当前位置:文档之家› 生物膜法-废水好氧生物处理工艺-废水物化处理的原理与工艺-水汇总

生物膜法-废水好氧生物处理工艺-废水物化处理的原理与工艺-水汇总

生物膜法-废水好氧生物处理工艺-废水物化处理的原理与工艺-水汇总
生物膜法-废水好氧生物处理工艺-废水物化处理的原理与工艺-水汇总

第四章废水好氧生物处理工艺(2——生物膜法

第一节生物膜法的基本原理

生物膜法又称固定膜法,是与活性污泥法并列的一类废水好氧生物处理技术;是土壤自净过程的人工化和强化;与活性污泥法一样,生物膜法主要去除废水中溶解性的和胶体状的有机污染物,同时对废水中的氨氮还具有一定的硝化能力;

主要的生物膜法有:①生物滤池:其中又可分为普通生物滤池、高负荷生物滤池、塔式生物滤池等;

②生物转盘;③生物接触氧化法;④好氧生物流化床等。

一、生物膜的结构

1、生物膜的形成

生物膜的形成必须具有以下几个前提条件:①起支撑作用、供微生物附着生长的载体物质:在生物滤池中称为滤料;在接触氧化工艺中成为填料;在好氧生物流化床中成为载体;②供微生物生长所需的营养物质,即废水中的有机物、N、P以及其它营养物质;③作为接种的微生物。

(1 生物膜的形成:

含有营养物质和接种微生物的污水在填料的表面流动,一定时间后,微生物会附着在填料表面而增殖和生长,形成一层薄的生物膜。

(2 生物膜的成熟:

在生物膜上由细菌及其它各种微生物组成的生态系统以及生物膜对有机物的降解功能都达到了平衡和稳定。

生物膜从开始形成到成熟,一般需要30天左右(城市污水,20 C

2、生物膜的结构

生物膜的基本结构如图1所示。

图1 生物膜结构示意图

(1 生物膜的性质:

①高度亲水,存在着附着水层;

②微生物高度密集:各种细菌以及微型动物,这些微生物起着主要去除废水中的有机污染物的作用,形成了有机污染物——细菌——原生动物(后生动物的食物链。

(2 生物膜降解有机物的过程:

3、生物膜的更新与脱落

(1 厌氧膜的出现:

①生物膜厚度不断增加,氧气不能透入的内部深处将转变为厌氧状态;②成熟的生物膜一般都由厌氧膜和好氧膜组成;③好氧膜是有机物降解的主要场所,一般厚度为2mm。

(2 厌氧膜的加厚:

①厌氧的代谢产物增多,导致厌氧膜与好氧膜之间的平衡被破坏;②气态产物的不断逸出,减弱了生物膜在填料上的附着能力;③成为老化生物膜,其净化功能较差,且易于脱落。

(3 生物膜的更新:

①老化膜脱落,新生生物膜又会生长起来;②新生生物膜的净化功能较强。

(4 生物膜法的运行原则:

①减缓生物膜的老化进程;②控制厌氧膜的厚度;③加快好氧膜的更新;④尽量控制使生物膜不集中脱落。

二、生物膜处理工艺的特点

1、微生物方面的特征

(1 微生物种类多样化:

①相对安静稳定环境;② SRT相对较长;③丝状菌也可以大量生长,无污泥膨胀之虞;④线虫类、轮虫类等微型动物出现的频率较高;⑤藻类、甚至昆虫类也会出现;⑥生物膜上的生物:类型广泛、种属繁多、食物链长且复杂。

表1 生物膜和活性污泥中出现的微生物在类型、种属和数量的比较

微生物种类活性污泥生物膜法微生物种类活性污泥法生物膜法

细菌++++ ++++ 轮虫+ +++

真菌++ +++ 线虫+ ++

藻类- ++ 寡毛虫- ++

- +

鞭毛虫++ +++ 其它后生动

肉足虫++ +++ 昆虫类- ++

纤毛虫++++ ++++

(2 生物膜上微生物的食物链较长:

①动物性营养者所占比例较大,微型动物的存活率较高;②食物链长;③污泥产量少于活性污泥系统(仅为1/4左右。

(3 能够存活世代时间较长的微生物有利于硝化作用的进行。

2、在处理工艺方面的特征

(1 对水质、水量变动又较强的适应性;

(2 剩余污泥的沉降性能良好,易于固液分离; (3 能够处理低浓度污水;

(4 易于维护运行,运行费用少。

第二节生物滤池工艺

一、生物滤池的基本原理

生物滤池是在污水灌溉的实践基础上发展起来的人工生物处理法;首先于1893年在英国试验成功,从1900年开始应用于废水处理中;主要有以下几种形式:普通生物滤池、高负荷生物滤池、塔式生物滤池、活性生物滤池等。

1、基本结构

图2 生物滤池示意图

2、工艺流程

图3 生物滤池的基本流程

与活性污泥工艺的流程不同的是,在生物滤池中常采用出水回流,而基本不会采用污泥回流,因此从二沉池排出的污泥全部作为剩余污泥进入污泥处理流程进行进一步的处理。

3、生物滤池的工作原理:

含有污染物的废水从上而下从长有丰富生物膜的滤料的空隙间流过,与生物膜中的微生物充分接触,其中的有机污染物被微生物吸附并进一步降解,使得废水得以净化;主要的净化功能是依靠滤料表面的生物膜对废水中有机物的吸附氧化作用。

二、生物滤池的构造与组成

生物滤池一般主要由滤床(池体与滤料、布水装置和排水系统等三部分组成,下面将分别予以说明。

1、池体

在20世纪30、40年代以前,生物滤池的池体多为方形或矩形;在出现了旋转布水器之后,则大多数

初沉池生物滤池

池二沉池出水回流出水进水剩余污泥

的生物滤池均采用圆形池体,主要是便于运行;高负荷生物滤池通常是圆形;

池壁可有孔洞或不带孔洞的两种:有孔洞的池壁有利于滤料的内部通风,但在冬季易受低气温的影响;

一般要求池壁高于滤料0.5m;在寒冷地区,有时需要考虑防冻、采暖、或防蝇等措施。

2、滤料

生物滤池中的滤料是生物膜赖以生长的载体,其主要特性有:①大的表面积,有利于微生物的附着;

②能使废水以液膜状均匀分布于其表面;③有足够大的孔隙率,使脱落的生物膜能随水流到池底,同时保证良好的通风;④适合于生物膜的形成与粘附,且应该既不被微生物分解,又不抑制微生物的生长;

⑤有较好的机械强度,不易变形和破碎。

(1 普通生物滤池的滤料:

①一般为实心拳状滤料,如碎石、卵石、炉渣等;②工作层的滤料的粒径为

25~40mm,承托层滤料的粒径为70~100mm;③同一层滤料要尽量均匀,以提高孔隙率;④滤料的粒径愈小,比表面积就愈大,处理能力可以提高;但粒径过小,孔隙率降低,则滤料层易被生物膜堵塞;⑤一般当滤料的孔隙率在45%左右时,滤料的比表面积约为65~100m2/m3。

(2 高负荷生物滤池的滤料:

①滤料粒径较大,一般为40~100mm,其中工作层滤料的粒径为40~70mm,承托层则为70~100mm,孔隙率较高,可以防止堵塞和提高通风能力;②滤料常采用卵石、石英砂、花岗岩等,一般以表面光滑的卵石为好;③目前常采用塑料滤料:多用聚氯乙烯、聚苯乙烯、聚丙烯等制成;形状有波纹板式、斜管式和蜂窝式等,其特点有:质量轻、强度高、耐腐蚀、比表面积和孔隙率都较大。主要缺点:造价较高,初期投资较大。

表3 两种塑料滤料的性能型式孔径

(mm 比表面积

(m2/m3

孔隙率

(%

重量

(kg/m3

立体波纹板

30?65 198 >90 70 40?85 150 >93 60 50?100 113 >96 50

蜂窝式

19 201 >98 36~38

25 153 ≈99 26~28

32 122 ≈99 21~23

36 98 >99 20~22

(3 塔式生物滤池的滤料:

①多采用质轻、比表面积大和孔隙率高的人工合成滤料;②比表面积为

100~220 m2/m3,孔隙率一般大于94%。

3、布水装置

布水装置的目的是将废水均匀地喷洒在滤料上;主要有两种:固定式布水装置、旋转式布水装置;普通生物滤池多采用固定式布水装置;高负荷生物滤池和塔式生物滤池则常用旋转布水装置:

