

?10、气相生成炭纤维的结构及性能?与纳米炭管的不同之处?不会

VGCF性能特点:

1)长径比大,1000-10000;

2)视密度低,0.01-0.04g/cm3,在基体中具有很好的分散性;

3)力学性能高(拉伸强度为4-6Gpa,杨氏模量为600-800GPa ),具有很好的柔韧性;

4)良好的化学和热稳定性(耐温500-700℃);

5)高度可石墨化性,导致其在电和热的传导以及抗氧化等方面具有独特性能。

(热导率在0℃时为1500W/(m ),约为铜的4倍,3000℃处理后在300K时的电阻率为5 0-7 m.热导率可达3000W/(m ),与石墨单晶的数值相近)。

?11、液相炭化的概念?

定义:热解先于挥发的液体或高温下熔融的固体烃类有机物在惰性气氛中热解时,一般经历液相炭化成炭,其温度范围一般在350-550℃,主要对象为重质稠环芳烃,如沥青、渣油、蒽、萘等的热解。三个分支方向:

1)纯芳烃液相热解(和炭化)的化学机理(二十世纪20年代后期至今)

2)石油重油液相炭化的化学转化历程(二十世50年代中到60年代中期)

3)中间相理论的创立和应用(1965年—)

12、液相炭化中发生的化学反应?、、

1、氢转移反应

液相反应温度比气相低得多,从能量观点看,芳烃本身很难在500℃以下均裂成自由基。但是,由电子迁移引起的离子化反应即芳烃间相互作用所诱发的氢转移,氢阴离子向电子迁移后具有正电荷的芳核转移所需要的能量更低。热转化时,分子的氢转移是反应的重要因素。2/自由基反应

是液相炭化中最主要的反应。分两阶段进行:通过化学电子转移产生一自由基离子—σ自由基。它极不稳定,反应性强,寿命短;稳定的π自由基缩聚物在反应的第二阶段形成,由于离域性,被共振稳定化,可由ESR测定。

13、共振能、自由价和电离势的物理意义及在表征芳烃反应性方面的特点?

共振能

共振论法和分子轨道法是对有机体系中共轭分子和芳香分子中的π电子的本性作出的质和量的处理。当芳香环数一定时,环的配置能够产生出最多共轭苯型环单元者最为稳定。

一般地说、随着芳香环数的增多,芳香体系的共振能增加,其稳定性增加。

* 电离势(Ionization potential, ip)

Huckel关系式ip=4.39+0.857λp

热活性芳烃(ip<7.10ev)

热惰性芳烃(ip>7.10ev)

* 自由价(Fr)

是对碳原子的剩余的未使用的键合能力的一个量度。

Fr=Nmax-Nr

Nmax是与原子r的化学性质和杂化状态有关的常数,Nr是将原子r与分子中其余原子相联的所有化学键的键序之和。

Fr(max):自由价最大值

Fr(max)>0.53 活性质点

Fr(max)<0.53 惰性质点

14、中间相的形成过程?

沥青类有机化合物在中温(350-550℃)惰性气氛中进行热处理时,经过热解,脱氢和缩聚等一系列化学反应逐步形成分子量大,平面度较高,热力学稳定的缩合稠环芳烃;

当缩合稠环芳烃平面大分子形成的足够大时,它们之间的相互作用力增强,在表面张力(或分子间作用力)的作用下定向排列,为使表面能最小,自组装生成直径为1~100 的光学各向异性球状聚集体(MesophaseMicrobeads)。

它是沥青类有机化合物由液态向固体炭(焦炭)过渡转化时的中间液晶状态,故被称作碳质中间相(Carbonaceous Mesophase)或碳质液晶(Carbonaceous Liquid Crystal)。

微球在进一步热处理时逐渐长大融并成为沥青整体中间相,它作为高性能中间相沥青基炭纤维和高级粘接剂的原料已获得广泛研究和应用。

15

2、物理模型

地球仪模型(Brooks-Taylor模型)

同心球壳型(洋葱型、K J Huttinger)

扁圆片型(Lewis, Kovac和今村键)

中间相的化学结构模型:中间相多数不溶于通常的有机溶剂,再加上为复杂的混合物,所以其精确的分子结构难以测定。利用加氢可溶化,溶剂抽提(NMR、MS、IR、HPLC等)及固体研究方法(XRD、XPS、SEM、TEM等)可以剖析中间相的化学结构(Average Molecular Structural Parameters, AMSP)。

16、液晶的类型及中间相液晶的特点?

液晶类型

近晶型(Semectic)

向列型(Nematic)

胆甾型(Cholesteric)

* 中间相向列液晶的类型:

1) 化学变型液晶(Chemotropic);工业燃料沥青

2)热变型液晶(Thermotropic);向列相萘热解沥青等

3)溶变型液晶(Lyotropic);A240沥青、萘合成沥青等

4)Discotic结构(同质多晶相)A240之TI组份

1 中间相的形成和演变是不可逆过程 并且由盘状分子构成。

2 中间相在其形成和发展过程中不断发生着化学变化。如 C/H↑等。而液晶一般在化学性质上是稳定的。

3 一般液晶是在温度下降、动能降低的情况下 从液体转化而来。而中间相是在碳化过程中伴随着温度生高发生热裂解、热聚合 有利于相变的情况下产生的。

17、中间相的光学显微形态?

★光学各向异性;

★多色性;石膏色检板中的光振动方向与晶体中异常光振动方向一致时发生叠加现象,为兰色;相交时,发生相减现象,为黄色.

18、中间相形成的主要条件?

形成中间相的主要条件:

芳烃分子单元大小

分子的平面度

分子内碳原子排列的连续性或完善性

要形成可塑性好、球体发育完整且缺陷较少的中间相需要芳烃原料具有以下特点:

1)芳香度高,缩合度低;

2)分子组成均匀;

3)含有适量烷基侧链和环烷结构;

4)杂原子及灰份含量低。

19、原料芳烃结构与形成的中间相性能的关系?

A、原料结构与性能

原料化学组成决定了它的反应性:

1) 稠环芳烃的构型(渺位、迫位);

2)烷基取代基;

3)环烷结构;

作用:氢转移;宽的熔融温间。

4)O、N、S等杂原子含量;

5)一次QI(喹啉不溶物)含量及其它外来添

加物;

6)族组成、分子量分布;

7)催化剂的加入。

?20、反应条件对中间相形成的影响?

在原料确定以后,液相炭化的条件决定了所形成的中间相的性能。

温度;

温度阀值,由反应活性最高的分子确定;

温度高,反应速度快;温度低,反应缓和,利于中间相的长大和融并。

升温速度;

时间;低温长时间和高温短时间

压力;

磁场;

惰性气体或机械力搅拌;

?21、如何进行液相炭化反应分子设计?

?22、制备高性能沥青基炭纤维对原料中间相沥青的要求?

1)具有适当的熔融温度和良好的低温可纺性;

2)一定的热稳定性;

3)较低温度下与氧的反应性;

4)高度发达的光学各向异性;

5)炭化收率高;

6)杂质及杂原子含量低。

?23、加氢还原的目的,环烷结构对形成优质中间相的影响?

首先对沥青进行热缩聚制成中间相沥青,然后在避免沥青分子分解的前提下进行加氢处理,使MP转化为各向同性沥青,但分子具有潜在的取向性,在纺丝过程中因受到剪切应力的作用,分子沿纤维轴向恢复各向异性。

供氢性添加剂同原料沥青反应,由于氢转移机理的作用,调整了炭化速度及中间体的结构. 低固体杂质及杂原子含量

芳香度高、缩合度低

适宜的分子大小即环数

分子量分布狭窄,结构均匀,质量稳定

含有适量烷基侧链和环烷结构

?24、固相炭化的定义及其特征?

固态的炭化反应物不经气相或液相而直接于固态发生分解和热缩聚反应,变成固态炭化生成物的过程,成为固相炭化。

2、特征

1)原始固态物的形态和结构基本确定了最终炭的形态和结构;

2)由固相炭化一般得到无择优取向的难石墨化性炭前驱体,炭化条件难以改变原料炭的本性;

3)如果将炭化分子进行预处理,使之具有高度的择优取向,虽然其石墨化性本质不变,但反应后的芳构平面有时也会具有取向性,也可以经过固相反应得到易石墨化性炭。

?25、沥青纤维和PAN原丝不熔化处理的差异,其反应有哪些?

