当前位置:文档之家› 第九章__中子测井

第九章__中子测井

第九章__中子测井
第九章__中子测井

第九章中子测井(Neutron log)

利用中子与地层相互作用的各种效应,来研究钻井地质剖面的一类测井方法统称中子测井。它是利用岩石的另一种特性,即岩石中的含氢量来研究岩石性质和孔隙度等地质问题。这种测井方法在于将装有中子源和探测器的井下仪器下入井中,由中子源→中子→进入岩层,同物质的原子核发生碰撞将产生减速、扩散和被俘获几个过程,到达探测器。

在这些过程中,探测器周围的中子分布状况,以及中子被俘获后所放出的伽马射线强度,与仪器周围的岩石性质,特别是岩石的含氢量有关。

而储集层的含氢量又取决于它的孔隙度,因此,中子测井是目前广泛使用的一种孔隙度测井。根据中子测井的记录内容:可以将它分为中子-中子测井和中子-伽马测井。根据仪器的结构特点,中子—中子测井又可分为中子-超热中测井(SNP)—井壁中子测井中子-热中子测井(CNL)—补偿中子测井

一、中子测井的核物理基础

1 中子和中子源

中子是组成原子核的一种不带电荷的中性粒子,其质量与氢核的质量相近。中子与物质作用时,能穿过原子的电子壳层而与原子核相碰撞,所以它对物质的穿透能力较强。

通常中子与质子以很强的核力结合在一起,形成稳定的原子核。要使中子从原子核里释放出来,就必须供给一定的能量。如果使原子核获得的能量大于中子结合能,中子就可能从核中发射出来。

可以用α粒子、氘核d、质子p或γ光子轰击原子核,引起各种核反应,使中子从核内释放出来。这种产生中子的装置称中子源。

一、中子测井的核物理基础

因为不同能量的中子与原子核作用时有着不同的特点,所以通常根据中子的能量大小,可以把它分成几类:

?高能快中子:能量大于10万电子伏特;

?中能中子:能量在100电子伏特—10万电子伏特之间;

?慢中子:能量小于100电子伏特;

其中0.1—100电子伏特的中子为超热中子;

能量等于0.025电子伏特的中子为热中子。

一、中子测井的核物理基础

1 中子和中子源

中子测井所用的中子源有两类:

即同位素中子源和加速器中子源。

?同位素中子源:如镅—铍(Am-Be)中子源,利用镅衰变产生的α粒子去轰击铍原子核,发生核反应而放出中子。产生的中子的平均能量约5MeV。

该类中子源的特点是连续发射中子。

?加速器中子源:(亦称脉冲中子源),如D-T加速器中子源,用加速器加速氘核(D)去轰击氚核(T)产生快中子,其能量是14MeV。

该类中子源的特点是人为控制脉冲式发射中子。

二、中子与物质作用几种作用形式:

(1)非弹性作用:高能快中子与原子核碰撞

(2)弹性散射:高能快中子经一、二次非弹性散射后,能量降低,继续碰撞原

子,降低能量和运动速度,而总能量不变,经多次碰撞,能量损失,速度降低,最后变为热中子。

(3)辐射俘获:能量低的热中子在其他物质附近漫游,很容易被其他物质俘获而被吸收,其他物质由于俘获中子后则处于激发态,在由激发态向稳定态转变时,则易放出r射线。

二、中子与物质的相互作用

由中子源发射出来的快中子与组成物质的原子核发生作用,可以分为以下几个阶段:

1.快中子的减速过程

平均能量约4Mev的高能快中子→碰撞原子核-->发生弹性散射——>中子一部

分能量→传给原子核,成为原子核动能,中子本身的能量减少,运动速度降低-->继续碰撞其它原子核.反复多次,能量不断损失,速度不断减慢,最后中子成为热中子,此过程为快中子的减速过程。

岩石中不同元素对中子产生弹性散射几率(散射截面)不同,H元素弹性散射截面最大。不同元素减速能力不同,轻原子核对中子减速起主要作用,特别是氢原子核与H碰撞,减速成热中子过程最快,因此,高含H岩石中,快中子将很快减速成热中子。

1.快中子的减速过程

在减速过程中,中子与原子核正面碰撞一次可损失的最大能量ΔE为式中E l中子碰撞前的能量

式中A为原子量对于氢元素,质量A=1,因而a=0,ΔE=E l,即中子与氢核发生碰撞时,中子就失去全部能量。对于碳元素,A=12,a=0.716,中子与碳核碰撞时,中子损失的最大能量为0.28E1。显然A越大的元素,中子与它碰撞

时能量损失越小。在实际的弹性散射过程中,中子与靶核并不总是正面碰撞,因此,每次碰撞后,中子损失的能量并不相同,这与散射角有关。当快中子与原子核碰撞多次,使中子能量降低为0.025电子伏特时,这时的中子为热中子。中子变为热中子之后,就象分子热运动一样在物质中进行扩散,当它再与原子核发生碰撞时,失去和得到的能量几乎相等。

1.快中子的减速过程

一个中子与一个原子核发生弹性散射的几率称为微观弹性散射截面δs,单位为巴(10-24cm2)。

1cm3物质的原子核的微观弹性散射截面之和叫宏观弹性散射截面Σs。通常

可以利用宏观弹性散射截面来描述这个减速过程。此外,还可用“减速长度Ls”来描述快中子变为热中子的减速过程。减速长度定义为由快中子减速成热中子所经过的直线距离的平均值,单位为厘米。

下表为沉积岩中常见元素的散射截面和每次碰撞的最大能量损失以及中子能量由2百万电子伏特减速为热中子所需的平均碰撞次数。

1.快中子的减速过程

从表中可以看出,沉积岩中不同元素对中子产生弹性散射的几率(散射截面)不同,氢元素的弹性散射截面最大。另外,不同元素对中子的减速能力也不同,和氢核相碰撞,能量损失最大,减速成热中子的过程也最快。因此,在含氢量高的岩石中,快中子将很快减速成热中子。

介质含氢越多,减速长度越短,这也说明氢元素对快中子的减速能力最大。氢是所有元素中最强的中子减速剂,这是中子测井法测定地层含氢量及解决与含氢量有关的各种地质问题的依据。

2.热中子的扩散及被俘获

快中子减速成热中子之后,同气体分子的扩散类似,便从密度大的地方向密度小的地方扩散。热中子扩散时,由于速度较慢,在原子核周围停留的时间相对较长,因而很容易被原子核俘获。标准热中子能量为0.025MeV,速度为 2.2×

105cm/s。热中子被元素原子核俘获的几率取决于元素的俘获能力,通常用“宏

观俘获截面Σa”来量度。单位为巴。下表给出了沉积岩中常见的几种元素的微观俘获截面。

氯元素特别是硼的俘获截面很大。在油、气井中,氯元素是常见的,因此,它的存在将使热中子被俘获的几率显著增加,热中子扩散的过程或扩散距离将缩短。所以含有高矿化度水的岩石比含油的同类岩石宏观俘获截面大。