图7 固定式布水装置图8 旋转布水器

4、排水系统

排水系统处于滤床的底部,其作用是收集、排出处理后的废水和保证良好的通风;一般由渗水顶板、集水沟和排水渠所组成;渗水顶板用于支撑滤料,其排水孔的总面积应不小于滤池表面积的20%;渗水顶板的下底与池底之间的净空高度一般应在0.6m以上,以利通风,一般在出水区的四周池壁均匀布置进风孔。

三、影响生物滤池功能的主要因素

1、滤床的比表面积和孔隙率

生物膜是生物膜法的主体;滤料表面积愈大,生物膜的表面积也愈大,生物膜的量就愈多,净化功能就愈强;孔隙率大,则滤床不易堵塞,通风效果好,可为生物膜的好氧代谢提供足够的氧;滤床的比表面积和孔隙率愈大,扩大了传质的界面,促进了水流的紊动,有利于提高净化功能。

2、滤床的高度

滤床的不同高度,生物膜量、微生物种类、去除有机物的速度等方面都是不同的;滤床的上层,废水中的有机物浓度高,营养物质丰富,微生物繁殖速度快,生物膜量多且主要以细菌为主,有机污染物的去除速度高;随着滤床深度的增加,废水中的有机物量减少,生物膜量也减少,微生物从低级趋向高级,有机物去除速度降低;有机物的去除效果随滤床深度的增加而提高,但去除速率却随深度的增加而降低。

表4 滤床高度与处理效率之间的关系和滤床不同深度处的生物膜量

离滤床表面的深度

(m

污染物去除率(%生物

膜量

(kg/m3 丙烯晴异丙醇SCN-COD

(156mg/l (35.4mg/l

(18.0mg/l

(955mg/l

2 82.6 31 6 60 3.0

5 99.2 60 10 6

6 1.1

8.5 99.3 70 24 73 0.8

12 99.4 91 46 79 0.7

3、有机负荷与水力负荷

有机负荷-----kgBOD5/m3.d;

水力负荷:①水力表面负荷----m3/m2.d,或m/d;----滤速;②水力容积负荷----

m3/m3.d

在有机负荷较高时,生物膜的增长也会较快,可能会引起滤料堵塞,此时就需要调整水力负荷,当水力负荷增加时,可以提高水力冲刷力,维持生物膜的厚度,一般是通过出水回流来解决。

4、回流

对于高负荷生物滤池与塔式生物滤池,常采用回流。其优点:①不论原废水的流量如何波动,滤池可得到连续投配的废水,因而其工作较稳定;②可以冲刷去除老化生物膜,降低膜的厚度,并抑制滤池蝇的孳生;③均衡滤池负荷,提高滤池的效率;④可以稀释和降低有毒有害物质的浓度以及进水有机物浓度。

5、供氧

生物滤池一般时通过自然通风来保证供氧的;影响生物滤池自然通风的主要因素有:①池内温度与气温之差;②滤池高度;③滤料孔隙率及风力等;④滤池堵塞也会影响通风。

四、生物滤池与活性污泥法的比较

生物滤池早于活性污泥法;活性污泥法的发明之初是以生物滤池的替代工艺出现的;但生物滤池至今仍有大量应用。

表5 生物膜法与活性污泥法的比较

项目生物膜法活性污泥法

基建费低较低

运行费低较高

气候的影响较大较小

技术控制较易控制要求较高

灰蝇和臭味蝇多、味大无

最后出水负荷低时,硝化程度较

高,但悬浮物较高悬浮物较少,但硝化

程度不高

剩余污泥量少大

泡沫问题很少较多

五、生物滤池的设计计算

生物滤池的设计内容主要包括滤床容积、布水系统、排水系统等三个部分。

1、普通生物滤池

(1 主要设计参数

①工作层填料的粒径为25~40mm,厚度为1.3~1.8m;承托层填料的粒径为

70~100mm,厚度为0.2m。

②在正常气温条件下,处理城市废水时,表面水力负荷为1~3 m3/m2.d,BOD5容积负荷为

0.15~0.30kgBOD5/m3.d,BOD5的去除率一般为85~95%;

③池壁四周通风口的面积不应小于滤池表面积的1%;

④滤池数不应小于2座。

(2 计算公式

表6 生物滤池计算公式

设计内容计算公式参数意义及取值

滤料总体积

(V

V =

QS/L vBOD

V??滤料总体积,m3

Q??进水平均流量,m3/d

S??进水BOD5浓度,mg/l

L vBOD??容积负荷,一般取

0.15~0.3kgBOD/m3.d

滤床有效面积F = V/H F??滤床的有效面积,m2

(F H ??滤料高度,1.5~2.0m 表面水力负荷校核(q

q = Q/F

q ??表面水力负荷,应为1~3m 3

/m 2

.d 。

2、高负荷生物滤池

(1 主要设计参数①以碎石为滤料时,工作层滤料的粒径应为40~70mm ,厚度不大于1.8m ,承托层的粒径为70~100mm ,厚度为0.2m ;当以塑料为滤料时,滤床高度可达4m ;

②正常气温下,处理城市废水时,表面水力负荷为10~30 m 3/m 2

.d ,BOD 5容积负荷不大于

1.2kgBOD 5/m 3

.d ,单级滤池的BOD 5的去除率一般为75~85%;两级串联时,BOD 5的去除率一般为90~95%;

③进水BOD 5大于200mg/l 时,应采取回流措施;

④池壁四周通风口的面积不应小于滤池表面积的2%; ⑤滤池数不应小于2座。

(2 计算公式:

表7 高负荷生物滤池的计算公式

设计内容计算公式

参数意义及取值

滤池高度(H 以碎石为滤料时,H = 0.9~

2.0m 用塑料滤料时,H = 2~4m 滤料总体积

(V

V = QS/L vBOD V ??滤料总体积,m 3

Q ??废水量,m 3

/d

S ??未经回流稀释时的BOD 5浓度,mg/l L vBOD ??容积负荷,一般不大于1.2kgBOD/m 3

.d

滤池面积(F 与直径(D F = V/H

π

n F D 4=

n ??滤池个数F ??滤池面积,m 2

D ??滤池直径,m 回流比(R

R = Fq/Q - 1

R ??回流比

q ??表面水力负荷,通常在10~30m 3

/m 2

.d 之间

(3 高负荷生物滤池的流程

(4 出水水质与滤池高度和水力负荷之间的关系

高负荷单级生物滤池的出水水质与滤池高度以及水力负荷之间存在如下的关系: n

q H

K i

e

e

C C ?-=

式中:e C ——出水BOD 5浓度,mg/l ; i C ——进水浓度;mg/l ;

H ——滤池高度,m ;

q ——水力负荷,m 3/m 2

.d;

K ——常数,min -1

; n ——常数。

3、塔式生物滤池

(1 主要设计参数:

①一般常用塑料滤料,滤池总高度为8~12m ,也可更高;每层滤料的厚度不应大

于2.5m ,径高比为1:6~8;

②容积负荷为1.0~3.0kgBOD 5/m 3.d ,表面水力负荷为80~200 m 3/m 2

.d ,BOD 5的去除率一般为65~85%; ③自然通风时,塔滤四周通风口的面积不应小于滤池横截面积的7.5~10%;机械通风时,风机容量一般按气水比为100~150:1来设计;

④塔滤数不应小于2座。

(2 主要计算公式:

表8 塔式生物滤池的计算公式

设计内容计算公式

参数意义及取值

滤池高度(H H ??滤料高度,常取8~12m

滤料总体积

(V

V = QS/L vBOD V ??滤料总体积,m 3

Q ??废水量,m 3

/d

S ??未经回流稀释时的BOD 5浓度,mg/l L vBOD ??容积负荷,一般不大于

1~3kgBOD/m 3

.d 塔滤面积(F 与直径(D F = V/H π

n F

D 4=

n ??滤池个数F ??滤池总面积,m 2

D ??滤池直径,m

水力负荷校核

q=Q/F

q ??表面水力负荷,应在86~200m 3

/m 2

.d 之间, 否则应考虑回流

表2 普通生物滤池、高负荷生物滤池和塔式生物滤池的比较

普通生物滤池高负荷生物滤池塔式生物滤池表面负荷(m 3

/m 2

.d 0.9~3.7 9~36(包括回流 16~97(不包括回

流 BOD 5负荷(kg/m 3.d

0.11~0.37

0.37~1.084

高达4.8

深度(m 1.8~3.0 0.9~2.4 8~12或更高回流比无1~4 回流比较大

滤料多用碎石等多用塑料滤料塑料滤料

比表面积(m2/m3 43~65 43~65 82~115 孔隙率(% 45~60 45~60 93~95 蝇多很少很少

生物膜脱落情况间歇连续连续运行要求简单需要一定技术需要一定技术投配时间的间歇不超过5min 一般连续投配连续投配剩余污泥黑色、高度氧化棕色、未充分氧化棕色、未充分氧化