沥青:不熔化的目的在于将热塑性的PF在保持择优取向的前提下和氧形成交联结构,生成不溶不熔体,控制氧化速度是关键。

一般在250-400的氧化性气氛中进行不熔化处理,可采用气相氧化(空气、臭氧、氯气等),液相氧化(过氧化氢、硝酸、硫酸、高锰酸钾)或气相-液相混合氧化方法。

PAN原丝:目的在于使PAN原丝分子环化脱氢,转化为耐热的梯形结构,变为不溶不熔体,提高炭化收率。

主要因素有:温度、时间、气氛介质和牵伸程度等

主要反应:

* 环化反应

* 脱氢反应

* 氧化还原反应

?26、由固相炭化制备高定向石墨薄膜的三个先决条件?

1)聚合物原料中单体分子具有高的平面度;

2)聚合物分子链沿膜表面的预定向度要尽可能高;

3)热解时只能释放出简单分子的气体,以不扰乱碳网层面的形成。

?27、CF有哪些类型,各自性质如何?

PAN-CF的制备:

粘胶CF的性能及应用:由人造丝制得的CF的横截面积形状大多不规则,一般呈树叶状,表面沟槽十分清晰;

粘胶基炭纤维的碱金属含量低(<100ppm),而PAN-CF高达数千ppm,另外,前者灰分低、密度小、导热性差,更适合于作耐烧蚀材料,因为钠等碱金属不仅是碳氧化的催化剂,而且在相当低的温度下发生离子化并使烧蚀体周围空间的电子浓度急增,从而使追踪耐烧体的雷达截面积扩大并干扰微波通讯。因此,至今美国用于导弹等空间耐烧系统的CF都是粘胶基CF。例如,分导式多弹头MK-12A洲际导弹的C/C鼻锥使用的CF就是Thornal-50。

高性能沥青基炭纤维:

CF增强树脂复合材料的性能:不仅力学性能优良,而且耐疲劳、抗蠕变、材料尺寸稳定;由于摩擦系数小,故滑动性能好,与金属相比振动衰减性好。此外,它们还具有导电、耐蚀、屏蔽电波和X射线透过性好等优点。

第三部分炭的表面化学

1、炭的气化反应的本质及其一般规律?

表面反应的实质:

含有杂原子,如:H、O、N、S、P等

化学缺陷和晶体缺陷,如空穴、位错、边界、堆积缺陷等

表面含有无机矿物质,可起催化作用

炭气化反应的一般规律:

* 随炭的制备温度的提高,其反应活性降低;

* 比表面积大的炭显示出高的反应性;

* 同一炭中边缘碳原子具有较高的反应活性;

* 含有矿物质的炭表现出强的反应活性。

2、降低气-炭反应的途径?

降低开口气孔率,阻止气体向炭表面的扩散;

提高炭的晶体度,降低反应可能发生的活性点;

驱除可起催化作用的异物;

表面引入原子或基团降低炭的反应性(又叫负催化剂,磷、卤素、硼等);

表面涂以玻璃层,形成气体向炭扩散的阻挡层。

3、CF进行表面处理的目的,与纤维的预氧化处理有何不同?

原丝的预氧化:目的在于使PAN原丝分子环化脱氢,转化为耐热的梯形结构,变为不溶不熔体,提高炭化收率。

炭纤维的表面处理:目的

CF与基体树脂之间的界面结合是一个复杂的物理化学过程,两相之间结合主要靠三种力:化学键、范德华力和机械嵌合力。表面处理的目的在于提高界面结合力,进而提高复合材料的层间剪切强度(Interlaminar shear strength, ILSS)。

CF表面的活性官能团及活性点与基体树脂的活性基团及其固化剂生成化学键,是两相界面粘接的主要力;

两相界面层的范德华力比化学键力小得多,属于次价键力;

机械嵌合基于基体树脂流入和填充CF表面存在的微细孔隙和氧化刻蚀微斑,凸凹嵌合,固化后具有锚锭效应。

4、孔有几种类型,是如何定义的?

孔的基本概念

1、按照IUPAC(1985)的定义,孔分三种:

微孔micropores宽度<2nm

中孔mesopores宽度在2-50nm之间

大孔macropores>50nm的孔

按照孔的形状,又可分为:

o. Open pore

c. Closed pore

t. Transport pore

b. Blind pore

5、吸附的不同类型?

物理吸附,化学吸附

6、炭材料抗氧化处理的方法?各有哪些优缺点?

1)Active site poisoning1)活性中心中毒

Halogen and halogen compounds卤素,卤素化合物

Phosphorus compounds磷化合物

Boron compounds硼化合物

2) Matrix inhibition in C/C composites基质抑制碳/碳复合材料

炭化之前在基体中加入Si、B或其化合物微粒子,炭化后时形成流动的玻璃相,利于填孔和缺陷,提高抗氧化能力

3)Barrier coatings障涂层

基于高温氧化反应在表面进行的特点,在炭材料表面涂覆各种抗氧化涂层的方法。

对涂层材料的要求:

(1) 熔点高;

(2) 与炭基体的热膨胀系数接近且化学相容性好;

(3) 良好的化学稳定性,不易挥发;

(4) 对氧的扩散系数低。

?第四部分和第五部分

?GIC和炭科学最新进展

?1、什么是石墨层间化合物,其显著特点有哪些?

石墨层间化合物(GIC)是通式为XCy的化合物,它是由金属原子插入在石墨层间形成的。这种化合物导电性通常比石墨要强。若插入原子与石墨形成共价键,则导电性降低,这是由于共轭sp系统破坏造成的。石墨层间化合物通常具有超导性能。

?2、了解现代炭科学的最新进展,对金刚石薄膜、富勒烯、炭纳米管、碳纳米葱及炭包覆金属晶体的制备、结构、性质及应用有初步了解。

材料科学基础期末考试历届考试试题复习资料

四川理工学院试卷(2009至2010学年第1学期) 课程名称:材料科学基础 命题教师:罗宏 适用班级:2007级材料科学与工程及高分子材料专业 考试(考查) 年 月 日 共 页 1、 满分100分。要求卷面整洁、字迹工整、无错别字。 2、 考生必须将姓名、班级、学号完整、准确、清楚地填写在试卷规定的地方,否 则视为废卷。 3、 考生必须在签到单上签到,若出现遗漏,后果自负。 4、 如有答题纸,答案请全部写在答题纸上,否则不给分;考完请将试卷和答题卷 分别一同交回,否则不给分。 试题答案及评分标准 得分 评阅教师 一、判断题:(10分,每题1分,正确的记错误的记“%” 1?因为晶体的排列是长程有序的,所以其物理性质是各向同性。 (% 2. 刃型位错线与滑移方向垂直。(话 3. 莱氏体是奥氏体和渗碳体的片层状混合物。(X ) 4?异类原子占据空位称为置换原子,不会引起晶格畸变。 (X 5. 电子化合物以金属键为主故有明显的金属特性。 (话 6. 冷拉后的钢条的硬度会增加。(话 7. 匀晶系是指二组元在液态、固态能完全互溶的系统。 (话 题号 -一- -二二 三 四 五 六 七 八 总分 评阅(统分”教师 得分 :题 * 冷 =要 密;