2.热中子的扩散及被俘获

描述热中子扩散及俘获特性的参数有扩散长度L d、宏观俘获截面Σa和热中子寿命τt参数。扩散长度:从产生热中子起到其被俘获吸收为止,热中子移动的距离。物质对热中子俘获吸收能力越强,扩散长度L d就越短。

微观俘获截面δ:一个原子核俘获热中子的几率称之。

宏观俘获截面Σa:1cm3物质中所有原子核的微观俘获截面之和称之为宏观俘获截面。

热中子寿命τt:从热中子生成开始到它被俘获吸收为止所经过的平均时间叫热中子寿命,它和宏观俘获截面的关系是:

式中v为热中子移动速度,常温下,v=0.22cm/μs,所以上式可写成:

当地层中含有俘获截面高的元素时,τt就大大减小。高矿化度水的τt要

比油层小的多,因此可以确定油水界面和区分油水层。

2.热中子的扩散及被俘获元素的原子核俘获热中子之后,处于激发状态,当它回到稳定的基态时,多余的能量便以伽马射线的形式释放出来。该射线称为俘获伽马射线,或次生伽马射线。不同元素俘获热中子后放出的俘获伽马射线的能量存在一定的差别,特别是氯元素释放出的俘获伽马射线能量要比一般元素高一些,且伽马射线的数目也相对多些。因此,当岩石中有氯元素存在时,测得的热中子数将显著减少,但测得的俘获伽马射线却又会普遍增高。

3.中子探测器中子探测器探测的是超热中子和热中子。

热中子探测器通常由普通的闪烁计数器在其外壁上涂上锂或硼构成。由于锂和硼对热中子有强吸收性,并在吸收热中子后发生核反应而放射出α粒子,该粒子能使闪烁计数器中萤光体发光,从而在记数管中的阳极产生电脉冲,然后送入地面记录仪便可对其记录。

超热中子探测器是热中子计数器在其外壁上加一层石蜡和一层镉构成。镉的作用是吸收探测器周围的热中子,而只让超热中子通过,并进入石蜡层,然后再经石蜡减速为热中子,便可被热中子计数管对其记录。

4 地层的含氢指数前面已经讲过,地层对快中子的减速能力主要决定于地层的含氢量。含氢量高的地层宏观减速能力强、减速长度小。

为了方便,在中子测井中把淡水的含氢量规定为一个单位,用它来衡量地层中所有其它岩石或矿物的含氢量。单位体积的任何岩石或矿物中氢核数与同样体积的淡水中氢核数的比值,称为该岩石或矿物的含氢指数,用H表示。H与单位体积介质里的氢核数成正比,因而可用下式表示:式中,ρ是介质密度,单位为

g/cm3;M是该化合物的克分子量;

x是该化合物每个分子中的氢原子数;

K是比例常数。

⑴纯水的含氢指数按定义,淡水的含氢指数为1,由此确定出上式中的K值。因水的分子式为H2O,所以x=2,M=18,而水的密度ρ=lg/cm3,由此求出K

=9代入上式得

则用该式可求出任何密度为ρ,分子量为M且每个分子中有x个氢核的单一分子组成的物质的含氢指数。

⑵盐水的含氢指数NaCl溶于水后占据了空间,而使盐水中氢的密度减小。计

算盐水含氢指数的一般公式为Hw=ρw(1-p)

式中ρw为盐水的密度;p为NaCl的浓度。在测裸眼井时,渗透性地层一般

都有侵入,中子测井探测范围内的水的矿化度,可以认为是与泥浆滤液的矿化度接近的。

⑶油、气的含氢指数液态烃的含氢指数与水接近,然而天然气的氢浓度很低,并且随温度和压力而变化。因而当天然气很靠近井眼而处于中子测井探测范围内时,中子测井测出的含氢指数较小。烃的含氢指数可根据其组分和密度来估算。

分子式为CHx(其分子量为12十x)和密度为ρh的烃的含氢指数为

用此式可算出甲烷(CH4)的含氢指数为2.25ρ甲烷,而石油(nCH2)的含氢指数为1.28ρ油。若油的密度为ρ油=0.85g/cm3,则含氢指数为1.09。

⑷与有效孔隙度无关的含氢指数

①泥质:泥质伴生有化学结晶水和束缚水,所以它具有很大的含氢指数,一般可达0.15—0.30,因而在含泥质的地层中,含氢指数大于地层的有效孔隙度。

②石膏:石膏的分子式是CaSO4·2H2O,其含氢指数约为0.49,与孔隙度为49%

的灰岩相当。

③岩性影响:当仪器以纯石灰岩为标准进行刻度时,其它岩性的岩石骨架显示为一定数值的等效含氢量。孔隙度等于零的砂岩,显示为负含氢指数(-3%),而白云岩显示为正的含氢指数(5%)。

二、中子测井

中子测井包括两种方法:?一种是记录探测器周围超热中子密度的中子—超热中子测井(SNP),亦称井壁中子测井;?另一种是记录探测器周围热中子密度的中子—热中子测井(CNL),亦称补偿中子测井。

1、中子—超热中子测井

超热中子测井是探测探测器周围中子变为热中子之前的超热中子密度,以反映地层的中子减速特性,进而计算储层孔隙度和对储集层进行评价。

右图是一种超热中子测井仪的井下仪器示意图,也叫井壁超热中子测井仪(SNP)。超热中子探测器和中子源贴靠井壁测量以减小井眼的影响。

由中子源发出的快中子与地层中的原子核发生弹性散射,能量逐渐降低,而成为超热中子,其过程主要取决于上述所述的快中子的减速过程。

1、中子—超热中子测井

在组成地层的所有元素中,氢是减速能力最强的元素,远远超过其它元素,它的存在和含量就决定着地层的减速长度的大小。因此,当孔隙中100%充满水时,孔隙度越大则地层减速长度就越短。

右图描述了这种关系,给出了充满水的砂岩、石灰岩和白云岩等三种岩性的岩石减速长度和孔隙度的关系曲线。由图可以看出Ls随φ增大而缩短,而且孔隙度相同、岩性不同的地层减速长度也不同。因此,孔隙度不同,岩性不同,超热中子在中子源周围的分布不同。孔隙度越大,含氢量越多,减速