处理出水高度硝化,

BOD5≤20mg/l 未充分硝化,

BOD5≥30mg/l

未充分硝化,

BOD5≥30mg/l

BOD5去除率(% 85~95 75~85 65~85

六、生物滤池的运行与管理

1、生物滤池的挂膜阶段

2、生物滤池的日常运行与管理

①日常水质检测;②能量消耗统计;③机电设备养护与维修

3、常见问题及对策

①滤池积水;②臭味;③灰蝇;④表面结冰;⑤蜗牛,苔藓;⑥旋转布水器;⑦生物膜的异常脱落;等。

第二节生物转盘

一、生物转盘的净化机理与构成

1、净化原理:

污水处理工作原理

工程的调试、运行与管理 第一节菌种驯育与启动 一、厌氧培菌与启动 1.选取菌种(污泥 用于厌氧发酵罐启动的厌氧活性污泥叫接种物。沼气发酵过程是多种类微生物共同作用的结果,要注意接种物的产甲烷活性,因为产酸菌繁殖快,而产甲烷菌繁殖很慢,如果接种物中产甲烷菌(活性污泥数量太少,常常因为在启动过程中酸化与甲烷化速度的过分不平衡而导致启动的失败。 在确定系统运行温度后,要选择同类工程的活性污泥做接种物(菌种。是否是相同的菌种,或富集菌种的多少,决定系统启动速度的快慢。由于各地具体条件差异,监测手段不同,启动时的操作方式也不会是一个模式,只能是类似。 条件具备的地方,处理同类废水,接种同类污泥,以保持厌氧微生物生态环境的一致。当地不具备这样的条件,需要在驯化上下工夫,启动的时间要长些,速度会慢些。厌氧发酵罐排出的活性污泥和污水沟底正在发泡的活性污泥,都可作为选取接种物的对象。接种量约占发酵容积的1/10~1/3,接种量越多,启动速度 越快,在此基础上逐渐富集。 2.菌种的驯化与富集 菌种的驯化富集可在新建的发酵罐内进行,也可在其他的容器内进行。取来的厌氧活性污泥(菌种越多越好,再加入适量的处理原料(数量小于菌种数量的10%份额。菌种和原料的混合液在装置内作好保温,再逐渐升温(如果是中温或高温运行,要逐渐升温到35~54℃,并调节在6.8~7.2范围。每隔1~2天加入新料液一次,数量仍为装置内料液的510%份额,以此继续下去。驯

化富集过程,是为厌氧发酵创造必要的条件,首要条件是适宜的温度和,每次加入新料液的多少也是由驯化富集起来的菌种液的高低所确定。 3.沼气发酵启动 沼气发酵的启动是指从投入接种物和原料开始,经过驯化和培养,使发酵罐中厌氧活性污泥的数量和活性逐步增加,直至发酵罐的运行达到设计要求的全过程。这个过程所经历的时间成为启动期。沼气发酵罐的启动一般需要较长时间,若能取得大量活性污泥作为接种物,在启动开始时投入发酵罐中,可缩短启动期。 把富集的菌种投入到发酵罐内,对于较小容器的发酵罐,菌种量约占总容积的 1/3;较大容积的发酵罐,富集的菌种可以适当小于容积的1/3。然后按正常运行状态封闭发酵罐,接通全系统,使富集的菌种逐步升温到系统的运行温度。中温运行的系统,升温到35℃±1℃;高温运行的系统,升温到54℃±1℃。目前,对菌种升温速度持有不同观点,一种观点是采用间断升温办法,每次升温2~3℃,接着稳定2~3天,然后重复进行,直至升温至35℃或54℃。另一种观点是主张快速升温,每小时升温1℃。 在启动运行时,要装备监测手段,特别是对食品工业废水,要求达到排放标准。简单的做法是控制好发酵料液的温度和在最佳范围之内。有条件应以监视挥发酸含量代替监控,还应监测排出液的含量、去除率及沼气发酵罐的 消化负荷。启动运行阶段去除率要适当放宽,以满足最佳要求。 无论是哪种类型的发酵装置,其启动方式都是将接种物和首批料液投入发酵罐后,停止进料若干天。在料液处于静态下,使接种污泥暂时聚集和生长,或者附着于填料表面。待大部分有机物被分解去除时,即产气高峰过后,料液的在7.0 以上,或产气中甲烷含量在50%以上或去除率达到80%左右时,再进行连续投料或半连续投料运行。 每次进料要在预处理阶段升温到高出系统运行温度3~5℃,并使新料液调节到6.5~7范围内,每次进料量是发酵罐内料液的510%,进料量的多少,由发酵罐内的料液

废水厌氧生物处理与废水好氧生物处理的原理,特点及适用条件.

废水厌氧生物处理与废水好氧生物处理的原理,特点及适用条件 好氧生物处理 好氧生物处理是在有游离氧(分子氧)存在的条件下,好氧微生物降解有机物,使其稳定、无害化的处理方法。微生物利用废水中存在的有机污染物(以溶解状与胶体状的为主),作为营养源进行好氧代谢。 过程:有机物被微生物摄取后,通过代谢活动,约有三分之一被分解、稳定,并提供其生理活动所需的能量;约有三分之二被转化,合成为新的原生质(细胞质),即进行微生物自身生长繁殖。后者就是废水生物处理中的活性污泥或生物膜的增长部分,通常称其剩余活性污泥或生物膜,又称生物污泥。在废水生物处理过程中,生物污泥经固—液分离后,需进行进一步处理和处置。 优点:好氧生物处理的反应速度较快,所需的反应时间较短,故处理构筑物容积较小。且处理过程中散发的臭气较少。所以,目前对中、低浓度的有机废水,或者说BOD浓度小于500mg/L的有机废水,基本上采用好氧生物处理法。 在废水处理工程中,好氧生物处理法有活性污泥法和生物膜法两大类。 厌氧生物处理是在没有游离氧存在的条件下,兼性细菌与厌氧细菌降解和稳定有机物的生物处理方法。在厌氧生物处理过程中,复杂的有机化合物被降解、转化为简单的化合物,同时释放能量。在这个过程中,有机物的转化分为三部分进行:部分转化为CH4,这是一种可燃气体,可回收利用;还有部分被分解为 CO2、H20、NH3、H2S等无机物,并为细胞合成提供能量;少量有机物被转化、合成为新的原生质的组成部分。由于仅少量有机物用于合成,故相对于好氧生物处理法,其污泥增长率小得多。 废水厌氧生物处理 废水厌氧生物处理过程不需另加氧源,故运行费用低。此外,它还具有剩余污泥量少,可回收能量(CH4)等优点。其主要缺点是反应速度较慢,反应时间较长,处理构筑物容积大等。但通过对新型构筑物的研究开发,其容积可缩小。此外,为维持较高的反应速度,需维持较高的反应温度,就要消耗能源。 对于有机污泥和高浓度有机废水(一般BOD5≥2 000mg/L)可采用厌氧生物处理法。

