当前位置:文档之家› 简易波形发生器的设计

简易波形发生器的设计

简易波形发生器的设计
简易波形发生器的设计

目录

第一章单片机开发板 (1)

1.1 开发板制作 (1)

1.1.1 89S52单片机简介 (1)

1.1.2 开发板介绍 (2)

1.1.3 89S52的实验程序举例 (3)

1.2开发板焊接与应用 (4)

1.2.1开发板的焊接 (4)

1.2.2开发板的应用 (5)

第二章函数信号发生器 (7)

2.1电路设计 (7)

2.1.1电路原理介绍 (7)

2.1.2 DAC0832的工作方式 (9)

2.2 波形发生器电路图与程序 (10)

2.2.1应用电路图 (10)

2.2.2实验程序 (11)

2.2.3 调试结果 (15)

第三章参观体会 (16)

第四章实习体会 (17)

参考文献 (18)

第一章单片机开发板

1.1 开发板制作

1.1.1 89S52单片机简介

图1.1 89s52 引脚图

如果按功能划分,它由8个部件组成,即微处理器(CPU)、数据存储器(RAM)、程序存储器(ROM/EP ROM)、I/O口(P0口、P1口、P2口、P3口)、串行口、定时器/计数器、中断系统及特殊功能寄存器(SF R)的集中控制方式。

各功能部件的介绍:

1)数据存储器(RAM):片内为128个字节单元,片外最多可扩展至64K字节。

2)程序存储器(ROM/EPROM):ROM为4K,片外最多可扩展至64K。

3)中断系统:具有5个中断源,2级中断优先权。

4)定时器/计数器:2个16位的定时器/计数器,具有四种工作方式。

5)串行口:1个全双工的串行口,具有四种工作方式。

6)特殊功能寄存器(SFR)共有21个,用于对片内各功能模块进行管理、监控、监视。

7)微处理器:为8位CPU,且内含一个1位CPU(位处理器),不仅可处理字节数据,还可以进行位变量的处理。

8)四个8位双向并行的I/O端口,每个端口都包括一个锁存器、一个输出驱动器和一个输入缓冲器。这四个端口的功能不完全相同。

A、P0口既可作一般I/O端口使用,又可作地址/数据总线使用;

B、P1口是一个准双向并行口,作通用并行I/O口使用;

C、 P2口除了可作为通用I/O使用外,还可在CPU访问外部存储器时作高八位地址线使用;

D、P3口是一个多功能口除具有准双向I/O功能外,还具有第二功能。

控制引脚介绍:

1)电源:单片机使用的是5V电源,其中正极接40引脚,负极(地)接20引脚。

2)时钟引脚XTAL1、XTAL2时钟引脚外接晶体与片内反相放大器构成了振荡器,它提供单片机的时钟控制信号。时钟引脚也可外接晶体振荡器。

振蒎电路:单片机是一种时序电路,必须提供脉冲信号才能正常工作,在单片机内部已集成了振荡器,

使用晶体振荡器

3)RST:当振荡器运行时,在此引脚外加上两个机器周期的高电平将使单片机复位(RST)。我们在此引脚与VCC之间连接一个约8.2千欧的下拉电阻,与引脚之间连接一个约10微法的电容,以保证可靠复位。在单片机正常工作时,此引脚应为≤0。5V低电平。

4)ALE:当访问单片机外部存储器时ALE(地址锁存允许)输出脉冲的负跳沿用于16位地址的底8位的锁存信号。即使不访问外部锁存器,ALE端仍有正脉冲信号输出,此频率约为时钟振荡器的1/6。但是每当访问外部数据存储器时,在两个机器周期中ALE只出现一次,即丢失一个ALE脉冲。因此,严格来说,用户不能用ALE做时钟源或定时。ALE端可以驱动8个TTL负载

5)/PSEN(29脚):此脚的输出是单片机访问外部程序存储器的读选通信号。在由外部程序存储器取指令(或常数)期间,每个机器周期PSEN两次有效。但在此期间,每当访问外部数据存储器时,这两次有效的/PSEN信号不出现。/PSEN可以驱动(吸收或者输出电平)8个LSTTL负载。

6)/EA/VPP(31脚):当EA端保持高电平时,单片机访问内部存储器,但在PC值超过0FFFH时,讲自动转向执行外部存储器内的程序。当/EA保持低电平时,则只访问外部程序存储器,不管是否有内部存储器。

1.1.2 开发板介绍

本次的生产实习的第一个任务是89S52单片机开发板的设计与焊接。在以往我们的单片机原理课上我们主要学习了51系列的单片机的原理与功能应用,89S52尚未涉及,这次有机会可以利用S52进行开发与设计。

图1.2 生产单片机开发板89S52实际图

上述图片就是在实际工作中工厂所开发与应用的成品。外部扩展口,LED电子显示灯,等外部扩展设备以及多芯片都是S52所具有的特性。有别于51芯片,S52有自身的独特性。使用89S52单片机,可进行51单片机的学习实验以及实际项目的开发;ISP下载线编程,方便灵活,免除购置编程器的费用;典型实用电路,16个功能模块。模块间各自独立,接口均由排针引出,使用插线可将模块间任意组合,开发和实验各种项目,真正的自由组合,绝非那些只能做固定实验的实验板;丰富的实验程序,全部的C语言源代码,几乎到每句非常详细的注释,便于学习和理解。实验程序中还包括几乎接近实用产品设计的实验:产品计数器、倒计时器、数字电压表、摇骰机、交通路口拍照系统、工厂自动生产线、温度采集记录器;由具有十余年实际产品设计经验的工程师亲自编写的教程,贴近实用,通俗易懂;全部采用优质元器件,性能可靠,整体美观实用。

S52开发板的模块特点:双路电源模块:提供全板各模块电源,专为A/D和D/A单元模块提供一路稳

定的参考电源;单片机核心系统模块:实验板的核心,全部引脚均由双排插针引出,便于引脚的复用;LED 指示灯模块:8位LED高亮指示灯,可做跑灯、信号提示等实验;蜂鸣器、继电器控制模块:可作报警、大负载的开关控制实验;按键输入模块:4位独立按键,可作按键输入实验;光藕隔离输入输出模块:可做霍尔脉冲计数、直流电机等实验;数码管显示模块:4位共阳极数码管,可做各种数码管显示实验;锁存器模块:便于系统的扩展实验;模拟信号调理模块:电压输入、温度传感器输入信号的调理,可做为A /D的前级输入和理解运算放大器的应用原理;A/D转换模块:采用8路输入的8位并行A/D芯片ADC0809,可做相应的A/D实验;D/A转换模块:采用8位并行D/A芯片DAC0832,可做相应的D/A实验;UART模块:可做与PC机的各种通讯实验;液晶显示接口模块:可做段式液晶0804以及字符液晶1602实验;存储器模块:采用I2C总线的AT24C02,可做I2C和有关的存储实验;实时时钟模块:采用飞利浦的PCF8563,可做相应实时时钟的实验;红外遥控模块:可做红外遥控器解码实验。

1.1.3 89S52的实验程序举例

S52可以实现多种的实验程序,其中包括LED指示灯实验:5种跑灯实验,掌握单片机I/O口作为输出的设计方法;按键输入实验:2种按键实验,掌握单片机I/O口作为输入的设计方法;蜂鸣器、继电器实验:蜂鸣器、继电器控制实验各1种,掌握报警控制和大功率器件控制原理;数码管实验:3种动态扫描实验,学习数码管的使用及动态扫描显示控制方法;计数中断实验:学习霍尔元件及光耦的工作原理和使用、中断概念以及计数器的设计实验;定时器实验:2种实验,学习定时器原理及加深中断概念的理解,倒计时器的设计实验;通讯实验:3种不同的实验(查询、中断、协议),掌握串行通讯的原理和编程的方法;段式液晶实验:2种实验,掌握段式液晶的原理、使用及编程方法;A/D实验:2种实验,学习和掌握A/D原理、统一编址概念及A/D转换计算方法;数字电压表实验:利用A/D转换器和段式液晶设计接近实用的数字电压表;温度传感器实验:学习传感器的原理和使用以及信号调理方法、运算放大器的应用;字符液晶实验:学习和掌握字符型液晶显示器的原理、编程与使用;存储器实验:学习I2C总线原理和掌握E2PROM存储器24CXX的编程与使用方法;实时时钟实验:学习实时时钟的应用原理以及掌握PCF8563编程与使用的方法;D/A实验:2种实验,学习和掌握D/A原理以及D/A转换计算方法;锁存器实验:学习和掌握锁存器原理,模拟摇骰机的设计;红外遥控实验:学习红外遥控的编码原理,掌握对红外遥控器的解码方法。在本次实习中,我们主要掌握并利用发光二极管的LED亮灯实验程序。