孔隙度测井

孔隙度测井 (一)体积密度测井 1、原理: 加屏蔽的贴井壁滑板上的伽玛放射性源,定向地层发射等量的伽玛放射线,在与地层中的电子碰撞发生康普顿散射的过程中,采用与源距固定距离的探测器记录散射的伽玛射线。因此,密度测井读数主要取决于地层的电子密度,对于由低原子量的元素法组成的大多数沉积岩石来说,电子密度与体积密度有很好的正比关系,所以密度测井可以直接测量地层的体积密度。 2、应用: (1)求地层孔隙度:ρb---ρma φ=――――――ρf----ρma φ―――――孔隙度 ρb――――地层体积密度 ρf――――地层孔隙度中水的密度ρma――――岩石骨架密度 (2)划分岩性界面:划在曲线的半幅点处。(3)判断岩性 泥质岩:成岩较好的泥质岩的体积密度大于含水砂岩的体积密度,即ρb泥>ρb水。碳酸岩:ρb云>ρb灰。硬石膏:ρb膏>ρb云。 盐膏:ρb盐膏<ρb泥,ρb盐膏<ρb砂。ρb云――白云岩密度2.86 ρb灰――灰岩密度2.71 ρb盐――岩盐密度2.16 ρb膏――硬石膏密度2.96 ρb砂――砂岩密度2.65 ρb 泥――泥岩密度2.2-2.8 ρb膏――石膏密度2.32 (4)判断油气水层油层:ρb油<ρb泥气层:ρb气<ρb泥水层:ρb水≤ρb泥ρb油――油层密度ρb气――气层密度(5)识别裂缝发育带 碳酸岩剖面,ρb缝<ρb围ρb缝――裂缝带密度,ρb围――围岩密度。(二)补偿中子测井 1、原理: 中子源向地层连续发射的中子流,发射出的中子流分布在中子源周围,似一个同心球,这种径向分布的状况除了介质性质之外,主要是含氢量的函数。当地层孔隙度中的流体是地层中氢的主要来源时,中子测井值就和孔隙中的流体体积相对应。若岩石骨架不含氢,则中子测井的读数就等于孔隙度。 2、应用 (1)测定地层孔隙度。(2)测定矿物含量。(3)划分岩性(定性)。 泥质岩:中子孔隙度高,一般泥岩的束缚水含量比砂岩高。碳酸岩、盐膏岩,中子孔隙度低。(4)判断油气水层油层:φN油<φN泥 气层:φN泥>φN气<φN油水层:φN泥>φN水>φN油φN油----油层中子孔隙度φN 泥----泥岩中子孔隙度φN水----水层中子孔隙度φN气-----气层中子孔隙度 (5)识别裂缝发育带 碳酸岩:φN缝>φN围φN缝----裂缝中子孔隙度φN围----围岩中子孔隙度 (三)声波时差测井 1、原理: 声波测井是记录初至波通过1米地层所需的时间△t(微秒/米)。沉积岩中声波速度与许多因素有关,主要与岩石的骨架以及孔隙度分布和孔隙度中的流体性质有关。在固结而压实的砂岩地层中,从粒间孔隙概念出发,可以导出威利公式求解纯砂岩的孔隙度△t-△tma φ=-------------- △tf-△tma φ------孔隙度 △t------测量的砂岩地层声波时差,△tma----砂岩骨架的声波时差,△tf------孔隙中流体的声波时差。 2、应用 (1)求取地层孔隙度。 (2)划分岩性界面,半幅点处。 (3)定性划分岩性:泥质岩:声波时差大盐膏岩:声波时差小碳酸岩:声波时差小 油层:比泥岩和致密砂岩声波大,出现平台。气层:声波时差大,出现周波跳跃。

第八章声波测井

第八章声波测井 声波测井的物理基础 1.名词解释: (1)滑行波: (2)周波跳跃: (3)stoneley 波: (4)伪瑞利波: (5)声耦合率: (6)相速度: (7)声阻抗: (8)群速度: (9)频散: (10)衰减: (儿)截止频率: (12)声压: (13)模式波: (14)泊松比: (15)第一临界角: (16)第二临界角: 2.说明弹性系数K 和切变弹性系数μ的意义。他们与杨氏模量E 及泊松比σ有怎样 的关系? 3.介质质点弹性机械振动的过程是 的外力作用下, 与 的互相交替作用的过程,而声波传播,则是这种过程作用于 使之 的过程。 4.声波是介质质点的 振动在介质中的传播过程。声纵波是 变波,横波是 变波,它们均与此物理量(介质的) 有关。 5.某灰岩的V p =5500m/s ,密度ρb =2。73g /cm 3,横波速度V s 按V p =1.73V 。给出。试 求杨氏模量E ,泊松比σ,体弹性模量K ,切变弹性模量μ及拉梅常数λ。 6.声纵波的质点振动方向与能量传播方向 ,它可在 态介质中传播;声横波的质点振动方向与能量传播方向 ,它能在 态介质中传达播,但不能在 态介质中传播。 7.声纵波的速度为p V =;声横波的速度为s V =故V P /V S = 。根据岩石的泊松比为0.155—0.4,于是V p /V s ;= 。这表明在岩石中,V p V S ,所以在声波测井记录上, 波总先于 波出现。 8.在 相介质中,由于μ=0,即 切应力,故 。 9.瑞利(Rayleigh)波发生在钻井的 界面上,其速度v R 很接近V S ,约为 ,此波随离开界面距离的加大而迅速 ;斯通利(Stoneley )波产生在 中,并在泥浆中传播,它以低 和低 形式传传播,其速度 于泥浆的声速。 10.到达接收器的各声波中,全反射波因路径处在 中,波速 ,直达波行程 ,但波速 ,滑行波行程 但波速 。故以 波最早到达接收器。

第8章 密度测井和岩性密度测井

第八章 密度测井和岩性密度测井 此两种测井方法是由伽马源向地层发射伽马射线,经与地层介质相互作用后,再由伽马探测器接收(即为伽马-伽马测井),地层不同,探测器记录的读数不同,从而被用来研究地层性质。 §1 密度测井、岩性密度测井的地质物理基础 一、岩石的体积密度b ρ(即真密度): V G b =ρ (单位体积岩石的质量) 对含水纯岩石: φρφρρρρφ ?+-=?+?=+=f ma f ma ma f ma b V V V V G G )1( 单位:(g/cm 3) 其中:V V V ma =+φ (1)组成岩石的骨架矿物不同,ρma 不同,如石英为2.65,方解石为2.71,白云石为2.87,对于相同孔隙度得到的体积密度也就不同,由此可判断岩性;另一方面,利用体积密度计算孔隙度时,必须得先确定岩性。 (2)孔隙性地层的密度小于致密地层,且随着φ的增加ρb 减小,由此可求φ。 且(盐水泥浆)(淡水泥浆)1.10 .1=f ρ 二、康普顿散射吸收系数∑ 中等能量γ射线与介质发生康普顿散射康普顿散射而使其强度减小的参数(康普顿减弱系数---由康普顿效应引起的伽马射线通过单位距离物质减弱程度): A N z b A e ρσ??=∑ 沉积岩中大多数核素A z 均接近于0.5(见表8-1, P 138),常见的砂岩、石灰岩、白云