废水好氧生物处理工艺生物膜法水处理教案

第四章废水好氧生物处理工艺(2)——生物膜法 第一节生物膜法的基本原理 生物膜法又称固定膜法,是与活性污泥法并列的一类废水好氧生物处理技术;是土壤自净过程的人工化和强化;与活性污泥法一样,生物膜法主要去除废水中溶解性的和胶体状的有机污染物,同时对废水中的氨氮还具有一定的硝化能力; 主要的生物膜法有:①生物滤池:其中又可分为普通生物滤池、高负荷生物滤池、塔式生物滤池等; ②生物转盘;③生物接触氧化法;④好氧生物流化床等。 一、生物膜的结构 1、生物膜的形成 生物膜的形成必须具有以下几个前提条件:①起支撑作用、供微生物附着生长的载体物质:在生物滤池中称为滤料;在接触氧化工艺中成为填料;在好氧生物流化床中成为载体;②供微生物生长所需的营养物质,即废水中的有机物、N、P以及其它营养物质;③作为接种的微生物。 (1) 生物膜的形成: 含有营养物质和接种微生物的污水在填料的表面流动,一定时间后,微生物会附着在填料表面而增殖和生长,形成一层薄的生物膜。 (2) 生物膜的成熟: 在生物膜上由细菌及其它各种微生物组成的生态系统以及生物膜对有机物的降解功能都达到了平衡和稳定。 生物膜从开始形成到成熟,一般需要30天左右(城市污水,20 C) 2、生物膜的结构 生物膜的基本结构如图1所示。 图1 生物膜结构示意图

(1) 生物膜的性质: ①高度亲水,存在着附着水层; ②微生物高度密集:各种细菌以及微型动物,这些微生物起着主要去除废水中的有机污染物的作用,形成了有机污染物——细菌——原生动物(后生动物)的食物链。 (2) 生物膜降解有机物的过程: 3、生物膜的更新与脱落 (1) 厌氧膜的出现: ①生物膜厚度不断增加,氧气不能透入的内部深处将转变为厌氧状态;②成熟的生物膜一般都由厌氧膜和好氧膜组成;③好氧膜是有机物降解的主要场所,一般厚度为2mm。 (2) 厌氧膜的加厚: ①厌氧的代谢产物增多,导致厌氧膜与好氧膜之间的平衡被破坏;②气态产物的不断逸出,减弱了生物膜在填料上的附着能力;③成为老化生物膜,其净化功能较差,且易于脱落。 (3) 生物膜的更新: ①老化膜脱落,新生生物膜又会生长起来;②新生生物膜的净化功能较强。 (4) 生物膜法的运行原则: ①减缓生物膜的老化进程;②控制厌氧膜的厚度;③加快好氧膜的更新;④尽量控制使生物膜不集中脱落。 二、生物膜处理工艺的特点 1、微生物方面的特征 (1) 微生物种类多样化: ①相对安静稳定环境;②SRT相对较长;③丝状菌也可以大量生长,无污泥膨胀之虞;④线虫类、轮虫类等微型动物出现的频率较高;⑤藻类、甚至昆虫类也会出现;⑥生物膜上的生物:类型广泛、种属繁多、食物链长且复杂。 (2) 生物膜上微生物的食物链较长: ①动物性营养者所占比例较大,微型动物的存活率较高;②食物链长;③污泥产量少于活性污泥系统(仅为1/4左右)。

水解酸化、好氧生物处理工艺1

水解-好氧生物处理工艺 目录 第一节水解(酸化)工艺与厌氧工艺 (3) 一、基本原理 (3) 二、水解-好氧工艺的开发 (4) 三、水解(酸化)工艺与厌氧发酵的区别 (5) 第三节水解-好氧生物处理工艺特点 (7) 1、水解池与厌氧UASB工艺启动方式不同 (7) 2、水解池可取代初沉池 (8) 3、较好的抗有机负荷冲击能力 (9) 4、水解过程可改变污水中有机物形态及性质,有利于后续好氧处理 (9) 5、在低温条件下仍有较好的去除效果 (10) 6、有利于好氧后处理 (10) 7、可以同时达到对剩余污泥的稳定 (11) 第四节水解-好氧生物处理工艺的机理 (11) 一、有机物形态对水解去除率的影响 (11) 二、有机物降解途径 (12) 三、水解池动态特性分析 (13) 四、难降解有机物的降解 (14) 第五节水解工艺对后续好氧工艺的影响 (19) 1、有机物含量显著减少 (19) 2、B/C比值和溶解性有机物比例显著增加 (20) 3、BOD5降解动力学 (20) 4、污泥和COD去除平衡 (21) 第六节水解工艺的污泥处理 (22) 一、传统污泥处理的目的和手段 (23) 二、污泥有机物的降解表 (24)

三、污泥脱水性能及处理 (24) 第七节水解池的启动和运行 (26) 一、水解池的启动方式 (26) 二、配水系统 (28) 三、排泥 (31) 四、负荷变化对水解池处理效果的影响 (32) 第八节水解工艺的进一步开发和应用 (33) 一、芳香类化合物的去除 (34) 二、奈的去除 (34) 三、卤代烃的去除 (34) 四、难生物降解工业废水处理的实际应用 (34) 五、高悬浮物含量废水的水解处理工艺 (35) 六、水解工艺的适用范围及要求 (36) 第九节水解-好氧工艺技术经济分析 (38) 一、厌氧处理应用的经济分析 (38) 二、水解-好氧系统设计参数 (39) 第十节水解-好氧生物处理工艺设计指南 (41) 一、预处理设施 (41) 二、水解池的详细设计要求 (41) 三、反应器的配水系统 (42) 四、管道设计 (45) 五、出水收集设备 (45) 六、排泥设备 (46)

废水生物处理基本原理-厌氧生物处理原理

废水生物处理基本原理 ——废水厌氧生物处理原理 废水厌氧生物处理在早期又被称为厌氧消化、厌氧发酵;是指在厌氧条件下由多种(厌氧或兼性)微生物的共同作用下,使有机物分解并产生CH 4和CO 2的过程。 1.1.1 厌氧生物处理中的基本生物过程——阶段性理论 1、两阶段理论: 20世纪30~60年代,被普遍接受的是“两阶段理论” 第一阶段:发酵阶段,又称产酸阶段或酸性发酵阶段;主要功能是水解和酸化,主要产物是脂肪酸、醇类、CO 2和H 2等;主要参与反应的微生物统称为发酵细菌或产酸细菌;这些微生物的特点是:1)生长速率快,2)对环境条件的适应性(温度、pH 等)强。 图1厌氧反应的两阶段理论图示 内源呼 吸产物 碱性发酵阶段 酸性发酵阶 段 水解胞外酶 胞内酶产甲烷菌 胞内酶产酸菌 不溶性有机物 可溶性有机物 细菌细 胞 脂肪酸、醇 类、H 2、CO 2 其它产物 细菌细胞 CO 2、CH 4

第二阶段:产甲烷阶段,又称碱性发酵阶段;是指产甲烷菌利用前一阶段的产物,并将其转化为CH4和CO2;主要参与反应的微生物被统称为产甲烷菌(Methane producing bacteria);产甲烷细菌的主要特点是:1)生长速率慢,世代时间长;2)对环境条件(温度、pH、抑制物等)非常敏感,要求苛刻。 1.1.2 三阶段理论 对厌氧微生物学的深入研究后,发现将厌氧消化过程简单地划分为上述两个过程,不能真实反映厌氧反应过程的本质; 厌氧微生物学的研究表明,产甲烷菌是一类十分特别的古细菌(Archea),除了在分类学和其特殊的学报结构外,其最主要的特点是:产甲烷细菌只能利用一些简单有机物作为基质,其中主要是一些简单的一碳物质如甲酸、甲醇、甲基胺类以及H2/CO2等,两碳物质中只有乙酸,而不能利用其它含两碳或以上的脂肪酸和甲醇以外的醇类;