8.根据菲克定律,扩散驱动力是浓度梯度,因此扩散总是向浓度低的方向进行。(X

9. 细晶强化本质是晶粒越细,晶界越多,位错的塞积越严重,材料的强度也就 越高。(V ) 10. 体心立方的金属的致密度为 0.68。(V ) 、单一选择题:(10分,每空1分) (B) L+B — C+B (C ) L —A+B (D ) A+B^L 7. 对于冷变形小 的金属,再结晶核心形成的形核方式一般是( A ) (A ) 凸出形核亚 ( B )晶直接形核长大形核 (B ) 亚晶合并形核 (D )其他方式 8. 用圆形钢饼加工齿轮,下述哪种方法更为理想? ( C ) (A )由钢板切出圆饼(B )由合适的圆钢棒切下圆饼 (C ) 由较细的钢棒热镦成饼 (D )铸造成形的圆饼 1. 体心立方结构每个晶胞有(B ) 个原子。 2. 3. (A) 3 ( B) 2 (C) 6 固溶体的不平衡凝固可能造成 (A )晶内偏析 (C )集中缩孔 属于<100>晶向族的晶向是( (A) [011] (B) [110] (D) 1 (B) (D) (C) 晶间偏析 缩松 [001] (D) [101] 4.以下哪个工艺不是原子扩散理论的具体应用 (A )渗氮 (B )渗碳 (C )硅晶片掺杂 () (D )提拉单晶5.影响铸锭性能主要晶粒区是(C ) (A )表面细晶粒区 (B )中心等轴(C )柱状晶粒区 三个区影 响相同 6 ?属于包晶反应的是(A ) ( L 表示液相, A 、B 表示固相) (A) L+A — B

材料科学基础习题及参考答案复习过程

材料科学基础习题及 参考答案

材料科学基础参考答案 材料科学基础第一次作业 1.举例说明各种结合键的特点。 ⑴金属键:电子共有化,无饱和性,无方向性,趋于形成低能量的密堆结构,金属受力变形时不会破坏金属键,良好的延展性,一般具有良好的导电和导热性。 ⑵离子键:大多数盐类、碱类和金属氧化物主要以离子键的方式结合,以离子为结合单元,无方向性,无饱和性,正负离子静电引力强,熔点和硬度均较高。常温时良好的绝缘性,高温熔融状态时,呈现离子导电性。 ⑶共价键:有方向性和饱和性,原子共用电子对,配位数比较小,结合牢固,具有结构稳定、熔点高、质硬脆等特点,导电能力差。 ⑷范德瓦耳斯力:无方向性,无饱和性,包括静电力、诱导力和色散力。结合较弱。 ⑸氢键:极性分子键,存在于HF,H2O,NF3有方向性和饱和性,键能介于化学键和范德瓦尔斯力之间。 2.在立方晶体系的晶胞图中画出以下晶面和晶向:(1 0 2)、(1 1 -2)、(-2 1 -3),[1 1 0],[1 1 -1],[1 -2 0]和[-3 2 1]。

(213) (112) (102) [111] [110] [120] [321] 3. 写出六方晶系的{1 1 -20},{1 0 -1 2}晶面族和<2 -1 -1 0>,<-1 0 1 1>晶向族中各等价晶面及等价晶向的具体指数。 {1120}的等价晶面:(1120)(2110)(1210)(1120)(2110)(1210) {1012}的等价晶面: (1012)(1102)(0112)(1012)(1102)(0112)(1012)(1102)(0112)(1012)(1102)(0112) 2110<>的等价晶向:[2110][1210][1120][2110][1210][1120] 1011<>的等价晶向: [1011][1101][0111][0111][1101][1011][1011][1101][0111][0111][1101][1011] 4立方点阵的某一晶面(hkl )的面间距为M /,其中M 为一正整数,为 晶格常数。该晶面的面法线与a ,b ,c 轴的夹角分别为119.0、43.3和60.9度。请据此确定晶面指数。 h:k:l=cos α:cos β:cos γ l k h d a 2 22hk l ++= 5. Cu 具有FCC 结构,其密度为8.9g/cm 3,相对原子质量为63.546,求铜的原子半径。

新材料科学导论期末复习题(有答案版)

一、填空题: 1.材料性质的表述包括力学性能、物理性质和化学性质。 2.化学分析、物理分析和谱学分析是材料成分分析的三种基本方法。 3.材料的结构包括键合结构、晶体结构和组织结构。 4.材料科学与工程有四个基本要素,它们分别是:使用性能、材料的性质、制备/加工和结构/成分。 5.按组成和结构分,材料分为金属材料,无机非金属材料,高分子材料和复合材料。 6.高分子材料分子量很大,是由许多相同的结构单元组成,并以共价键的形式重复连接而成。 7.复合材料可分为结构复合材料和功能复合材料两大类。 8.聚合物分子运动具有多重性和明显的松弛特性。 9.功能复合材料是指除力学性能以外,具有良好的其他物理性能并包括部分化学和生物性能的复合材料。如有 光,电,热,磁,阻尼,声,摩擦等功能。 10.材料的物理性质表述为光学性质、磁学性质、电学性质和热学性质。 11.由于高分子是链状结构,所以把简单重复(结构)单元称为链节,简单重复(结构)单元的个数称为聚 合度。 12.对于脆性的高强度纤维增强体与韧性基体复合时,两相间若能得到适宜的结合而形成的复合材料,其性能显示 为增强体与基体的互补。(ppt-复合材料,15页) 13.影响储氢材料吸氢能力的因素有:(1)活化处理;(2)耐久性(抗中毒性能); (3)抗粉末化性能;(4)导热性能;(5)滞后现象。 14.典型热处理工艺有淬火、退火、回火和正火。 15.功能复合效应是组元材料之间的协同作用与交互作用表现出的复合效应。复合效应表现线性效应和非线性效 应,其中线性效应包括加和效应、平均效应、相补效应和相抵效应。 16.新材料发展的重点已经从结构材料转向功能材料。 17.功能高分子材料的制备一般是指通过物理的或化学的方法将功能基团与聚合物骨架相结合的过程。功能高 分子材料的制备主要有以下三种基本类型: ①功能小分子固定在骨架材料上; ②大分子材料的功能化; ③已有功能高分子材料的功能扩展; 18.材料的化学性质主要表现为催化性能和抗腐蚀性。 19.1977年,美国化学家MacDiarmid,物理学家Heeger和日本化学家Shirakawa首次发现掺杂碘的聚乙炔具有金 属的导电特性,并因此获得2000年诺贝尔化学奖。 20.陶瓷材料的韧性和塑性较低,这是陶瓷材料的最大弱点。 第二部分名词解释

材料科学基础期末试题

材料科学基础考题 I卷 一、名词解释(任选5题,每题4分,共20分) 单位位错;交滑移;滑移系;伪共晶;离异共晶;奥氏体;成分过冷答: 单位位错:柏氏矢量等于单位点阵矢量的位错称为单位位错。 交滑移:两个或多个滑移面沿着某个共同的滑移方向同时或交替滑移,称为交滑移。滑移系:一个滑移面和此面上的一个滑移方向合起来叫做一个滑移系。 伪共晶:在非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得全部的共晶组织,这种由非共晶成分的合金所得到的共晶组织称为伪共晶。 离异共晶:由于非平衡共晶体数量较少,通常共晶体中的a相依附于初生a相生长,将共晶体中另一相B推到最后凝固的晶界处,从而使共晶体两组成相相间的组织特征消失,这种两相分离的共晶体称为离异共晶。 奥氏体:碳原子溶于丫-Fe形成的固溶体。 成分过冷:在合金的凝固过程中,将界面前沿液体中的实际温度低于由溶质分布所决定的凝固温度时产生的过冷称为成分过冷。 二、选择题(每题2分,共20分) 1. 在体心立方结构中,柏氏矢量为a[110]的位错(A )分解为a/2[111]+a/2[l11]. (A)不能(B)能(C)可能 2. 原子扩散的驱动力是:(B ) (A)组元的浓度梯度(B)组元的化学势梯度(C)温度梯度 3?凝固的热力学条件为:(D ) (A)形核率(B)系统自由能增加 (C)能量守衡(D)过冷度 4?在TiO2中,当一部分Ti4+还原成Ti3+,为了平衡电荷就出现(A) (A)氧离子空位(B)钛离子空位(C)阳离子空位 5?在三元系浓度三角形中,凡成分位于( A )上的合金,它们含有另两个顶角所代表的两 组元含量相等。 (A)通过三角形顶角的中垂线 (B)通过三角形顶角的任一直线 (C)通过三角形顶角与对边成45°的直线 6?有效分配系数k e表示液相的混合程度,其值范围是(B ) (A)1vk e