岩的A z 的平均值也近似为0.5(见表8-2), 所以对于一定能量范围的伽马射线(e σ为常数),∑只与b ρ有关。 密度测井利用此关系,通过记录康普顿散射的γ射线的强度来测量岩石的密度。 三、岩石的光电吸收截面 1、线性光电吸收系数:当γ的能量大于原子核外电子的结合能时,发生光电效应的概率。 n A Z λρτ1.40089 .0= 2、岩石的光电吸收截面指数Pe 它是描述发生光电效应时物质对伽马光子吸收能力的一个参数,即伽马光子与岩石中一个电子发生光电效应的平均光电吸收截面,单位b/电子。而它与原子序数关系为: Pe=aZ 3.6 a 为常数,地层岩性不同,Pe 有不同的值,也就是说Pe 对岩性敏感,可以以来确定岩性,Pe 是岩性密度测井测量的一个参数。 3、体积光电吸收截面 体积光电吸收截面也是描述发生光电效应时物质对伽马光子吸收能力的一个参数,它是指每立方米物质的光电吸收截面,以U 来表示,单位b/cm 3。地层岩性不同,其体积光电吸收截面不同(表8-2,139页)。U 对岩性敏感,也是岩性密度测井所要确定的一个参数。岩石的体积光电吸收截面为: ∑==n i i i V U U 1 Ui 、Vi 分别为组成岩石各部分的光电吸收截面和相对体积。如孔隙度为φ的纯砂岩的光电吸收截面为: f ma U U U ??+-=)1( 体积光电吸收截面U 与光电吸收截面指数Pe 有近似关系: b U Pe ρ/≈ 故可由Pe 求得U 。 §2 地层密度测井

第九章__中子测井

第九章中子测井(Neutron log) 利用中子与地层相互作用的各种效应,来研究钻井地质剖面的一类测井方法统称中子测井。它是利用岩石的另一种特性,即岩石中的含氢量来研究岩石性质和孔隙度等地质问题。这种测井方法在于将装有中子源和探测器的井下仪器下入井中,由中子源→中子→进入岩层,同物质的原子核发生碰撞将产生减速、扩散和被俘获几个过程,到达探测器。 在这些过程中,探测器周围的中子分布状况,以及中子被俘获后所放出的伽马射线强度,与仪器周围的岩石性质,特别是岩石的含氢量有关。 而储集层的含氢量又取决于它的孔隙度,因此,中子测井是目前广泛使用的一种孔隙度测井。根据中子测井的记录内容:可以将它分为中子-中子测井和中子-伽马测井。根据仪器的结构特点,中子—中子测井又可分为中子-超热中测井(SNP)—井壁中子测井中子-热中子测井(CNL)—补偿中子测井 一、中子测井的核物理基础 1 中子和中子源 中子是组成原子核的一种不带电荷的中性粒子,其质量与氢核的质量相近。中子与物质作用时,能穿过原子的电子壳层而与原子核相碰撞,所以它对物质的穿透能力较强。 通常中子与质子以很强的核力结合在一起,形成稳定的原子核。要使中子从原子核里释放出来,就必须供给一定的能量。如果使原子核获得的能量大于中子结合能,中子就可能从核中发射出来。 可以用α粒子、氘核d、质子p或γ光子轰击原子核,引起各种核反应,使中子从核内释放出来。这种产生中子的装置称中子源。 一、中子测井的核物理基础 因为不同能量的中子与原子核作用时有着不同的特点,所以通常根据中子的能量大小,可以把它分成几类: ?高能快中子:能量大于10万电子伏特; ?中能中子:能量在100电子伏特—10万电子伏特之间; ?慢中子:能量小于100电子伏特; 其中0.1—100电子伏特的中子为超热中子; 能量等于0.025电子伏特的中子为热中子。 一、中子测井的核物理基础 1 中子和中子源 中子测井所用的中子源有两类: 即同位素中子源和加速器中子源。 ?同位素中子源:如镅—铍(Am-Be)中子源,利用镅衰变产生的α粒子去轰击铍原子核,发生核反应而放出中子。产生的中子的平均能量约5MeV。 该类中子源的特点是连续发射中子。 ?加速器中子源:(亦称脉冲中子源),如D-T加速器中子源,用加速器加速氘核(D)去轰击氚核(T)产生快中子,其能量是14MeV。 该类中子源的特点是人为控制脉冲式发射中子。 二、中子与物质作用几种作用形式: (1)非弹性作用:高能快中子与原子核碰撞 (2)弹性散射:高能快中子经一、二次非弹性散射后,能量降低,继续碰撞原

补偿中子测井仪器

补偿中子测井仪器

补偿中子测井仪属于放射性强度测井仪器。是(密度、声波。中子)等三大孔隙度测井仪器的其中之一。今天我准备从下面5个方面来介绍补偿中子测井仪器: a)仪器简介 b)仪器测井原理 c)探测器 d)电路简介 e)仪器的刻度 1. 仪器简介 补偿中子测井仪是一种通过测量地层含氢指数来确定地层孔隙度以及判断岩性的放射性测井仪器。 仪器的用途: a)确定地层孔隙度 b)判断岩性 c)确定泥质含量 仪器特点 a)仪器的推靠器: b)仪器的重量: c)由于中子射线可以很容易穿透钢管,因此补偿中子测井仪不仅可以在裸眼井中 测量,还可以在套管井中测量。 d)自然界存在伽马射线,但不存在中子射线,所以仪器在正常情况下,本底为零。 仪器主要技术指标: a)仪器最大外压:100Mpa b)仪器使用电缆长度:≤7000m c)仪器最大测速:560m/h 测速与源强有关。 d)仪器测量范围:0~100P.u. e)仪器测量精度:

当地层孔隙度为: 0 ~ 10 P.u. 时,仪器误差为:±1P.u. 当地层孔隙度为:10 ~ 45 P.u. 时,仪器误差为:±3P.u. 当地层孔隙度: > 45 P.u. 时,仪器误差为:±7P.u. 2.仪器原理: 中子测井核物理基础 补偿中子测井仪上装载着20居里的Am—Be中子源,能量约为几百万电子伏特。每秒钟将产生4?107个快中子,这些快中子射入地层,与地层的物质发生一系列的核反应。其中包括:快中子的非弹性散射、快中子对原子核的活化、快中子的弹性散射及减速。快中子经过一系列的非弹性碰撞及弹性碰撞,能量逐渐减小,最后当中子能量与地层的原子处于热平衡状态时,中子不再减速。这种能量状态的中子叫热中子。标准热中子的能量为:0.025ev,速度为2.2×105厘米/秒。根据碰撞学说,中子碰撞中的能量损失与被碰撞物质的质量和入射角有关,与中子质量相当的物质碰撞(弹性碰撞),中子损失的能量最大。在地层中,氢原子具有与中子非常接近的质量,因此地层对快中子的减速能力主要决定于地层的含氢量含氢量高的地层宏观减速能力强,减速长度小。经过几次碰撞后,快中子将被减速,能量从快中子的平均能量5.6MeV衰减到0.025eV的热中子。这些热中子部分进入探测器,撞击He-3核,引起核反应,产生H3(氚)子,该质子使其它一部分He-3电离,产生带电的离子和电子,在高压电场的作用下,电子向阳极运动,产生一负脉冲,该脉冲被电子线路放大并记录下来,探测器接受中子的多少直接反映了地层中氢原子的多少。因此He-3探测器及其电子线路组成的下井仪可以测量地层中的含氢量。地层孔隙是充满流体的细微空间,水及碳氢化合物中含有氢原子,无油地层与矿岩中极少或根本没有氢。这样仪器的相应基本上反映了充满流体的地层的细微空间,即孔隙度。 在这部分内容中,主要讲了3个方面的问题: 1:中子从发射到吸收的具体过程为: 20居里的Am—Be中子源―――――――――― 4?107个快中子、能量约为几百万电子伏特、快中子――――――-――― 非弹性散射、快中子对原子核的活化、快中子的弹性散射及减