污水处理的方法与原理

污水处理的方法与原理Last revision on 21 December 2020

污水处理的方法与原理一、污水处理概述 污水处理 (sewage treatment或wastewater treatment):为使污水达到排水某一水体或再次使用的水质要求,并对其进行净化的过程。 按处理程度的不同,废水处理系统可分为一级处理、二级处理和深度处理(三级处理)。 一级处理只除去废水中的悬浮物,以物理方法为主,处理后的废水一般还不能达到排放标准。对于二级处理系统而言,一级处理是预处理 二级处理最常用的是生物处理法,它能大幅度地除去废水中呈胶体和溶解状态的有机物,使废水符合排放标准。但经过二级处理的水中还存留一定量的悬浮物、生物不能分解的溶解性有机物、溶解性无机物和氮磷等藻类增值营养物,并含有病毒和细菌。因而不能满足要求较高的排放标准,如处理后排入流量较小、稀释能力较差的河流就可能引起污染,也不能直接用作自来水、工业用水和地下水的补给水源。 三级处理是进一步去除二级处理未能去除的污染物,如磷、氮及生物难以降解的有机污染物、无机污染物、病原体等。废水的三级处理是在二级处理的基础上,进一步采用化学法(化学氧化、化学沉淀等)、物理化学法(吸附、离子交换、膜分离技术等)以除去某些特定污染物的一种“深度处理”方法。显然,废水的三级处理耗资巨大,但能充分利用水资源。 二、污水的分类 按污水来源分类,污水一般分为和。生产污水包括工业污水、以及医疗污水等,而生活污水就是日常生活产生的污水,是指各种形式的无机物和的复杂混合物,包括:①漂浮和悬浮的大小固体颗粒;②胶状和凝胶状扩散物;③纯溶液。 按污水的质性来分,水的污染有两类:一类是;另一类是人为污染。当前对水体危害较大的是人为污染。可根据污染杂质的不同而主要分为、物理性污染和三大类。污染物主要有:⑴未经处理而排放的;⑵未经处理而排放的生活污水;⑶大量使用化肥、农药、除草剂的农田污水;⑷堆放在河边的工业废弃物和生活垃圾;⑸水土流失;⑹矿山污水。 目前城市生活污水排放已是中国城市水的主要污染源,城市生活污水处理是当前和今后和城市水环境保护工作的重中之重,这就要求我们要把处理生活污水设施的建设作为的重要内容来抓,而且是急不可待的事情。 三、污水处理的步骤 四、污水处理的方法及原理 一、物理法 物理法的的去除对象是水中不溶性的悬浮物质.使用的处理设备和方法主要有格栅、筛网、沉淀(沉砂)、过滤、微滤、气浮、离心(旋流)分离等. 1. 格栅(筛网) 它是由一组平行排列的金属栅条制成的框架,斜置成60。~70。于废水流经的渠道内,当废水流过时,呈块状的污染物质即被栅条截留而从废水中去除,它是一种对后续处理构筑物或废水提升泵站有保护作用的设备,筛网截留亦属于这一性质的设备。

工厂污水处理工艺流程

A/O工艺——原理、特点及影响因素 1.基本原理 A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。 A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,提高污水的可生化性,提高氧的效率;在缺氧段异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH 4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化

为HO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。 2.主要工艺特点 1. 缺氧池在前,污水中的有机碳被反硝化菌所 利用,可减轻其后好氧池的有机负荷,反硝 化反应产生的减度可以补偿好氧池中进行 硝化反应对碱度的需求。 2. 好氧在缺氧池之后,可以使反硝化残留的有 机污染物得到进一步去除,提高出水水质。 3. BOD5的去除率较高可达90~95%以上,但脱 氮除磷效果稍差,脱氮效率70~80%,除磷 只有20~30%。尽管如此,由于A/O工艺比 较简单,也有其突出的特点,目前仍是比较 普遍采用的工艺。该工艺还可以将缺氧池与 好氧池合建,中间隔以档板,降低工程造价, 所以这种形式有利于对现有推流式曝气池 的改造。 3. A/O工艺的影响因素

生活污水处理设备原理及工艺

生活污水处理设备原理 及工艺 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

生活污水处理设备介绍及原理 生活污水处理设备工艺介绍及生活污水处理设备选型 一.污水性质: 农村综合生活污水。 二.污水水量 根据设计要求本方案每套污水总流量按120 m3/D设计,通过的一体化污水处理系统(设备)流量按5m3/H设计处理运行。 三.污水水质及排放标准 四.设计处理工艺 工艺流程选择 生活污水的溶解性CODcr与BOD5均较高, BOD:COD的比值>,宜采用生化处理工艺。生化处理工艺具有以下优点:处理效率高;运行费用低;产

泥量少,不产生二次污染。生化处理工艺主要分为活性污泥法和生物法,而生物法由于不会产生污泥膨胀,并且无需污泥回流而使流程及操作比较简便,并且有机物负荷较高,因此反应池池容较小而节省土建费用等优点,目前比较常用且非常成熟的生物法工艺当属生物接触氧化法,因此本工程决定采用生物接触氧化法。本法工艺成熟,流程简单,管理方便,整个污水处理站除过滤器和设备操作间外,其余主体设备均设于地下,设备覆土并种植草坪,因此工程不额外占地,不影响地表绿化。本系统使用寿命长,主要设备可自动控制运行,管理人员少,是目前普遍应用的生活污水治理方法,极适用于生活区使用。 工艺流程图如下:

其流程为:污水经格栅后进入水解酸化池(调节池)进行水质水量调节出水经提升泵提升至厌氧生物池(兼氧池A),出水进入一级接触氧化池(O)生化后再进入二级接触氧化池(O)继续生化后,进入沉淀池进行固液分离后经加入消毒剂后进入接触消毒池,经一定的接触时间后消毒出水即可达标排放。 工艺设计说明 根据本项目特点,本方案设计采用生活污水处理上最为成熟的厌(兼)氧+接触氧化+消毒的处理工艺。 污水首先经过管道汇合进入本污水处理系统,经格栅去除大颗粒状和纤维状杂质。污水按系统内特定结构逐次流经水解酸化池、接触氧化池、沉淀池、接触消毒后达到业主要求的排放标准。设计范围自污水入口至系统达标排放口。 主要工艺介绍 (1)格栅 格栅的主要作用是将污水中的大块污物拦截,以免其对后续处理单元的机泵或工艺管线造成损害。 (2)水解酸化池(调节池) 为了使管渠和构筑物正常工作,不受废水高峰流量或浓度变化的影响,需在废水处理设施之前设置调节池。调节池的作用是均质和均量,一般还可考虑兼有隔油、沉淀、混合、加药、中和和预酸化等功能,对水量和水质的调节,调节污水pH值、水温,还可用作事故排水。 (3)生物接触氧化(地埋式一体化污水处理设备)

废水好氧生物处理工艺其它工艺水处理教案

第五章 废水好氧生物处理工艺(3)——其它工艺 第一节 氧化沟工艺 氧化沟也称氧化渠,又称循环曝气池,是活性污泥法的一种变形;是20世纪50年代荷兰的Pasveer 首先设计的;最初一般用于日处理水量在5000m 3以下的城市污水。 一、氧化沟的工作原理与特征 1、氧化沟的工艺流程 图1 氧化沟及氧化沟系统平面图 图2 以氧化沟为主的废水处理流程 2、氧化沟的特征 ① 池体狭长,(可达数十米甚至上百米);池深度较浅,一般在2米左右; ② 曝气装置多采用表面机械曝气器,竖轴、横轴曝气器都可以; ③ 进、出水装置简单; ??构造上的特征 ④ 氧化沟呈完全混合?推流式;沟内的混合液呈推流式快速流动(0.4~0.5m/s ),由于流速高,原废水很快就与沟内混合液相混合,因此氧化沟又是完全混合的; ⑤ BOD 负荷低,类似于活性污泥法的延时曝气法,处理出水水质良好; ⑥ 对水温、水质和水量的变动有较强的适应性; ⑦ 污泥产率低,剩余污泥产量少; ⑧ 污泥龄长,可达15~30d ,为传统活性污泥法的3~6倍; ⑨ 世代时间很长的细菌如硝化细菌能在反应器内得以生存,从而使氧化沟具有脱氮的功能。 二、氧化沟的几种典型的构造型式 原废水 格栅 氧 化 沟 出水

目前主要的氧化沟形式有:Carrousel氧化沟、Orbal氧化沟、交替工作式 氧化沟、曝气—沉淀一体化氧化沟等四种。 1、Carrousel 式氧化沟(图3) Carrousel 式氧化沟又称平行多渠形氧化沟;是60年代末荷兰DHV公司开 创的。采用竖轴低速表面曝气器;水深可达4~4.5m,沟内流速达0.3~0.4m/s; 混合液在沟内每5~20min循环一次;沟内混合液总量是入流废水量的30~50倍; BOD5去除率可达95%以上,脱氮率可达90%,除磷效率可达50%;应用广泛,最大规模为650000m3/d;在国内主要有昆明兰花沟污水处理厂、上海龙华肉联厂、桂林市东区废水厂等。 2、Orbal氧化沟(图4) Orbal氧化沟又称同心圆型氧化沟,其主要特点如下: ①圆形或椭圆形的沟渠,能更好地利用水流惯性,可节省能耗; ②多沟串联可减少水流短路现象; ③最外层第一沟的容积为总容积的60~70%,其中的DO接近于 零,为反硝化和磷的释放创造了条件; ④第二、三沟的容积分别为总容积的20~30%和10%,而DO则 分别为1和2mg/l; ⑤这种沟渠间的DO浓度差,有利于提高充氧效率; Orbal氧化沟在国内的主要工程实例有:①抚顺石油二厂废水处理站(28,800m3/d);②北京燕山石化公司新建废水处理厂(60000m3/d);③成都市天彭镇污水处理厂。 3、交替工作氧化沟 交替工作氧化沟由丹麦Kruger公司所开发的,有二沟和三沟式两种形式;其主要特点是其中的每一条沟均交替用做曝气池和沉淀池,而无需二沉池和污泥回流装置;但其中的曝气转刷的利用率较低,D型二沟只有40%,三沟式则提高到了58%; 图5:VR型氧化沟图6:D型氧化沟