在S52开发板上的8个LED二极管显示灯可以实现多种多样的程序效果,以下为可实现的程序范例(流水灯程序) :

#include //头文件

#define uchar unsigned char

#define uint unsigned int

void delay(uint); //声明延时函数

void main(void)

{

uint i;

uchar temp;

while(1)

{

temp=0x01; //给初值,第一个灯灭

for(i=0;i<8;i++) //8个流水灯逐个闪动

{

P1=~temp; //将temp取反再赋值给P1口

delay(100); //调用延时函数

temp<<=1; //流水灯左移

}

temp=0x7F; //给初值,第一个灯亮。

for(i=0;i<8;i++) //8个流水灯依次反向全部点亮

{

P1=temp; //将temp赋给P1

delay(100); //调用延时函数

temp>>=1; //流水灯右移

}

}

}

void delay(uint t) //定义延时函数

{

register uint bt;

for(;t;t--)

for(bt=0;bt<255;bt++);

}

1.2开发板焊接与应用

1.2.1开发板的焊接

由于本次的开发板电路已经给出,所以只需要按照元件的各自位置的插槽进行放置即可,但要求根据开发板画出电路的PROTEL电子原理图。

图1.3 89S52实习用开发电路图

本次实习已不是第一次进行焊接练习,单片机的开发板焊接已经比较熟练。单片机的电路焊接应注意以下事项:注意电解电容、发光二极管、蜂鸣器的正负极性不能接反、三者均是长的管脚接正极、短的管脚接负极,如接反轻则烧毁元气件,重则发生轻微爆炸;三极管9015的E、B、C、注意接法,板子上面有相应的图形形状,按照那个图形焊接;焊接元气件的过程之中焊接时间应在2-4秒。焊接时间不宜过长,否则不仅会烧毁元气件、而且易使焊点容易脆裂;电阻焊接过程中注意相应的阻值对应,不要焊错。否则影响相应的电流大小;排阻焊接过程之中、RP1、RP2、RP3、有公共端应该接VCC、其余管脚为相应的独立端、排阻焊接过程之中用万用表测量各排阻的阻值、对照说明书焊接相应的排阻;ISP插槽应该注意方向。缺口对应板子的外面、如果接反下载线将不能接好;数码管的焊接应该是有小数点的一侧在下面、接反影响数码管的显示;发光二极管要注意正负极性,长端为正极,短端为负极。在焊接时也一定要注意焊接元件的顺序,基本上秉承着方便性原则,先焊接大部件,在焊接小部件,焊接元件管脚多时(双排40脚排针)要注意焊接工艺,尤其注意的是在焊接芯片插槽时切不可把芯片连到插槽上一同焊接,因为焊接时过热的温度会烧坏芯片,一定要把芯片插槽焊接完毕之后,再把芯片插到插槽中。

1.2.2开发板的应用

焊接完之后的S52开发版图如下:

图1.4 89S52开发板焊接实际图

上述的89S52开发板有很多的应用。本次的实习中只是简单的应用了8个发光二极管,其它的例如外部扩展接口,8位编码开关等都没有进行实际的测试,所以以后在自己有兴趣时都可以进行实际的运用,例

如扩展外部液晶显示屏等。由于89S52在第一节介绍原理时已介绍其应用,这里就不再赘述。

第二章函数信号发生器

2.1电路设计

2.1.1电路原理介绍

本次的任务是利用先前已焊接的89S52开发板进行外部连接扩展的自主开发电路。其具体功能就是利用89S52上的芯片烧制程序后扩展到外部电路以实现方波,锯齿波,正弦波的输出。这里由于涉及到了数模转换和D/A转换器的概念,所以首先介绍一下。

DAC0832是双列直插式8位D/A转换器。能完成数字量输入到模拟量(电流)输出的转换。图1-1和图1-2分别为DAC0832的引脚图和内部结构图。其主要参数如下:分辨率为8位,转换时间为1μs,满量程误差为±1LSB,参考电压为(+10~-10)V,供电电源为(+5~+15)V,逻辑电平输入与TTL兼容。从图2-1中可见,在DAC0832中有两级锁存器,第一级锁存器称为输入寄存器,它的允许锁存信号为ILE,第二级锁存器称为DAC寄存器,它的锁存信号也称为通道控制信号 /XFER。

如图2.1所示,它由倒T型R-2R电阻网络、模拟开关、运算放大器和参考电压VREF四大部分组成。

图2.1 DAC0832的单片直流输出型8位数/模转换器

一个8位D/A转换器有8个输入端(其中每个输入端是8位二进制数的一位),有一个模拟输出端。输入可有28=256个不同的二进制组态,输出为256个电压之一,即输出电压不是整个电压范围内任意值,而只能是256个可能值。图2.5是DAC0832的逻辑框图和引脚排列。

图2.2 DAC0832的逻辑框图和引脚排列

图2.2中,当ILE为高电平,片选信号 /CS 和写信号 /WR1为低电平时,输入寄存器控制信号为1,这种情况下,输入寄存器的输出随输入而变化。此后,当 /WR1由低电平变高时,控制信号成为低电平,此时,数据被锁存到输入寄存器中,这样输入寄存器的输出端不再随外部数据DB的变化而变化。

对第二级锁存来说,传送控制信号 /XFER 和写信号 /WR2同时为低电平时,二级锁存控制信号为高电平,8位的DAC寄存器的输出随输入而变化,此后,当 /WR2由低电平变高时,控制信号变为低电平,于是将输入寄存器的信息锁存到DAC寄存器中。

图2.2中其余各引脚的功能定义如下:

(1)、DI7~DI0 :8位的数据输入端,DI7为最高位。

(2)、I OUT1 :模拟电流输出端1,当DAC寄存器中数据全为1时,输出电流最大,当 DAC寄存器中数据

全为0时,输出电流为0。

(3)、I OUT2 :模拟电流输出端2, I OUT2与I OUT1的和为一个常数,即I OUT1+I OUT2=常数。

(4)、R FB :反馈电阻引出端,DAC0832内部已经有反馈电阻,所以 R FB端可以直接接到外部运算放大器

的输出端,这样相当于将一个反馈电阻接在运算放大器的输出端和输入端之间。

(5)、V REF :参考电压输入端,此端可接一个正电压,也可接一个负电压,它决定0至255的数字量转

化出来的模拟量电压值的幅度,V REF范围为(+10~-10)V。V REF端与D/A内部T形电阻网络相连。

(6)、Vcc :芯片供电电压,范围为(+5~ 15)V。

(7)、AGND :模拟量地,即模拟电路接地端。

(8)、DGND :数字量地。

图2.3 DAC0832内部结构图

2.1.2 DAC0832的工作方式

DAC0832可处于三种不同的工作方式:

1.直通方式:当ILE 接高电平,CS 、1WR 、2WR 和XFER 都接数字地时,DAC 处于直通方式,8位数字量一旦到达DI7~DI0输入端,就立即加到8位D/A 转换器,被转换成模拟量。例如在构成波形发生器的场合,就要用到这种方式,即把要产生基本波形的数据存在ROM 中,连续取出送到DAC 去转换成电压信号。

图2-4为单片机和DAC0832直通方式输出连接图,运放输出电路输出电压为 U OUT =-(D/256)*V REF , 例如上图中向DAC0832传送的8位数据量40H(01000000B), 则输出电压U OUT =-(64/256)*5V=-1.25V ,其输出过程可用MOV P1 , #40H 一条指令完成。

图2-4 单片机和DAC0832直通方式输出连接图(ua741)

直通方式说明:当ILE 接高电平,CS 、1WR 、2WR 和XFER 都接数字地时,DAC 处于直通方式,

8位数字量一旦到达DI7~DI0输入端,就立即加到8位D/A转换器,被转换成模拟量。例如在构成波形发生器的场合,就要用到这种方式,即把要产生基本波形的数据存在ROM中,连续取出送到DAC去转换成电压信号。