材料科学基础复习题

第一章原子结构 一判断题 1.共价键是由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。 2. 范德华力既无方向性亦无饱和性,氢键有方向性但无饱和性。 3. 绝大多数金属均以金属键方式结合,它的基本特点是电子共有化。 4. 离子键这种结合方式的基本特点是以离子而不是以原子为结合单元。 5. 范德华力包括静电力、诱导力、但不包括色散力。 二、简答题 原子间的结合键对材料性能的影响 第二章晶体结构 一、填空 1.按晶体的对称性和周期性,晶体结构可分为7 空间点阵,14 晶系, 3 晶族。 2.晶胞是能代表晶体结构的最小单,描述晶胞的参数是 a ,b ,c ,α,β,γ。 3. 在立方,菱方,六方系中晶体之单位晶胞其三个轴方向中的两个会有相等的边长。 4. 方向族<111>的方向在铁的(101)平面上,方向族<110>的 方向在铁的(110)平面上。 5. 由hcp(六方最密堆积)到之同素异形的改变将不会产生体积的改变,而由体心最密堆积变成即会产生体积效应。 6. 晶体结构中最基本的结构单元为,在空间点阵中最基本的组元称之为。 7.某晶体属于立方晶系,一晶面截x轴于a/2、y轴于b/3、z轴于c/4,则该晶面的指标为 8. 硅酸盐材料最基本的结构单元是,常见的硅酸盐结构有、、、。 9. 根据离子晶体结构规则-鲍林规则,配位多面体之间尽可能和 连接。

二判断题 1.在所有晶体中只要(hkl)⊥(uvw)二指数必然相等。 2. 若在晶格常数相同的条件下体心立方晶格的致密度,原子半径都最小。 3. 所谓原子间的平衡距离或原子的平衡位置是吸引力与排斥力的合力最小的位置。 4.晶体物质的共同特点是都具有金属键。 5.若在晶格常数相同的条件下体心立方晶格的致密度,原子半径都最小。 6. 在立方晶系中若将三轴系变为四轴系时,(hkIl)之间必存在I=-(h+k)的关系与X1,X2,X3,X4间夹角无关。 7.亚晶界就是小角度晶界,这种晶界全部是由位错堆积而形成的。 8.面心立方与密排六晶体结构其致密度配位数间隙大小都是相同的,密排面上的堆垛顺序也是相同的。 9.柏氏矢量就是滑移矢量。 10.位错可定义为柏氏回路不闭合的一种缺陷,或说:柏氏矢量不为0的缺陷。 11.线缺陷通常指位错,层错和孪晶。 12实际金属中都存在着点缺陷,即使在热力学平衡状态下也是如此。 三选择题 1.经过1/2,1/2,1/2之[102]方向,也经过。 (a) 1,.0,2, (b) 1/2,0,1, (c) –1,0,-2, (d) 0, 0,0, (e) 以上均不是 2. 含有位置0,0,1之(112)平面也包含位置。 (a)1,0,0, (b)0,0,1/2, (c)1,0,1/2。 3.固体中晶体与玻璃体结构的最大区别在于。 (a)均匀性(b)周期性排列(c)各向异性(d)有对称性 4.晶体微观结构所特有的对称元素,除了滑移面外,还有 (a)回转轴(b)对称面(c)螺旋轴(d)回转-反映轴 5.按等径球体密堆积理论,最紧密的堆积形式是。 (a)bcc; (b)fcc; (c)hcp 6.在MgO离子化合物中,最可能取代化合物中Mg2+的正离子(已知各正离子半径 (nm)分别是:(Mg2+)0.066、(Ca2+)0.099、(Li+)0.066、(Fe2+)0.074)是_(c)____。 (a)Ca2+; (b)Li+; (c)Fe2+ 7.下对晶体与非晶体描述正确的是:

同济大学复试材料科学导论总结2

第二篇 材料的物性 8.理解物性的基本概念 1.波粒二象性:波粒二象性(wave-particle duality )指的是所有的基本粒子或量子不仅可以部分地以粒子的术语来描述,也可以部分地用波的术语来描述。 2.常规情况下,有两类决定材料物性的主导因素: 一类是原子系统,通常作为经典粒子处理,反映了位置序或粒子序(性)的效应;另一类是电子系统,通常表现出明显的量子力学特征,反映了动量序或德布罗意波序(性)的效应。 3.经典电导理论和量子力学理论的区别 1. 经典电导理论认为在外电场的作用下所有的自由电子都对电流有贡献;而量子力学理论认为只有费米能级附近的电子才对电流有贡献。 2. 根据量子力学理论,在理想周期性排列的晶格对能带中,电子的能量状态形成能带,能带之间是禁带,能带中的电子可以在晶格中自由运动,因此理想周期性排列的晶格对能带中电子没有散射作用,这是与经典电导理论不相同的。 4.金属自由电子理论: 金属的高导电性是由于那些处于紧靠费米能的半占有状态上的电子漂移形成(外加电压对大多数电子不产生净效应,因为它们可能跃迁到的较高能态均已被填满)。金属的功函数是从高的占有能级上取出一个电子所需的能量,在绝对零度时,即为费米能。在室温,只有很少的一些电子被激发到高于费米能,因此功函数在一个宽的温度范围内几乎是恒定的。 自由电子理论能满意地解释绝大多数金属的导电性,但不能正确解释绝缘体。 5.能带的概念: 能带理论就是认为晶体中的电子是在整个晶体内运动的共有化电子,并且共有化电子是在晶体周期性的势场中运动;结果得到:共有化电子的本征态波函数是Bloch 函数形式,能量是由准连续能级构成的许多能带。 固体的导电性能由其能带结构决定。对一价金属,价带是未满带,故能导电。对二价金属,价带是满带,但禁带宽度为零,价带与较高的空带相交叠,满带中的电子能占据空带,因而也能导电,绝缘体和半导体的能带结构相似,价带为满带,价带与空带间存在禁带。半导体的禁带宽度从0.1~4电子伏,绝缘体的禁带宽度从4~7电子伏。在任何温度下,由于热运动,满带中的电子总会有一些具有足够的能量激发到空带中,使之成为导带。由于绝缘体的禁带宽度较大,常温下从满带激发到空带的电子数微不足道,宏观上表现为导电性能差。半导体的禁带宽度较小,满带中的电子只需较小能量就能激发到空带中,宏观上表现为有较大的电导率。 根据电子能带结构,说明导体、半导体和绝缘体之间电导率差异的原因。 85u 1.导体中含有未满带,在外场作用下,未满带上的电子分布发生偏移,从而改变了原来的中心堆成的形态,占据不同状态的电子所形成的运动电流不能完全抵消,未抵消的部分就形成了电流。 2.从能带结构模型来看,在绝缘体和半导体中,能量较低的、被价电子所充满的价带与能量较高的未填充电子的导带之间,在原子平衡间距处没有交叠,即价带与导带之间被能量为Eg 的禁带所隔开。绝缘体的禁带宽度较宽而半导体的比较窄。由于绝缘体的电子能带结构特征在常温下几乎很少有电子可能被激发越过禁带,因此电导率很低。 3.半导体的能带结构与绝缘体相同,所不同的是它的禁带比较窄,电子跳过禁带不像绝缘体那样困难。如果存在外界作用(比如热、光辐射等),介带中的电子就有可能跃迁到导带中去。纯半导体的导电过程是依靠电子从充满价带激发到空的导带中实现的,价带失去电子同时形成电子空穴,因此导带中的电子浓度与价带中的空穴浓度相等,在室温下,半导体材料的导电性是由于晶体点阵中原子的振动使电子受到了激发进入导带中而引起的,这种空带中的电子导电和价带的空穴导电同时存在而引起的。 6.宏观和介观不均匀 宏观不均匀性:这类材料如不同相的混合物,也包括一部分人工复合材料。 介观不均匀性:在大于晶格常数的尺度内,晶粒生长、失衡分解和共析现象常造成这类静态的不均匀性,多晶陶瓷、玻璃陶瓷等复合材料常具有结构不均匀性,这类不均匀性也常被称为微结构、超微结构和纳米结构。 7.复相不均匀研究结构包括哪几方面? 确定材料中所有存在的相,以及每相的含量和性质特征 。 确定各相的结构形貌特征,如尺寸、形状、晶粒取向和分布。 确定材料中晶界和其他结构缺陷如位错、微裂纹和包裹物的特征。 8.费米子和玻色子 费米子:粒子遵从泡利不相容原理,因而不能有2个粒子处于同一量子态Ei ,系统的波函数必然是反对称的,满足这些要求的粒 子称为费米子。(电子、质子、中子等)费米狄拉克分布: 玻色子:粒子不受泡利不相容原理的约束,因此系统对于能够处于相同量子态Ei 的粒子数目没有限制,描写粒子系统的波函数必然是对称的,满足这些要求的粒子称为玻色子。(光子)波色-爱因斯坦分布: 10.声子:能量为h ω/π的晶格震动的简正模能量量子,称为声子。