第三章 中子测井

第三章 中子测井 概述 中子测井利用中子与地层物质相互作用的各种效应,测量地层特性的测井方法的总称。 根据中子测井仪器记录的对象不同可以分为: ??? ?? ? ?—伽马能谱测井—中子—伽马测井—中子—超热中子测井—中子—热中子测井—中子 按仪器结构特征的不同,可以分为普通中子测井,贴井壁中子测井,补偿中子测井等。 从中子源发出的高能中子与地层物质的原子核发生各种作用,其结果是高能中子逐步减弱为超热中子和热中子,或被原子核吸收,发生核反应。中子与物质相互作用的类型有:非弹性散射;弹性散射;核俘获引起的核反应等。 探测仪器记录的低能中子的数量或原子核俘获中子发出的伽马射线的强度与地层对中子的减速能力和吸收特性有关。中子测井正是利用了这些特性对地层进行探测的。 1)中子测井测量地层孔隙度的原理 氢核与中子的质量几乎相等,是最强的减速物质。因此,中子测井的结果将反映地层的含氢量。在油层或水层中,储集空间中被含氢核的油或水充填,这样储集体中含氢量的多少反映岩石孔隙度的大小。因此,中子测井是一种孔隙度测井方法。 2)油层和气层对中子的减速能力的差异非常明显,因此中子测井也是一种指示油气层的测井方法。 3)氯是地层中重要的中子吸收物质,氯是大多数地层水的主要离子成分,可见中子测井对于划分油水层也有重要作用。 4)中子与地层中的原子核发生非弹性散射,使原子核处于激发态,在退激时发出伽马射线。这些伽马射线的能量,反映靶原子核的能级结构。因不同的原子核其能级结构是不同的,因此发出的伽马射线的能量也是不同的。我们把这种不同原子核发生的伽马射线称为特征伽马射线。测量地层发射的伽马射线的能谱,就可以分析地层中元素的成分。 例如:碳核的特征伽马射线为 Er 43 .4= 氧核的特征伽马射线为 Mev Er 13.6= 对于给定的中子源,中子与地层中的碳核和氧核发生非弹性散射次数的多少,取决于地层中相应核素的多少,取决于地层中相应的核素的丰度。即特征伽马射线的强度取决于地层中碳核、氧核的数目。显然,油层与水层单位体积中的碳核和氧核的数目是不同的。 我们通过探测 c r E ,与 o r E ,的强度比,就可以定性判断地层是水层还是油层。这是碳氧比测井的原理。 §1中子测井基本原理 普通中子测井是利用地层中氢核对快中子的减速能力测量地层的含氢指数,进而确定地层孔隙度的测井方法。 一、地层的含氢指数 自然界中,对中子减速能力最强的核素是氢核,岩石中的氢核的多少就决定了地层对中子的主要减速能力。为了度量地层对中子的减速能力,引入几个概念。 1.含氢量,含氢指数 ①含氢量:单位体积中氢核的数目。

第8章 密度测井和岩性密度测井(教学材料)

第八章 密度测井和岩性密度测井 此两种测井方法是由伽马源向地层发射伽马射线,经与地层介质相互作用后,再由伽马探测器接收(即为伽马-伽马测井),地层不同,探测器记录的读数不同,从而被用来研究地层性质。 §1 密度测井、岩性密度测井的地质物理基础 一、岩石的体积密度b ρ(即真密度): V G b =ρ (单位体积岩石的质量) 对含水纯岩石: φρφρρρρφ ?+-=?+?= += f ma f ma ma f ma b V V V V G G )1( 单位:(g/cm 3) 其中: V V V ma =+φ (1)组成岩石的骨架矿物不同,ρma 不同,如石英为2.65,方解石为2.71,白云石为2.87,对于相同孔隙度得到的体积密度也就不同,由此可判断岩性;另一方面,利用体积密度计算孔隙度时,必须得先确定岩性。 (2)孔隙性地层的密度小于致密地层,且随着φ的增加ρb 减小,由此可求φ。 且(盐水泥浆)(淡水泥浆)1 .10 .1= f ρ 二、康普顿散射吸收系数∑ 中等能量γ射线与介质发生康普顿散射康普顿散射而使其强度减小的参数(康普顿减弱系数---由康普顿效应引起的伽马射线通过单位距离物质减弱程度): A N z b A e ρσ??=∑ 沉积岩中大多数核素A z 均接近于0.5(见表8-1, P 138),常见的砂岩、石灰岩、白云

岩的A z 的平均值也近似为0.5(见表8-2), 所以对于一定能量范围的伽马射线(e σ为常数),∑只与b ρ有关。 密度测井利用此关系,通过记录康普顿散射的γ射线的强度来测量岩石的密度。 三、岩石的光电吸收截面 1、线性光电吸收系数:当γ的能量大于原子核外电子的结合能时,发生光电效应的概率。 n A Z λρτ1 .40089 .0= 2、岩石的光电吸收截面指数Pe 它是描述发生光电效应时物质对伽马光子吸收能力的一个参数,即伽马光子与岩石中一个电子发生光电效应的平均光电吸收截面,单位b/电子。而它与原子序数关系为: Pe=aZ 3.6 a 为常数,地层岩性不同,Pe 有不同的值,也就是说Pe 对岩性敏感,可以以来确定岩性,Pe 是岩性密度测井测量的一个参数。 3、体积光电吸收截面 体积光电吸收截面也是描述发生光电效应时物质对伽马光子吸收能力的一个参数,它是指每立方米物质的光电吸收截面,以U 来表示,单位b/cm 3 。地层岩性不同,其体积光电吸收截面不同(表8-2,139页)。U 对岩性敏感,也是岩性密度测井所要确定的一个参数。岩石的体积光电吸收截面为: ∑== n i i i V U U 1 Ui 、Vi 分别为组成岩石各部分的光电吸收截面和相对体积。如孔隙度为φ的纯砂岩的光电吸收截面为: f ma U U U ??+-=)1( 体积光电吸收截面U 与光电吸收截面指数Pe 有近似关系: b U Pe ρ/≈