2.单缓冲方式:只要把两个寄存器中的任何一个接成直通方式,而用另一个锁存器数据,DAC就可处

WR和XFER都接地,使DAC寄存器处于直通方式,另外把ILE接于单缓冲工作方式。一般的做法是将2

WR接CPU的WR信号,这样就可以通过一条MOVX指令,选中该端高电平,CS接端口地址译码信号,1

WR有效,启动D/A转换。

口,使CS和1

3.双缓冲方式:主要在以下两种情况下需要用双缓冲方式的D/A转换。

需在程序的控制下,先把转换的数据输入输入缓存器,然后在某个时刻再启动D/A转换。这样,可先选中CS端口,把数据写入输入寄存器;再选中XFER端口,把输入寄存器内容写入DAC寄存器,实现D/A转换。

在需要同步进行D/A转换的多路DAC系统中,采用双缓冲方式,可以在不同的时刻把要转换的数据打入各DAC的输入寄存器,然后由一个转换命令同时启动多个DAC转换。先用3条输出指令选择3个端口,分别将数据写入各DAC的输入寄存器,当数据准备就绪后,再执行一次写操作,使XFER变低同时选通3个D/A的DAC寄存器,实现同步转换。

2.2 波形发生器电路图与程序

2.2.1应用电路图

单片机给DAC0832信号后,0832输出的是电流,所以还必须经过一个外接的运算放大器转换成电压。采用的实验线路如图2.5所示。

图2.5 实验线路图

图2.6 实际电路图

2.2.2实验程序

本实验要求最终开发电路可在示波器上输出方波,锯齿波,正弦波及三角波,本程序结构较简单,通过开发板上P3口上的四个连接中断的开关来控制四种波的产生,有键按下即产生中断,中断服务程序中令

一个全局变量X数值发生变化,在主程序中再根据X的值来判断产生何种波形。

图2.7 程序框图

#include

#include

#include

#define uint unsigned int

uint x=1,j,k,l;

unsigned char code sin_tab[]={125,128,131,134,138,141,144,147,150,153,156,159,162,165,168,171,174,177,180,182, 185,188,191,193,196,198,201,203,206,208,211,213,215,217,219,221,223,225,227,229,

231,232,234,235,237,238,239,241,242,243,244,245,246,246,247,248,248,249,249,250,

250,250,250,250,250,250,250,249,249,248,248,247,246,246,245,244,243,242,241,239,

238,237,235,234,232,231,229,227,225,223,221,219,217,215,213,211,208,206,203,201,

198,196,193,191,188,185,182,180,177,174,171,168,165,162,159,156,153,150,147,144,

141,138,134,131,128,125,122,119,116,112,109,106,103,100,97,94,91,88,85,82,79,76,

73,70,68,65,62,59,57,54,52,49,47,44,42,39,37,35,33,31,29,27,25,23,21,19,18,16,15, 13,12,11,9,8,7,6,5,4,4,3,2,2,1,1,0,0,0,0,0,0,0,0,1,1,2,2,3,4,4,5,6,7,8,9,11,12,13, 15,16,18,19,21,23,25,27,29,31,33,35,37,39,42,44,47,49,52,54,57,59,62,65,68,70,73, 76,79,82,85,88,91,94,97,100,103,106,109,112,116,119,122};

void KEY_1() interrupt 0

{

x=1;

}

void KEY_2() interrupt 2

{

x=2;

}

void KEY_3() interrupt 1

{

x=3;

}

void KEY_4() interrupt 3

x=4;

}

void delayms(uint x)

{

uint i;

while(x--)

{for(i=0;i<125;i++);}

}

void fangbo()

{

P0=0xff;

delayms(100);

P0=0x00;

delayms(100);

}

void sinbo()

{

for(j=0;j<250;j++)

{P0=sin_tab[j];delayms(1);} }

void juchi()

{

for(k=0;k<256;k++)

{P0=k;delayms(1);}

}

void sanjiao()

{

for(l=0;l<255;l++)

{P0=l;delayms(1);}

for(;l>0;l--)

{P0=l;delayms(1);}

}

void main()

{

TMOD=0x66;

TL0=255;

TH0=255; // 晶振为12MHz时,定时为40 TL1=255;

TH1=255;

ET0=1;

ET1=1;

IT0=1;

IT1=1;

EX0=1;

EX1=1;

EA=1;

TR0=1;

TR1=1;

while(1)

{

switch(x)

{case 1:fangbo();break;

case 2:sinbo();break;

case 3:juchi();break;

case 4:sanjiao();break;

default:break;

}

}

}

2.2.3 调试结果

图2.7 产生的方波图2.8 产生的正弦波

图2.9 产生的锯齿波图2.10 三角波以上为烧入程序后的调试结果,基本波形能出来,不足之处在于还存在一定的躁声。

在本次实习的开始阶段,2010年6月25日时我们曾在郑老师的带领下有幸参观了位于天津西青区华苑梓苑路13号的天津仪表集团有限公司暨天津中环自控有限公司。马老师在他们公司的操作室里为我们讲解了DCS系统,也就是俗称的分散型控制系统(distract control system)。这是国际上最流行的也是在此领域里最为有效的系统。该系统的可靠性与稳定性首屈一指,在一个自动化的厂房中,开系统可以自动检测温度,压力,流量等实际数据,并且可以根据实际情况自动进行调节,当然也可以允许手动调节,并且该系统可以配合FCS现场控制站,OPS操作员站,EOS工程师站,它们通过总线进行连接,FCS,OPS,EOS三者互相配合DCS系统,并且三者互相监督,更是保证了系统的稳定性与可靠性。

然后,马老师又为我们讲述了DCS在国内的发展史,该系统是在1976由日本引入中国,现今也不过发展了30余年,但是它的市场潜力却仍然十分巨大。DCS系统所包含的知识体系之巨大是其它系统所不能及的。计算机编程,通信技术,自动控制原理,自动化技术都在这里有所应用。可以说,DCS是一个易学难精的复杂系统。接着,马老师又为我们讲述了DCS系统的分类,包括AI模拟输入,AO模拟输出,DI数字输入,DO数字输出,并讲述了控制系统的发展史:50年代的基地式仪表控制,60年代的集中式控制,以及70年代至今的DCS系统控制,马老师的讲述引起了我们的浓厚兴趣,同学们也踊跃向马老师提问。

最后,马老师还不忘为在座的还有1年就要毕业的我们讲述了找工作的经验之谈,使我们受益匪浅,我们牢记马老师说的大学生招工时的稳定心态的重要性,以及我们在大学里学习目的的重要性。我们在大学里究竟学的是什么,是一种学习的方法,而我们来到了社会上学的是处世经验与工作本领。最终,我们在一片欢快的气氛中结束了参观。

随着电子技术的发展,特别是随着大规模集成电路的产生,给人们的生活带来了根本性的变化,如果说微型计算机的出现使现代的科学研究得到了质的飞跃,那么可编程控制器的出现则是给现代工业控制测控领域带来了一次新的革命。在现代社会中,其作用也体现到了各个方面。本学期我们就学习了单片机这门课程,感觉是有点难呢。也不知道整个学习过程是怎么过来得,可是时间不等人。

时光飞逝,一转眼,一个学期又进尾声了,本学期的单片机实习课题也在三周内完成了。俗话说“好的开始是成功的一半”。说这次实习,我认为最重要的就是做好程序调试,认真的研究老师给的题目。其次,老师对实验的讲解要一丝不苟的去听去想,因为只有都明白了,做起东西才会事半功倍,如果没弄明白,就迷迷糊糊的去做,到头来一点收获也没有。最后,要重视程序的模块化,修改的方便,也要注重程序的调试,掌握其方法。

虽然这次的实习算起来在实验室的时间只有几周,不过硬件的设计跟焊接都要我们自己动手去焊,软件的编程也要我们不断的调试,最终一个能完成课程设计的劳动成果出来了,很高兴它能按着设计的思想与要求运动起来。

当然,这其中也有很多问题,第一、不够细心比如由于粗心大意焊错了线,由于对课本理论的不熟悉导致编程出现错误。第二,是在学习态度上,这次课设是对我的学习态度的一次检验。对于这次单片机综合课程实习,我的第一大心得体会就是作为一名工程技术人员,要求具备的首要素质绝对应该是严谨。我们这次实习所遇到的多半问题多数都是由于我们不够严谨。第三,在做人上,我认识到,无论做什么事情,只要你足够坚强,有足够的毅力与决心,有足够的挑战困难的勇气,就没有什么办不到的。