《材料科学基础》期末考试试卷及参考答案,2019年6月

第1页(共11页) ########2018-2019学年第二学期 ########专业####级《材料科学基础》期末考试试卷 (后附参考答案及评分标准) 考试时间:120分钟 考试日期:2019年6月 题 号 一 二 三 四 五 六 总 分 得 分 评卷人 复查人 一、单项选择题(请将正确答案填入表中相应题号处,本题13小题,每小题2分,共26分) 题号 1 2 3 4 5 6 7 8 9 10 答案 题号 11 12 13 答案 1. 在形核-生长机制的液-固相变过程中,其形核过程有非均匀形核和均匀形核之分,其形核势垒有如下关系( )。 A. 非均匀形核势垒 ≤ 均匀形核势垒 B. 非均匀形核势垒 ≥ 均匀形核势垒 C. 非均匀形核势垒 = 均匀形核势垒 D. 视具体情况而定,以上都有可能 2. 按热力学方法分类,相变可以分为一级相变和二级相变,一级相变是在相变时两相自由焓相等,其一阶偏导数不相等,因此一级相变( )。 A. 有相变潜热改变,无体积改变 B. 有相变潜热改变,并伴随有体积改变 C. 无相变潜热改变,但伴随有体积改变 D. 无相变潜热改变,无体积改变 得分 专业 年级 姓名 学号 装订线

3. 以下不是材料变形的是()。 A. 弹性变形 B. 塑性变形 C. 粘性变形 D. 刚性变形 4. 在固溶度限度以内,固溶体是几相?() A. 2 B. 3 C. 1 D. 4 5. 下列不属于点缺陷的主要类型是()。 A. 肖特基缺陷 B. 弗伦克尔缺陷 C. 螺位错 D. 色心 6. 由熔融态向玻璃态转变的过程是()的过程。 A. 可逆与突变 B. 不可逆与渐变 C. 可逆与渐变 D. 不可逆与突变 7. 下列说法错误的是()。 A. 晶界上原子与晶体内部的原子是不同的 B. 晶界上原子的堆积较晶体内部疏松 C. 晶界是原子、空位快速扩散的主要通道 D. 晶界易受腐蚀 8. 表面微裂纹是由于晶体缺陷或外力作用而产生,微裂纹同样会强烈地影响表面性质,对于脆性材料的强度这种影响尤为重要,微裂纹长度,断裂强度。() A. 越长;越低 B. 越长;越高 C. 越短;越低 D. 越长;不变 9. 下列说法正确的是()。 A. 再结晶期间,位错密度下降导致硬度上升 B. 再结晶期间,位错密度下降导致硬度下降 C. 再结晶期间,位错密度上升导致硬度上升 D. 再结晶期间,位错密度上升导致硬度下降 10. 下列材料中最难形成非晶态结构的是()。 A. 陶瓷 B. 金属 C. 玻璃 D. 聚合物 第2页(共11页)

材料科学基础上复习题库

简答题 1?空间点阵与晶体点阵有何区别?晶体点阵也称晶体结构,是指原子的具体排列;而空间点阵则是忽略了原子的体积,而把它们抽象为纯几何点。 2?金属的3种常见晶体结构中,不能作为一种空间点阵的是哪种结构?密排六方结构。 3?原子半径与晶体结构有关。当晶体结构的配位数降低时原子半径如何变化?原子半径发生 收缩。这是因为原子要尽量保持自己所占的体积不变或少变,原子所占体积2人=原子的体积(4/3 n3r间隙体积),当晶体结构的配位数减小时,即发生间隙体积的增加,若要维持上述方程的平衡,则原子半径必然发生收缩。 4?在晶体中插入柱状半原子面时能否形成位错环?不能。因为位错环是通过环内晶体发生滑 移、环外晶体不滑移才能形成。 5?计算位错运动受力的表达式为,其中是指什么?外力在滑移面的滑移方向上的分切应力。6?位错受力后运动方向处处垂直于位错线,在运动过程中是可变的,晶体作相对滑动的方向 应是什么方向?始终是柏氏矢量方向。 7. 位错线上的割阶一般如何形成?位错的交割。 8?界面能最低的界面是什么界面?共格界面。 9?小角度晶界都是由刃型位错排成墙而构成的”这种说法对吗?否,扭转晶界就由交叉的 同号螺型位错构成 10.为什么只有置换固熔体的两个组元之间才能无限互溶,而间隙固熔体则不能?这是因为形成固熔体时,熔质原子的熔入会使熔剂结构产生点阵畸变,从而使体系能量升高。熔质与熔剂原子尺寸相差越大,点阵畸变的程度也越大,则畸变能越高,结构的稳定性越低,熔解度越小。一般来说,间隙固熔体中熔质原子引起的点阵畸变较大,故不能无限互溶,只能有 限熔解。 综合题 1. 作图表示立方晶体的(123) ( 0 -1 -2) (421)晶面及卜102]卜211][346]晶向。 2. 写出立方晶体中晶向族<100>, <110>, <111>等所包括的等价晶向。 3. 写出立方晶体中晶面族{100}, {110}, {111}, {112}等所包括的等价晶面。 4. 总结3种典型的晶体结构的晶体学特征。 5. 在立方晶系中画出以[001]为晶带轴的所有晶面。 6. 面心立方晶体的(100),(110),(111)等晶面的面间距和面密度,并指出面间距最大的面。 7. Ni的晶体结构为面心立方结构,其原子半径为r =0.1243求Ni的晶格常数和密度。 8. Mo的晶体结构为体心立方结构,其晶格常数a=0.3147nm,试求Mo的原子半径r。 9. 在Fe中形成1mol空位的能量为104. 67kJ,试计算从20C升温至850C时空位数目增加多少倍? 10. 判断下列位错反应能否进行。 1) a/2[10-1]+a/6卜121]宀a/3[11-1] 2) a[100]宀a/2[101]+a/2[10-1] 3) a/3[112]+a/2[111] 宀a/6{1]1 4) a[100] a/2[111]+a/2[1-1-1] 11. 若面心立方晶体中有b=a/2[-101]的单位位错及b=a/6[12-1]的不全位错,此二位错相遇 产生位错反应。 1) 问此反应能否进行?为什么? 2) 写出合成位错的柏氏矢量,并说明合成位错的类型。 12. 已知柏氏矢量b=0.25nm,如果对称倾侧晶界的取向差=1及10°求晶界上位错之间的距 离。从计算结果可得到什么结论? 13. ①计算fee和bee晶体中四面体间隙及八面体间隙的大小(用原子半径尺表示),并注明间

新材料科学导论期末复习题(有答案版)