(完整word版)测井考试小结(测井原理与综合解释)

一、名词解释 1、测井:油气田地球物理测井,简称测井well logging ,是应用物理方法研究油气田钻井地质剖面和井的技术状况,寻找油气层并监测油气层开发的一门应用技术。 2、电法测井:是指以研究岩石及其孔隙流体的导电性、电化学性质及介电性为基础的一大类测井方法,包括以测量岩层电化学特性、导电特性和介电特性为基础的三小类测井方法。 3、声波测井:是通过研究声波在井下岩层和介质中的传播特性,来了解岩层的地质特性和井的技术状况的一类测井方法。 4、核测井:是根据岩石及其孔隙流体的核物理性质,研究钻井地质剖面,勘探石油、天然气、煤以及铀等有用矿藏的地球物理方法,是地球物理测井的重要组成部分。 5、储集层:在石油工业中,储集层是指具有一定孔隙性和渗透性的岩层。例如油气水层。 6、高侵:当地层孔隙中原来含有的流体电阻率较低时,电阻率较高的钻井液滤液侵入后,侵入带岩石电阻率升高,这种钻井液滤液侵入称为钻井液高侵,R XO

核测井原理

核测井原理 概述 (2) 第一章自然伽马测井和自然伽马能谱测井 (3) §1 伽马射线及其探测 (3) §2 岩石的自然伽马放射性(自然伽马测井的地质基础) (6) §3自然伽马射线强度沿井轴的分布 (13) §4 自然伽马测井的仪器刻度、井眼校正 (14) §5 自然伽马测井资料的应用 (15) §6 自然伽马能谱测井 (17) §7 自然伽马能谱测井资料的应用 (20) 第二章中子测井 (21) §1中子测井基本原理 (22) §2超热中子测井 (25) 第三章核磁共振 (50) §1顺磁共振的相关结果 (50) §2岩石孔隙中流体的核自旋驰豫及描述这种驰豫的方法 (58)

概述 核测井这门课程是和《原子核物理基础》是相互衔接的一门课程。本课程的重点是自然伽马测井、自然伽马能谱测井,密度测井,中子测井以及核磁测井方法原理的讨论,资料的解释应用只稍作提及。 核测井,在核磁共振测井出现之前,我们又叫做放射性测井。放射性测井主要有三种方法:自然伽马测井测量地层的天然放射性;密度测井测量人工伽马源与地层作用后的 射线;中子测井利用中子作用于地层作用,然后测量经地层慢化后的中子,或中子核反应产生的伽马射线。这些测井方法主要用于了解地层的岩性和测量地层的孔隙度。密度测井与中子测井结合也可用来判别储集层空间中的流体性质。 核磁测井严格地说不是放射性测井方法,核磁测井利用氢核具有核磁矩在外磁场作用下的共振吸收特性,测量地层中的氢核的状态和数目,进而求得地层的孔隙度及孔隙结构,束缚水饱和度等参数。

第一章 自然伽马测井和自然伽马能谱测井 自然伽马测井测量地层中天然放射性矿物放出的伽马射线来了解地层的岩性等方面的特性。本章从五个方面来讨论:1.伽马射线的测量(自然伽马测井的物理基础); 2.岩石的放射性来源(自然伽马测井的地质基础); 3.井中自然伽马的测量; 4. 自然伽马测井资料的应用; 5.最后介绍自然伽马能谱测井的原理及其应用。 §1 伽马射线及其探测 1、 伽马射线及其性质 (1)伽马射线:处于激发态的原子核,回到基态时,放出伽马射线。伽马射线是一种能量很高,波长很短的电磁波。 γ+→X X A Z m A Z △E=h ν=h λ c 式中 h ν是伽马射线的能量,h 是普郎克常数,ν是频率,c 是光速,λ是波长。岩石地层中放出的伽马射线的能量范围为1kev~7Mev. (2)伽马射线与物质的相互作用 如前所述,伽马射线射入物质后主要与物质发生三种相互作用。 光电效应:伽马射线的全部能量转移给原子中的电子,使电子从原子中发射出来,伽马光子本身消失的现象,称为光电效应。 康普顿效应:入射的伽马光子与核外电子发生非弹性散射,光子的一部分能量转移给电子,使原子中的电子被反冲出来,而散射光子的能量和运动方向发生变化的现象。 电子对效应:当伽马光子的能量大于1.02Mev 时,光子与靶原子核的库仑场相互作用,光子转化为正负电子对的现象。 (3)伽马射线的探测 由上面的讨论可知,γ射线与物质相互作用的结果是, 原入射能量的伽马光子消失,把入射γ光子的全部能量或部分能量转移给带电粒子(电子)。也就是说,由于伽马射线的射入,在物质中产生了有运动能的带电粒子。电子通过物质时,使原子产生激发或电离,电子本身在运动过程中逐渐损失能量。如果电子的能量高,则在物质中穿行时,产生激发或电离的原子数目就多。利用上述伽马射线与物质相互作用的机制,我们就可以制作相应的伽马射线探测器。