通过这次单片机实习,我不仅加深了对单片机理论的理解,将理论很好地应用到实际当中去,而且我还学会了如何去培养我们的创新精神,从而不断地战胜自己,超越自己。创新可以是在原有的基础上进行改进,使之功能不断完善,成为真己的东西。我们不只在乎这一结果,更加在乎的,是这个过程。这个过程中,我们花费了大量的时间和精力,更重要的是,我们在学会创新的基础上,同时还懂得合作精神的重要性,学会了与他人合作。作为一名电信专业的大三学生,我觉得做单片机实习是十分必要的。在已度过的大学时间里,我们大多数接触的是专业课。我们在课堂上掌握的仅仅是专业课的理论知识,如何去锻炼我们的实践能力?如何把我们所学的专业基础课理论知识运用到实践中去呢?我想做类似实习就为我们提供了良好的实践平台。

在做本次实习的过程中,我感触最深的当属查阅大量的设计资料了。为了让自己的设计更加完善,查阅这方面的设计资料是十分必要的,同时也是必不可少的。我们是在做单片机实习,但我们不是艺术家,他们可以抛开实际尽情在幻想的世界里翱翔,而我们一切都要有据可依,有理可寻,不切实际的构想永远只能是构想,永远无法升级为设计。还有,在这次课程设计中,我们运用到了以前所学的专业课知识,如:C语言、模拟和数字电路知识等。虽然过去从未独立应用过它们,但在学习的过程中带着问题去学我发现效率很高,这是我做这次课程设计的又一收获。

最后,在实习之后,我们了解到,在设计程序时,不能妄想一次就将整个程序设计好,反复修改、不断改进是程序设计的必经之路;要养成注释程序的好习惯,一个程序的完美与否不仅仅是实现功能,而应该让人一看就能明白你的思路,这样也为资料的保存和交流提供了方便;在实习过程中遇到问题是很正常的,但我们应该将每次遇到的问题记录下来,并分析清楚,以免下次再碰到同样的问题。但是从中学到的知识会让我受益终身。发现、提出、分析、解决问题和实践能力提高都会受益于我在以后的学习、工作和生活中。

参考文献

[1]张毅刚等.单片机原理机应用 [M] .高等教育出版社,2008,12-10

[2]谭博学苗慧静等.集成电路原理及应用 [M] .电子工业出版社2009,1-5

[3]刘连新. 89S52单片机应用及介绍 [R] .2008,8-18

信号发生器毕业设计

信号发生器的设计与制作 系别:机电系专业:应用电子技术届:07届姓名:张海峰 摘要 本系统以AD8951集成块为核心器件,AT89C51集成块为辅助控制器件,制作一种函数信号发生器,制作成本较低。适合学生学习电子技术测量使用。AD9851是AD公司生产的最高时钟为125 MHz、采用先进的CMOS技术的直接频率合成器,主要由可编程DDS系统、高性能模数变换器(DAC)和高速比较器3部分构成,能实现全数字编程控制的频率合成。 关键词AD9851,AT89C51,波形,原理图,常用接法

ABSTRACT 5 The system AD8951 integrated block as the core device, AT89C51 Manifold for auxiliary control devices, production of a function signal generator to produce low cost. Suitable for students to learn the use of electronic technology measurement. AD9851 is a AD produced a maximum clock of 125 MHz, using advanced CMOS technology, the direct frequency synthesizer, mainly by the programmable DDS systems, high-performance module converter (DAC) and high-speed comparator three parts, to achieve full Digital program-controlled frequency synthesizer. Key words AD9851, AT89C51, waveforms, schematics, Common Connection

简易波形发生器设计

摘要:单片机主要面对的是测控对象,突出的是控制功能,所以它从功能和形态上来说都是应测控领域应用的要求而诞生的。随着单片机技术的发展,它在芯片内部集成了许多面对测控对象的接口电路,如ADC、DAC、高速I/O接口、脉冲宽度调制器(Pulse Width Modulator,PWM)、监视定时器(Watch Dog Timer,WDT)等。这些对外电路及外设接口已经突破了微型计算机传统的体系结构,所以单片机也称为微控制器(Micro Controller)。 关键词:中央处理器;随机存储器;只读存储器

引言:一般函数发生器是由硬件组成的,它的输出频率范围宽,各项指标高,性能优良,因而在对输出波形要求较高的地方被广泛应用,这种仪器的缺点是电路复杂,成本高,输出波形种类不多,不够灵活。在对波形指标要求不高,频率要求较低的场合,可以用单片机构成一个波形发生器。产生所需要的各种波形,这样的函数发生器靠软件产生各种波形,小巧灵活,便于修改,且成本低廉,容易实现。 1设计概述 1.1 课程设计的目的 通过对本课题的设计,掌握A/D,D/A转换的应用,用单片机产生各种波形的方法及改变波形频率的方法。熟悉单片机应用系统的设计以及软硬件的调试。单片机本身并没有开发能力,必须借助开发工具即硬件开发环境才能进行开发。单片机的硬件开发环境有PC机、编程器和仿真机等。 1.2 设计的内容、要求 设计一个简易波形发生器,要求该系统能通过开关或按钮有选择性的输出正弦波、三角波、方波、及阶梯波等四种波形,并且这四种波形的频率均可通过输入电位器在一定范围内调节。 对于四种波形的切换,用两个开关的四种状态来表示(或用按钮)。选用常用的A/D转换芯片0809来实现模拟量的输入。D/A转换器选用0832来输出波形。

利用Labview实现任意波形发生器的设计

沈阳理工大学课程设计专用纸No I

1 引言 波形发生器是一种常用的信号源,广泛应用于通信、雷达、测控、电子对抗以及现代化仪器仪表等领域,是一种为电子测量工作提供符合严格技术要求的电信号设备。随着现代电子技术的飞速发展,现代电子测量工作对波形发生器的性能提出了更高的要求,不仅要求能产生正弦波、方波等标准波形,还能根据需要产生任意波形,且操作方便,输出波形质量好,输出频率范围宽,输出频率稳定度、准确度及分辨率高,频率转换速度快且频率转换时输出波形相位连续等。可见,为适应现代电子技术的不断发展和市场需求,研究制作高性能的任意波形发生器十分有必要,而且意义重大。 波形发生器的核心技术是频率合成技术,主要方法有:直接模拟频率合成、锁相环频率合成(PLL),直接数字合成技术(DDS)。 传统的波形发生器一般基于模拟技术。它首先生成一定频率的正弦信号,然后再对这个正弦信号进行处理,从而输出其他波形信号。早期的信号发生器大都采用谐振法,后来出现采用锁相环等频率合成技术的波形发生器。但基于模拟技术的传统波形发生器能生成的信号类型比较有限,一般只能生成正弦波、方波、三角波等少数的规则波形信号。随着待测设备的种类越来越丰富,测试用的激励信号也越来越复杂,传统波形发生器已经不能满足这些测试需要,任意波形发生器(AWG)就是在这种情况下,为满足众多领域对于复杂的、可由用户自定义波形的测试信号的日益增长的需要而诞生的。随着微处理器性能的提高,出现了由微处理器、D/A以及相关硬件、软件构成的波形发生器。它扩展了波形发生器的功能,产生的波形也比以往复杂。实质上它采用了软件控制,利用微处理器控制D/A,就可以得到各种简单波形。但由于微处理器的速度限制,这种方式的波形发生器输出频率较低。目前的任意波形发生器普遍采用DDS(直接数字频率合成)技术。基于DDS技术的任意波形发生器(AWG)利用高速存储器作为查找表,通过高速D/A转换器对存储器的波形进行合成。它不仅可以产生正弦波、方波、三角波和锯齿波等规则波形,而且还可以通过上位机编辑,产生真正意义上的任意波形。

信号发生器设计(附仿真)

南昌大学实验报告 学生姓名:学号:专业班级: 实验类型:□验证□综合□设计□创新实验日期:实验成绩: 信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U p-p =6V,正弦波U p-p>1V。 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时),三角波r△<2%,正弦波r~<5%。 三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V 应接近晶体管的截止电压值。 m 图4 三角波→正弦波变换电路

图5 三角波→正弦波变换关系 在图4中,RP 1调节三角波的幅度,RP 2 调整电路的对称性,并联电阻R E2 用来减小差 分放大器的线性区。C 1、C 2 、C 3 为隔直电容,C 4 为滤波电容,以滤除谐波分量,改善输出 波形。 波形发生器的性能指标: ①输出波形种类:基本波形为正弦波、方波和三角波。 ②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n个波段范围。 ③输出电压:一般指输出波形的峰-峰值U p-p。 ④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r~和r△;表征方波特性的参数是上升时间t r。 四、电路仿真与分析