、填空题: 1.材料性质的表述包括力学性能、物理性质和化学性质。 2.化学分析、物理分析和谱学分析是材料成分分析的三种基本方法。 3.材料的结构包括键合结构、晶体结构和组织结构。 4.材料科学与工程有四个基本要素,它们分别是:使用性能、材料的性质、制备/加工和结构/成分。 5.按组成和结构分,材料分为金属材料,无机非金属材料,高分子材料和复合材料。 6.高分子材料分子量很大,是由许多相同的结构单元组成,并以共价键的形式重复连接而成。 7.复合材料可分为结构复合材料和功能复合材料两大类。 8.聚合物分子运动具有多重性和明显的松弛特性。 9.功能复合材料是指除力学性能以外,具有良好的其他物理性能并包括部分化学和生物性能的复合材料。如有光, 电,热,磁,阻尼,声,摩擦等功能。 10.材料的物理性质表述为光学性质、磁学性质、电学性质和热学性质。 11.由于高分子是链状结构,所以把简单重复(结构)单元称为链节,简单重复(结构)单元的个数称为聚合 度。 12.对于脆性的高强度纤维增强体与韧性基体复合时,两相间若能得到适宜的结合而形成的复合材料,其性能显示为 增强体与基体的互补。(ppt-复合材料,15 页) 13.影响储氢材料吸氢能力的因素有:(1)活化处理;(2)耐久性(抗中毒性能); (3)抗粉末化性能;(4)导热性能;(5)滞后现象。 14.典型热处理工艺有淬火、退火、回火和正火。 15.功能复合效应是组元材料之间的协同作用与交互作用表现出的复合效应。复合效应表现线性效应和非线性效 应,其中线性效应包括加和效应、平均效应、相补效应和相抵效应。 16.新材料发展的重点已经从结构材料转向功能材料。 17.功能高分子材料的制备一般是指通过物理的或化学的方法将功能基团与聚合物骨架相结合的过程。功能高分 子材料的制备主要有以下三种基本类型: ①功能小分子固定在骨架材料上; ②大分子材料的功能化; ③已有功能高分子材料的功能扩展; 18.材料的化学性质主要表现为催化性能和抗腐蚀性。 19.1977 年,美国化学家MacDiarmid ,物理学家Heeger 和日本化学家Shirakawa 首次发现掺杂碘的聚乙炔具 有金属的导电特性,并因此获得2000 年诺贝尔化学奖。 20.陶瓷材料的韧性和塑性较低,这是陶瓷材料的最大弱点。 第二部分名词解释 1.高分子的柔顺性

材料科学导论章节备课教案

材料科学导论 Introduction of Materials Science 课程代码:01110610 学分:1.5 总学时:32学时讲课学时:28学时 实验学时:4 学时课程性质:专业基础课 适用专业:材料物理、材料化学 先修课程:高等数学(上、下)、工程化学、物理化学B、工程力学B,08100011/08100021/ 08100200/ 08110422/ 08100192 开课学期:第五学期其他:学位课 一、课程性质及作用 本课程是材料物理与化学专业的专业基础课,是研究材料的化学成分、加工过程与其组织、结构变化与性能之间关系、原理及其变化规律的一门学科。本课程从材料内部的微观结构出发,研究材料微观原子键合、聚集行为,晶体结构特点,以及不完整晶体的缺陷类型及其规律特性(位错),具体到材料类领域主要的概念、结论和规律。让学生理解并掌握不同原子键合原理、特点,理解空间点阵、晶胞等晶体学基础概念,理解典型金属晶体结构及其参数,在此基础上,了解离子晶体、共价键晶体、晶态高分子的典型结构特点;主要讨论并理解基体缺陷的类型、产生、运动及其相互作用,了解其对于晶体组织和性能有关影响。为学习后续专业课程奠定坚实的理论基础。 二、本课程与其它有关课程的联系 学习本课程前,学生应先修先修高等数学(上、下)、工程化学、物理化学B、工程力学B等基础课,并安排一次认识实习、金工实习,以增加感性认识。学生通过对本课程的学习,将为学习扩散与相变,材料物理性能,材料化学等其他专业课程打下坚实的基础。 三、课程内容及课时安排 绪论(2学时) 材料在国民经济中的地位和作用; 工程材料及其分类; 材料科学的研究内容与任务; 学习本课程的目的和方法。 第一章原子结构与键合(4学时) 1、原子结构 物质的组成、原子的结构、原子的电子结构、元素周期表 2、原子间的键合 金属键、离子键、共价键、范德华力、氢键 第二章固体结构(14学时) 1、晶体学基础 晶体的特性、空间点阵和晶胞、晶体、晶系与布拉菲格子、晶面指数和晶向指数、

材料科学基础期末考试

期末总复习 一、名词解释 空间点阵:表示晶体中原子规则排列的抽象质点。 配位数:直接与中心原子连接的配体的原子数目或基团数目。 对称:物体经过一系列操作后,空间性质复原;这种操作称为对称操作。 超结构:长程有序固溶体的通称 固溶体:一种元素进入到另一种元素的晶格结构形成的结晶,其结构一般保持和母相一致。 致密度:晶体结构中原子的体积与晶胞体积的比值。 正吸附:材料表面原子处于结合键不饱和状态,以吸附介质中原子或晶体内部溶质原子达到平衡状态,当溶质原子或杂质原子在表面浓度大于在其在晶体内部的浓度时称为正吸附; 晶界能:晶界上原子从晶格中正常结点位置脱离出来,引起晶界附近区域内晶格发生畸变,与晶内相比,界面的单位面积自由能升高,升高部分的能量为晶界能; 小角度晶界:多晶体材料中,每个晶粒之间的位向不同,晶粒与晶粒之间存在界面,若相邻晶粒之间的位向差在10°~2°之间,称为小角度晶界; 晶界偏聚:溶质原子或杂质原子在晶界或相界上的富集,也称内吸附,有因为尺寸因素造成的平衡偏聚和空位造成的非平衡偏聚。 肖脱基空位:脱位原子进入其他空位或者迁移至晶界或表面而形成的空位。 弗兰克耳空位:晶体中原子进入空隙形而形成的一对由空位和间隙原子组成的缺陷。 刃型位错:柏氏矢量与位错线垂直的位错。 螺型位错:柏氏矢量与位错线平行的位错。 柏氏矢量:用来表征晶体中位错区中原子的畸变程度和畸变方向的物理量。 单位位错:柏氏矢量等于单位点阵矢量的位错 派—纳力:位错滑动时需要克服的周围原子的阻力。 过冷:凝固过程开始结晶温度低于理论结晶温度的现象。 过冷度:实际结晶温度和理论结晶温度之间的差值。 均匀形核:在过冷的液态金属中,依靠金属本身的能量起伏获得成核驱动力的形核过程。 过冷度:实际结晶温度和理论结晶温度之间的差值。 形核功:形成临界晶核时,由外界提供的用于补偿表面自由能和体积自由能差值的能量。 马氏体转变:是一种无扩散型相变,通过切变方式由一种晶体结构转变另一种结构,转变过程中,表面有浮凸,新旧相之间保持严格的位向关系。或者:由奥氏体向马氏体转变的