污水处理中的微生物原理

污水处理中的微生物原理 编辑说明:此章在很多书上都有涉及,但深层次讲解的少,编写此章的目标是,使入门者真正理解各类微生物特点和会用生物相分析系统环境,使本章作为中控室、化验室观测生物相的必要知识。编写时要注意多涉猎专业书籍,结合微生物学和一些论文,力图达到不仅知道结论,还要深究原因。 我们在第三章已经说过: 生物处理方法的核心(或者说城镇污水处理厂的运行核心)是,使用设施、设备,控制曝气量、水量、污泥量、营养物质等,创造出适宜微生物存活和生长的环境,并有意的引导微生物的生长向我们需要去除的污染物性质方向发展,最终达到污水处理的目的。所以,凡是采用了微生物处理方法的城镇污水处理厂,微生物原理是污水处理的核心知识,一个好的运营师,可以通过微生物的状态和变化就可判断外部环境、内部环境的各种变化,并提前采取措施将出现的问题苗头消灭。 在活性污泥法中,微生物生活于活性污泥中,在生物膜法中,微生物生活于生物膜中,存在地方虽不一样,但生物种群是基本一致的。另:微生物种群非常多,按世代期(可理解为生长周期)分,从几个小时长一代到几十天长一代不等,活性污泥是由人为控制泥龄的,一般在10~25天之间,不会超过30天,所以种群是人为遴选优化过的,具有去除污染物针对性更强,但难以降解的污染物去除效果不好的特点;而生物膜法的污泥变化是由生物自行生长脱落决定的,所以各种世代期不同的种群在理论上均有存在,具有去除污染物更彻底,但处理量有限制的特点。 在微生物学领域里,习惯将动胶菌属形成的细菌团块称为菌胶团。在水处理工程领域内,则将所有具有荚膜或粘液或明胶质的絮凝性细菌互相絮凝聚集成的菌胶团块也称为菌胶团,这是广义的菌胶团。如上所述,菌胶团是活性污泥(绒粒)的结构和功能的中心,表现在数量上占绝对优势(丝状膨胀的活性污泥除外),是活性污泥的基本组分。它的作用表现在: 1、有很强的生物吸附能力和氧化分解有机物的能力。一旦菌胶团受到各种因素的影响和破坏,则对有机物去除率明显下降,甚至无去除能力。 2、菌胶团对有机物的吸附和分解,为原生动物和微型后生动物提供了良好的生存环境,例如去除毒物、提供食料、溶解氧升高。 3、为原生动物、微型后生动物提供附着场所。 4、具有指示作用:通过菌胶团的颜色、透明度、数量、颗粒大小及结构的松紧程度可衡量好氧活性污泥的性能。例如新生菌胶团颜色浅、无色透明、结构紧密,则说明菌胶团生命力旺盛,吸附和氧化能力强,即再生能力强。老化的菌胶团,颜色深,结构松散,活性不强,吸附和氧化能力差。 第一节活性污泥中的微生物(要求化验室强记,中控室熟悉)在污水处理中,活性污泥中的微生物形成了一个类似于社会的环境,各个种

污水处理工艺脱氮除磷基本原理

污水处理生物脱氮除磷基本原理 国外从六十年代开始系统地进行了脱氮除磷的物理处理方法研究,结果认为物理法的缺点是耗药量大、污泥多、运行费用高等。因此,城市污水处理厂一般不推荐采用。从七十年代以来,国外开始研究并逐步采用活性污泥法生物脱氮除磷。我国从八十年代开始研究生物脱氮除磷技术,在八十年代后期逐步 实现工业化流程。目前,常用的生物脱氮除磷工艺有A2/O法、SBR法、氧化沟法等。 ?生物脱氮原理 生物脱氮是利用自然界氮的循环原理,采用人工方法予以控制,首先,污水中的含氮有机物转化成氨氮,而后在好氧条件下,由硝化菌左右变成硝酸盐氮,这阶段称为好氧硝化。随后在缺氧条件下,由反硝化菌作用,并有外加碳源提供能量,使硝酸盐氮变成氮气逸出,这阶段称为缺氧反硝化。整个生物脱氮过程就是氮的分解还原反应,反应能量从有机物中获取。在硝化和反硝化过程中,影响其脱氮效率的因素是温度、溶解氧、PH值以及碳源,生物脱氮系统中,硝化菌增长速度较缓慢,所以,要有足够的污泥泥龄。反硝化菌的生长主要是在缺氧条件下进行,并且要用充裕的碳源提供能量,才可促使反硝化作用顺利进行。 由此可见,生物脱氮系统中硝化与反硝化反应需要具备如下条件: 硝化阶段:足够的的溶解氧,DO值在2mg/L以上,合适的温度,最好在20℃,不能低于10℃,,足够长的污泥泥龄,合适的PH条件。 反硝化阶段:硝酸盐的存在,缺氧条件DO值在0.2mg/L左右,充足碳源(能源),合适的PH条件。 生物脱氮过程如图5—1所示。 反硝化细菌 +有机物(氨化作用)(硝化作用)(反硝化作用)

?生物除磷原理 磷常以磷酸盐(H 2PO 4 -、HPO 4 2-和H 2 PO 4 3-)、聚磷酸盐和有机磷的形式存在于废水中,生物除 磷就是利用聚磷菌,在厌氧状态释放磷,在好氧状态从外部摄取磷,并将其以聚合形态储藏在体内,形成高磷污泥,排出系统,达到从废水中除磷的效果。 生物除磷主要是通过排出剩余污泥而去除磷的,因此,剩余污泥多少将对除磷效果产生影响,一般污泥龄短的系统产生的剩余污泥量较多,可以取得较高的除磷效果。有报道称,当泥龄为30d时,除磷率为40%,泥龄为17d时,除磷率为50%,而当泥龄降至5d时,除磷率达到87%。 大量的试验观测资料已经完全证实,再说横无除磷工艺中,经过厌氧释放磷酸盐的活性污泥,在好氧状态下有很强的吸磷能力,也就是说,磷的厌氧释放是好氧吸磷和除磷的前提,但并非所有磷的厌氧释放都能增强污泥的好氧吸磷,磷的厌氧释放可以分为两部分:有效释放和无效释放,有效释放是指磷被释放的同时,有机物被吸收到细胞内,并在细胞内储存,即磷的释放是有机物吸收转化这一耗能过程的偶联过程。无效释放则不伴随有机物的吸收和储存,内源损耗,PH变化,毒物作用引起的磷的释放均属无效释放。 在除磷系统的厌氧区中,含聚磷菌的会留污泥与污水混合后,在初始阶段出现磷的有效释放,随着时间的延长,污水中的易降解有机物被耗完以后,虽然吸收和储存有机物的过程基本上已经停止,但微生物为了维持基础生命活动,仍将不断分解聚磷,并把分解产物(磷)释放出来,虽然此时释磷总量不断提高,但单位释磷量所产生吸磷能力随无效释放量的加大而降低。一般来说,污水污泥混合液经过2小时厌氧后,磷的释放已经甚微,在有效释放过程中,磷的释放量与有机物的转化量之间存在着良好的相关性,磷的厌氧释放可使污泥的好氧吸磷能力大大提高,每厌氧释放1mgP,在好氧条件下可吸收2.0~2.24mgP,厌氧时间加长,无效释放逐渐增加,平均厌氧释放1mgP,所产生的好氧吸磷能力降至1mgP以下,甚至达到0.5mgP。因此,生物除磷并非厌氧时间越长越好,同时在运行管理中要尽量避免PH的冲击,否则除磷能