单片机实现简易波形发生器

电子信息工程专业 单片机课程设计报告 题目简易波形发生器姓名 学号 班级 指导教师 2013年7 月4 日

要求: 1.指导教师按照课程设计大纲要求完成学生课程设计指导工作。2.课程设计任务书由指导教师照大纲要求填写,内容要全面。 3.课程设计报告由参加本学生填写。课程设计结束时交指导教师。4.指导教师要根据每一位学生课程设计任务完成情况,认真审核设计报告,并在课程设计结束时,给出客观、准确的评语和成绩。 5.课程设计任务书和报告要语言流畅,图表正确规范。 6.本表要用钢笔、圆柱笔填写或打印,字迹工整。

课程设计报告 1 设计原理与技术方法: 1.1 电路工作原理分析 本次单片机实习采用的是单片机STC89C52,对于简易波形发生器设计的硬件电路主要为三个部分,为显示部分、键盘部分、D/A转换电路,以下对三个部分分别介绍。 1.1.1 显示电路原理 如图1.1所示八位八段数码管为共阴极数码管,通过两个74HC573锁存器与单片机连接,一片573的LE为位选信号另一片的LE为段选信号,分别由单片机的P2.7和P2.6控制,高电平有效。当P2.7=1、P2.6=0时,位选有效,P0.0-P0.7分别控制01-08八位数码管选通,低有效,即通过P0口送出数据,哪一位为0则哪一位数码管有显示;当P2.6=1、P2.7=0时,段选有效,此时P0.0-P0.7分别控制每一位八段数码管的每一段a b c d e f g dp 的亮灭,高有效,从而使数码管显示数字0-9。显示段码如表1.1所示。 图 1.1 显示电路 表1.1 共阴极数码管显示段码 1.1.2 键盘电路原理 如图1.2所示为4×4的矩阵式键盘与单片机的P3口相连,行连接P3.0-P3.3,列连接P3.4-P3.5。用扫描法对按键进行扫描,先将所有行置0,所有列置1,当有按键按下时,通过对P3口的状态查询则按下的按键所在列将为0,其余仍未1,通过延时去抖动判断是否真有按键按下,若有,则逐行扫描,判断按键所在行,最后返回按键键码,并去执行相应

模电课程设计-波形发生器

一、设计题目 波形发生电路 二、设计任务和要求 要求:设计并制作用分立元件和集成运算放大器组成的能产生方波、三角波和正弦波的波形发生器。 指标:输出频率分别为:102H Z、103H Z和104Hz;输出电压峰峰值V PP≥20V 三、原理电路设计: (1)方案的提出 方案一: ①先由文氏桥振荡产生一个正弦波信号(右图) ②把文氏桥产生的正弦波通过一个过零比较器 从而把正弦波转换成方波。 ③把方波信号通过一个积分器。转换成三角波。 方案二: ①由比较器和积分器构成方波三角波产生电路。(下图) ②然后通过低通滤波把三角波转换成正弦波信号。 方案三: ①由比较器和积分器构成方波三角波产生电路。(电路图与方案二相同) ②用折线法把三角波转换成正弦波。(下图)

(2)方案的比较与确定 方案一: 文氏桥的振荡原理:正反馈RC网络与反馈支路构成桥式反馈电路。当R1=R2、时,F=1/3、Au=3。然而,起振条件为Au略大于3。实际操作时,C1=C2。即f=f 如果要满足振荡条件R4/R3=2时,起振很慢。如果R4/R3大于2时,正弦波信号顶部失真。调试困难。RC串、并联选频电路的幅频特性不对称,且选择性较差。因此放弃方案一。 方案二: 把滞回比较器和积分比较器首尾相接形成正反馈闭环系统,就构成三角波发生器和方波发生器。比较器输出的风波经积分可得到三角波、三角波又触发比较器自动翻转形成方波,这样即可构成三角波和方波发生器。 通过低通滤波把三角波转换成正弦波是在三角波电压为固定频率或频率变化范围很小的情况下使用。然而,指标要求输出频率分别为102H Z、103H Z和104Hz。因此不满足使用低通滤波的条件。放弃方案二。 方案三: 方波三角波发生器原理如同方案二。 比较三角波和正弦波的波形可以发现,在正弦波从零逐渐增大到峰值的过程中,与三角波的差别越来越大;即零附近的差别最小,峰值附近差别最大。因此,根据正弦波与三角波的差别,将三角波分成若干段,按不同的比例衰减,就可以得到近似与正弦波的折线化波形。而且折线法不受频率范围的限制,便于集成化。 综合以上三种方案的优缺点,最终选择方案三来完成本次课程设计。 (3)单元电路设计

基于51单片机的波形发生器的设计讲解

目录 1 引言 (1) 1.1 题目要求及分析 (1) 1.1.1 示意图 (1) 1.2 设计要求 (1) 2 波形发生器系统设计方案 (2) 2.1 方案的设计思路 (2) 2.2 设计框图及系统介绍 (2) 2.3 选择合适的设计方案 (2) 3 主要硬件电路及器件介绍 (4) 3.1 80C51单片机 (4) 3.2 DAC0832 (5) 3.3 数码显示管 (6) 4 系统的硬件设计 (8) 4.1 硬件原理框图 (8) 4.2 89C51系统设计 (8) 4.3 时钟电路 (9) 4.4 复位电路 (9) 4.5 键盘接口电路 (10) 4.7 数模转换器 (11) 5 系统软件设计 (12) 5.1 流程图: (12) 5.2 产生波形图 (12) 5.2.1 正弦波 (12) 5.2.2 三角波 (13) 5.2.3 方波 (14) 6 结论 (16) 主要参考文献 (17) 致谢...................................................... 错误!未定义书签。

1引言 1.1题目要求及分析 题目:基于51单片机的波形发生器设计,即由51单片机控制产生正弦波、方波、三角波等的多种波形。 1.1.1示意图 图1:系统流程示意图 1.2设计要求 (1) 系统具有产生正弦波、三角波、方波三种周期性波形的功能。 (2) 用键盘控制上述三种波形(同周期)的生成,以及由基波和它的谐波(5次以下)线性组合的波形。 (3) 系统具有存储波形功能。 (4) 系统输出波形的频率范围为1Hz~1MHz,重复频率可调,频率步进间隔≤100Hz,非正弦波的频率按照10次谐波来计算。 (5) 系统输出波形幅度范围0~5V。 (6) 系统具有显示输出波形的类型、重复频率和幅度的功能。

模电课程设计(波形发生器)

课程设计 课程名称模拟电子技术基础课程设计题目名称波形发生电路_ 学生学院物理与光电工程学院 专业班级电子科学与技术(5)班 学号 学生姓名 指导教师 2013-12-10

一、题目: 波形发生电路 二、设计任务与技术指标 要求:设计并制作用分立元件和集成运算放大器组成的能产生正弦波、方波和三 角波的波形发生器。 基本指标: 1、输出的各种波形基本不失真; 2、频率范围为50H Z ~20KH Z ,连续可调; 3、方波和正弦波的电压峰峰值V PP >10V ,三角波的V PP >20V 。 三、电路设计及其原理 1) 方案的提出 方案一 ①用RC 桥式振荡器产生正弦波。 ②正弦波经过一个过零比较器产生方波。 ③方波通过积分运算产生三角波。 方案二 ①由滞回比较器和积分运算构成方波和三角波发生电路。(如图1所示) ②再由低通滤波把三角波转成正弦波。 方案三 ①由滞回比较器和积分运算构成方波和三角波发生电路。(同方案二) ②利用折线法把三角波转换成正弦波。(如图2所示) 图1 图3 图2

2)方案的比较 方案一中以RC串并联网络为选频网络和正反馈网络、并引入电压串联负反馈,从而产生正弦波。为了稳定正弦波幅值,一般要在反馈电阻一边串联一对反向的并联二极管,但这样会使正弦波出现交越失真。R1/R2=2时,起振很慢; R1/R2>2时,正弦波会顶部失真。调试困难。还有,RC桥式振荡器对同轴电位器的精确度要求较高,否则,正弦波很容易失真。 方案二的低通滤波产生正弦波适宜在三角波频率固定或变化小时使用,而本次课程设计要求频率50Hz-20KHz,显然不适合。 方案三滞回比较器和积分比较器首尾相接形成正反馈闭环系统,这样就形成方波发生器和三角波发生器。滞回比较器输出的方波经积分产生三角波,三角波又触发比较器自动翻转成方波。 另外,根据正弦波与三角波的差别,将三角波分成若干段,按不同的比例衰减,就可以得到近似与正弦波的折线化波形。而且折线法不受频率范围的限制,便于集成化。虽然反馈网络中电阻的匹配困难,但可以通过理论计算出每个电阻阻值后再调试。这样可以省下很多功夫。 综合以上三种方案的优缺点,最终选择方案三来完成本次课程设计。 3)单元电路设计 方波---三角波产生电路