随钻中子孔隙度测井响应特性数值模拟

第39卷第12期 地球科学 中国地质大学学报V o l .39 N o .12 2014年12月 E a r t hS c i e n c e J o u r n a l o fC h i n aU n i v e r s i t y o fG e o s c i e n c e s D e c. 2014 d o i :10.3799/d q k x .2014.174基金项目:国家重大油气专项(N o s .2011Z X 0520-008,2011Z X 05020-002);国家自然科学基金项目(N o .41374125). 作者简介:袁超(1987-),男,博士在读,主要从事核测井方法基础研究二核测井数据处理及应用.E -m a i l :v i p y u a n c h a o @163.c o m 随钻中子孔隙度测井响应特性数值模拟 袁 超1,李潮流1,周灿灿1,张 锋2 1.中国石油勘探开发研究院测井与遥感技术研究所,北京100083 2.中国石油大学地球科学与技术学院,山东青岛266555 摘要:随钻中子孔隙度测井在随钻地层评价中发挥重要作用,对其响应特性研究具有重要意义.利用蒙特卡罗方法建立随钻条件下地层模型,模拟研究随钻中子孔隙度测井响应特性.模拟结果表明:随钻和电缆测井相同条件下中子孔隙度响应变化趋势相同,随钻中子孔隙度曲线反映孔隙度灵敏程度高于电缆测井,但其测井响应受钻铤影响较大;探测深度与地层孔隙度有关,文中条件下探测深度和纵向分辨率分别为28c m 和19c m ;在水平井和大斜度井中,测量方位对中子孔隙度曲线影响较大;相对倾角α越小,中子孔隙度曲线过渡区域中点越接近地层界面;α小于60?时,中子孔隙度曲线受围岩影响可忽略.关键词:随钻测井;中子孔隙度;响应特性;数值模拟. 中图分类号:T E 132 文章编号:1000-2383(2014)12-1896-07 收稿日期:2014-03-04 N u m e r i c a l S i m u l a t i o no fR e s p o n s eC h a r a c t e r i s t i c o f N e u t r o nP o r o s i t y L o g g i n g W h i l eD r i l l i n g Y u a nC h a o 1,L i C h a o l i u 1,Z h o uC a n c a n 1,Z h a n g F e n g 2 1.R e s e a r c hD e p a r t m e n t o f W e l l -L o g g i n g a n dR e m o t eS e n s i n g T e c h n o l o g y ,R I P E D ,P e t r o C h i n a ,B e i j i n g 100083,C h i n a 2.S c h o o l o f G e o s c i e n c e s ,C h i n aU n i v e r s i t y o f P e t r o l e u m ,Q i n g d a o 266580,C h i n a A b s t r a c t :N e u t r o n p o r o s i t y l o g g i n g w h i l e d r i l l i n g (L WD )p l a y s a n i m p o r t a n t r o l e i n f o r m a t i o n e v a l u a t i o nu n d e rL WDe n v i r o n -m e n t ,s o i t h a s a g r e a t s i g n i f i c a n c e t o s t u d y t h e l o g g i n g r e s p o n s e c h a r a c t e r i s t i c .M o n t eC a r l om e t h o d i s e m p l o y e d t ob u i l d f o r -m a t i o nm o d e l i n g u n d e r L WDc o n d i t i o n s ,a n d t h e r e s p o n s e c h a r a c t e r i s t i c i s s i m u l a t e d .T h e r e s u l t s r e v e a l t h a t t h e c h a n g i n g t r e n d o f p o r o s i t y r e s p o n s e o f n e u t r o n l o g g i n g w h i l e d r i l l i n g i s s i m i l a r t o t h a t o fw i r e l i n e u n d e r t h e s a m e c o n d i t i o n s ,t h e s e n s i t i v i t y o f p o r o s i t y c u r v e i nL WD t o p o r o s i t y i s h i g h e r t h a nw i r e l i n e ,b u t t h e n e u t r o n p o r o s i t y l o g g i n g r e s p o n s e o f L WD i s a f f e c t e d s e v e r e -l y b y t h e d r i l l i n g c o l l a r .T h e d e p t ho f i n v e s t i g a t i o n i s r e l a t e d t o f o r m a t i o n p o r o s i t y ,a n d t h e d e p t ho f i n v e s t i g a t i o na n dv e r t i c a l r e s o l u t i o nu n d e r t h e c o n d i t i o n s i n t h i s p a p e r i s 28c ma n d19c m ,r e s p e c t i v e l y .I nh i g ha n g l e a n dh o r i z o n t a lw e l l s ,t h e e f f e c t o f m e a s u r e m e n t a z i m u t ho nn e u t r o n p o r o s i t y c u r v e i s s l i g h t .W h e n t h e r e l a t i v e d i p αi s l o w ,t h em i d p o i n t o f t r a n s i t i o n a r e a o f n e u -t r o n p o r o s i t y c u r v e i s c l o s e t o t h e b o u n d a r y s u r f a c e .I f αi s l e s s t h a n 60?,t h e e f f e c t o f t h e a d j a c e n t f o r m a t i o no n p o r o s i t y c u r v e c a nb e i g n o r e d .K e y w o r d s :l o g g i n g w h i l e d r i l l i n g ;n e u t r o n p o r o s i t y ;r e s p o n s e c h a r a c t e r i s t i c ;n u m e r i c a l s i m u l a t i o n . 近年来, 大斜度井和水平井不断增加,随钻测井技术发展迅速(秦旭英等,2003;邹德江等,2005;张辛耘等,2006),中子孔隙度测井是随钻过程中的必测项目,在地层评价中发挥至关重要的作用(洪有密,2007).T i t t m a n e t a l .(1966)在19世纪60年代提出利用基于贴井壁测量的超热中子测井仪确定地层孔隙度;由于利用单个探测器记录超热中子确定 地层孔隙度受井眼条件影响很大,D a v i s e ta l . (1981 )利用2个热中子探测器,通过不同位置处热中子计数比值获取地层孔隙度;W r a i g h t e ta l .(1989)利用斯伦贝谢的C D N 测井仪器实现联合中子孔隙度和地层密度进行地层评价;随后,H o l e n k a e t a l .(1995 )将中子孔隙度测井应用到随钻环境中,安装在钻铤上的测井仪器在转动过程中实现中子孔

第九章放射性测井

第九章放射性测井 放射性测井的核物理基础 1.解释下列名词: (1)元素的放射性,放射性元素,同位素; (2)基态,核反应,半衰期; (3)α、β、γ射线。 (4)康普顿散射: 2.天然放射性元素在衰变过程中,以三种形式辐射能量,即(1) 粒子,它们是He4的原子核,带电,穿透力(2)粒子,是原子核发射的电子,穿透力; (3) ,为波长极短的电磁波,系原子核从激发态进入低一级的激发态或基态时释放的光子能,穿透力。 3.原子核中的数目等于外围的数目,这数称为元素的。 4.原子序数相同而质量数不同的元素,它们的化学性质,但核性质,这样的元素称为,它们又分为和。 5.所有天然放射性核素的衰变过程如下式: 0t N N eλ- =。式中N o为t=0时的核子数。 λ为衰变常数。这样,核子半衰变过程如下式: 0t N N eλ- =。式中N0为t=0时的核子数。λ为衰变常数。这样,核子半衰期T和衰变常数(单位为)的关系为。 6.放射性强度单位有如下数种:(1)居里(ci)或贝可(Bq),(2)卢瑟福(Rd),(3)每吨微克镭,(4)API。其中,ci相当于任何放射性物质,每秒种产生次衰变的量,或ICi= Bq。这样,5Ci的钋一铍中子源应用次衰变;API伽马射线单位是标准刻度标准刻度井中放射性区的测井读数差的。这是目前伽马测井普遍采用的强度单位。 7.伽马射线的衰减按下述方程变化,即 0x B B eμ= =。式是B是Bo的射线穿过吸收系数(cm-1)为μ,厚度为x(cm)的物质后的伽马射线强度。可见,衰减的半值厚度应为。它应对应于为已知的伽马射线减了多少倍? 8.γ射线与物质相互作用,主要形式为效应,和效应。这些效应分别是在γ量子能量大约为,,条件下产生的。 9.光电效应是低能量的伽马射线放出全部能量给原子的一个。结果消失了,而对于已知能量的光子,元素的原了序数增大,吸收系数。对于由不同元素所组成的物理光电吸收系数将是的函数。 10.康普顿散射是中等能量的伽马射线与物质互相作用的过程。光子只是把部分能量传给原子中,使其从轨道逸出,光子发生能量且偏离。康普顿散射是的函数,与光电吸收相比,它随能量增加而更加缓慢。 11.“电子对”效应是在高能量伽马射线条件下,穿过层,并和核周围的相互作用。光子的能量形成并抛出一个和一个它们的动能等于光子的能量减去相当于两个电子静质量的能量(2×0.51IMeV)。因此,形成电子对的最小光子能量是MeV,经多次碰撞,使正电子静止并和电子一起湮没时,将放射出2个MeV的光子。 12.岩石的自然放射性是由于其中含有元素。已知的这类元素虽然较多,但自然界中见到的主要是三种,它们是、和。