污水处理各种原理和技术总结

污水处理各种原理与技术总结 1、什么是生物污水处理法? ◆生物处理是利用微生物来吸咐、分解、氧化污水中的有机物,把不稳定的有机物降解为稳定无害的物质,从而使污水得到净化。现代的生物处理法,按作用微生物的不同,可分好氧氧化和厌氧还原两大类。前者广泛用于处理城市污水和有机性工业废水。好氧氧化应用较广包含着很多艺种工艺和构筑物。生物膜法(包含生物过滤池、生物转盘)、生物接触氧化等多种工艺和构筑物。活性污泥法和生物膜法都是人工生物处理方法。此外还有农田和池塘的天然生物处理法,即灌溉田和生物塘。生物处理成本低廉,因此是目前应用最广泛的污水处理方法。 2、什么是废水处理量或BOD5去除总量和处理质量? ◆污水处理量或BOD5去除总量:每日进入污水厂处理的总污水流量(以m3/d计),可作为污水厂处理能力的一个指标。每日去除BOD5的总量亦可作为污水厂处理能力的指标。去除BOD5总量等于处理流量与进出水BOD5差值的乘积,以kg/d或t/d为单位。 ◆处理质量:二级污水处理厂以出厂的BOD5与SS值作为处理质量指标。按新制订的污水处理厂出水排放标准,二级污水处理厂出水BOD5、SS均小于30mg/L。处理质量也可用去除率来衡量。进水浓

度减出水浓度除以进水浓度即为去除率。氨氮、TP出水值或去除率也应用于处理质量指标。 3、什么是pH值及其指示意义? ◆pH表示污水的酸碱程度。它是水中氢离子浓度倒数的对数值,其围为0~14,pH值等于7,则水呈中性,小于7呈酸性,数值越小,其酸性越强,大于7呈碱性,数值越大,其碱性越强。污水中pH值大小对管道、水泵、闸阀和污水处理构筑物有一定的影响。以生活污水为主的污水处理厂的pH值,通常为7.2~7.8。过高或过低的pH值,均可表明有工业废水的进入。过低的值会腐蚀管道、泵体并可能产生危害。例如污水中的硫化物会在酸性条件下,生成H2S 气体。高浓度时使操作工作头痛、流涕、窒息甚至死亡。为此发现pH降低必须加强监测,寻找污染源,采取对策。同时,生化处理的pH允许围是6~10,过高或过低都可影响或破坏生物处理。 4、什么是总固体(TS)? ◆是指水样在100℃温度下,在水浴锅上蒸发至干所余留的总固体数量。它是污水中溶解性固体和非溶解性固体的总和。它可反映出污水中固体的总浓度。通过进出水固体的分析可反映出污水处理构筑物对去除总固体的效果。 5、什么是悬浮固体(SS)?

第二章 好氧生物处理(原理与工艺)

异氧微生物 第二章 好氧生物处理(原理与工艺) 2. 1基本概念 2. 1。1好氧生物处理的基本生物过程 所谓“好氧”:是指这类生物必须在有分子态氧气(O 2)的存在下,才能进行正常的生理生化反应,主要包括大部分微生物、动物以及我们人类; 所谓“厌氧”:是能在无分子态氧存在的条件下,能进行正常的生理生化反应的生物,如厌氧细菌、酵母菌等。 好氧生物处理过程的生化反应方程式: ● 分解反应(又称氧化反应、异化代谢、分解代谢)(占1/3) CHONS + O 2 CO 2 + H 2O + NH 3 + SO 42- +?+能量 (有机物的组成元素) ● 合成反应(也称合成代谢、同化作用)(占2/3) ● C 、H 、O 、N 、 + 能量 C 5H 7NO 2 ● 内源呼吸(也称细胞物质的自身氧化)(endogenous respiration ) C 5H 7NO 2 + O 2 CO 2 + H 2O + NH 3 +?+能量 在正常情况下,各类微生物细胞物质的成分是相对稳定的,一般可用下列实验式来表示: 细菌: C 5H 7NO 2; 真菌: C 16H 17NO 6; 藻类: C 5H 8NO 2;原生动物: C 7H 14NO 3 分解与合成的相互关系: 1) 二者不可分,而是相互依赖的; a . 分解过程为合成提供能量和前物,而合成则给分解提供物质基础; b .分解过程是一个产能过程,合成过程则是一个耗能过程。 2)对有机物的去除,二者都有重要贡献; 3)合成量的大小,对于后续污泥的处理有直接影响(污泥的处理费用一般占整个污水处理厂的40~50%)。 不同形式的有机物被生物降解的历程也不同: 一方面: ● 结构简单、小分子、可溶性物质,直接进入细胞壁; ● 结构复杂、大分子、胶体状或颗粒状的物质,则首先被微生物吸附,随后在胞外酶的作 用下被水解液化成小分子有机物,再进入细胞内。 另一方面:有机物的化学结构不同,其降解过程也会不同: 2. 1。2影响好氧生物处理的主要因素 1)溶解氧(DO ): 约1~2mg/l 2)水温:是重要因素之一, a . 在一定范围内,随着温度的升高,生化反应的速率加快,增殖速率也加快; b . 细胞的组成物如蛋白质、核酸等对温度很敏感,温度突升或降并超过一定限 度时,会有不可逆的破坏; 最适宜温度 15~30?C ; >40?C 或< 10?C 后,会有不利影响。 3)营养物质: 细胞组成中,C 、H 、O 、N 约占90~97% 其余3~10%为无机元素,主要的是P 。 生活污水一般不需再投加营养物质; 而某些工业废水则需要,一般对于好氧生物处理工艺,应按BOD : N : P = 100 : 5 : 1 投加N 和P 。 其它无机营养元素:K 、Mg 、Ca 、S 、Na 等; 微量元素: Fe 、Cu 、Mn 、Mo 、Si 、硼等; 4)pH 值: 一般好氧微生物的最适宜pH 在6.5~8.5之间; 微生物 异氧微生物

污水处理各工艺原理及特点

污水处理——活性污泥法各种工艺总结1、缺氧——好氧(A1/O) 当仅需要脱氮时,宜采用A1/O 法,当污水经预处理和一级处理后,首先进入缺氧池中,利用氨化菌将污水中的有机氮转化为NH3—N,与原污水中的NH3—N一并进入好氧池,在好氧池中,除与常规活性污泥法一样对含碳有机物进行氧化外,在事宜的条件下,利用亚硝化菌及硝化菌,将污水中的NH3?N硝化生成—N ,为了 达到污水脱氮的目的,好氧池中硝化混合液通过内循环回流到缺氧池,利用源污水中的有机碳作为电子供体进行反硝化将—N 还原成N2。缺氧池设在好样池之前,当水中碱度不足时,由于反硝化可以增加碱度,因此可以补偿硝化过程中对碱度的消耗。 污水缺氧池好氧池沉淀池出水 回流污泥剩余污泥 图1 A1/O 脱氮生物处理工艺图 1.1 基本原理 污水在好氧条件下是含氮有机物被细菌分解为氨,然后在好氧自养型亚硝化细菌的作用下进一步转化为亚硝酸盐,再经好氧自养型硝化细菌作用转化为硝酸盐,至此完成硝化反应; 在缺氧条件下,兼性异养细菌利用或部分利用污水中的有机碳源为电子供体,以硝酸盐替代分子氧作电子受体,进行无氧呼吸,分解有机质,同时,将硝酸盐中氮还原成气态氮,至此完成了反硝化反应。A1/O工艺不但能取得比较满意的脱氮效果,而且通过上述缺氧——好氧循环操作,同样可取的高的COD和BOD的去除率。 1.2 工艺特点 (1)A1/O 工艺同时去除有机物和氮,流程简单,构筑物少,只有一个污泥回流系统和混合液回流系统,节省基建费用。 (2)反硝化缺氧池一般无需外加有机碳源,降低了运行费用。 (3)因为好氧池在缺氧池后,可使反硝化残留的有机物得到进一步去除,提高出水水质。