简易波形发生器设计报告

电子信息工程学院 硬件课程设计实验室课程设计报告题目:波形发生器设计 年级:13级 专业:电子信息工程学院学号:201321111126 学生姓名:覃凤素 指导教师:罗伟华 2015年11月1日

波形发生器设计 波形发生器亦称函数发生器,作为实验信号源,是现今各种电子电路实验设计应用中必不可少的仪器设备之一。 波形发生器一般是指能自动产生方波、三角波、正弦波等电压波形的电路。产生方波、三角波、正弦波的方案有多种,如先产生正弦波,再通过运算电路将正弦波转化为方波,经过积分电路将其转化为三角波,或者是先产生方波-三角波,再将三角波变为正弦波。本课程所设计电路采用第二种方法,利用集成运放构成的比较器和电容的充放电,实现集成运放的周期性翻转,从而在输出端产生一个方波。再经过积分电路产生三角波,最后通过正弦波转换电路形成正弦波。 一、设计要求: (1) 设计一套函数信号发生器,能自动产生方波、三角波、正弦波等电压波形; (2) 输出信号的频率要求可调; (3) 根据性能指标,计算元件参数,选好元件,设计电路并画出电路图; (4) 在面包板上搭出电路,最后在电路板上焊出来; (5) 测出静态工作点并记录; (6) 给出分析过程、电路图和记录的波形。 扩展部分: (1)产生一组锯齿波,频率范围为10Hz~100Hz , V V 8p -p =; (2)将方波—三角波发生器电路改成矩形波—锯齿波发生器,给出设计电路,并记录波形。 二、技术指标 (1) 频率范围:100Hz~1kHz,1kHz~10kHz ; (2) 输出电压:方波V V 24p -p ≤,三角波V V 6p -p =,正弦波V V 1p -p ≥; (3) 波形特性:方波s t μ30r < (1kHz ,最大输出时),三角波%2V <γ ,正弦波y~<2%。 三、选材: 元器件:ua741 2个,3DG130 4个,电阻,电容,二极管 仪器仪表: 直流稳压电源,电烙铁,万用表和双踪示波器 四、方案论证 方案一:用RC 桥式正弦波振荡器产生正弦波,经过滞回比较器输出方波,方波在经过积分器得到三角波。

简易波形发生器

摘要 波形发生器又称为振荡器,它不需要输入信号的激励,电路通过正反馈,将直流电源的能量转换为各种稳定的、随时间周期性变化的交流信号的能量而输出。即没有输入就有输出,根据输出信号波形的不同,分为正弦波振荡器和非正弦波振荡器两大类。波形发生器是一种广泛应用于电子电路、自动控制和科学实验等领域的信号源。比如电参量的测量、雷达、通信、电子对抗与电子系统、宇航和遥控遥测技术等等。RC 桥式正弦波振荡电路产生正弦波,正弦波频率可通过调节电阻R及电容C实现100HZ—20KHZ的变换,再通过电压跟随器输出正弦波。正弦波通过过零比较器,整形为方波,同样经过电压跟随器输出方波。方波通过积分运算电路,整形为三角波。 关键词正弦波发生器/过零比较器/电压跟随器/正弦波/方波/三角波

目录 1方案设计 (1) 2 简易波形发生器原理级框图 (4) 2.1 基本原理 (4) 2.2 原理框图 (4) 3 正弦波发生电路 (5) 3.1 正弦波振荡器原理和结构 (5) 3.2 产生振荡的条件 (5) 3.2.1振荡平衡条件 (5) 3.2.2 振荡起振条件 (6) 3.3 RC选频网络 (7) 3.3.1 RC桥式振荡器电路 (7) 3.3.2 RC桥式振荡器的选频特性 (8) 3.3.3 电压跟随器 (9) 4 方波发生电路 (11) 4.1 迟滞比较器 (11) 4.2 方波产生原理 (12) 5 三角波的产生电路 (13) 5.1方波到三角波的转换原理 (13) 6 简易波形发生器的设计 (15) 6.1简易波形发生器的总原理 (15) 6.1.1 输出波形 (15) 6.1.2 频率范围 (16) 6.1.3 输出电压 (16) 6.1.4 显示输出波形的类型 (16) 7 设计总结与心得体会 (17) 致谢 (18) 主要参考文献 (19) 附录一:总原理电路图 (20) 附录二:元件清单 (21)

课程设计——波形发生器

1.概述 波形发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。函数信号发生器是一种能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路。函数信号发生器在电路实验和设备检测中具有十分广泛的用途。通过对函数波形发生器的原理以及构成分析,可设计一个能变换出三角波、正弦波、方波的函数波形发生器。本课程采用采用RC正弦波振荡电路、电压比较器、积分电路共同组成的正弦波—方波—三角波函数发生器的设计方法。先通过RC正弦波振荡电路产生正弦波,再通过电压比较器产生方波,最后通过积分电路形成三角波。

2.设计方案 采用RC正弦波振荡电路、电压比较器、积分电路共同组成的正弦波—方波—三角波函数发生器的设计方法。先通过RC正弦波振荡电路产生正弦波,再通过电压比较器产生方波,最后通过积分电路形成三角波。文氏桥振荡器产生正弦波输出,其特点是采用RC串并联网络作为选频和反馈网络,其振荡频率f=1/2πRC.改变RC的值,可得到不同的频率正弦波信号输出。用集成运放构成电压比较器,将正弦波变换成方

3. 设计原理 3.1正弦波产生电路 正弦波由RC 桥式振荡电路(如图3-1所示),即文氏桥振荡电路产生。文氏桥振荡器具有电路简单、易起振、频率可调等特点而大量应用于低频振荡电路。正弦波振荡电路由一个放大器和一个带有选频功能的正反馈网络组成。其振荡平衡的条件是AF =1以及ψa+ψf=2n π。其中A 为放大电路的放大倍数,F 为反馈系数。振荡开始时,信号非常弱,为了使振荡建立起来,应该使AF 略大于1。 放大电路应具有尽可能大的输入电阻和尽可能小的输出电阻以减少放大电路对选频特性的影响,使振荡频率几乎仅决定于选频网络,因此通常选用引入电压串联负反馈的放大电路。正反馈网络的反馈电压U f 是同相比例运算电路的输入电压,因而要把同相比例运算电路作为整体看成电路放大电路,它的比例系数是电压放大倍数,根据起振条件和幅值平衡条件有 31 1≥+ =R Rf Av (Rf=R2+R1//D1//D2) 且振荡产生正弦波频率 Rc f π210= 图中D1、D2的作用是,当Vo1幅值很小时,二极管D1、D2接近开路,近似有Rf =9.1K +2.7K =11.8K ,,Av=1+Rf/R1=3.3>=3,有利于起振;反之当Vo 的幅值较大时,D1或D2导通,Rf 减小,Av 随之下降,Vo1幅值趋于稳定。

多种波形发生器的设计与制作

课题三 多种波形发生器的设计与制作 方波、三角波、脉冲波、锯齿波等非正弦电振荡信号是仪器仪表、电子测量中最常用的波形,产生这些波形的方法较多。本课题要求设计的多种波形发生器是一种环形的波形发生器,方波、三角波、脉冲波、锯齿波互相依存。电路中应用到模拟电路中的积分电路、过零比较器、直流电平移位电路和锯齿波发生器等典型电路。通过对本课题的设计与制作,可进一步熟悉集成运算放大器的应用及电路的调试方法,提高对电子技术的开发应用能力。 1、 设计任务 设计并制作一个环形的多种波形发生器,能同时产生方波、三角波、脉冲波和锯齿波,它们的时序关系及幅值要求如图3-3-1所示。 图3-3-1 波形图 设计要求: ⑴ 四种波形的周期及时序关系满足图3-3-1的要求,周期误差不超过%1±。 ⑵ 四种波形的幅值要求如图3-3-1所示,幅值误差不超过%10±。 ⑶ 只允许采用通用器件,如集成运放,选用F741。