完整版材料科学基础复习题

名词解释 1. 空间点阵:是表示晶体结构中质点周期性重复规律得几何图形. 2. 同素异构:是指某些元素在t和p变化时,晶体结构发生变化得特征. 3. 固溶体:当一种组分(溶剂)内溶解了其他组分(溶质)而形成的单一、均匀的晶态固体,其晶体结构保持溶剂组元的晶体结构时,这种相就称固溶体。 4. 电子浓度:固溶体中价电子数目e 与原子数目之比。 5. 间隙固溶体:溶质原子溶入溶剂间隙形成的固溶体 6. 晶胞: 能完全反映晶格特征得最小几何单元 7. 清洁表面:是指不存在任何吸附、催化反应、杂质扩散等物理化学效应得表面,这种表面的化学组成与体内相同,但周期结构可以不同于体内。 8. 润湿:是一种流体从固体表面置换另一种流体的过程。 9. 表面改性:是利用固体表面的吸附特性,通过各种表面处理来改变固体表面得结构和性质以适应各种预期要求。 10. 晶界:凡结构相同而取向不同的晶体相互接触,其接触面称为晶界。 11. 相平衡:一个多相系统中,在一定条件下,当每一相的生成速度与它的消失速度相等时,宏观上没有任何物质在相间传递,系统中每一个相的数量均不随时间而变化,这时系统便达到了相平衡。 12. 临界晶胚半径rk :新相可以长大而不消失的最小晶胚半径. 13.枝晶偏析: 固溶体非平衡凝固时不同时刻结晶的固相成分不同导致树枝晶内成分不均匀的现象(或树枝晶晶轴含高熔点组元较多,晶枝间低熔点组元较多的现象). 14. 扩散:由构成物质的微粒得热运动而产生得物质迁移现象。扩散的宏观表现为物质的定向输送。 15. 反应扩散: 在扩散中由于成分的变化,通过化学反应而伴随着新相的形成(或称有相变发生)的扩散过程称为“反应扩散”,也称为“相变扩散。 16. 泰曼温度:反应开始温度远低于反应物熔点或系统低共熔温度,通常相当于一种反应物开始呈现显著扩散作用的温度,此温度称为泰曼温度或烧结温度。 18. 相变:随自由能变化而发生的相的结构变化。 19. 什么是相律:表示材料系统相平衡得热力学表达式,具体表示系统自由能、组元数和相数之间得关系。 20. 二次再结晶:指少数巨大晶粒在细晶消耗时成核长大得过程,又称晶粒异常长大和晶粒不连续生长。 21. 均匀成核:组成一定,熔体均匀一相,在结晶温度下析晶,发生在整个熔体内部,析出物质组成与熔体一致。 22. 固溶强化:溶质原子加入到溶剂原子中形成固溶体,固溶体在 23. 相:化学成分相同,晶体结构相同并有界面与其他部分分开的均匀组成部分。 24. 过冷度: 实际开始结晶温度与理论结晶温度之间的差。 25. 固态相变:固态物质在温度、压力、电场等改变时,从一种组织结构转变成另一种组织结构。 26. 稳定分相:分相线和液相线相交(分相区在液相线上), 分相后两相均为热力学的稳定相。 27. 马氏体相变:一个晶体在外加应力的作用下通过晶体的一个分立体积的剪切作用以极迅速的速率而进行的相变。 28. 无扩散型固态相变:在相变过程中并不要求长程扩散,只需要原子作一些微量

东北大学《材料科学导论》期末考试必备真题集(含答案)18

东北大学继续教育学院 材料科学导论复习题 一、选择填空,在给出的a、b、c、d选项中选择一或多个你认为最合适的答案, 使得题目中给出描述完整准确。 1、材料的性质是在元器件或设备实现预期的使用性能而得到利用的。即材料的使用性能取决于( b )。 a 材料的组成 b 材料的基本性能 c 材料的结构 d 材料的合成与加工工艺 2、钢铁、有色金属、玻璃、陶瓷、高分子材料等的原材料多数来自( d )、为矿物资源,形成于亿万年之前,是不可再生的资源。因此,在材料生产中必须节省资源、节约能源、回收再生。 a 工业 b 农业 c 材料加工行业 d 采掘工业 3、高分子材料、金属材料和无机非金属材料,不论其形状大小如何,其宏观性能都是由( b )。 a 它的化学成分所决定的 b其化学组成和组织结构决定的。 c 其加工工艺过程所决定的 d其使用环境所决定的 4、如果使用温度是室温,就可以优先考虑高分子材料,因为在相同密度的材料中它们是 b、d 的。 a 最容易得到 b最便宜 c 最常见 d 加工最方便 5、根据其性能及用途的不同,可将陶瓷材料分为( a、c )和两大类。 a 结构材料用陶瓷 b特种陶瓷 c功能陶瓷 d 传统陶瓷 6、金属材料与无机非金属材料成型加工时由于工艺条件的不同也会造成制品性能的差异。因此,材料的( a、d )的总和决定了制品性能。 a 内在性能 b成型加工 c附加性能 d 成型加工所赋予的附加性能 7、材料的化学性能是指材料抵抗各种介质作用的能力。它包括溶蚀性、耐腐蚀性、抗渗

入性、抗氧化性等,可归结为材料的( c )。 a 有效性 b 实用性 c 稳定性 d 可用性 8、切削物体或对物体进行塑性变形加工的工具材料可分为高碳钢、高速钢、超硬质合金、金刚石等材料,其中可列入超硬质材料范畴的是( c、d )。 a高碳钢 b高速钢 c超硬质合金 d金刚石 9、纳米材料通常定义为材料的显微结构中,包括( a、b、c、d )等特征尺度都处于纳米尺寸水平的材料,通常由直径为纳米数量级的粒子压缩而成。 a 颗粒直径 b 晶粒大小 c 晶界 d 厚度 10、天然矿物原料一般杂质较多,价格较低;而人工合成原料( a、b )。此外,对环境的影响也是选用原材料时必须考虑的因素之一。 a 纯度较高 b价格也较高 c难以得到 d 以上所有 11、电化学腐蚀必须要有一个阴极与一个阳极。在纯金属中( a )或( b )可以构成阴极。 a 晶界 b 晶粒 c 环境的介质 d 更小的不均匀物种 12、腐蚀一旦发生,材料或制品就会( d );所以腐蚀是材料设计和选择时不得不考虑的重要因素。 a大受影响 b性能显著下降 c服务寿命缩短 d 以上所有 13、晶体的宏观形貌可以是( d )。 a一维的 b 二维的 c 三维的 d 上述所有 14、范德华键是永远存在于分子间或分子内非键结合的力,是一种( a )。

材料科学基础期末试题

几种强化加工硬化:金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象。 强化机制:金属在塑性变形时,晶粒发生滑移,出现位错的缠结,使晶粒拉长、破碎和纤维化,金属内部产生了残余应力。 细晶强化:是由于晶粒减小,晶粒数量增多,尺寸减小,增大了位错连续滑移的阻力导致的强化;同时由于滑移分散,也使塑性增大。 弥散强化:又称时效强化。是由于细小弥散的第二相阻碍位错运动产生的强化。包括切过机制和绕过机制。(2 分) 复相强化:由于第二相的相对含量与基体处于同数量级是产生的强化机制。其强化程度取决于第二相的数量、尺寸、分布、形态等,且如果第二相强度低于基体则不一定能够起到强化作用。(2 分) 固溶强化:固溶体材料随溶质含量提高其强度、硬度提高而塑性、韧性下降的现象。。包括弹性交互作用、电交互作用和化学交互作用。 几种概念 1、滑移系:一个滑移面和该面上一个滑移方向的组合。 2、交滑移:螺型位错在两个相交的滑移面上运动,螺位错在一个滑移面上运动遇有障碍,会转动到另一滑移面上继续滑移,滑移方向不变。 3、屈服现象:低碳钢在上屈服点开始塑性变形,当应力达到上屈服点之后开始应力降落,在下屈服点发生连续变形而应力并不升高,即出现水平台(吕德斯带)原因:柯氏气团的存在、破坏和重新形成,位错的增殖。 4、应变时效:低碳钢经过少量的预变形可以不出现明显的屈服点,但是在变形后在室温下放置一段较长时间或在低温经过短时间加热,在进行拉伸试验,则屈服点又重复出现,且屈服应力提高。 5、形变织构:随塑性变形量增加,变形多晶体某一晶体学取向趋于一致的现象。滑移和孪晶的区别 滑移是指在切应力的作用下,晶体的一部分沿一定晶面和晶向,相对于另一部分发生相对移动的一种运动状态。 孪生:在切应力作用下,晶体的一部分相对于另一部分沿一定的晶面和晶向发生均匀切变并形成晶体取向的镜面对称关系。 伪共晶:在不平衡结晶条件下,成分在共晶点附近的合金全部变成共晶组织,这种非共晶成分的共晶组织,称为伪共晶组合。 扩散驱动力:化学位梯度是扩散的根本驱动力。 一、填空题(20 分,每空格1 分) 1. 相律是在完全平衡状态下,系统的相数、组元数和温度压力之间的关系,是系统的平衡条件的数学表达式:f=C-P+2 2. 二元系相图是表示合金系中合金的相与温度、成分间关系的图解。 3?晶体的空间点阵分属于7大晶系,其中正方晶系点阵常数的特点为a=b M c,a = B =Y =90°,请列举除立方和正方晶系外其他任意三种晶系的名称三斜、单斜、六方、菱方、正交(任选三种)。 4. 合金铸锭的宏观组织包括表层细晶区、柱状晶区和中心等轴晶区三部分。 5.在常温和低温下,金属的塑性变形主要是通过滑移的方式进行的。此外还有孪生和扭