污水处理各种原理与技术总结

. 污水处理各种原理与技术总结 1、什么是生物污水处理法? ◆生物处理是利用微生物来吸咐、分解、氧化污水中的有机物,把不稳定的有机物降解为稳定无害的物质,从而使污水得到净化。现代的生物处理法,按作用微生物的不同,可分好氧氧化和厌氧还原两大类。前者广泛用于处理城市污水和有机性工业废水。好氧氧化应用较广包含着很多艺种工艺和构筑物。生物膜法(包含生物过滤池、生物转盘)、生物接触氧化等多种工艺和构筑物。活性污泥法和生物膜法都是人工生物处理方法。此外还有农田和池塘的天然生物处理法,即灌溉田和生物塘。生物处理成本低廉,因此是目前应用最广泛的污水处理方法。 2、什么是废水处理量或BOD去除总量和处理质量?5◆污水处理量或BOD去除总量:每日进入污水厂处理的总污水5流量(以m/d计),可作为污水厂处理能力的一个指标。每日去除3BOD的总量亦可作为污水厂处理能力的指标。去除BOD总量等于55处理流量与进出水BOD差值的乘积,以kg/d或t/d为单位。5◆处理质量:二级污水处理厂以出厂的BOD与SS值作为处理质5量指标。按新制订的污水处理厂出水排放标准,二级污水处理厂出水BOD、SS均小于30mg/L。处理质量也可用去除率来衡量。进水浓5专业资料word

出水值或去除率TP度减出水浓度除以进水浓度即为去除率。氨氮、也应用于处理质量指标。 值及其指示意义?、什么是pH3表示污水的酸碱程度。它是水中氢离子浓度倒数的对数值,◆pH呈酸性,数值,则水呈中性,小于7,pH值等于7其范围为0~14呈碱性,数值越大,其碱性越强。污水中越小,其酸性越强,大于7值大小对管道、水泵、闸阀和污水处理构筑物有一定的影响。以pH。过高或过低7.2~7.8生活污水为主的污水处理厂的pH值,通常为值,均可表明有工业废水的进入。过低的值会腐蚀管道、泵体pH的SH并可能产生危害。例如污水中的硫化物会在酸性条件下,生成2气体。高浓度时使操作工作头痛、流涕、窒息甚至死亡。为此发现生化处理的降低必须加强监测,寻找污染源,采取对策。同时,pH 6~10,过高或过低都可影响或破坏生物处理。pH允许范围是 )?、什么是总固体(4TS℃温度下,在水浴锅上蒸发至干所余留的总固100◆是指水样在它可反映出它是污水中溶解性固体和非溶解性固体的总和。体数量。通过进出水固体的分析可反映出污水处理构筑污水中固体的总浓度。物对去除总固体的效果。 )?SS 5 、什么是悬浮固体(专业资料word .

小区污水处理的工作原理与工艺流程

小区污水处理的工作原理与工艺流程 一、概述 小区污水系统的处理能力,各国并无统一的限定。前苏联曾建议单个构筑物的处理能力不宜超过1400m3/d,美国则把小厂的处理能力限定在3785m3/d的范围内。根据我国情况,建议把等于或小于4000m3/d的处理厂定义为小区污水处理厂。 小区污水不同于城市污水(常包括部分工业废水),属于生活污水范畴。其水质水量特征可概括为:水质水量变化较大,污染物浓度偏低,即比城市污水低,污水可生化性良好,处理难度小。 小区污水的处理工艺依据小区污水排入水体的功能不同而异,常用处理方法有:化粪池、一级处理(初次沉淀池)、生物二级处理及二级处理后再经消毒回用等。由于小区污水处理水量较小,管理水平不高,所以,在工艺设计时尽可能选用无污泥或少污泥的处理工艺,以防止因污泥处理不善造成二次污染。目前,较为常用的处理工艺有: ①污水→调节池→初次沉淀池→生物接触氧化池→二沉池→出水,生物接触氧化是应用最广泛的方法,主要优点是停留时间短、易挂膜,尤其适合设备化,埋地建设倍受环保公司及用户青睐,但由于维修管理及设备防腐等方面的问题,近年来应用受到限制。但如果建成地下钢筋混凝土形式,设置人员通道以便维修,此种地下建设方式在小区水处理中具有较大市场,但这种方式一般处理规模较小,每天排放污水量小于几百吨的小区较为理想。对上千吨的小区污水处理,推荐采用地面建设方式,生物处理部分可采用接触氧化,也可采用SBR或其改进型CASS工艺,曝气方式建议采用低噪音的风机或水下曝气机。 ②污水→调节池→混凝沉淀→过滤→出水,对处理程度要求不高,且水量较小时,可采用此工艺,具有占地面积小,异味小,管理简单等优点。另外,在好氧生物处理之前加上酸化水解,有利于降低能耗,提高系统的总去除率。生活小区通常有较大的绿地面积,如果把污水处理后回用于浇灌绿地、道路、冲洗汽车,应在上述处理出水后加上消毒或其它补充措施。 二、厂设计原则 1、处理出水要求和处理程度,一般来说,不同小区对出水的要求差异较大。应根据我国《地面环境质量标准》(GB3838—88)和《污水综合排放标准》(GB8978—96)的有关规定和当地环保部门的要求确定处理程度,以确保出水水质。如果出水采用土地处理法处理,则按土地处理法的要求计算。 2、污水处理设施的设计和建设必须结合小区的整体规划和建筑特点,即外观设计上要与小区建筑环境相协调,以求美观。 3、在污水处理工艺上力求简单实用,以方便管理。 4、在高程布置上应尽量采用立体布局,充分利用地下空间。平面布置上要紧凑,以节省用地。 5、污水处理厂位置应尽可能位于小区下风向,与其它建筑物有一定的距离,以减少对环境的影响。 6、设备化,定型化,模块化,施工安装方便,运行简易,设备性能稳定,适合分期建设。 7、处理程度高,污泥产量少,并尽可能采用节能处理技术。 8、处理构筑物对水力负荷和有机物负荷的适应范围较大,使系统有较好的

污水处理基本方法

污水处理基本方法 废物处理是用物理、化学或生物方法,或几种方法配合使用以去除废水中的有害物质,按照水质状况及处理后出水的去向确定其处理程度,废水处理一般可分为一级、二级和三级处理。 一级处理采用物理处理方法,即用格栅、筛网、沉沙池、沉淀池、隔油池等构筑物,去除废水中的固体悬浮物、浮油,初步调整pH值,减轻废水的腐化程度。废水经一级处理后,一般达不到排放标准(BOD去除率仅25-40%)。故通常为预处理阶段,以减轻后续处理工序的负荷和提高处理效果。 二级处理是采用生物处理方法及某些化学方法来去除废水中的可降解有机物和部分胶体污染物。经过二级处理后,废水中BOD的去除率可达80-90%,即BOD合量可低于30mg/L。经过二级处理后的水,一般可达到农灌标准和废水排放标准,故二级处理是废水处理的主体。 但经过二级处理的水中还存留一定量的悬浮物、生物不能分解的溶解性有机物、溶解性无机物和氮磷等藻类增值营养物,并含有病毒和细菌。因而不能满足要求较高的排放标准,如处理后排入流量较小、稀释能力较差的河流就可能引起污染,也不能直接用作自来水、工业用水和地下水的补给水源。 三级处理是进一步去除二级处理未能去除的污染物,如磷、氮及生物难以降解的有机污染物、无机污染物、病原体等。废水的三级处理是在二级处理的基础上,进一步采用化学法(化学氧化、化学沉淀等)、物理化学法(吸附、离子交换、膜分离技术等)以除去某些特定污染物的一种“深度处理”方法。显然,废水的三级处理耗资巨大,但能充分利用水资源。 其中废水的生物处理法是基于微生物通过酶的作用将复杂的有机物转化为简单的物质,把有毒的物质转化为无毒的物质的方法。根据在处理过程中起作用的微生物对氧气的不同要求,生物处理可分为好气(氧)生物处理和厌气(氧)生物处理两种。好气生物处理是在有氧气的情况下,藉好气细茵的作用来进行的。细菌通过自身的生命活动——氧化、还原、合成等过程,把一部分被吸收的有机物氧化成简单的无机物(CO2、H2O、NO3-、PO43-等)获得生长和活动所需能量,而把另一部分有机物转化为生物所需的营养物质,使自身生长繁殖。厌气生物处理是在无氧气的情况下,藉厌氧微生物的作用来进行。厌氧细菌在把有机物降解的同时,需从CO2、NO3-、PO43-等中取得氧元素以维持自身对氧元素的物质需要,因而其降解产物为CH4、H2S、NH3等。用生物法处理废水,需首先对废水中的污染物质的可生物分解性能进行分析。主要有可生物分解性、可生物处理的条件、废水中对微生物活性有

相关主题
文本预览
相关文档 最新文档