要求完成单元电路的选择及参数设计,系统调试方案的选取及综合调试。 2、设计方案的选择 由给定的四种波形的时序关系看:方波决定三角波,三角波决定脉冲波,脉冲波决定锯齿波,而锯齿波又决定方波。属于环形多种波形发生器,原理框图可用3-3-2表示。 图3-3-2 多种波形发生器的方框图 仔细研究时序图可以看出,方波的电平突变发生在锯齿波过零时刻,当锯齿波的正程过零时,方波由高电平跳变为低电平,故方波发生电路可由锯齿波经一个反相型过零比较器来实现。三角波可由方波通过积分电路来实现,选用一个积分电路来完成。图中的u B电平显然上移了+1V,故在积分电路之后应接一个直流电平移位电路,才能获得符合要求的u B波形。脉冲波的电平突变发生在三角波u B的过零时刻,三角波由高电平下降至零电位时,脉冲波由高电平实跳为低电平,故可用一个同相型过零比较器来实现。锯齿波波形仍是脉冲波波形对时间的积分,只不过正程和逆程积分时常数不同,可利用二极管作为开关,组成一个锯齿波发生电路。由上,可进一步将图3-3-2的方框图进一步具体化,如图3-3-3所示。 图3-3-3 多种波形发生器实际框图 器件选择,设计要求中规定只能选用通用器件,由于波形均有正、负电平,应选择由正、负电源供电的集成运放来完成,考虑到重复频率为100Hz(10ms),故选用通用型运放F741(F007)或四运放F324均可满足要求。本设计选用F741。其管脚排列及功能见附录三之三。

信号发生器的设计实现

电子电路综合设计 总结报告 设计选题 ——信号发生器的设计实现 姓名:*** 学号:*** 班级:*** 指导老师:*** 2012

摘要 本综合实验利用555芯片、CD4518、MF10和LM324等集成电路来产生各种信号的数据,利用555芯片与电阻、电容组成无稳态多谐振荡电路,其产生脉冲信号由CD4518做分频实现方波信号,再经低通滤波成为正弦信号,再有积分电路变为锯齿波。此所形成的信号发生器,信号产生的种类、频率、幅值均为可调,信号的种类、频率可通过按键来改变,幅度可以通过电位器来调节。信号的最高频率应该达到500Hz以上,可用的频率应三个以上,T,2T,3T或T,2T,4T均可。信号的种类应三种以上,必须产生正弦波、方波,幅度可在1~5V之间调节。在此过程中,综合的运用多科学相关知识进行了初步工程设计。

设计选题: 信号发生器的设计实现 设计任务要求: 信号发生器形成的信号产生的种类、频率、幅值均为可调,信号的种类、频率可通过按键来改变,幅度可以通过电位器来调节。信号的最高频率应该达到500Hz以上,可用的频率应三个以上,T,2T,3T 或T,2T,4T均可。信号的种类应三种以上,必须产生正弦波、方波,幅度可在1~5V之间调节。 正文 方案设计与论证 做本设计时考虑了三种设计方案,具体如下: 方案一 实现首先由单片机通过I/O输出波形的数字信号,之后DA变换器接受数字信号后将其变换为模拟信号,再由运算放大器将DA输出的信号进行放大。利用单片机的I/O接收按键信号,实现波形变换、频率转换功能。

基本设计原理框图(图1) 时钟电路 系统的时钟采用内部时钟产生的方式。单片机内部有一个用于构成振荡器的高增益反相放大器,该高增益反相放大器的输入端为芯片引脚XTAL1,输出端为引脚XTAL2。这两个引脚跨接石英晶体振荡器和微调电容,就构成一个稳定的自激振荡器。晶振频率为11.0592MHz,两个配合晶振的电容为33pF。 复位电路 复位电路通常采用上电自动复位的方式。上电自动复位是通过外部复位电路的电容充电来实现的。 程序下载电路 STC89C51系列单片机支持ISP程序下载,为此,需要为系统设计ISP下载电路。系统采用MAX232来实现单片机的I/O口电平与RS232接口电平之间的转换,从而使系统与计算机串行接口直接通信,实现程序下载。 方案一的特点: 方案一实现系统既涉及到单片机及DA、运放的硬件系统设计,

简易波形发生器的设计

目录 第一章单片机开发板 (1) 1.1 开发板制作 (1) 1.1.1 89S52单片机简介 (1) 1.1.2 开发板介绍 (2) 1.1.3 89S52的实验程序举例 (3) 1.2开发板焊接与应用 (4) 1.2.1开发板的焊接 (4) 1.2.2开发板的应用 (5) 第二章函数信号发生器 (7) 2.1电路设计 (7) 2.1.1电路原理介绍 (7) 2.1.2 DAC0832的工作方式 (9) 2.2 波形发生器电路图与程序 (10) 2.2.1应用电路图 (10) 2.2.2实验程序 (11) 2.2.3 调试结果 (15) 第三章参观体会 (16) 第四章实习体会 (17) 参考文献 (18)

第一章单片机开发板 1.1 开发板制作 1.1.1 89S52单片机简介 图1.1 89s52 引脚图 如果按功能划分,它由8个部件组成,即微处理器(CPU)、数据存储器(RAM)、程序存储器(ROM/EP ROM)、I/O口(P0口、P1口、P2口、P3口)、串行口、定时器/计数器、中断系统及特殊功能寄存器(SF R)的集中控制方式。 各功能部件的介绍: 1)数据存储器(RAM):片内为128个字节单元,片外最多可扩展至64K字节。 2)程序存储器(ROM/EPROM):ROM为4K,片外最多可扩展至64K。 3)中断系统:具有5个中断源,2级中断优先权。 4)定时器/计数器:2个16位的定时器/计数器,具有四种工作方式。 5)串行口:1个全双工的串行口,具有四种工作方式。 6)特殊功能寄存器(SFR)共有21个,用于对片内各功能模块进行管理、监控、监视。 7)微处理器:为8位CPU,且内含一个1位CPU(位处理器),不仅可处理字节数据,还可以进行位变量的处理。 8)四个8位双向并行的I/O端口,每个端口都包括一个锁存器、一个输出驱动器和一个输入缓冲器。这四个端口的功能不完全相同。 A、P0口既可作一般I/O端口使用,又可作地址/数据总线使用; B、P1口是一个准双向并行口,作通用并行I/O口使用; C、 P2口除了可作为通用I/O使用外,还可在CPU访问外部存储器时作高八位地址线使用; D、P3口是一个多功能口除具有准双向I/O功能外,还具有第二功能。 控制引脚介绍: 1)电源:单片机使用的是5V电源,其中正极接40引脚,负极(地)接20引脚。 2)时钟引脚XTAL1、XTAL2时钟引脚外接晶体与片内反相放大器构成了振荡器,它提供单片机的时钟控制信号。时钟引脚也可外接晶体振荡器。 振蒎电路:单片机是一种时序电路,必须提供脉冲信号才能正常工作,在单片机内部已集成了振荡器,

函数信号发生器设计报告

函数信号发生器设计报告 目录 一、设计要求 .......................................................................................... - 2 - 二、设计的作用、目的 .......................................................................... - 2 - 三、性能指标 .......................................................................................... - 2 - 四、设计方案的选择及论证 .................................................................. - 3 - 五、函数发生器的具体方案 .................................................................. - 4 - 1. 总的原理框图及总方案 ................................................................. - 4 - 2.各组成部分的工作原理 ................................................................... - 5 - 2.1 方波发生电路 .......................................................................... - 5 - 2.2三角波发生电路 .................................................................... - 6 - 2.3正弦波发生电路 .................................................................. - 7 - 2.4方波---三角波转换电路的工作原理 ................................ - 10 - 2.5三角波—正弦波转换电路工作原理 .................................. - 13 - 3. 总电路图 ....................................................................................... - 15 - 六、实验结果分析 ................................................................................ - 16 - 七、实验总结 ........................................................................................ - 17 - 八、参考资料 ........................................................................................ - 18 - 九、附录:元器件列表 ........................................................................ - 19 -