材料科学基础期末试题

几种强化 加工硬化:金属材料在再结晶温度以下塑性变形时强度与硬度升高,而塑性与韧性降低的现象。 强化机制:金属在塑性变形时,晶粒发生滑移,出现位错的缠结,使晶粒拉长、破碎与纤维化,金属内部产生了残余应力。 细晶强化:就是由于晶粒减小,晶粒数量增多,尺寸减小,增大了位错连续滑移的阻力导致的强化;同时由于滑移分散,也使塑性增大。 弥散强化:又称时效强化。就是由于细小弥散的第二相阻碍位错运动产生的强化。包括切过机制与绕过机制。(2 分) 复相强化:由于第二相的相对含量与基体处于同数量级就是产生的强化机制。其强化程度取决于第二相的数量、尺寸、分布、形态等,且如果第二相强度低于基体则不一定能够起到强化作用。(2 分) 固溶强化:固溶体材料随溶质含量提高其强度、硬度提高而塑性、韧性下降的现象。。包括弹性交互作用、电交互作用与化学交互作用。 几种概念 1、滑移系:一个滑移面与该面上一个滑移方向的组合。 2、交滑移:螺型位错在两个相交的滑移面上运动,螺位错在一个滑移面上运动遇有障碍,会转动到另一滑移面上继续滑移,滑移方向不变。 3、屈服现象:低碳钢在上屈服点开始塑性变形,当应力达到上屈服点之后开始应力降落,在下屈服点发生连续变形而应力并不升高,即出现水平台(吕德斯带) 原因:柯氏气团的存在、破坏与重新形成,位错的增殖。 4、应变时效:低碳钢经过少量的预变形可以不出现明显的屈服点,但就是在变形后在室温下放置一段较长时间或在低温经过短时间加热,在进行拉伸试验,则屈服点又重复出现,且屈服应力提高。 5、形变织构:随塑性变形量增加,变形多晶体某一晶体学取向趋于一致的现象。 滑移与孪晶的区别 滑移就是指在切应力的作用下,晶体的一部分沿一定晶面与晶向,相对于另一部分发生相对移动的一种运动状态。 孪生:在切应力作用下,晶体的一部分相对于另一部分沿一定的晶面与晶向发生均匀切变并形成晶体取向的镜面对称关系。 伪共晶:在不平衡结晶条件下,成分在共晶点附近的合金全部变成共晶组织,这种非共晶成分的共晶组织,称为伪共晶组合。 扩散驱动力:化学位梯度就是扩散的根本驱动力。 一、填空题(20 分,每空格1 分) 1、相律就是在完全平衡状态下,系统的相数、组元数与温度压力之间的关系,就是系统的平衡条件的数学表达式: f=C-P+2 2、二元系相图就是表示合金系中合金的相与温度、成分间关系的图解。 3、晶体的空间点阵分属于7 大晶系,其中正方晶系点阵常数的特点为a=b≠c,α= β=γ=90°,请列举除立方与正方晶系外其她任意三种晶系的名称三斜、单斜、六方、菱方、正交(任选三种)。 4、合金铸锭的宏观组织包括表层细晶区、柱状晶区与中心等轴晶区三部分。

材料科学基础2复习题及参考答案

材料科学基础2复习题及部分参考答案 一、名词解释 1、再结晶:指经冷变形的金属在足够高的温度下加热时,通过新晶粒的形核及长大,以无畸变的等轴晶粒取代变形晶 粒的过程。 2、交滑移:在晶体中,出现两个或多个滑移面沿着某个共同的滑移方向同时或交替滑移。 3、冷拉:在常温条件下,以超过原来屈服点强度的拉应力,强行拉伸聚合物,使其产生塑性变形以达到提高其屈服点 强度和节约材料为目的。(《笔记》聚合物拉伸时出现的细颈伸展过程。) 4、位错:指晶体材料的一种内部微观缺陷,即原子的局部不规则排列(晶体学缺陷)。(《书》晶体中某处一列或者若 干列原子发生了有规律的错排现象) 5、柯氏气团:金属内部存在的大量位错线,在刃型位错线附近经常会吸附大量的异类溶质原子(大小不同吸附的位 置有差别),形成所谓的“柯氏气团”。(《书》溶质原子与位错弹性交互作用的结果,使溶质原子趋于聚集在位错周围,以减小畸变,降低体系的能量,使体系更加稳定。) 6、位错密度:单位体积晶体中所含的位错线的总长度或晶体中穿过单位截面面积的位错线数目。 7、二次再结晶:晶粒的不均匀长大就好像在再结晶后均匀、细小的等轴晶粒中又重新发生了再结晶。 8、滑移的临界分切应力:滑移系开动所需要的最小分切应力。(《书》晶体开始滑移时,滑移方向上的分切应力。) 9、加工硬化:金属材料在再结晶温度以下塑性变形时强度和硬度升高,而塑性和韧性降低的现象,又称冷作硬 化。(《书》随塑性变形的增大,塑性变形抗力不断增加的现象。) 10、热加工:金属铸造、热扎、锻造、焊接和金属热处理等工艺的总称。(《书》使金属在再结晶温度以上发生加 工变形的工艺。) 11、柏氏矢量:是描述位错实质的重要物理量。反映出柏氏回路包含的位错所引起点阵畸变的总积累。(《书》揭 示位错本质并描述位错行为的矢量。)反映由位错引起的点阵畸变大小的物理量。 12、多滑移:晶体的滑移在两组或者更多的滑移面(系)上同时进行或者交替进行。 13、堆垛层错:晶体结构层正常的周期性重复堆垛顺序在某二层间出现了错误,从而导致的沿该层间平面(称为 层错面)两侧附近原子的错排的一种面缺陷。 14、位错的应变能:位错的存在引起点阵畸变,导致能量增高,此增量称为位错的应变能。 15、回复:发生形变的金属或合金在室温或不太高的温度下退火时,金属或合金的显微组织几乎没有变化,然而性能 却有程度不同的改变,使之趋近于范性形变之前的数值的现象。(《书》指冷变形金属加热时,尚未发生光学显微组织变化前(即再结晶前)的微观结构及性能的变化过程。) 16、全位错:指伯氏矢量为晶体点阵的单位平移矢量的位错。 17、弗兰克尔空位:当晶体中的原子由于热涨落而从格点跳到间隙位置时,即产生一个空位和与其邻近的一个间 隙原子,这样的一对缺陷——空位和间隙原子,就称为弗兰克尔缺陷。(《书》存在能量起伏的原子摆脱周围原子的约束而跳离平衡位置进入点阵的间隙中所形成的空位(原子尺度的空洞)。) 18、层错能:单位面积层错所增加的能量。(《书》产生单位面积层错所需要的能量。) 19、表面热蚀沟:金属长时间加热时,与表面相交处因张力平衡而形成的热蚀沟。(《书》金属在高温下长时间加热时, 晶界与金属表面相交处为了达到表面张力间的平衡,通过表面扩散产生的热蚀沟。) 20、动态再结晶:金属在热变形过程中发生的再结晶。 二、填空题 1、两个平行的同号螺位错之间的作用力为排斥力,而两个平行的异号螺位错之间的作用力为吸引力。 2、小角度晶界能随位向差的增大而增大;大角度晶界能与位向差无关。 3、柏氏矢量是一个反映由位错引起的点阵畸变大小的物理量;该矢量的模称为位错强度。 4、金属的层错能越低,产生的扩展位错的宽度越宽,交滑移越难进行。 5、螺型位错的应力场有两个特点,一是没有正应力分量,二是径向对称分布。 6、冷拉铜导线在用作架空导线时,应采用去应力退火,而用作电灯花导线时,则应采用再结晶退火。 7、为了保证零件具有较高的力学性能,热加工时应控制工艺使流线与零件工作时受到的最大拉应力的方向一致,而与外加的切应力方向垂直。

相关主题
文本预览
相关文档 最新文档