测井方法原理

测井方法原理 一名词解释 地层因素:F=孔隙中100%含水时的地层电阻率;地层水电阻率 视电阻率:电阻率值既不可能等于某一岩层的真电阻率,,也不是电极周围各部分介质电阻率的平均值,而是在离电极装置一定距离范围内各介质电阻率综合影响的结果。 岩石体积物理模型:根据测井方法的探测特性和储集层的组成,按其物理性质的差异,把实际岩石简化为对应的性质均匀的几个部分,研究每一部分对测量结果的贡献,并把测量结果看成是各部分贡献的总和。 绝对渗透率:岩石孔隙中只有一种流体时测量的渗透率。 有效渗透率:当两种或两种以上的流体同时通过岩石时,对其中某一流体测得的渗透率。相对渗透率:岩石的有效渗透率与绝对渗透率之比值称为相对渗透率。 周波跳跃:在正常情况下,第一接收器R1和第二接收器R2应该被弹性振动的同一个波峰的前沿所触发。由于某种原因,造成声波的能量发生严重衰减。当首波衰减到只能触发接收器R1而不能触发接收器R2时,接收器R2便可能被第二个或者后续波峰所触发,于是造成时波差值显著增大。由于每跳越一个波峰,在时间上造成的误差正好是一个周期。故称之为周波跳跃。 标准测井:在一个油田或一个区域内,为了研究岩性变化、构造形态和大段油层组的划分等工作,常使用几种测井方法在全地区的各口井中,用相同的深度比例(1:500)及相同的横向比例,对全井段进行测井,这种组合测井叫标准测井。 减速长度:由快中子减速成热中子所经过的直线距离的平均值。 扩散长度:从产生热中子起到其被俘获吸收为止,热中子移动的距离。 热中子寿命:从热中子生成开始到它被俘获吸收为止所经过的平均时间叫热中子寿命。 含氢指数:单位体积的任何岩石或矿物中氢核数与同样体积的淡水中氢核数的比值。 统计起伏(放射性涨落):由于地层中放射性元素的衰变是随机的,因此,在一定时间间隔内衰变的原子核数,即放射出的伽马射线数,不可能完全相同。但从统计的角度来看,它基本上围绕着一个平均值在一定的范围内波动。 二、填空 1.根据勘探目的不同,通常分为石油测井、煤田测井、金属和非金属测井、水文测井、工程测井等几大类。 2.测井技术发展根据采集系统特点大致可以分为模拟测井、数字测井、数控测井、成像测井。 3.测井包括岩性测井(自然电位SP、自然伽马GR、井径测井CAL);孔隙度测井(声波、密度DEN、中子测井CNL);电阻率测井(普通视电阻率测井Ra、微电极系列测井ML、侧向测井LL、感应测井IL)。 4.整个测井工作可以分为两个阶段:资料录取阶段和资料解释阶段。 5.井内自然电位产生的原因:①地层水和泥浆含盐浓度不同而引起的扩散电动势和吸附电动势。②地层压力与泥浆柱压力不同而引起的过滤电动势。 6.电极系可以分为梯度电极系和电位电极系。 7.深三侧向电阻率测井主要反映原地层电阻率;浅三侧向电阻率测井主要反映侵入带的电阻率。 8.主电极的长度决定电流层的厚度,即主电极长度决定了分层能力。电极系直径小,泥浆层

测井原理的重点

第一章、双侧向测井 1、双侧向测井的基本原理 双侧向测井是一种聚焦的电阻率测井。为了使深浅侧向有足够的探测深度和浅侧向能较好地反映侵入带特性,这类仪除设计上使用了同时调整主电流与屏蔽电流的方法,用两对屏蔽电极实行双层屏蔽,增加电极长度和电极距。主电流受到上、下屏蔽电极流出的电流的排斥作用,使得测量电流线垂直于电极系,成为水平方向的层状电流射入地层,这就大大降低了井和围岩影响。可以同时进行深浅侧向的测量。目前聚焦测井主要包括:双侧向、微侧向及微球聚焦、邻近侧向等。是目前最流行的电阻率测井,与其它电阻率测井方法相比具有分层能力强、探测深度大等优点,适用于薄层发育地层、电阻率中、高的地层。 2、双侧向测井的作用 a、判断岩性、划分储层; b、划分油气层,油气层深侧向电阻率是邻近水层的1.5 倍以上; c、深侧向电阻率一般认为是原状地层电阻率,所以它可以确定地层的真电阻率。 d、进行地层对比。 e、计算储层的含油饱和度。 f、用浅侧向确定侵入带电阻率,计算侵入带的含油饱和度。 第二章、微侧向测井 1、微侧向测井基本原理 微侧向测井采用极板贴井壁测量。在极板上镶入一个主电极,三个监督电极与屏蔽电极与主电极呈环状分布,这样的设计使得主电流被聚焦成束状流入地层,增加了探测深度,减小了泥饼的影响。测出监督电极与无穷远电极之间的电位差,经过适当转换,就可以得到微侧向视电阻率曲线。 2、微侧向测井的应用、 a、确定冲洗带电阻率进而进行可动油、气分析和定量计算。 b、划分薄层 c、地层对比。 3、微球测井基本原理 微球型聚焦测井原理类似于微侧向测量原理,只是微球型聚焦的电极排列像球型聚焦。 4、微球测井的应用、 a、可探测过渡带电阻率,比微侧向探测深度大; b、划分薄层能力强于微侧向 第三章、电极电阻率测量基本原理 电极电阻率测井也称普通电阻率测井。在井内进行电阻率测井时,都设有供电线路,通过供电电极A供给电流I,通过供给电B供给电流-I,在井内建立电场,然后用测量电极进行电位测量。这个电位差反映了电场分布特点,从而反映了电阻率的变化。A、B、M、N 四个电极中的三个形成一个位置相对不变的体系,称为电极系。测量时将电极系放入井中,而另外一个电极(B 或N),则留在地面上,在提升过程中进行测量,同时在地面仪器的记录部分记录出沿井深的电位差变化曲线。这个电位差经过适当刻度后,变成量纲与电阻率相同的量,称为视电阻率。 1、普通电阻率测井 普通电阻率测井分梯度电极系和电位电极系两种。(1)梯度电极系国产小数控中的0.45

相关主题
文本预览
相关文档 最新文档