波形发生器课程设计

1.设计题目:波形发生电路 2.设计任务和要求: 要求:设计并用分立元件和集成运算放大器制作能产生方波和三角波波形的波形发生器。 基本指标:输出频率分别为:102H Z 、103H Z ;输出电压峰峰值V PP ≥20V 3.整体电路设计 1)信号发生器: 信号发生器又称信号源或振荡器。按信号波形可分为正弦信号、函数(波形)信号、脉冲信号和随机信号发生器等四大类。各种波形曲线均可以用三角函数方程式来表示,如三角波、锯齿波、矩形波(含方波)、正弦波。通过模拟电子技术设计的波形发生器是一个不需要外加输入信号,靠自身振荡产生信号的电路。2)电路设计: 整体电路由RC振荡电路,反相输入的滞回比较器和积分电路组成。 理由:a)矩形波电压只有两种状态,不是高电平,就是低电平,所以电压比较器是它的重要组成部分; b)产生振荡,就是要求输出的两种状态自动地相互转换,所以电路中必须引入反馈; c)输出状态应按一定的时间间隔交替变化,即产生周期性变化,所以电路中要有延迟环节来确定每种状态维持的时间。 RC振荡电路:即作为延迟环节,又作为反馈电路,通过RC充放电实现输出状态的自动转换。 反相输入的滞回比较器:矩形波产生的重要组成部分。 积分电路:将方波变为三角波。 3)整体电路框图: 为实现方波,三角波的输出,先通过 RC振荡电路,反相输入的滞回比较器得到方波,方波的输出,是三角波的输入信号。三角波进入积分电路,得出的波形为所求的三角波。其电路的整体电路框图如图1所示:

图1 4)单元电路设计及元器件选择 a ) 方波产生电路 根据本实验的设计电路产生振荡,通过RC 电路和滞回比较器时将产生幅值约为12V 的方波,因为稳压管选择1N4742A (约12V )。电压比较电路用于比较模拟输入电压与设定参考电压的大小关系,比较的结果决定输出是高电平还是低电平。滞回比较器主要用来将信号与零电位进行比较,以决定输出电压。图3为一种滞回电压比较器电路,双稳压管用于输出电压限幅,R 3起限流作用,R 2和R 1构成正反馈,运算放大器当u p >u n 时工作在正饱和区,而当u n >u p 时工作在负饱和区。从电路结构可知,当输入电压u in 小于某一负值电压时,输出电压u o = -U Z ;当输入电压u in 大于某一电压时,u o = +U Z 。运算放大器在两个饱和区翻转时u p =u n =0,由此可确定出翻转时的输入电压。u p 用u in 和u o 表示,有 2 1o 1in 22 1o 2 in 1p 111 1R R u R u R R R u R u R u ++= ++= 根据翻转条件,令上式右方为零,得此时的输入电压 th Z 2 1 o 21in U U R R u R R u ==-= U th 称为阈值电压。滞回电压比较器的直流传递特性如图4所示。设输入电压初始值小于-U th ,此时u o = -U Z ;增大u in ,当u in =U th 时,运放输出状态翻转,进入正饱和区。如果初始时刻运放工作在正饱和区,减小u in ,当u in = -U th 时,运放则开始进入负饱和区。 RC 振荡电路 积分电路 方波 三角波 反相输入的滞回比较 生成 生成 输入 积分电路 输入

信号发生器设计---实验报告

信号发生器设计 一、设计任务 设计一信号发生器,能产生方波、三角波和正弦波并进行仿真。 二、设计要求 基本性能指标:(1)频率范围100Hz~1kHz;(2)输出电压:方波U p-p≤24V,三角波U =6V,正弦波U p-p>1V。 p-p 扩展性能指标:频率范围分段设置10Hz~100Hz, 100Hz~1kHz,1kHz~10kHz;波形特性方波t r<30u s(1kHz,最大输出时)用仪器测量上升时间,三角波r△<2%,正弦波r <5%。(计算参数) ~ 三、设计方案 信号发生器设计方案有多种,图1是先产生方波、三角波,再将三角波转换为正弦波的组成框图。 图1 信号发生器组成框图 主要原理是:由迟滞比较器和积分器构成方波——三角波产生电路,三角波在经过差分放大器变换为正弦波。方波——三角波产生基本电路和差分放大器电路分别如图2和图4所示。 图2所示,是由滞回比较器和积分器首尾相接形成的正反馈闭环系统,则比较器A1输出的方波经积分器A2积分可得到三角波,三角波又触发比较器自动翻转形成方波,这样即可构成三角波、方波发生器。其工作原理如图3所示。

图2 方波和三角波产生电路 图3 比较器传输特性和波形 利用差分放大器的特点和传输特性,可以将频率较低的三角波变换为正弦波。(差模传输特性)其基本工作原理如图5所示。为了使输出波形更接近正弦波,设计时需注 应接近晶体意:差分放大器的传输特性曲线越对称、线性区越窄越好;三角波的幅值V m 管的截止电压值。 图4 三角波→正弦波变换电路

图5 三角波→正弦波变换关系 在图4中,RP 1调节三角波的幅度,RP 2调整电路的对称性,并联电阻R E2用来减小差分放大器的线性区。C 1、C 2、C 3为隔直电容,C 4为滤波电容,以滤除谐波分量,改善输出波形。取Ic2上面的电流(看输出) 波形发生器的性能指标: ①输出波形种类:基本波形为正弦波、方波和三角波。 ②频率范围:输出信号的频率范围一般分为若干波段,根据需要,可设置n 个波段范围。(n>3) ③输出电压:一般指输出波形的峰-峰值U p-p 。 ④波形特性:表征正弦波和三角波特性的参数是非线性失真系数r ~和r △;表征方波特性的参数是上升时间t r 。 四、电路仿真与分析 实验仿真电路图如图

简易波形发生器

????学院课程设计报告 课程名称:电子技术课程设计 教学院部:电气与信息工程学院 专业班级:自动化0810?班 学生姓名:???(200816010???) 指导教师:??? 完成时间:2010 年6月25日 报告成绩:

简易波形发生器

目录 第1章前言 (3) 1.1 课程设计内容与要求 (3) 1.2 单片机的发展前景 (3) 第2章总体设计方案 (4) 2.1 系统总体方案选择与说明 (4) 2.2 系统结构框图与工作原理 (4) 第3章系统硬件设计及说明 (5) 3.1 单片机的时钟振荡电路 (5) 3.2 波形选择电路 (5) 3.3 单片机复位电路 (6) 3.4 AT89C51单片机及运行方式 (6) 3.5 波形的放大及双极性输出实现 (7) 第4章系统软件设计与说明 (9) 4.1 锯齿波的子程序和流程图 (9) 4.2 三角波的子程序和流程图 (10) 4.3 正弦波的子程序和流程图 (11) 4.4 方波的子程序和流程图 (13) 第5章总结体会 (15) 附录A 系统原理图 (16) 附录B 程序清单 (17) 参考文献 (19)

第1章前言 1.1 课程设计内容与要求 用单片机与DAC0832 构成的波形发生器,可产生方波、三角波、锯齿波、正弦波等多种波形,波形的周期可用程序改变,并可根据需要选择单极性输出或双极性输出,具有线路简单、结构紧凑、性能优越等特点。 1.2 单片机的发展前景 当今世界在以电子信息技术为前提下推动了社会跨跃式的进步,科学技术的飞速发展日新月异带动了各国生产力的大规模提高。由此可见科技已成为各国竞争的核心,尤其是电子信息技术更显得尤为重要,在国民生产各部门电子信息技术得到了广泛的应用。 漫步在繁华的现代化的大都市的大街上,随时都可以看到街上有很多可以用卡取钱的机器(ATM自动柜机),十字路口的交通灯。我们家里数码电视机、数码音响、遥控器、空调、智能玩具..... 这些“高科技”看上去是如此的神秘,它到底是怎样构成的,它是通过什么样的程序和什么样的方式来完成这一系列指令的呢?让我们取钱更方便、避免城市的交通混乱和交通阻塞……给我们生活带来了处处方便。其实这也是用单片机来控制的,单片机在我们生活中触手可及,它是如此地贴近我们的生活,单片机给我们的生活带来的有如此多的便利。 目前单片机渗透到我们生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。导弹的导航装置,飞机上各种仪表的控制,计算机的网络通讯与数据传输,工业自动化过程的实时控制和数据处理,广泛使用的各种智能IC卡,民用豪华轿车的安全保障系统,录像机、摄像机、全自动洗衣机的控制,以及程控玩具、电子宠物等等,这些都离不开单片机。科技越发达,智能化的东西就越多,使用的单片机就越多。看来学单片机是社会发展的需求。 据统计,我国的单片机年容量已达1-3亿片,且每年以大约16%的速度增长,但相对于世界市场我国的占有率还不到1%。特别是沿海地区的玩具厂等生产产品多数用到单片,并不断地辐射向内地, 这说明单片机应用在我国才刚刚起步,有着广阔的前景。单片机被广泛用于人们生活的各个领域,社会需要大量掌握单片机技术的人才,而单片机性能不断提高,价格不断降低,技术也日趋已成熟。所以,培养单片机应用人才,特别是在工程技术人员中普及单片机知识有着重要的现实意义。

相关主题
文本预览
相关文档 最新文档